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Summary
Tikhonov regularization is one of the most popular approaches to solving linear dis-

crete ill-posed problems. The choice of the regularization matrix may significantly

affect the quality of the computed solution. When the regularization matrix is the

identity, iterated Tikhonov regularization can yield computed approximate solutions

of higher quality than (standard) Tikhonov regularization. This paper provides an

analysis of iterated Tikhonov regularization with a regularization matrix different

from the identity. Computed examples illustrate the performance of this method.
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1 INTRODUCTION

Many applications in physics and engineering lead to linear

problem of the form

min
x∈Rd2

||Ax − b𝛿||, A ∈ R
d1×d2 , b𝛿 ∈ R

d1 , (1)

where the vector b𝛿 represents measured data that is contami-

nated by an unknown error e ∈ Rd1 of norm bounded by 𝛿 > 0,

and the matrix A is of ill-determined rank, that is, its singu-

lar values decay gradually to zero without a significant gap.

Least-squares problems with a matrix of this kind are com-

monly referred to as discrete ill-posed problems. They arise,

for instance, from the discretization of linear ill-posed prob-

lems; see Engl et al. and Hansen1,2 for discussions on ill-posed

and discrete ill-posed problems.

Let b denote the unknown error-free vector associated with

b𝛿 . Then

b𝛿 = b + e, ||e|| ⩽ 𝛿. (2)

Here and throughout this paper, ||·|| denotes the Euclidean

vector norm or spectral matrix norm.

Assuming that b is attainable, we would like to deter-

mine an accurate approximation of the minimal norm solution

x†: = A†b of the error-free least-squares problem associ-

ated with Equation 1. Here A† denotes the Moore–Penrose

pseudoinverse. Due to the clustering of the singular values

of A at the origin and the error in b𝛿 , the solution A†b𝛿 of

Equation 1 generally is not a meaningful approximation of x†.

This difficulty can be remedied by replacing the minimization

problem (Equation 1) by a nearby problem whose solution is

less sensitive to the error in b𝛿 . This replacement is commonly

referred to as regularization.1 One of the most popular regu-

larization methods is due to Tikhonov, which in its simplest

form replaces the least-squares problem (Equation 1) by the

penalized minimization problem

min
x∈Rd2

{
∥ Ax − b𝛿 ∥2 + 𝛼∥ x − x0 ∥2

}
. (3)

Here 𝛼 > 0 is a regularization parameter whose value deter-

mines how sensitive the solution of Equation 3 is to the error e
in b𝛿 and how close the solution is to the desired vector x†. The

vector x0 ∈ Rd2 is an available approximation of x†. It may

be set to zero if no approximation of x† is known; see exam-

ples in Engl et al. and Hansen1,2 for discussions on Tikhonov

regularization.

It is well known that it is often possible to improve the qual-

ity of the approximation of x† determined by Tikhonov reg-

ularization by replacing the Tikhonov minimization problem

in Equation 3 by

min
x∈Rd2

{
∥ Ax − b𝛿 ∥2 + 𝛼∥ L(x − x0) ∥2

}
, (4)

where L ∈ Rd3×d2 is a suitable regularization matrix. Let

 (L) and (L) denote the null space and the range of L,

respectively. We will assume that L is chosen so that
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 (L) ∩ (A) = {0}. (5)

Then Equation 4 has a unique solution x𝛼 for any 𝛼 > 0. The

minimization problem in Equation 3 is commonly referred to

as Tikhonov regularization in standard form, while Equation 4

is referred to as Tikhonov regularization in general form.2–5

We first consider the minimization problem in Equation 3,

which we express as follows

min
h∈Rd2

{∥ Ah − r0 ∥2 + 𝛼∥ h ∥2},

where

r0 = b𝛿 − Ax0, h = x − x0.

Thus, h provides an approximation of the error x† − x0

and, for a suitable choice of 𝛼 > 0, generally, an improved

approximation of x† is given by

x1 = x0 + h.

Repeated application of this refinement strategy defines the

iterated Tikhonov method.1 Given x0 ∈ Rn, we carry out the

following steps:

for k = 0, 1, … do

1. Compute rk = b𝛿 − Axk
2. Solve minh∈Rd2 {∥ Ah − rk ∥2 + 𝛼k∥ h ∥2} to obtain hk
3. Update xk + 1 = xk + hk

where 𝛼0, 𝛼1, … denotes a sequence of positive regulariza-

tion parameters. We will comment on their choice below.

The iterations for the iterated Tikhonov method can be

expressed compactly in the form

xk+1 = xk + (AtA + 𝛼kI)−1At(b𝛿 − Axk), k = 0, 1, … ,

(6)

where the superscript t stands for transposition and I denotes

the identity matrix. The iterations can be terminated with the

aid of the discrepancy principle,1,2 which prescribes that k be

increased until ||rk+1|| ⩽ 𝜏𝛿 (7)

holds. Here 𝜏 > 1 is a user-supplied constant independent

of 𝛿. Its application requires that the least-squares problem

in Equation 1 with b𝛿 replaced by the associated error-free

vector b be consistent.

The choice of 𝛼k in the iterated Tikhonov method is impor-

tant and many strategies have been proposed in the literature.6

If 𝛼k = 𝛼 is independent of k, then the iterative method is said

to be stationary, otherwise it is nonstationary. In many appli-

cations nonstationary iterated Tikhonov regularization has

been found to give more accurate approximations of x† and/or

a faster convergence than stationary iterated Tikhonov regu-

larization. A common choice of regularization parameters for

nonstationary iterated Tikhonov methods is the geometric

sequence

𝛼k = 𝛼0qk, 𝛼0 > 0, 0 < q < 1, k = 0, 1, … . (8)

This choice is studied by Brill et al. and Hanke et al.7,8

Available analyses of iterated Tikhonov regularization only

treat the case when L is the identity,6–9 that is, the iteration

in Equation 6. However, computed results reported by

Huang et al.10,11 showed that iterative application of

Equation 4 with L ≠ I can give better approximations of x†

than Equation 6. Similarly, extending an approximate version

of Equation 6 proposed by Donatelli et al.,12 the results in

the study of Buccini13 showed that the computed approxi-

mations of x† can be improved by choosing a regularization

matrix different from the identity. Nevertheless, to the best

of our knowledge no detailed analysis of iterated Tikhonov

regularization

xk+1 = xk + (AtA + 𝛼kLtL)−1At(b𝛿 − Axk), k = 0, 1, … ,

(9)

with L a fairly general regularization matrix that satisfies

Equation 5 is available. It is the aim of this paper to provide

such an analysis and to show that, for suitable choices of L,

the iteration in Equation 9 can give approximations of x† of

significantly higher quality than the iterations in Equation 6.

We show that Equation 9 defines a regularization method

when the iterations are terminated with the discrepancy prin-

ciple in Equation 7. Our analysis is first carried out for the

stationary iterated Tikhonov method with A and L square

matrices, and subsequently extended to rectangular matrices

and nonstationary iterated Tikhonov regularization.

This paper is organized as follows: Section 2 uses the gen-

eralized singular value decomposition (GSVD) of the matrix

pair {A, L} to derive some results which are needed in the

following. The iterated Tikhonov method with a general reg-

ularization matrix L is discussed in Section 3. We describe

an algorithm and discuss properties of the iterates generated.

A few computed examples that illustrate the performance of

iterated Tikhonov regularization are presented in Section 4,

and concluding remarks can be found in Section 5.

2 STANDARD TIKHONOV
REGULARIZATION IN GENERAL FORM

Assume that A and L are square matrices, that is,

d1 = d2 = d3 = d, and introduce the generalized singular value

decomposition of the matrix pair {A, L},

A = UΣYt, L = VΛYt, (10)

where U,V ∈ Rd×d are orthogonal matrices, Σ =
diag[𝜎1, … , 𝜎d] ∈ Rd×d and Λ = diag[𝜆1, … , 𝜆d] ∈
Rd×d are diagonal matrices, and the matrix Y ∈ Rd×d is

nonsingular. It follows from of Equation 5 that

𝜎j = 0 ⇒ 𝜆j ≠ 0 and 𝜆j = 0 ⇒ 𝜎j ≠ 0. (11)

Due to Equation 5, the minimization problem

min
x∈Rd

{
∥ Ax − b𝛿 ∥2 + 𝛼 ∥ Lx ∥2

}
has the unique solution

x𝛼 =
(
AtA + 𝛼LtL

)−1Atb𝛿. (12)
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Substituting the factorizations of Equation 10 into

Equation 12, we get

x𝛼 =
(
YΣUtUΣYt + 𝛼YΛVtVΛYt)−1YΣUtb𝛿

= Y−t(Σ2 + 𝛼Λ2
)−1ΣUtb𝛿

= Y−t(Σ2 + 𝛼Λ2
)−1Σb̂,

where b̂ = [b̂1, … , b̂d]t = Utb𝛿 . Assume that 𝜆j = 0 for 1 ⩽
j ⩽ l, and 𝜆j ≠ 0 for l < j ⩽ d. Note that, due to Equation 11,

the ratios
1

𝜎j
, 1 ⩽ j ⩽ l, are well defined. Then we have

x𝛼 =
d∑

j=1

ỹj
𝜎j

𝜎2
j + 𝛼𝜆2

j

b̂j

=
l∑

j=1

ỹj
1

𝜎j
b̂j +

d∑
j=l+1

ỹj
𝜎j

𝜎2
j + 𝛼𝜆2

j

b̂j

=
l∑

j=1

ỹj
1

𝜎j
b̂j +

d∑
j=l+1

ỹj
𝜎j∕𝜆j(

𝜎j∕𝜆j
)2 + 𝛼

1

𝜆j
b̂j.

(13)

Let us give some definitions that are going to be useful in the

following. Introduce the matrix

A−1

 (L) = Y−t

⎛⎜⎜⎜⎜⎜⎜⎝

1∕𝜎1

1∕𝜎2

⋱
1∕𝜎r

0
⋱

0

⎞⎟⎟⎟⎟⎟⎟⎠
Ut

= Y−tΣ†(I − Λ†Λ)Ut,

(14)

where r = min{l, rank(A)} and

Λ† =

⎛⎜⎜⎜⎜⎜⎝

0
⋱

0
1∕𝜆l+1

⋱
1∕𝜆d

⎞⎟⎟⎟⎟⎟⎠
is the pseudoinverse of Λ. Also define

L = Y−tΛ†Vt. (15)

Let Γ = diag[𝛾1,… , 𝛾d] with 𝛾 j = 0 for 1 ⩽ j ⩽ l and 𝛾j =
𝜎j

𝜆j

for l < j ⩽ d. Introduce

C = UΓVt. (16)

Since the matrices U and V are orthogonal, it follows that

Equation 16 is the singular value decomposition (SVD) of

C, possibly with the entries of Γ ordered in a nonstandard

fashion, that is, it is not assured that 𝛾 j ⩾ 𝛾 j + 1 for all j
as in the standard SVD. Combining Equations 14–16 with

Equation 13, we now can express the solution of Equation 12

as follows:

x𝛼 = A−1

 (L)b
𝛿 + L

(
CtC + 𝛼I

)−1Ctb𝛿.

3 ITERATED TIKHONOV
REGULARIZATION WITH A GENERAL
PENALTY TERM

The following algorithm extends iterated Tikhonov reg-

ularization with L = I in the stationary case, that is,

with 𝛼k = 𝛼 for all k, by allowing a fairly general

regularization matrix L. The algorithm does not require

the matrices A and L to be square.

Algorithm 1. (GIT)

Let A ∈ Rd1×d2 and b𝛿 ∈ Rd1 , and let the regularization matrix

L ∈ Rd3×d2 satisfy (5). Assume that 𝛿 > 0 is large enough

so that (2) holds and fix 𝜏 > 1 independently of 𝛿. Let 𝛼 > 0

and let x0 ∈ Rd2 be an available initial approximation of x†.

Compute

In the special case when L is the identity matrix,

Algorithm 1 simplifies to the iterations in Equation 6 ter-

minated by the discrepancy principle in Equation 7. In our

analysis of Algorithm 1, we first consider the situation when A
and L are square matrices. Later, in Subsection 3.2, we extend

the analysis to more general matrices A and L. Finally, in

Subsection 3.3, we consider nonstationary sequences of reg-

ularization parameters 𝛼0, 𝛼1, 𝛼2, . . . .

3.1 Convergence analysis for square matrices A and L

Let d = d1 = d2 = d3. In this subsection we will show that

the iterates xk determined by Algorithm 1, without termina-

tion by the discrepancy principle, converge to the solution

of Equation 1. However, as we pointed out in Section 1, the

solution of Equation 1 is contaminated by propagated error

and therefore generally not useful. Typically, a much better

approximation of x† can be determined by early termination

of the iterations with the aid of the discrepancy principle as

in Algorithm 1. We will show that Algorithm 1 defines an

iterative regularization method.

To show convergence and the regularization property of

Algorithm 1, we employ a divide et impera approach. We set

x0 = 0 in order to simplify the proofs. Consider the iterates{
x0 = 0,
xk+1 = xk + (AtA + 𝛼LtL)−1Atrk,

where rk = b𝛿 − Axk is the residual at step k. Using the

expression (13), we get that

xk+1 = xk + A−1

 (L)rk + L
(
CtC + 𝛼I

)−1Ctrk

=
k∑

i=0

A−1

 (L)ri +
k∑

i=0

L
(
CtC + 𝛼I

)−1Ctri.
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We will show convergence of the two sums

x(0)
k+1

=
k∑

i=0

A−1

 (L)ri, (17)

x⟂
k+1

= L
k∑

i=0

(
CtC + 𝛼I

)−1Ctri (18)

for increasing k separately.

Proposition 1. Assume d = d1 = d2 = d3, let x(0)
k be defined

in Equation 17, and set x0 = 0. Then

x(0)
k = A−1

 (L)b
𝛿 for k ⩾ 1.

Proof. Since x0 = 0, we immediately have that

x(0)
1

= A−1

 (L)b
𝛿.

It remains to be shown that x(0)
k = A−1

 (L)b
𝛿 for all k⩾2.

We proceed by induction. Let k⩾1 and suppose that x(0)
k =

A−1

 (L)b
𝛿 . Then we need to show that x(0)

k+1
= A−1

 (L)b
𝛿 . We have

x(0)
k+1

= x(0)
k + A−1

 (L)(b
𝛿 − Axk)

= A−1

 (L)b
𝛿 + A−1

 (L)

(
b𝛿 − A

(
x(0)k + x⟂

k

))
= A−1

 (L)b
𝛿 + A−1

 (L)

(
b𝛿 − AA−1

 (L)b
𝛿 − Ax⟂

k

)
.

If we show that A−1

 (L)(b
𝛿 −AA−1

 (L)b
𝛿) = A−1

 (L)Ax⟂
k = 0, then

the proposition follows. We have that

A−1

 (L)(b
𝛿 − AA−1

 (L)b
𝛿) = (A−1

 (L) − A−1

 (L)AA−1

 (L))b
𝛿

= (Y−tΣ†(I − Λ†Λ)Ut

− Y−tΣ†(I − Λ†Λ)UtUΣYtY−tΣ†(I − Λ†Λ)Ut)b𝛿

= Y−t(Σ†(I − Λ†Λ) − Σ†(I − Λ†Λ)ΣΣ†(I − Λ†Λ))Utb𝛿

= Y−t(Σ†(I − Λ†Λ) − Σ†ΣΣ†(I − Λ†Λ)(I − Λ†Λ))Utb𝛿

= Y−t(Σ†(I − Λ†Λ) − Σ†(I − Λ†Λ))Utb𝛿 = 0,

where we have used the facts that diagonal matrices commute,

that Σ†ΣΣ† = Σ†, and that (I − Λ†Λ)(I − Λ†Λ) = (I − Λ†Λ),

since (I − Λ†Λ) is an orthogonal projector.

Turning to A−1

 (L)Ax⟂
k , we will show that A−1

 (L)AL = 0.

We get

A−1

 (L)AL = Y−tΣ†(I − Λ†Λ)UtUΣYtY−tΛ†Vt

= Y−tΣ†Σ(I − Λ†Λ)Λ†Vt

= Y−tΣ†Σ(Λ† − Λ†ΛΛ†)Vt

= Y−tΣ†Σ(Λ† − Λ†)Vt = 0.

It follows that A−1

 (L)Ax⟂
k = 0 by induction because

A−1

 (L)Ax⟂
k = A−1

 (L)Ax⟂
k−1

+A−1

 (L)AL(CtC + 𝛼I)−1Ct(b𝛿−Axk),

which concludes the proof.

Proposition 2. Let d = d1 = d2 = d3 and assume that

Equation 5 holds. Let x⟂
k be defined in Equation 18 and set

x0 = 0. Then

x⟂
k → LC†b

𝛿
as k → ∞,

where

b
𝛿
= UΛ†ΛUtb𝛿.

Proof. Consider the sequence {x⟂
k }

∞
k=1

. We would like to

show that this sequence can be determined by application

of standard iterated Tikhonov regularization to some linear

system of equations. The convergence then will follow from

available results for iterative Tikhonov regularization with

regularization matrix L = I. First recall the expression for

x⟂
k+1

,

x⟂
k+1

= x⟂
k + L(CtC + 𝛼I)−1Ct(b𝛿 − Axk).

To transform this iteration to (standard) iterated Tikhonov

iterations, we introduce

h̃k = (CtC + 𝛼I)−1Ct(b𝛿 − Axk), (19)

such that

x⟂
k+1

= x⟂
k + Lh̃k. (20)

Inserting the factorizations (10) and (16) of A and C into

Equation 19 yields

h̃k = V(Γ2 + 𝛼I)−1ΓUt(b𝛿 − UΣYtxk)
= V(Γ2 + 𝛼I)−1Γ(Utb𝛿 − ΣYtxk).

We have

ΓΣ = ΓΓΛ,
because both the left-hand and right-hand sides are diagonal

matrices whose first l components vanish, and the remaining

components are of the form 𝜎2
j ∕𝜆j for l< j⩽ d, thus, we obtain

h̃k = V(Γ2 + 𝛼I)−1Γ(Utb − ΓΛYtxk).

Define

b
𝛿
= UΛ†ΛUtb𝛿

and

xk = Lxk,

and consider

hk = (CtC + 𝛼I)−1Ct(b
𝛿
− Cxk).

We will show that hk = h̃k. Substituting the factorizations

(16) and (10) of C and L into the above expression, we get

hk = V(Γ2 + 𝛼I)−1VtVΓUt(UΛ†ΛUtb𝛿 − UΓVtVΛYtxk)
= V(Γ2 + 𝛼I)−1Γ(Utb𝛿 − ΓΛYtxk) = h̃k,

where in the last step, we used the fact that ΓΛ†Λ = Γ.

Replacing h̃k by hk in Equation 20, we obtain

x⟂
k+1

= x⟂
k + Lhk = x⟂

k + L(CtC + 𝛼I)−1Ct(b
𝛿
− CLxk).

Because x0 = 0, we have

x⟂
k+1

= L
k∑

i=0

(CtC + 𝛼I)−1Ct(b
𝛿
− CLxi).

We now show that the sum in the right-hand side, namely,

x̃k+1 =
k∑

i=0

(CtC + 𝛼I)−1Ct(b
𝛿
− CLxi),
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is the approximate solution computed by k + 1 iterations

of standard iterated Tikhonov iteration applied to the linear

system of equations

Cx = b
𝛿
. (21)

We have

x̃k+1 = x̃k + (CtC + 𝛼I)−1Ct(b
𝛿
− CLxk).

Therefore, if we establish that Lxk = x̃k for all k, then we are

done. We show this result by induction. For k = 0, it is trivial

because x0 = 0. Suppose that x̃k = Lxk. We would like to

show that x̃k+1 = Lxk+1. Applying L to xk+1 yields,

Lxk+1 = Lxk + LA−1

 (L)rk + LL(CtC + 𝛼I)−1Ct(b𝛿 − Axk)
(a)
= x̃k + 0 + LL(CtC + 𝛼I)−1Ct(b𝛿 − Axk)
(b)
= x̃k + LL(CtC + 𝛼I)−1Ct(b

𝛿
− CLxk)

= x̃k + VΛ†YtY−tΛVtV(Γ2 + 𝛼I)−1ΓUt(b
𝛿
− CLxk)

= x̃k + VΛ†Λ(Γ2 + 𝛼I)−1ΓUt(b
𝛿
− CLxk)

(c)
= x̃k + V(Γ2 + 𝛼I)−1ΓUt(b

𝛿
− CLxk)

= x̃k + (CtC + 𝛼I)−1Ct(b
𝛿
− CLxk) = x̃k+1,

where equality (a) is due to the fact that A−1

 (L) annihilates the

component of rk = b𝛿 − Axk in the complement of  (L); (b)

is obtained by using the fact, shown above, that h̃k = hk, and

(c) follows from Λ†ΛΓ = Γ.

We have shown that the x̃k are iterates determined by the

(standard) iterated Tikhonov method applied to the linear

system of Equation 21, and thus it follows that

x̃k → C†b
𝛿

as k → ∞,

due to the convergence of the iterated Tikhonov method.1 By

continuity of L, we have

x⟂k → LC†b
𝛿

as k → ∞,

which concludes the proof.

Introduce the matrix

A(†) = Y−tΣ†Ut.

Theorem 1. Let d = d1 = d2 = d3 and assume that

Equation 5 holds. Let x0 = 0. Then the iterates determined by

Algorithm 1 converge to A(†)b𝛿 . Moreover, if b𝛿 ∈ (A), then

AA(†)b𝛿 = b𝛿 .

Proof. From Propositions 1 and 2, we have

xk = x(0)
k + x⟂

k → A−1

 (L)b
𝛿 + LC†b

𝛿
= x∞ as k → ∞.

Using the definitions in Equations 14, 15, and 16, we obtain

x∞ = Y−tΣ†(I − Λ†Λ)Utb𝛿 + Y−tΛ†VtVΓ†UtUΛ†ΛUtb𝛿

= Y−t (Σ†(I − Λ†Λ) + Λ†Γ†Λ†Λ
)

Utb𝛿

= Y−t (Σ†(I − Λ†Λ) + Λ†Γ†)Utb𝛿

= Y−t (Σ†(I − Λ†Λ) + Λ†ΛΣ†)Utb𝛿

= Y−tΣ†Utb𝛿,

where we have used the fact that diagonal matrices commute

and Λ†Γ† = Λ†ΛΣ†.

What is left to prove is that if b𝛿 ∈ (A), then AA(†)b𝛿 = b𝛿 ,

which is straightforward. Since b𝛿 ∈ (A), there exists y ∈
Rd such that b𝛿 = Ay; thus,

AA(†)b𝛿 = AA(†)Ay
= UΣYtY−tΣ†UtUΣYty
= UΣΣ†ΣYty
= UΣYty = Ay = b𝛿,

which concludes the proof.

Remark 1. We note that x∞ = A(†)b𝛿 might not be the min-

imum norm solution of the system (1), because x∞ may have

a component in  (A).

Theorem 1 shows that the iterates determined by

Algorithm 1 converge to a solution of Equation 1, when A is

a square matrix, for any fixed regularization parameter 𝛼 > 0.

This result is useful when the vector b𝛿 is error-free, that is,

when 𝛿 = 0 in Equation 2. However, as already mentioned in

Section 1 and at the beginning of this subsection, when b𝛿 is

error-contaminated, the minimum norm solution A†b𝛿 typi-

cally is severely contaminated by propagated error stemming

from the error e in b𝛿 and, therefore, is not useful. Moreover,

the solution A(†)b𝛿 typically is not useful either. A meaning-

ful approximation of x† can be determined by terminating the

iterations sufficiently early. We will show that the discrep-

ancy principle can be applied to determine when to terminate

the iterations. This requires the following auxiliary result.

Lemma 1. Assume that d = d1 = d2 = d3 and that Equation 5

holds. Let 𝛿 > 0, b ∈ (A), and x0 = 0. Then Algorithm 1

terminates after finitely many steps.

Proof. Consider the residual at the limit point

rk → r∞ = b𝛿−AA(†)b𝛿 =
(
I − AA(†)) (b+e) =

(
I − AA(†)) e,

where in the last step we have used the fact that b ∈ (A).
Now, by Equation 2, we have

∥ r∞ ∥=∥
(
I − AA(†)) e ∥

(a)
⩽ ∥ e ∥⩽ 𝛿,

where the inequality (a) follows from the fact that I − AA(†)

is an orthogonal projector; we have

I − AA(†) = I − UΣYtY−tΣ†Ut = U(I − ΣΣ†)Ut,

where U is an orthogonal matrix.

Let 𝜏 > 1 be a constant independent of 𝛿. Then there is a

constant k𝜏 < ∞ such that for all k > k𝜏 , it holds

∥ rk ∥< 𝜏𝛿.

We are now able to prove the regularization property of

Algorithm 1.
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Theorem 2. (Regularization)

Let b ∈ (A). Then, under the assumptions of Theorem 1 and

Lemma 1, Algorithm 1 terminates as soon as a residual vector

rk = b𝛿 − Axk satisfies ||rk||⩽𝜏𝛿. This stopping criterion is

satisfied after finitely many steps k = k𝛿 . Denote the iterate

xk𝛿 simply by x𝛿 . Then

lim sup
𝛿↘0

∥ x(†) − x𝛿 ∥= 0,

where x(†) = A(†)b.

Proof. It follows from Lemma 1 that if 𝛿 > 0, then the iter-

ations with Algorithm 1 are terminated after finitely many,

k, steps. Because x0 = 0, the iterates determined by the

algorithm can be expressed as

xk =
k−1∑
j=0

hj,

where

hj = A−1

 (L)rj + L(CtC + 𝛼I)−1Ctrj.

We first show that

A(†)Ax𝛿 = x𝛿.

Consider

A(†)Ahj = A(†)A(A−1

 (L) + L(CtC + 𝛼I)−1Ct)rj

= Y−tΣ†ΣYt(Y−tΣ†(I − Λ†Λ)Ut

+ Y−tΛ†(Γ2 + 𝛼I)−1ΓtUt)rj

= (Y−tΣ†ΣΣ†(I − Λ†Λ)Ut

+ Y−tΣ†ΣΛ†(Γ2 + 𝛼I)−1ΓtUt)rj

= (Y−tΣ†(I − Λ†Λ)Ut

+ Y−tΛ†(Γ2 + 𝛼I)−1ΓtUt)rj = hj.

Thus, we obtain

A(†)Ax𝛿 =
k𝛿−1∑
j=0

A(†)Ahj =
k𝛿−1∑
j=0

hj = x𝛿.

Therefore,

lim sup
𝛿↘0

∥ x(†) − x𝛿 ∥ = lim sup
𝛿↘0

∥ A(†)A
(
x(†) − x𝛿

)
∥

⩽∥ A(†) ∥ lim sup
𝛿↘0

∥ A
(
x(†) − x𝛿

)
∥

=∥ A(†) ∥ lim sup
𝛿↘0

∥
(
b − b𝛿

)
+
(
b𝛿 − Ax𝛿

)
∥

⩽∥ A(†) ∥ lim sup
𝛿↘0

(1 + 𝜏) 𝛿 = 0,

where in the last step we have used the fact that x𝛿 is deter-

mined by the discrepancy principle.

Remark 2. As already mentioned, A(†)b might not be a min-

imum norm solution with respect to the Euclidean vector

norm. Instead, it is a minimum norm solution with respect to

a vector norm induced by the matrix Y − t. We have

∥ A(†)b ∥=∥ Y−tΣUtb ∥= ∥ ΣUtb ∥Y−t ,

where we define the norm induced by an invertible matrix

M ∈ Rd×d as ∥ y ∥M =∥ My ∥; see, for example, Equation

5.2.6 in Horn and Johnson.14 The norm in the right-hand side

is determined by Y − t, which, in turn, is defined by the GSVD

(10) of the matrix pair {A, L}.

3.2 Extension of the convergence analysis
to rectangular matrices A and L

We show how the analysis of the previous subsection for

square matrices A and L can be extended to rectangular matri-

ces. First, consider the case when A ∈ Rd1×d2 with d1 < d2.

We then pad A and b𝛿 with d2 − d1 zero rows to obtain

Â =
[

A
O

]
∈ R

d2×d2 , b̂𝛿 =
[

b𝛿

0

]
∈ R

d2 ,

and replace A and b𝛿 in Equation 1 by Â and b̂𝛿 , respec-

tively. This replacement does not change the solution of the

minimization problem in Equation 1.

The situation when A ∈ Rd1×d2 with d1 > d2 can be handled

by padding A with d1 − d2 zero columns and the solution x
with d1 − d2 zero rows. We obtain

Â = [A 0] ∈ R
d1×d1 , x̂ =

[
x
0

]
∈ R

d1 ,

and replace A and x in Equation 1 by Â and x̂. Only the d2 first

entries of the computed solution are of interest.

The case when L ∈ Rd3×d2 with d3 < d2 can be treated

similarly as when A has fewer rows than columns. Thus, we

pad L with d2 − d3 zero rows to obtain

L̂ =
[

L
O

]
∈ R

d2×d2 ,

and replace L in Equation 4 by L̂. This replacement does not

affect the computed solution.

Finally, when L ∈ Rd3×d2 with d3 > d2, we compute the QR

factorization as follows:

L = QR,

where Q ∈ Rd3×d2 has orthonormal columns and R ∈ Rd2×d2

is upper triangular. We then replace L in Equation 4 by R. The

computed solution is not affected by this replacement.

3.3 The nonstationary iterated Tikhonov method
with a general L

This section extends the analysis of the stationary iterated

Tikhonov regularization method described in Subsection 3.1

and implemented by Algorithm 1 to nonstationary iterated

Tikhonov regularization. This extension can be carried out in

a fairly straightforward manner. We therefore only state the

results and give sketches of proofs.

Consider the iterations

xk+1 = xk +
(
AtA + 𝛼kLtL

)−1Atrk, k = 0, 1, … ,
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where as usual rk denotes the residual vector. We assume that

Equation 5 holds and that the regularization parameters 𝛼k > 0

satisfy
∞∑

k=0

𝛼−1
k = ∞. (22)

Analyses of this iteration method when L = I are presented

by Brill et al. and Hanke et al.7,8 The following algorithm

outlines the computations with the discrepancy principle as

stopping criterion.

Algorithm 2. (GITNS)

Let A ∈ Rd1×d2 , b𝛿 ∈ Rd1 , and x ∈ Rd2 . Assume that the

regularization matrix L ∈ Rd3×d2 satisfies (5) and that the reg-

ularization parameters 𝛼k > 0 satisfy (22). Let 𝛿 be defined

in (2) and fix 𝜏 > 1 independently of 𝛿. Let x0 ∈ Rd2 be an

available initial approximation of x†. Compute

We would like to show that, under the assumption (22),

the iterates determined by the above algorithm without the

stopping criterion converge to A(†)b𝛿 and that the algorithm

with stopping criterion defines a regularization method. In the

remainder of this section, we only consider square matrices A
and L. Extensions to rectangular matrices follow as described

in Subsection 3.2.

Theorem 3. (Convergence)

Assume that d1 = d2 = d3 and that Equation 5 holds. Let the

regularization parameters 𝛼k > 0 satisfy Equation 22. Then

the iterates determined by Algorithm 2 without stopping cri-

terion converge to the solution A(†)b𝛿 of the linear system of

equations Ax = b𝛿 .

Proof. The result can be shown in a similar fashion as

Theorem 1. We therefore only outline the proof. Similarly as

in the proof of Propositions 1 and 2, we split the iterates as

xk = x(0)
k + x⟂

k .

Using the GSVD (10), we can show that

x(0)
k → A−1

 (L)b
𝛿 as k → ∞, (23)

x⟂
k → LC†b

𝛿
as k → ∞. (24)

Similarlyas inProposition1, one can show that x(0)
k = A−1

 (L)b
𝛿

for all k. For the x⟂
k it holds that

x⟂
k+1

= Lx̃k+1 =
k∑

i=0

(CtC + 𝛼iI)−1Ct(b
𝛿
− Cx̃i).

Using the assumption (22) and Theorem 1.4 by Brill and

Schock,7 it follows that

x̃k → C†b
𝛿

as k → ∞.

By continuity of L, we obtain

x⟂
k → LC†b

𝛿
as k → ∞.

Combining Equations 23 and 24 shows the theorem.

The following result follows similarly as Theorem 2. We

therefore omit the proof.

Theorem 4. (Regularization)

Let the assumptions of Theorem 3 and Lemma 1 hold. Then

Algorithm 2 (with stopping criterion) terminates when a

residual vector rk = b𝛿−Axk satisfies ||rk||⩽𝜏𝛿. This stopping

criterion is satisfied after finitely many steps k = k𝛿 . Denote

the iterate xk𝛿 simply by x𝛿 . Then

lim sup
𝛿↘0

∥ x(†) − x𝛿 ∥= 0.

4 NUMERICAL EXAMPLES

This section presents some computed examples where we

illustrate the performances of both the stationary and nonsta-

tionary iterated Tikhonov methods with general penalty term,

referred to as GIT and GITNS, respectively. We first consider

three test problems in one space-dimension. These problems

are from the Matlab toolbox “regularization tools” tools by

Hansen.15 Subsequently, an image restoration example in two

space-dimensions is considered.

The d2 × d2 bidiagonal and tridiagonal matrices

L1 =
⎛⎜⎜⎜⎝
−1 1

⋱ ⋱
−1 1

0

⎞⎟⎟⎟⎠
, L2 =

⎛⎜⎜⎜⎜⎝

0 0
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

0 0

⎞⎟⎟⎟⎟⎠
,

which are scaled discretizations of the first and second deriva-

tive operators at equidistant points in one space-dimension.

Their null spaces are

 (L1) = span

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎝

1
1
⋮
1

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭
,

 (L2) = span

⎧⎪⎨⎪⎩
⎛⎜⎜⎜⎝

1
1
⋮
1

⎞⎟⎟⎟⎠
,

⎛⎜⎜⎜⎝
1
2
⋮
d2

⎞⎟⎟⎟⎠
⎫⎪⎬⎪⎭
.

The matrix L1 preserves sampling of constant functions, while

L2 also preserves uniform sampling of linear functions.3

We apply the GITNS algorithm using the geometric

sequence of regularization parameters in Equation 8. They

satisfy
∞∑

k=0

𝛼−1
k = 1

𝛼0

∞∑
k=0

1

qk = ∞,
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which shows that the hypothesis on the regularization param-

eters of Theorems 3 and 4 hold. We fix q = 0.8, while the

choice of 𝛼0 will depend on L. The relative reconstruction

error of the computed solution xk is measured by

RRE(xk) =
∥ xk − x† ∥

∥ x† ∥
.

We compare the GIT and GITNS methods to classical iter-

ated Tikhonov methods with stationary and nonstationary

sequences of regularization parameters, referred to as IT and

ITNS, respectively. We recall that IT and ITNS can be obtained

as special cases of GIT and GITNS, respectively, by choos-

ing L = I. All problems in one space-dimension have square

matrices A ∈ R1000×1000. The matrix A and error-free vec-

tors b are determined by MATLAB functions by Hansen.15

We define the error-contaminated vector b𝛿 by adding

white Gaussian noise to b with a user-chosen noise level 𝜈

such that

𝜈 = 𝛿

∥ b ∥
.

FIGURE 1 Stationary iterated Tikhonov regularization: RRE for the iterate determined by the discrepancy principle for different values of 𝛼: A, Baart test

problem; B, deriv2 test problem; C, gravity test problem; and D, Peppers test problem. The dashed curves are for L = I, the solid gray curves for L = L1, and

the solid black curves for L = L2

FIGURE 2 Baart test problem: A, Number of iterations prescribed by the discrepancy principle using GIT with 𝜈 = 0.01 as a function of 𝛼; and B, RRE for

the iterates determined by the discrepancy principle using GIT with 𝜈 = 0.05 for different values of 𝛼. The dashed curves are for L = I, the solid gray curves

for L = L1, and the solid black curves for L = L2
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The iterations with all methods in our comparison are ter-

minated with the discrepancy principle, that is, we stop the

iterations as soon as ∥ rk ∥< 𝜏𝛿 with 𝜏 = 1.01.

As stated in Remark 2, the computed solution may have a

component in  (A). The size of this component depends on

the matrix Y in Equation 10. We will tabulate the norm of

this component for the examples in one space-dimension. The

orthogonal projector P (A) onto  (A) is computed with the

aid of the SVD of A. We set all singular values smaller than

machine epsilon to zero and compute

∥ P (A)x𝛿 ∥
∥ x𝛿 ∥

,

for the nonstationary algorithms for both the IT and GIT.

Baart. We consider the example baart and fix 𝜈 = 0.01.

Figure 3A shows the desired solution x†, a uniform sampling

of sin(t) with t ∈ [0, 𝜋], and the right-hand side b𝛿 . Consider

first stationary iterated Tikhonov. Figure 1A shows the RRE

for computed solutions determined by the discrepancy princi-

ple for L = I, L = L1, and L = L2. The regularization parameter

𝛼 > 0 has to be chosen differently for the different regulariza-

tion matrices. For instance, 𝛼 has to be chosen much larger

for L = L2 than for L = I. This is due to the fact that x† has a

large component in  (L2). Therefore, 𝛼 has to be fairly large

to make the penalty term 𝛼∥ L2x ∥2 effective. We remark that

Algorithm 1 converges for any 𝛼 > 0, but the rate of conver-

gence is affected by the choice of 𝛼. Choosing 𝛼 in a proper

range, we observe a substantial reduction of the RRE when

using GIT with L1 and, in particular with L2, when compared

with L = I. We set the maximum number of iterations to 104.

Large values of 𝛼 did not result in accurate approximations of

x† within this number of iterations.

For the sake of completeness, we show the number of iter-

ations needed for each tested value of 𝛼 in Figure 2A. We see

that the number of iterations needed to satisfy the discrepancy

principle increases with 𝛼. For 𝛼 sufficiently large, Algorithm

1 terminates because the maximum number of iterations, 104,

has been reached. For the regularization matrix L2, a large

value of 𝛼 is required for the regularization term 𝛼∥ Lx ∥2 to

be effective (see Figure 1A). Therefore, the tested 𝛼-values are

not large enough to show a significant increase in the number

of iterations.

We would like to mention that the qualitative behavior of

the curves in Figure 1 does not depend on the noise level.

For instance, consider the baart example with noise level

𝜈 = 0.05 and apply the GIT algorithm with L∈{I, L1, L2} for

𝛼-values in the range [10 − 7,107]. Figure 2B displays the RRE

in the approximate solutions determined by Algorithm 1 for

the 𝛼-values. Comparing Figures 1A and 2B shows the errors

in the computed approximate solutions to differ for 𝜈 = 0.01

and 𝜈 = 0.05; the computed approximate solutions determined

for 𝜈 = 0.01 are more accurate. However, the qualitative

behavior of the curves is similar.

In the following examples, we will not show plots analo-

gous to those of Figure 2, because they are quite similar.

We turn to nonstationary iterations. Comparing the RREs

in Table 1, we can see that both L = L1 and L = L2 yield

more accurate approximations of x† than L = I. This is also

confirmed by visual inspection of the computed solutions in

Figure 3B. Table 1 shows that the components of the com-

puted solutions in  (A) are small for the GITNS methods.

Their size depends on the matrix L. This is to be expected

because the presence of a component  (A) is due to L. We

obtain a much smaller component in  (A) for L1 than for

L2. Nevertheless, the latter regularization matrix gives a more

accurate approximation of x†.
We remark that the dimension of the numerical null space

of A is very large, about 990. This may contribute to the fact

that the computed solutions do not have negligible compo-

nents in  (A). The matrices A in the following examples

in one space-dimension have numerical null spaces of much

smaller dimension, and the computed approximate solutions

have a much smaller component in (A). We finally note that

the ITNS method yields a negligible component in  (A).
Deriv2. We now consider the example deriv2 with

𝜈 = 0.05. Figure 4A displays the desired solution x† and the

FIGURE 3 Baart test problem: A, desired solution x† (dashed curve) and error-contaminated data vector b𝛿 (solid curve); B, Reconstructions obtained with

the nonstationary iterated Tikhonov method with L = I (dashed curve), with L = L1 (solid gray curve), and with L = L2 (solid black curve). The dotted curve

shows the desired solution x†
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data vector b𝛿 . The vector x† is a uniform sampling of the

function et with t ∈ [0, 1].

Figure 1B shows results for the stationary iterated Tikhonov

method. The results are comparable to those of the previ-

ous example, but the range of 𝛼-values that yield reasonably

fast convergence is smaller. A proper estimation of 𝛼 can be

avoided by using nonstationary iterated Tikhonov methods.

For the latter methods L = L1 and L = L2 yield approximate

solutions of higher quality than L = I; see Table 2 as well as

Figure 4B. The regularization matrix L2 gives the best result.

Table 2 shows that for all methods the computed approximate

solutions have a negligible component in  (A).
Gravity. The last example in one space-dimension is

gravity. We add white Gaussian noise to the error-free data

vector b to determine an error-contaminated data vector b𝛿

with 𝜈 = 0.1. The desired solution, x†, is a uniform sampling

of sin(𝜋t) + 1

2
sin(2𝜋t) with t ∈ [0, 1]. Both x† and b𝛿 are

displayed in Figure 5A.

Figure 1C shows the RRE values at termination for dif-

ferent 𝛼 values for stationary iterated Tikhonov methods.

The graphs are similar to those of the previous examples.

Table 3 compares RREs obtained for nonstationary iter-

ated Tikhonov methods. We observe that all nonstation-

ary methods in our comparison converge in only 2 iter-

ations. This is due to the large amount of noise in b𝛿 .

The more error in b𝛿 , the faster the discrepancy principle

is satisfied. Similarly as in the previous examples, we see

that the use of a regularization matrix different from

the identity is beneficial; see Figure 5B. In particu-

lar, the approximations of x† obtained with GITNS are

smooth despite the high noise level. Looking at the com-

ponent of the solution in  (A), we can see that it is

very small.

Peppers. Our last example illustrates the application of

Algorithm 2 to an image deblurring problem. The peppers

image in Figure 6A represents the blur- and noise-free image

(the exact image) that is assumed not to be known. We

would like to determine an approximation of this image

from an available blur- and noise-contaminated version.

The latter is constructed by blurring the exact image by

motion blur defined by the point-spread function (PSF)

shown in Figure 6B. We add white Gaussian noise such that

𝜈 = 0.03 to the blurred image. This gives the blur- and

noise-contaminated image that is assumed to be available.

TABLE 1 Baart test problem: RRE, number of iterations, and relative magnitude
of P (A)x𝛿 for the nonstationary iterated Tikhonov method with L = I (ITN S), and
with L = L1 and L2 (GITNS). The sequence of 𝛼k is defined by Equation 8 with 𝛼0

shown in the table and q = 0.8 for all methods

Method 𝛼0 RRE Iterations ∥P (A)x𝛿∥
∥x𝛿∥

ITNS 10 − 2 0.17131 4 1.7815 × 10 − 15

GITNSL1 102 0.12331 3 9.1999 × 10 − 15

GITNSL2 106 0.04290 2 0.0027300

FIGURE 4 Deriv2 test problem: A, desired solution x† (dashed curve) and error-contaminated data vector b𝛿 (solid curve) and; B, Reconstructions obtained

with the nonstationary iterated Tikhonov method with L = I (dashed curve), with L = L1 (solid gray curve), and with L = L2 (solid black curve). The dotted

curve shows the desired solution x†

TABLE 2 Deriv2 test problem: RRE, number of iterations, and relative magnitude
of P (A)x𝛿 for the nonstationary iterated Tikhonov method with L = I (ITNS), and
with L = L1 and L2 (GITNS). The sequence of 𝛼k is defined by Equation 8 with 𝛼0

shown in the table and q = 0.8 for all methods

Method 𝛼0 RRE Iterations ∥P (A)x𝛿∥
∥x𝛿∥

ITNS 10 − 2 0.32502 18 2.9408 × 10 − 15

GITNSL1 102 0.07138 5 2.8801 × 10 − 15

GITNSL2 106 0.02748 2 2.8411 × 10 − 15
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FIGURE 5 Gravity test problem: A, desired solution x† (dashed curve) and error-contaminated data vector b𝛿 (solid curve); and B, Reconstructions obtained

with the nonstationary iterated Tikhonov method with L = I (dashed curve), with L = L1 (solid gray curve), and with L = L2 (solid black curve). The dotted

curve shows the desired solution x†

TABLE 3 Gravity test problem: RRE, number of iterations, and relative magnitude
of P (A)x𝛿 for the nonstationary iterated Tikhonov method with L = I (ITNS), and
with L = L1 and L2 (GITNS). The sequence of 𝛼k is defined by Equation 8 with 𝛼0

shown in the table and q = 0.8 for all methods

Method 𝛼0 RRE Iterations ∥P (A)x𝛿∥
∥x𝛿∥

ITNS 10 − 2 0.17001 2 4.1708 × 10 − 15

GITNSL1 102 0.10165 2 1.4004 × 10 − 9

GITNSL2 106 0.081483 2 6.4620 × 10 − 10

FIGURE 6 Peppers test problem: A, uncontaminated image (512 × 512 pixels); B, PSF (25 × 25 pixels); and C, blur- and noise-contaminated image

(∥ e ∥= 0.03 ∥ b ∥)

TABLE 4 Peppers test problem: RRE and number of iterations for the
nonstationary iterated Tikhonov method with L = I (ITNS), and with L = L1

and L2 (GITNS). The sequence of 𝛼k is defined by Equation 8 with 𝛼0 = 1
and q = 0.8 for all methods

Method RRE Iterations

ITNS 0.10743 7

GITNSL1 0.09368 4

GITNSL2 0.08516 3

The PSF defines the matrix A. We ignore boundary effects

and use convolution with periodic boundary conditions to

define A. Thus, the matrix A is diagonalized by the Fourier

matrix. Therefore the matrix A does not have to be stored;

only matrix-vector products with A, using the discrete Fourier

transform, have to be evaluated.

We use regularization matrices that are a scaled discretiza-

tion of periodic divergence L1 or a scaled discretization of the

periodic Laplacian L2 as follows. Let L1
1

be defined by

L1
1
=
⎛⎜⎜⎜⎝
−1 1

⋱ ⋱
−1 1

1 −1

⎞⎟⎟⎟⎠
,

which is the discretization of the first derivative in one space

dimension with periodic boundary conditions. Then

L1 = L1
1
⊗ I + I ⊗ L1

1
, (25)

where I denotes the identity matrix and ⊗ the Kronecker

product. Similarly, we define

L2 = L1
2
⊗ I + I ⊗ L1

2
, (26)
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FIGURE 7 Peppers test problem: Restorations determined by the nonstationary iterated Tikhonov method with A, L = I; B, L = L1; and C, L = L2

where

L1
2
=

⎛⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 −1 2

⎞⎟⎟⎟⎟⎠
,

denotes the discretization of the second derivative in one

space-dimension with periodic boundary conditions. Both L1

and L2 are block circulant with circulant block matrices and

therefore can be diagonalized using the 2D discrete Fourier

transform.

We first consider the stationary iterated Tikhonov method.

Figure 1D displays the RRE of the approximate solution deter-

mined by using the discrepancy principle for different values

of 𝛼. We get stagnation for large 𝛼 values. Moreover, for every

𝛼 > 0, the stationary iterated Tikhonov method with L given

by Equation 25 or 26 gives better results than with L = I for

the same 𝛼 value.

Turning to the nonstationary iterated Tikhonov method,

Table 4 illustrates that the use of the regularization matrices

L1 and L2 gives smaller errors in the computed approximate

solutions than when the identity matrix is used as regulariza-

tion matrix. Figure 7 shows that the regularization matrices L1

and L2 give restorations with less “ringing” and with sharper

edges than when using the identity as regularization matrix.

5 CONCLUSIONS

In this paper, we have analyzed a generalization of the

well-known (stationary) iterated Tikhonov method. This gen-

eralization allows the use of an arbitrary regularization matrix

L (such that (L)∩ (A) = {0}). The numerical results show

that the proposed method is robust and that, by choosing an

appropriate regularization matrix, it is possible to determine

accurate approximate solutions of ill-posed problems. We

also introduced a nonstationary version of the algorithm that

circumvents the estimation of the Tikhonov regularization

parameter. Finally, we want to stress that the method pro-

posed, due to Theorem 1, also can be applied to the solution

of well-posed problems.
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