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Abstract Knowledge discovery and information extraction of large and complex
datasets has attracted great attention in wide-ranging areas from statistics and bi-
ology to medicine. Tools from machine learning, data mining, and neurocomputing
have been extensively explored and utilized to accomplish such compelling data ana-
lytics tasks. However, for time-series data presenting active dynamic characteristics,
many of the state-of-the-art techniques may not perform well in capturing the inher-
ited temporal structures in these data. In this paper, integrating the Koopman opera-
tor and linear dynamical systems theory with support vector machines (SVMs), we
develop a novel dynamic data mining framework to construct low-dimensional lin-
ear models that approximate the nonlinear flow of high-dimensional time-series data
generated by unknown nonlinear dynamical systems. This framework then imme-
diately enables pattern recognition, e.g., classification, of complex time-series data
to distinguish their dynamic behaviors by using the trajectories generated by the re-
duced linear systems. Moreover, we demonstrate the applicability and efficiency of
this framework through the problems of time-series classification in bioinformatics
and healthcare, including cognitive classification and seizure detection with fMRI and
EEG data, respectively. The developed Koopman dynamic learning framework then
lays a solid foundation for effective dynamic data mining and promises a mathemati-
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cally justified method for extracting the dynamics and significant temporal structures
of nonlinear dynamical systems.

Keywords Koopman operators · dynamic data mining · data-driven methods ·
dimensionality reduction · spectral methods · time-series classification · healthcare ·
bioinformatics

1 Introduction

Discovering patterns and extracting information from large and complex datasets has
been a compelling research topic across disciplines from statistics to biology (de Rid-
der et al 2013; Jain et al 2000). In the past few decades, theoretical and computational
techniques involving machine learning, computational statistics, data mining, neuro-
computing, and database analysis have been extensively developed to accomplish
such timely tasks of data analytics (Hallac et al 2017; Shamir et al 2010; Krishnapu-
ram et al 2004).

Many of the proposed methods, for example, those based on pure statistical or
information-theoretic approaches, e.g., Bayesian information processing, were tai-
lored for analyzing static data or data inheriting more stationary temporal structures
(Zhao et al 2016; Ahn et al 2015; Sato and Nakagawa 2015; Davis et al 2007; Wilkin-
son 2006). Also, classical time-series analysis and statistical learning techniques of-
ten overemphasize the statistical properties of the data, while overlooking the under-
lying dynamic structures inherited from the time-evolution of the data. As a result, for
general tasks of data analytics and learning, such as pattern recognition, dimension-
ality reduction, and feature learning, involving time-series that embrace rich dynamic
features, state-of-the-art methods may not perform properly to capture the temporal
structures in the data, which yields unsatisfactory results.

In this paper, we aim to quantitatively extract the dynamics, specifically, the time-
evolution, of dynamical systems based on their time-series data generated by exper-
iments or simulations. The extracted dynamics are then utilized for various tasks of
data analytics, such as time-series data classification and pattern recognition, which
provides new insight into dynamic data mining and data-driven analysis of dynamical
systems. Our approach is based on the theory of Koopman operators (Koopman 1931)
and linear dynamical systems (Brockett 1970). Koopman operators, named after the
French-born American mathematician Bernard Koopman, are infinite-dimensional
composition operators initially used to study the spectral properties of Hamiltonian
systems (Koopman 1931). Owing to their nice mathematical properties, Koopman
operators have been extensively used in the field of ergodic theory to characterize the
ergodicity, recurrence, and topological entropy of dynamical systems (Petersen 1983;
Walters 1982). In addition, the application of Koopman operator theory for spectral
analysis and model reduction of systems with attractors has also been proposed re-
cently (Mezić 2005). In general, for a finite-dimensional nonlinear dynamical system
defined on a manifold, its associated Koopman operator models the nonlinear dynam-
ics by a linear action on an infinite-dimensional vector space. This property then im-
mediately enables the application of linear methods, such as spectral and least squares
methods, to study nonlinear systems. Such a feature of ‘linear transformation’ from a
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nonlinear and finite-dimensional to a linear and infinite-dimensional domain renders
a data-driven Koopman framework for analyzing the dynamics of a nonlinear system
by its time-series data, which we denote as observations.

In recent years, inspired by the suitability of Koopman operators for analyzing
dynamical systems from their observations, a stream of research focuses has been
placed on computational Koopman operator theory for the purpose of inferring sys-
tem dynamics and behavior from the data-driven aspect. Prominent examples ranged
from the spectral decomposition of fluid mechanical systems (Rowley et al 2009;
Budišić et al 2012; Mezić 2013) and the stability analysis of power systems (Susuki
et al 2011, 2016; Raak et al 2016) to the study of convectively coupled waves in the
atmosphere (Giannakis et al 2015). In these works, the main idea was to numerically
approximate the eigenvalues and eigenfunctions of a Koopman operator by apply-
ing spectral methods to the given time-series data, which yields a finite-dimensional
approximation of the Koopman operator.

In this paper, the scope of applications of the Koopman operator theory is ex-
tended to a broader range of data mining and learning tasks involving dynamical sys-
tems. In particular, by integrating the Koopman operator and linear systems theory
with support vector machines (SVMs), we develop a dynamic data mining frame-
work to extract and quantitatively represent the dynamics of a finite-dimensional
nonlinear system based on its time-series data. Specifically, this framework provides
an effective approach to constructing a linear state-space model that approximately
represents the nonlinear flow of the time-series on a low-dimensional space, which
in turn simultaneously accomplishes dimensionality reduction of high-dimensional
time-series data. We further show that this dimensionality reduction gives rise to a
robust classifier for dynamic data, by the use of the temporal trajectories generated
by the reduced linear system as features. Moreover, we also demonstrate the robust-
ness and applicability of this classifier by performing various classification tasks, in-
cluding cognitive classification with functional magnetic resonance imaging (fMRI)
data and seizure detection with electroencephalography (EEG) data. The developed
methodology with the presented case studies promises a mathematically justified and
systematic data-driven method for learning the dynamics and temporal structures of
nonlinear dynamical systems.

This paper is organized as follows. In the next section, we first introduce some
basics of the Koopman operator theory from a dynamical systems aspect, and then il-
lustrate a data-driven viewpoint of the Koopman framework. In Section 3, the focus is
to present a dynamic learning method for extracting dynamics from time-series data.
In particular, we demonstrate the idea of utilizing the extracted dynamic features to
embed high-dimensional time-series data to low-dimensional spaces and to construct
a linear system model representing an approximation to the nonlinear dynamics. In
Sections 4 and 5, the developed methodology is apply to cognitive classification and
seizure detection problems using fMRI and EEG data, respectively, where we show
excellent performance in such classification tasks through the developed Koopman
mining approach.
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2 Koopman Operators for Nonlinear Dynamical Systems

In this section, we will first briefly review the theory of Koopman operators and its
connection to the study of nonlinear dynamical systems, where we also define the
mathematical notations used throughout this paper. We will then leverage the depen-
dence of the Koopman operator on the system dynamics to construct a reduced linear
dynamic model including state and output variables that approximately describes the
time-evolution of a nonlinear dynamical system on its state and observation spaces
based on the available time-series data of this system.

2.1 Basics of the Koopman Operator

Consider a continuous-time dynamical system evolving on a manifold M described
by the nonlinear differential equation

dx(t)
dt

= F(x(t)), (1)

where x(t) ∈ M denotes the state and F : M → Rn is a vector field on M. Let Φ :
R×M → M denote the flow of the system in (1), then Φ(t,x0) ∈ M is the point
that x0 ∈ M is steered to by the system in time t, and Φt

.
= Φ(t, ·) : M → M is a

bijective function on M for every t ∈R. For a fixed time t ∈R, the Koopman operator
U : L2(M) → L2(M) associated with the system in (1) is defined by f ↦→ f ◦ Φt ,
where L2(M) =

{
f : M →Rn

⏐⏐∫
M | f |2dx < ∞

}
denotes the space of square-integrable

functions on M. More specifically, for a fixed function f ∈ L2(M) and a point p ∈
M, the action of the Koopman operator on f evaluated at p is given by (U f )(p) =
f (Φt(p)). One can easily show that U is a linear operator, due to the linearity of the
composition operation, on the function space L2(M). A schematic representation of
the Koopman operator is illustrated in Figure 1.

Recall that the volume of M can be defined by the integral of the constant function
1 over M, i.e., Vol(M) =

∫
M dx, and M has finite volume if Vol(M)<∞. If the flow Φt

is measure-preserving, i.e., for any finite measure subset S of M, it satisfies Vol(S) =
Vol(Φ−1

t (S)), then the Koopman operator U associated with Φt is unitary (Koopman
1931; Petersen 1983; Walters 1982). Hence, by the spectral theorem (Douglas 1998),
it can be decomposed by

U =
∞

∑
k=1

λkPk +
∫
S1

λdP(λ ) =Up +Uc, (2)

where S1 = {z ∈ C : |z| = 1} is the unit circle, and λk ∈ S1 are the eigenvalues of U
for k = 1,2, . . . , i.e., there exist ϕk ∈ L2(M) such that Uϕk = λkϕk, Pk is the projection
onto the space spanned by ϕk, and P(λ ) is a continuous resolution of the identity, i.e.,
for any f ∈ L2(M), there exists a Borel measure µ f such that µ f ({p}) = 0 for any
p ∈ M and ∥Uc f∥2 =

∫
S1 λ 2dµ f (λ ).

The idea of treating nonlinear systems with linear Koopman expansions can be il-
luminated by the following simple example. Consider a finite-dimensional oscillatory
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Fig. 1 A schematic representation of the Koopman operator.

system on the unit circle S1 with constant speed ω . The flow of this periodic system
is given by Φt(e2πiθ ) = e2πi(θ+ωt), and hence the Koopman operator associated with
this system is defined by U f (e2πiθ ) = f (e2πi(θ+ωt)) for any f ∈ L2(S1). Because the
speed is constant, Φt is measure-preserving, and thus U admits a spectral decomposi-
tion as in (2). One can further see that the Fourier bases ϕk = e2πikθ , k = 0,±1, . . . , are
the eigenfunctions of U since Uϕk = λkϕk, where λk = e2πikωt are the corresponding
eigenvalues of ϕk. Together with the property that span{ϕk : k = 0,±1, . . .}= L2(S1),
we have for any f ∈ L2(M),

U f =
∞

∑
k=−∞

e2πikωt⟨ f ,e2πikθ ⟩e2πikθ ,

where ⟨ f ,e2πikθ ⟩= ∫ 1
0 f (e2πiθ )e2πikθ dθ is the kth Fourier coefficient of f .

2.2 A Data-Driven Viewpoint of the Koopman Framework

The properties of the Koopman operator render a natural way to formulate a data-
driven architecture for dynamical systems. In this context, for the dynamical sys-
tem as in (1), we interpret the data (in the form of time series), denoted by y, as
knowledge or realizations of the state variable x in the state space M. Then, data are
functions of the state, e.g., y = f (p) for p = x(τ) ∈ M at time τ and y ∈ Rn (see Fig-
ure 1), and we call these functions observables of the system. In this setting, given
the time series data generated by experiments or simulations, the Koopman frame-
work provides a precise description of the relationship between the evolution of the
observables (e.g., f (p) ↦→ f (Φt(p))) and the evolution of the state variables (e.g.,
p = x(τ) ↦→ Φt(x(τ)) = Φt(p)). More mathematically speaking, the Koopman oper-
ator is a lifting of the dynamics from the state space M to the space of observables
L2(M). This lifting provides a linear rule of the evolution assigned by a Koopman
operator on the space of observables L2(M), which is though infinite dimensional
(Rowley et al 2009). One can further observe that the Koopman operator induces a
time-series on Rn, given by { f (p),(U f )(p), . . . ,(Uk f )(p), . . .}, which is exactly the
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‘sampled flow’ of the observations of the dynamical system starting from p. This
feature enables the extraction of the dynamics of a system as in (1) from its measure-
ment data by the Koopman operator. Notice that, in practice, it is usually the case that
only finitely many observations within a finite time window are available. Therefore,
it suffices to require the observable f to be square-integrable on the compact sub-
set of M whose image under f contains all of the data points for the application of
Koopman operator theory from the data-driven aspect.

3 Dynamics Reconstruction from Observations

In this section, we will leverage the Koopman operator theory to extract dynamics of
dynamical systems based on their measurement or simulation data. Our development
is based on the utilization of spectral methods to construct reduced linear systems
through the notion of orthogonal projections. The temporal trajectories of these con-
structed systems are viewed as embeddings of the high-dimensional time-series data
to a low-dimensional space, which can then be used as features for classification
tasks. In addition, we establish a preconditioning scheme by introducing an appro-
priate inner product on the data space so that these embeddings preserve the distance
between the data points.

3.1 Matrix Representation of Data Propagation

A compelling goal for data-driven analysis of dynamical systems is to extract the dy-
namics of a given system from its time-series data. A meaningful way to achieve this
is through the construction of a matrix representation that approximately describes
the propagation of the data, e.g., {y0, . . . ,ym}, on the observation space, typically a
finite-dimensional Euclidean space, e.g., Rn. Spectral methods (Canuta et al 2006)
are powerful tools that can be employed to systematically construct such a propaga-
tion matrix. Specifically, the construction is based on first forming an order-m Krylov
subspace Ky defined by Ky = span{y0, . . . ,ym−1}, which is a vector space spanned
by the first m data vectors, and then project the remaining data vector ym onto Ky.
The latter step is formulated as a least squares problem, where m ≤ n, given by

min
c∈Rm

∥Kc− ym∥, (3)

where K = [y0 | y1 | · · · | ym−1] ∈ Rn×m is the matrix whose column vectors span
Ky, and ∥ · ∥ : Rn → R is a norm on Rn. One typical choice of ∥ · ∥ is the Euclidean
norm, i.e., ∥x∥2 = x′x for any x ∈ Rn. It is well-known that c = (K′K)−1K′ym =
[c0, . . . ,cm−1]

′ ∈Rm, where ‘′’ denotes the transpose operation. Using this minimizing
vector, we can construct a companion matrix

C =

⎡⎢⎢⎢⎣
0 · · · 0 c0
1 · · · 0 c1
...

. . .
...

...
0 · · · 1 cm−1

⎤⎥⎥⎥⎦ ∈ Rm×m (4)
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that approximates the flow of the given time-series data under the basis {y0, . . . ,ym−1}.
This is shown by the following equation,

[y1 | y2 | · · · | ym] = [y0 | y1 | · · · | ym−1]

⎡⎢⎢⎢⎣
0 · · · 0 c0
1 · · · 0 c1
...

. . .
...

...
0 · · · 1 cm−1

⎤⎥⎥⎥⎦+ r, (5)

where r is an n×m matrix with the last column being the vector of the projection error
Kc− ym, and the other columns being zero vectors. In particular, the equation in (5)
reveals that the matrix C advances the time-series data by one snapshot, and hence
represents the flow of the data. This method is called the Arnoldi-type algorithm
(Rowley et al 2009; Susuki et al 2016), and is suitable for those datasets with the
spatial dimension n much higher than the temporal dimension m.

In the case in which m > n, namely, the number of data snapshots is greater
than the dimension of each data vector, the method of vector Prony analysis can
be applied (Susuki et al 2016). In this method, the Krylov subspace is constructed by
KY = span{Y0, . . . ,Ys−1}, where

Yk =

⎡⎢⎣ yk
...

yk+l−1

⎤⎥⎦ ∈ Rnl

with yk ∈ Rn, nl ≥ s, s+ l−1 = m, and k = 0, . . . ,s, and the optimization problem in
(3) becomes

min
c∈Rs

∥Hc−Ys∥, (6)

where H = [Y0 | Y1 | · · · | Ys−1] ∈ Rnl×s is the Hankel matrix generated by the data.
Similar to the case of m ≤ n, the companion matrix C constructed by the solution
c ∈ Rs of the least squares problem in (6) also represents the dynamics of the given
time-series data y0, . . . ,ym ∈ Rn under the basis of KY .

As shown in (5), the vector c obtained by spectral methods characterizes the dy-
namics of the time-series data, and the companion matrix C represents the propaga-
tion of data (an exact representation from y0 to ym−1 and an approximation from ym−1
to ym) under the basis of Ky or KY .

3.2 Dynamic Data Embedding and System Reconstruction

In the previous section, we introduced a systematic method to extract the dynamics of
time-series data and represented the dynamics by a vector c ∈ Rm, which we refer to
as the dynamic feature. In this section, we will take advantage of this dynamic feature
c and the companion matrix C obtained by spectral methods based on the available
data to construct a low-dimensional linear model that represents an approximation to
the underlying dynamical system as in (1).
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3.2.1 Linear Model Construction

To begin with, suppose we are given the time-series data y0, . . . ,ym on Rn generated
by measurement or simulation of a system in the form of (1) through the process
f (see Figure 1). Let U denote the Koopman operator associated with this system,
and xk ∈ Rm denote the state of the system at the kth snapshot, then we have for
k = 0, . . . ,m,

yk = f (xk) = (U f )(xk−1) = (Uk f )(x0). (7)

Consider a linear observable of the form f (x) = Kx, where K = [y0 | y1 | · · · | ym−1] ∈
Rn×m and the set {y0, . . . ,ym−1} forms a basis of the Krylov subspace Ky, then from
(7) we have

yk+1 = f (xk+1) = (U f )(xk) =UKxk. (8)

Because K = [ f (x0) | f (x1) | · · · | f (xm−1)], in which f (xk) = yk for k = 0, . . . ,m−
1, we have UK = [U f (x0) | U f (x1) | · · · | U f (xm−1)] = [y1 | y2 | · · · | ym] by (7).
Combining this observation with (5) and (8), we arrive

yk+1 =UKxk = (KC+ r)xk.

On the other hand, we also have, by the definition of the observable f ,

yk+1 = f (xk+1) = Kxk+1.

These two representations of the data point yk+1lead to a reduced linear system de-
fined on Rm (m ≪ n),

xk+1 =Cxk, x0 = e1, (9)
zk = Kxk,

where e1 = (1,0, . . . ,0)′ ∈ Rm, zk denotes the output of the system on Ky, and the
projection error r is neglected. The state and output of this linear system satisfy xk =
ek+1, zk = yk for k = 0, . . . ,m− 1, and xm = c, zm = Kc for k = m, where zm is the
projection of ym on Ky (see Figure 2). This reveals that the output zk, k = 0, . . . ,m,
describes the evolution of the time-series data yk on Ky, and hence the state trajectory
xk characterizes the dynamics of the time-series data on Rm.

Similarly, if we use the vector Prony analysis method described in Section 3.1,
the system in (9) will be replaced by

xk+1 =Cxk, x0 = e1, (10)
zk = Hxk, (11)

which defines a linear system on Rs that models the dynamics of the time-series
Y0, . . . ,Ys, constituted by y0, . . . ,ym, on the Krylov space KY = span{Y0, . . . ,Ys−1},
and where H is the Hankel matrix as defined in (6).

Note that, from the control-theoretic point of view, the system in (9) is in an
observability canonical form (Brockett 1970). Therefore, this model is structurally
convenient for control analysis and design, such as pole assignment and feedback
control design.
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em
<latexit sha1_base64="bSRJQt/ExPgpOGXf2mvsQGTF6DQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKWxE8HEKePEYwTWBZAmzk95kyMzsMjMrhCXf4MWDild/yJt/4yTZg0YLGoqqbrq7olRwY33/yyutrK6tb5Q3K1vbO7t71f2DB5NkmmHAEpHoTkQNCq4wsNwK7KQaqYwEtqPxzcxvP6I2PFH3dpJiKOlQ8Zgzap0UYD+X03615tf9Ochf0ihIDQq0+tXP3iBhmURlmaDGdBt+asOcasuZwGmllxlMKRvTIXYdVVSiCfP5sVNy4pQBiRPtSlkyV39O5FQaM5GR65TUjsyyNxP/87qZjS/DnKs0s6jYYlGcCWITMvucDLhGZsXEEco0d7cSNqKaMuvyqbgQGssv/yXBWf2q7t+d15rXRRplOIJjOIUGXEATbqEFATDg8AQv8Oop79l7894XrSWvmDmEX/A+vgF4UY6g</latexit><latexit sha1_base64="bSRJQt/ExPgpOGXf2mvsQGTF6DQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKWxE8HEKePEYwTWBZAmzk95kyMzsMjMrhCXf4MWDild/yJt/4yTZg0YLGoqqbrq7olRwY33/yyutrK6tb5Q3K1vbO7t71f2DB5NkmmHAEpHoTkQNCq4wsNwK7KQaqYwEtqPxzcxvP6I2PFH3dpJiKOlQ8Zgzap0UYD+X03615tf9Ochf0ihIDQq0+tXP3iBhmURlmaDGdBt+asOcasuZwGmllxlMKRvTIXYdVVSiCfP5sVNy4pQBiRPtSlkyV39O5FQaM5GR65TUjsyyNxP/87qZjS/DnKs0s6jYYlGcCWITMvucDLhGZsXEEco0d7cSNqKaMuvyqbgQGssv/yXBWf2q7t+d15rXRRplOIJjOIUGXEATbqEFATDg8AQv8Oop79l7894XrSWvmDmEX/A+vgF4UY6g</latexit><latexit sha1_base64="bSRJQt/ExPgpOGXf2mvsQGTF6DQ=">AAAB63icbVDLSgNBEOyNrxhfUY9eBoPgKWxE8HEKePEYwTWBZAmzk95kyMzsMjMrhCXf4MWDild/yJt/4yTZg0YLGoqqbrq7olRwY33/yyutrK6tb5Q3K1vbO7t71f2DB5NkmmHAEpHoTkQNCq4wsNwK7KQaqYwEtqPxzcxvP6I2PFH3dpJiKOlQ8Zgzap0UYD+X03615tf9Ochf0ihIDQq0+tXP3iBhmURlmaDGdBt+asOcasuZwGmllxlMKRvTIXYdVVSiCfP5sVNy4pQBiRPtSlkyV39O5FQaM5GR65TUjsyyNxP/87qZjS/DnKs0s6jYYlGcCWITMvucDLhGZsXEEco0d7cSNqKaMuvyqbgQGssv/yXBWf2q7t+d15rXRRplOIJjOIUGXEATbqEFATDg8AQv8Oop79l7894XrSWvmDmEX/A+vgF4UY6g</latexit>

c
<latexit sha1_base64="zOWsDySX1lEBz+GFJq7SUojpY3k=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXjy2YGyhDWWznbRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dlZW19Y3Nktb5e2d3b39ysHhg04yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR7dRvPaHSPJH3ZpxiENOB5BFn1FipyXqVqltzZyDLxCtIFQo0epWvbj9hWYzSMEG17nhuaoKcKsOZwEm5m2lMKRvRAXYslTRGHeSzQyfk1Cp9EiXKljRkpv6eyGms9TgObWdMzVAvelPxP6+TmegqyLlMM4OSzRdFmSAmIdOvSZ8rZEaMLaFMcXsrYUOqKDM2m7INwVt8eZn457Xrmtu8qNZvijRKcAwncAYeXEId7qABPjBAeIZXeHMenRfn3fmYt644xcwR/IHz+QMyJoyy</latexit><latexit sha1_base64="zOWsDySX1lEBz+GFJq7SUojpY3k=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXjy2YGyhDWWznbRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dlZW19Y3Nktb5e2d3b39ysHhg04yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR7dRvPaHSPJH3ZpxiENOB5BFn1FipyXqVqltzZyDLxCtIFQo0epWvbj9hWYzSMEG17nhuaoKcKsOZwEm5m2lMKRvRAXYslTRGHeSzQyfk1Cp9EiXKljRkpv6eyGms9TgObWdMzVAvelPxP6+TmegqyLlMM4OSzRdFmSAmIdOvSZ8rZEaMLaFMcXsrYUOqKDM2m7INwVt8eZn457Xrmtu8qNZvijRKcAwncAYeXEId7qABPjBAeIZXeHMenRfn3fmYt644xcwR/IHz+QMyJoyy</latexit><latexit sha1_base64="zOWsDySX1lEBz+GFJq7SUojpY3k=">AAAB53icbVBNS8NAEJ34WetX1aOXxSJ4KokIfpwKXjy2YGyhDWWznbRrN5uwuxFK6C/w4kHFq3/Jm//GbZuDtj4YeLw3w8y8MBVcG9f9dlZW19Y3Nktb5e2d3b39ysHhg04yxdBniUhUO6QaBZfoG24EtlOFNA4FtsLR7dRvPaHSPJH3ZpxiENOB5BFn1FipyXqVqltzZyDLxCtIFQo0epWvbj9hWYzSMEG17nhuaoKcKsOZwEm5m2lMKRvRAXYslTRGHeSzQyfk1Cp9EiXKljRkpv6eyGms9TgObWdMzVAvelPxP6+TmegqyLlMM4OSzRdFmSAmIdOvSZ8rZEaMLaFMcXsrYUOqKDM2m7INwVt8eZn457Xrmtu8qNZvijRKcAwncAYeXEId7qABPjBAeIZXeHMenRfn3fmYt644xcwR/IHz+QMyJoyy</latexit>

y0
<latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit><latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit><latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="mEUYDMgPyYUsuXomwXt7m09N1t8=">AAAB3nicbZDNSgMxFIXv1L9aq1a3boJFcFUybtSd4MZlRccW2qFk0kwbmskMyR1hGPoIblyo+FjufBvTn4W2Hgh8nJOQe0+UKWmR0m+vsrG5tb1T3a3t1fcPDhtH9Seb5oaLgKcqNd2IWaGkFgFKVKKbGcGSSIlONLmd5Z1nYaxM9SMWmQgTNtIylpyhsx6KAR00mrRF5yLr4C+hCUu1B42v/jDleSI0csWs7fk0w7BkBiVXYlrr51ZkjE/YSPQcapYIG5bzUafkzDlDEqfGHY1k7v5+UbLE2iKJ3M2E4diuZjPzv6yXY3wVllJnOQrNFx/FuSKYktneZCiN4KgKB4wb6WYlfMwM4+jaqbkS/NWV1yG4aF236D2FKpzAKZyDD5dwA3fQhgA4jOAF3uDdU96r97Foq+ItazuGP/I+fwBfxowf</latexit><latexit sha1_base64="mEUYDMgPyYUsuXomwXt7m09N1t8=">AAAB3nicbZDNSgMxFIXv1L9aq1a3boJFcFUybtSd4MZlRccW2qFk0kwbmskMyR1hGPoIblyo+FjufBvTn4W2Hgh8nJOQe0+UKWmR0m+vsrG5tb1T3a3t1fcPDhtH9Seb5oaLgKcqNd2IWaGkFgFKVKKbGcGSSIlONLmd5Z1nYaxM9SMWmQgTNtIylpyhsx6KAR00mrRF5yLr4C+hCUu1B42v/jDleSI0csWs7fk0w7BkBiVXYlrr51ZkjE/YSPQcapYIG5bzUafkzDlDEqfGHY1k7v5+UbLE2iKJ3M2E4diuZjPzv6yXY3wVllJnOQrNFx/FuSKYktneZCiN4KgKB4wb6WYlfMwM4+jaqbkS/NWV1yG4aF236D2FKpzAKZyDD5dwA3fQhgA4jOAF3uDdU96r97Foq+ItazuGP/I+fwBfxowf</latexit><latexit sha1_base64="C8aFg+GJVMRG4Fbz9zeWWmZQlso=">AAAB6XicbVBNSwMxEJ3Ur1q/qh69BIvgqWS9+HEqePFY0bWFdinZNNuGZrNLkhWWpT/BiwcVr/4jb/4b03YPWn0w8Hhvhpl5YSqFsYR8ocrK6tr6RnWztrW9s7tX3z94MEmmGfdZIhPdDanhUijuW2El76aa0ziUvBNOrmd+55FrIxJ1b/OUBzEdKREJRq2T7vIBGdQbpEnmwH+JV5IGlGgP6p/9YcKymCvLJDWm55HUBgXVVjDJp7V+ZnhK2YSOeM9RRWNugmJ+6hSfOGWIo0S7UhbP1Z8TBY2NyePQdcbUjs2yNxP/83qZjS6CQqg0s1yxxaIok9gmePY3HgrNmZW5I5Rp4W7FbEw1ZdalU3MheMsv/yX+WfOySW5Jo3VVplGFIziGU/DgHFpwA23wgcEInuAFXpFEz+gNvS9aK6icOYRfQB/fdX2NZw==</latexit><latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit><latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit><latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit><latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit><latexit sha1_base64="kkhMam6CXz3PB/VQSv/u67rmeeA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtIu3WzC7kYooT/BiwcVr/4jb/4bt20O2vpg4PHeDDPzwlRwbVz32ymtrK6tb5Q3K1vbO7t71f2DR51kiqHPEpGodkg1Ci7RN9wIbKcKaRwKbIWjm6nfekKleSIfzDjFIKYDySPOqLHS/bjn9qo1t+7OQJaJV5AaFGj2ql/dfsKyGKVhgmrd8dzUBDlVhjOBk0o305hSNqID7FgqaYw6yGenTsiJVfokSpQtachM/T2R01jrcRzazpiaoV70puJ/Xicz0WWQc5lmBiWbL4oyQUxCpn+TPlfIjBhbQpni9lbChlRRZmw6FRuCt/jyMvHP6ld19+681rgu0ijDERzDKXhwAQ24hSb4wGAAz/AKb45wXpx352PeWnKKmUP4A+fzB3a9jWs=</latexit>

ym�1
<latexit sha1_base64="BlWCm+wRO259CIC22e35Sihc0Eg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURwY9TwYvHCsYW2lA22027dHcTdjdCCPkRXjyoePX/ePPfuG1z0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9up33miSrNYPpgsoYHAI8kiRrCxUicb5OLMKwb1htt0Z0DLxCtJA0q0B/Wv/jAmqaDSEI617nluYoIcK8MIp0Wtn2qaYDLBI9qzVGJBdZDPzi3QiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFbyr+5/VSE10FOZNJaqgk80VRypGJ0fR3NGSKEsMzSzBRzN6KyBgrTIxNqGZD8BZfXib+efO66d5fNFo3ZRpVOIJjOAUPLqEFd9AGHwhM4Ble4c1JnBfn3fmYt1accuYQ/sD5/AFy6Y8m</latexit><latexit sha1_base64="BlWCm+wRO259CIC22e35Sihc0Eg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURwY9TwYvHCsYW2lA22027dHcTdjdCCPkRXjyoePX/ePPfuG1z0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9up33miSrNYPpgsoYHAI8kiRrCxUicb5OLMKwb1htt0Z0DLxCtJA0q0B/Wv/jAmqaDSEI617nluYoIcK8MIp0Wtn2qaYDLBI9qzVGJBdZDPzi3QiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFbyr+5/VSE10FOZNJaqgk80VRypGJ0fR3NGSKEsMzSzBRzN6KyBgrTIxNqGZD8BZfXib+efO66d5fNFo3ZRpVOIJjOAUPLqEFd9AGHwhM4Ble4c1JnBfn3fmYt1accuYQ/sD5/AFy6Y8m</latexit><latexit sha1_base64="BlWCm+wRO259CIC22e35Sihc0Eg=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBiyURwY9TwYvHCsYW2lA22027dHcTdjdCCPkRXjyoePX/ePPfuG1z0NYHA4/3ZpiZFyacaeO6305lZXVtfaO6Wdva3tndq+8fPOo4VYT6JOax6oZYU84k9Q0znHYTRbEIOe2Ek9up33miSrNYPpgsoYHAI8kiRrCxUicb5OLMKwb1htt0Z0DLxCtJA0q0B/Wv/jAmqaDSEI617nluYoIcK8MIp0Wtn2qaYDLBI9qzVGJBdZDPzi3QiVWGKIqVLWnQTP09kWOhdSZC2ymwGetFbyr+5/VSE10FOZNJaqgk80VRypGJ0fR3NGSKEsMzSzBRzN6KyBgrTIxNqGZD8BZfXib+efO66d5fNFo3ZRpVOIJjOAUPLqEFd9AGHwhM4Ble4c1JnBfn3fmYt1accuYQ/sD5/AFy6Y8m</latexit>

Kc
<latexit sha1_base64="OOYJXnrbyLVDpXvxBFX01yNH2kI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8CJ4qWJsoQ1ls920SzebsDsRSug/8OJBxas/yZv/xm2bg1YfDDzem2FmXphKYdB1v5zS0vLK6lp5vbKxubW9U93dezBJphn3WSIT3Q6p4VIo7qNAydup5jQOJW+Fo6up33rk2ohE3eM45UFMB0pEglG00t0N61Vrbt2dgfwlXkFqUKDZq352+wnLYq6QSWpMx3NTDHKqUTDJJ5VuZnhK2YgOeMdSRWNugnx26YQcWaVPokTbUkhm6s+JnMbGjOPQdsYUh2bRm4r/eZ0Mo/MgFyrNkCs2XxRlkmBCpm+TvtCcoRxbQpkW9lbChlRThjacig3BW3z5L/FP6hd19/a01rgs0ijDARzCMXhwBg24hib4wCCCJ3iBV2fkPDtvzvu8teQUM/vwC87HN8i1jQc=</latexit><latexit sha1_base64="OOYJXnrbyLVDpXvxBFX01yNH2kI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8CJ4qWJsoQ1ls920SzebsDsRSug/8OJBxas/yZv/xm2bg1YfDDzem2FmXphKYdB1v5zS0vLK6lp5vbKxubW9U93dezBJphn3WSIT3Q6p4VIo7qNAydup5jQOJW+Fo6up33rk2ohE3eM45UFMB0pEglG00t0N61Vrbt2dgfwlXkFqUKDZq352+wnLYq6QSWpMx3NTDHKqUTDJJ5VuZnhK2YgOeMdSRWNugnx26YQcWaVPokTbUkhm6s+JnMbGjOPQdsYUh2bRm4r/eZ0Mo/MgFyrNkCs2XxRlkmBCpm+TvtCcoRxbQpkW9lbChlRThjacig3BW3z5L/FP6hd19/a01rgs0ijDARzCMXhwBg24hib4wCCCJ3iBV2fkPDtvzvu8teQUM/vwC87HN8i1jQc=</latexit><latexit sha1_base64="OOYJXnrbyLVDpXvxBFX01yNH2kI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8CJ4qWJsoQ1ls920SzebsDsRSug/8OJBxas/yZv/xm2bg1YfDDzem2FmXphKYdB1v5zS0vLK6lp5vbKxubW9U93dezBJphn3WSIT3Q6p4VIo7qNAydup5jQOJW+Fo6up33rk2ohE3eM45UFMB0pEglG00t0N61Vrbt2dgfwlXkFqUKDZq352+wnLYq6QSWpMx3NTDHKqUTDJJ5VuZnhK2YgOeMdSRWNugnx26YQcWaVPokTbUkhm6s+JnMbGjOPQdsYUh2bRm4r/eZ0Mo/MgFyrNkCs2XxRlkmBCpm+TvtCcoRxbQpkW9lbChlRThjacig3BW3z5L/FP6hd19/a01rgs0ijDARzCMXhwBg24hib4wCCCJ3iBV2fkPDtvzvu8teQUM/vwC87HN8i1jQc=</latexit>

f : Rm ! Ky

x 7! Kx
<latexit sha1_base64="RIMH5iNGTtsRK1gjLtMRJCRASo0=">AAACHHicbVDLSsNAFJ3UV42vqEs3wSK4KokU1K4KboRuqhhbaGKYTCft0MmDmYk2hPyIG3/FjQsVNy4E/8ZJ2oW2Hhg4nHMvc8/xYkq4MIxvpbK0vLK6Vl1XNza3tne03b1bHiUMYQtFNGI9D3JMSYgtQQTFvZhhGHgUd73xReF37zHjJApvRBpjJ4DDkPgEQSElV2v4TTuAYuR52XV+F9iMDEcCMhY9lDKCNGvnbmrb6kQKMReR3p64Ws2oGyX0RWLOSA3M0HG1T3sQoSTAoUAUct43jVg4GWSCIIpz1U44jiEawyHuSxrCAHMnK9Pl+pFUBrofMflCoZfq740MBpyngScni5P5vFeI/3n9RPhnTkbCOBE4RNOP/ITqMmNRlT4gDCNBU0kgYkTeqqMRZBAJWagqSzDnIy8S66R+XjeuGrVWc9ZGFRyAQ3AMTHAKWuASdIAFEHgEz+AVvClPyovyrnxMRyvKbGcf/IHy9QOPkaMA</latexit><latexit sha1_base64="RIMH5iNGTtsRK1gjLtMRJCRASo0=">AAACHHicbVDLSsNAFJ3UV42vqEs3wSK4KokU1K4KboRuqhhbaGKYTCft0MmDmYk2hPyIG3/FjQsVNy4E/8ZJ2oW2Hhg4nHMvc8/xYkq4MIxvpbK0vLK6Vl1XNza3tne03b1bHiUMYQtFNGI9D3JMSYgtQQTFvZhhGHgUd73xReF37zHjJApvRBpjJ4DDkPgEQSElV2v4TTuAYuR52XV+F9iMDEcCMhY9lDKCNGvnbmrb6kQKMReR3p64Ws2oGyX0RWLOSA3M0HG1T3sQoSTAoUAUct43jVg4GWSCIIpz1U44jiEawyHuSxrCAHMnK9Pl+pFUBrofMflCoZfq740MBpyngScni5P5vFeI/3n9RPhnTkbCOBE4RNOP/ITqMmNRlT4gDCNBU0kgYkTeqqMRZBAJWagqSzDnIy8S66R+XjeuGrVWc9ZGFRyAQ3AMTHAKWuASdIAFEHgEz+AVvClPyovyrnxMRyvKbGcf/IHy9QOPkaMA</latexit><latexit sha1_base64="RIMH5iNGTtsRK1gjLtMRJCRASo0=">AAACHHicbVDLSsNAFJ3UV42vqEs3wSK4KokU1K4KboRuqhhbaGKYTCft0MmDmYk2hPyIG3/FjQsVNy4E/8ZJ2oW2Hhg4nHMvc8/xYkq4MIxvpbK0vLK6Vl1XNza3tne03b1bHiUMYQtFNGI9D3JMSYgtQQTFvZhhGHgUd73xReF37zHjJApvRBpjJ4DDkPgEQSElV2v4TTuAYuR52XV+F9iMDEcCMhY9lDKCNGvnbmrb6kQKMReR3p64Ws2oGyX0RWLOSA3M0HG1T3sQoSTAoUAUct43jVg4GWSCIIpz1U44jiEawyHuSxrCAHMnK9Pl+pFUBrofMflCoZfq740MBpyngScni5P5vFeI/3n9RPhnTkbCOBE4RNOP/ITqMmNRlT4gDCNBU0kgYkTeqqMRZBAJWagqSzDnIy8S66R+XjeuGrVWc9ZGFRyAQ3AMTHAKWuASdIAFEHgEz+AVvClPyovyrnxMRyvKbGcf/IHy9QOPkaMA</latexit>

ym
<latexit sha1_base64="8LIFLtPvHbKZu9f7zbxQ6PEYYEU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtMu3d2E3Y0QQn+CFw8qXv1H3vw3btoctPXBwOO9GWbmhQln2rjut1NZWV1b36hu1ra2d3b36vsHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5KbwO09UaRbLB5MlNBB4JFnECDZWus8GYlBvuE13BrRMvJI0oER7UP/qD2OSCioN4VjrnucmJsixMoxwOq31U00TTCZ4RHuWSiyoDvLZqVN0YpUhimJlSxo0U39P5FhonYnQdgpsxnrRK8T/vF5qossgZzJJDZVkvihKOTIxKv5GQ6YoMTyzBBPF7K2IjLHCxNh0ajYEb/HlZeKfNa+a7t15o3VdplGFIziGU/DgAlpwC23wgcAInuEV3hzuvDjvzse8teKUM4fwB87nD9L0jag=</latexit><latexit sha1_base64="8LIFLtPvHbKZu9f7zbxQ6PEYYEU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtMu3d2E3Y0QQn+CFw8qXv1H3vw3btoctPXBwOO9GWbmhQln2rjut1NZWV1b36hu1ra2d3b36vsHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5KbwO09UaRbLB5MlNBB4JFnECDZWus8GYlBvuE13BrRMvJI0oER7UP/qD2OSCioN4VjrnucmJsixMoxwOq31U00TTCZ4RHuWSiyoDvLZqVN0YpUhimJlSxo0U39P5FhonYnQdgpsxnrRK8T/vF5qossgZzJJDZVkvihKOTIxKv5GQ6YoMTyzBBPF7K2IjLHCxNh0ajYEb/HlZeKfNa+a7t15o3VdplGFIziGU/DgAlpwC23wgcAInuEV3hzuvDjvzse8teKUM4fwB87nD9L0jag=</latexit><latexit sha1_base64="8LIFLtPvHbKZu9f7zbxQ6PEYYEU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE8ONU8OKxorGFNpTNdtMu3d2E3Y0QQn+CFw8qXv1H3vw3btoctPXBwOO9GWbmhQln2rjut1NZWV1b36hu1ra2d3b36vsHjzpOFaE+iXmsuiHWlDNJfcMMp91EUSxCTjvh5KbwO09UaRbLB5MlNBB4JFnECDZWus8GYlBvuE13BrRMvJI0oER7UP/qD2OSCioN4VjrnucmJsixMoxwOq31U00TTCZ4RHuWSiyoDvLZqVN0YpUhimJlSxo0U39P5FhonYnQdgpsxnrRK8T/vF5qossgZzJJDZVkvihKOTIxKv5GQ6YoMTyzBBPF7K2IjLHCxNh0ajYEb/HlZeKfNa+a7t15o3VdplGFIziGU/DgAlpwC23wgcAInuEV3hzuvDjvzse8teKUM4fwB87nD9L0jag=</latexit>

Fig. 2 A schematic representation of the dynamics of the reduced linear system. The state and the output of
the system flow from e1 to c on Rm and y0 to Kc on Ky, respectively, where Ky = span{y0, . . . ,ym−1}, K =
[y0 | · · · | ym−1], and c is the least-squares solution of Kc = ym, or equivalently, Kc is the point orthogonally
projected from ym onto Ky.

3.2.2 Preconditioning by Orthogonality of Time-Series Data

In Section 2.1, the spectral decomposition of the Koopman operator is applied under
the condition that U is unitary. One of the most important consequences of the uni-
tarity is that U is a linear isometry, i.e., U preserves the norm of every observable,
i.e., ∥U f∥= ∥ f∥ for any f ∈ L2(M). In the following, we will introduce a scheme for
preconditioning the data so that the recovered Koopman operator preserves the norm
of the data points, and hence also preserves the norm of the observable generating
the data. In the case of n > m, such a norm can be induced by an inner product g on
Rn satisfying ∥yi∥2

g = y′igyi = 1 for i = 0, . . . ,m, where y0, . . . ,ym are the given time-
series. Then, the optimization problem in (3) under this norm will be considered,
which is given by

min
c∈Rm

∥Kc− ym∥g. (12)

In particular, a preferred inner product g is the one that transforms the basis vec-
tors y0, . . . ,ym−1 of Ky to an orthonormal set. In this case, because the output func-
tion f (x) = Kx maps the orthonormal basis {e1, . . . ,em} for Rm onto the orthonormal
basis {y0, . . . ,ym−1} for Ky, f is a linear isometry under the inner product g, i.e.,
∥ f (x)∥g = ∥x∥. Consequently, the embedding of the time-series data from Rn to Rm,
induced by the system in (9), preserves the g-distance, for example, ∥yi+1 − yi∥g =

∥ f (ei)− f (ei−1)∥g = ∥ei − ei−1∥ =
√

2. Similarly, in the case of n < m, the inner
product g will be introduced on Rnl to orthonormalize Y0, . . . ,Ys which are constituted
by y0, . . . ,ym. This distance-persevering property further implies that the embedding
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maintains the local structure of the time-series data by implementing the precondi-
tioning scheme.

3.3 Koopman Dimensionality Reduction and Embedding

The reduced linear models, characterized by the pairs (C,K) and (C,H) in (9) and
(10), respectively, derived from the Koopman framework are dimensionality reduc-
tions, where (C,K) and (C,H) serve as the embeddings of the high-dimensional time-
series data yk ∈ Rn, k = 0, . . . ,m, onto the low-dimensional space, Rm or Rs (see the
case studies in Sections 4 and 5). Moreover, the construction of such ‘dynamics-
preserving’ embeddings only involves solving least-squares problems with minor
computational efforts. Therefore, the established Koopman framework offers a novel,
efficient, and systematic dynamic data mining approach to extracting dynamic fea-
tures and reducing dimensionality of complex time-series data. Note that our ap-
proach is based on the utilization of the Koopman operator theory to linearly trans-
form a finite-dimensional nonlinear system to an infinite-dimensional linear system.
Theoretically, if infinitely many snapshots of an unknown system are available, the
dynamics reconstruction can be achieved arbitrarily well. Practically, the proposed
approach will perform better if more observation samples are available and the dy-
namics of the underlying unknown system is more time-invariant.

In following sections, this Koopman framework will be integrated with machine
learning techniques to analyze dynamics of brain systems. Specifically, temporal pat-
terns of brain systems are decoded into dynamic features and embedded trajectories.
These quantities are then good candidates of learning features for some classifier to
distinguish different brain activities. Figure 3 illustrates the application of the Koop-
man framework to brain systems. Moreover, the developed methodology will be val-
idated by using two time-series datasets of different modalities: an fMRI visual cog-
nition dataset for cognitive classification and an EEG dataset for seizure detection.
In particular, we will show that leaning features extracted by the Koopman method
will lead to excellent performance of classifiers, which in turn extends the scope of
the applications of the Koopman operator theory to the fields of bioinformatics and
healthcare.

4 Cognitive Classification

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique used
to measure brain activities by detecting changes associated with blood flow (Huettel
et al 2008). In neuroscience, fMRI is widely used to study responses of the brain to
external stimuli (Coutanche et al 2011; Smith 2004). Nowadays, multivoxel pattern
analysis (MVPA) is a popular data-driven method to identify brain response patterns
through fMRI images, where voxels of images are taken as feature vectors to train
a high-dimensional classification model (Ma et al 2016; Chou et al 2014; Martino
et al 2008). In our analysis, fMRI data is treated as observations of some unknown
dynamical system. The Koopman framework is then adopted to linearly approximate
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Fig. 3 An illustration of the application of Koopman framework to brain systems. The Koopman op-
erator theory provides a tool to extract dynamics-related quantities from time-series data, e.g., dynamic
features and embedded trajectories. These quantities then serve as learning features for some classifier to
distinguish data representing different brain dynamics. For example, two different kinds of brain activities,
labeled by 1 and 2, are documented in some time-series data. The Koopman framework provides a sys-
tematic method to determine the label of the given time-series, i.e., the brain activity that the time-series
records.

the brain activities captured by the fMRI data, as well as embed the high-dimensional
fMRI data onto a low-dimensional space to efficiently facilitate cognitive classifica-
tion.

4.1 Dataset Description

In this work, we use the block-design fMRI dataset experimented by James V. Haxby’s
research group in 2001 (Haxby et al 2001). The purpose of this experiment was to
study the face and object representation in human ventral temporal cortex. The ex-
periment consists of 6 subjects, and each subject was asked to run the experiment 12
times. In each run of the experiment, eight greyscale images were shown to one sub-
ject, with each image displaying for 500ms. At the same time, full-brain fMRI was
recorded with a volume repetition time of 2.5s, and each stimulus block was covered
by 9 discrete-time data points. The data for the ninth experiment of subject 5 was
corrupted, so we will not consider this subject in the following analysis. As a result,
we have in total 864 (12 runs × 8 images × 9 points) fMRI datapoints for each of
the 5 considered subjects. Every datapoint is a vector containing voxels that docu-
ment the brain activity in the corresponding subject’s ventral temporal cortex. Sizes
of the 5 subjects’ ventral temporal cortex, i.e., dimensions of the data vectors for the
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Fig. 4 An illustration of the block-design fMRI experiment. In the experiment, full-brain fMRI was
recorded, while eight greyscale images were shown to each subject.

5 subjects, are 577, 464, 307, 675, and 348, respectively. The experiment setting is
illustrated in Figure 4.

4.2 Extraction of Brain Dynamics

In the described experiment, e.g., for the first subject, 577-dimensional time-series
data containing 9 snapshots were recorded for each run. From the dynamical sys-
tems point of view, the flow of these 9-snapshot fMRI data reflects the subjects’ brain
activities in response to the images shown to him or her in the experiment. Con-
sequently, classifying the fMRI image data is a meaningful way to distinguish the
subject’s cognitive responses to different external stimuli (image-viewing). To this
end, we utilize the technique of dynamics extraction developed in Section 3.1 to cap-
ture the subjects’ brain activities. Specifically, the Arnoldi-type algorithm (Susuki
et al 2016; Mezić 2013) is applied to construct an 8-dimensional Krylov subspace
Ky = span{y0, . . . ,y7}. By projecting the last data vector y8 onto Ky, the dynam-
ics of every sequence of the 577-dimensional time-series data is documented into
an 8-dimensional vector c (dynamic feature). Therefore, we obtain 96 (12 runs × 8
images) such 8-dimensional dynamic features in total for each of the 5 considered
subjects, and every dynamic feature is a quantification of one subject’s brain activity
responding to one image.

4.3 Classification by Embedded Trajectories

According to the discussion in Section 3.2, the extracted dynamic features, repre-
sented by vectors in R8, can be used to construct linear systems in their observability
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Table 1 The accuracy of cognitive classification by using the 20-snapshot trajectories.

Subject No. Euclidean projection Non-Euclidean projection

1 0.96 0.97
2 0.91 0.96
3 0.89 0.94
4 0.83 0.85
6 0.80 0.98

Average 0.88 0.94

canonical forms as in (9), and the state trajectories of these reduced systems are the
embeddings of the high-dimensional fMRI data onto the low-dimensional space R8.
To distinguish the brain dynamics in response to different images, SVMs are utilized
to classify these low-dimensional trajectories. Specifically, for each of the constructed
linear systems, we generate a 20-snapshot trajectory as a feature for the SVM classi-
fier, in which we use the l2-norm, defined by

∥x− x′∥l2 =

√
19

∑
i=0

∥xi − x′i∥2,

to measure the distance between different trajectories x and x′, where xi and x′i are in
R8 denoting the ith snapshot of x and x′, respectively, and ∥ · ∥ is a norm on R8. For
each subject, 95 out of the 96 trajectories are used to train a learning model, and the
remaining one trajectory is used to test the accuracy of the model. In addition, as we
proposed in Section 3.2.2, a non-Euclidean inner product can be introduced on the
data space to orthonormalize the 8 data points spanning Ky. Notice that for the same
subject and image, the dynamic features obtained by non-Euclidean projections are
different from those obtained by Euclidean projections. Consequently, the resulting
linear systems and their trajectories are also different, although they represent the
same brain activity, in the view of different bases or coordinate systems. In our study,
we also use those trajectories obtained by non-Euclidean projections to classify the
brain activities. Table 1 shows the classification accuracy by using the 20-snapshot
trajectories as features obtained from both of the Euclidean and non-Euclidean pro-
jections.

4.4 Classification by Dynamic Features

We also employ SVMs to directly classify those 8-dimensional dynamic features ex-
tracted from the fMRI time-series data. Similar to the trajectory classification de-
scribed in the previous section, for each subject, one vector from the 96 dynamic
features is picked randomly as the test data, and the remaining 95 of them are used
to train a model. Table 2 shows the accuracy of the classification based on the 8-
dimensional dynamic features.
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Table 2 The accuracy of cognitive classification by using the 8-dimensional dynamic features.

Subject No. Euclidean projection Non-Euclidean projection

1 0.83 0.89
2 0.87 0.93
3 0.47 0.78
4 0.64 0.69
6 0.77 0.99

Average 0.72 0.86

4.5 Discussion of the Cognition Classification Results

Comparing Table 1 with Table 2, classifying the 20-snapshot trajectories of the re-
duced linear systems results in higher accuracy than classifying the 8-dimensional
dynamic features. Especially, in the case of Euclidean projections, the classification
accuracy of subject 3 is greatly improved by using the trajectories instead of the dy-
namic features, where the accuracy increases from 0.471 to 0.888. This observation
highlights that the embedded trajectories more accurately represent the dynamics of
the time-series data than the dynamic features do.

A great advantage of using the reduced linear systems in classification problems
is the ability to generate longer trajectories, although the original time-series data is
of limited temporal dimension. Taking the fMRI dataset as an example, we generated
a trajectory of length 20, while the temporal dimension of the fMRI data is only 9.
From the machine learning aspect, this means that we are able to obtain more features
for the classifiers to learn models for distinguishing different brain activities.

Moreover, each of Tables 1 and 2 is also self-contained: the non-Euclidean or-
thonormal projections always lead to better classification accuracy than the Euclidean
projections do, which can be explained by using the Koopman operator theory as
follows. Recall the Koopman operator theory introduced in Section 2, the dynamic
feature extracted from the time-series data induces a companion matrix, whose eigen-
values and eigenvectors approximate those of the Koopman operator by the spectral
theorem. However, the application of the spectral theorem requires the Koopman op-
erator to be unitary. The non-Euclidean inner product provided in Section 3.2.2 simul-
taneously orthogonalizes and normalizes the time-series data vectors, and this renders
the distance-preserving property of the dimensionality reduction of the time-series,
which is also a necessary condition to guarantee the unitarity of the approximated
Koopman operator. The greater classification accuracy by using non-Euclidean pro-
jections shown in Tables 1 and 2 then validates that unitarity of Koopman operators
indeed helps with distinguishing the dynamics of different systems in the form of (9).

4.6 Comparison of Feature Selection Methods for Cognitive Classification

In the previous section, we showed the promising performance of the cognitive classi-
fication by using different feature generation methods based on the Koopman frame-
work developed in Section 3. In the widely used multi-voxel pattern analysis (MVPA)
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Table 3 Comparison of cognition classification results by Koopman features and MVPA.

Subject No. Trajectories MI + PSR SFS SBS PSO HHPSO

1 0.97 0.88 0.39 0.80 0.92 0.95
2 0.96 0.75 0.27 0.62 0.69 0.80
3 0.94 0.85 0.33 0.82 0.85 0.87
4 0.85 0.69 0.36 0.55 0.80 0.85
6 0.98 0.88 0.45 0.73 0.82 0.84

Average 0.94 0.81 0.36 0.70 0.82 0.86

for fMRI data, the data points representing the voxels are directly used as features for
classifiers. Various feature selection approaches for MVPA have been recently pro-
posed to increase the classification accuracy. These include mutual information (MI)
based method, partial least-squares regression (PSR), sequential forward feature se-
lection (SFS), sequential backward feature selection (SBS), particle swarm optimiza-
tion (PSO), and hierarchical heterogeneous particle swarm optimization (HHPSO)
(Chou et al 2014; Ma et al 2016; Michel et al 2008; Mitchell et al 2008; Liu and Mo-
toda 1998). In this section, we compare the cognitive classification results obtained
by our Koopman learning technique with the results obtained by the MVPA-based
methods, in which SVMs are the chosen classifiers. The classification results are
shown in Table 3. Specifically, the first column shows the accuracy of classifying the
20-snapshot trajectories obtained by the non-Euclidean projections, and the second
column shows the accuracy of classifying features that are simultaneously selected
by the MI and PSR methods. It is evident that the Koopman learning framework
outperforms the MVPA-based methods. This further indicates that interpreting brain
activities from a dynamical systems perspective lays a solid foundation for under-
standing brain responses to external stimuli in cognitive science, and the Koopman
framework provides a mathematically justified and effective data-driven approach to
capturing brain activities.

Remark 1 Haxby’s research on this fMRI dataset has demonstrated that each cate-
gory of objects in the displayed images evokes a unique pattern of response in cortex
(Haxby et al 2001). However, it could be possible that the same category of images
may elicit distinct brain activities in different runs of experiments. To test this hy-
pothesis, we analyze the dataset by removing some dynamic features from one run
of experiments. Specifically, we start with completely removing 8 dynamic features
from one run of experiments, then one of the remaining 88 dynamic features is ran-
domly chosen as the test data, and the other 87 dynamic features are used to train
the classifier. On the other hand, we keep all of the 88 dynamic features in the train-
ing dataset, and pick one of the removed 8 dynamic features as the test data. Table
4 shows the classification accuracy obtained by training 87 and 88 dynamic features
as described above. Notice that the classifier trained by 88 dynamic features shows
much worse performance than the one trained by 87 dynamics features. This suggests
that each subject’s brain activity responding to a picture in one run may differ from
his or her brain activities responding to the same picture in other runs. This argument
is also supported by the plot shown in Figure 5, where we add the 8 removed dynamic
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Table 4 Classification accuracy obtained by training 87 (11 runs leaving out 1 feature selected as the test
data) and 88 dynamic features. In particular, the case of training 88 dynamic features (using all selected 11
runs of data) with the test feature picked from the removed run shows much worse performance than the
case of training 87 dynamic features with the test feature picked from the selected 11 runs. This verifies
the hypothesis that the same category of images may elicit distinct brain activities in different runs of
experiments.

Removed run
No. Subject 1 Subject 2 Subject 3 Subject 4 Subject 6

Training 87
dynamic features

1 0.84 0.87 0.40 0.60 0.57
2 0.78 0.75 0.48 0.57 0.62
3 0.84 0.80 0.48 0.54 0.60
4 0.84 0.89 0.51 0.47 0.55
5 0.85 0.82 0.40 0.60 0.66
6 0.86 0.83 0.36 0.66 0.62
7 0.88 0.86 0.41 0.55 0.62
8 0.92 0.68 0.44 0.78 0.62
9 0.89 0.82 0.48 0.61 0.69

10 0.71 0.89 0.49 0.46 0.64
11 0.84 0.74 0.38 0.70 0.55
12 0.76 0.86 0.46 0.67 0.65

Average 0.84 0.82 0.44 0.60 0.62

Training 88
dynamic features

1 0.12 0.00 0.26 0.14 0.13
2 0.13 0.00 0.00 0.15 0.00
3 0.10 0.12 0.00 0.26 0.13
4 0.00 0.12 0.13 0.26 0.12
5 0.12 0.13 0.12 0.13 0.12
6 0.13 0.13 0.00 0.13 0.14
7 0.14 0.12 0.26 0.00 0.13
8 0.13 0.11 0.00 0.00 0.00
9 0.14 0.13 0.00 0.11 0.10

10 0.26 0.13 0.00 0.12 0.14
11 0.12 0.11 0.00 0.00 0.14
12 0.24 0.13 0.00 0.00 0.14

Average 0.13 0.10 0.06 0.11 0.11

features from one complete run one-by-one into the training dataset and randomly se-
lect one of the remaining dynamic features as the test data for the leave-one-off cross
validation. In particular, the removed run is selected sequentially, and the result is
obtained by averaging the accuracy over all 12 cases, where each case corresponds to
the removal of one of the 12 runs. Notice that when 7 dynamic features from the re-
moved run are added into the training dataset, the classification result coincides with
what we have shown in Table 2.

5 Seizure Detection

Electroencephalography (EEG), similar to the function of fMRI, is also a technique to
record brain activities. To be more precisely, it measures voltage fluctuations result-
ing from ionic current within the neurons of the brain (Schomer and da Silva 2010).
In clinical contexts, EEG serves as an important tool to diagnose diseases caused
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Fig. 5 Classification accuracy with respect to the size of training dataset for all of the 5 considered subjects.

by neurological disorders, for example, epileptic seizures. Conventionally, monitor-
ing brain activities by EEG relies on the visual inspection of the recorded signals
by professional neurophysiologists. Moreover, different patients may have different
seizure symptoms so that visual detection is not always efficient and accurate enough
for instant treatment. Therefore, more and more data mining and statistical learn-
ing methods are proposed to accurately and timely analyze EEG signals for seizure
detection. One major challenge to analyzing EEG signals is their high nonlinearity
and low signal-to-noise ratio (SNR), since EEG signals are not robust to external
disturbance. In this situation, statistical properties of EEG signals, such as autocorre-
lation, variance, power spectrum, and so on, are preferred as features for some clas-
sifiers to recognize seizure and non-seizure states, after some signal enhancement
approaches such as common spatial patterns (CSP) and principal component analy-
sis (PCA) (Khanmohammad and Chou 2016, 2018; Giannakaki et al 2014; Lehnertz
et al 2017). In addition to the classification based on statistical features, dynamic
mode decomposition (DMD) was recently proposed to extract spatial-temporal pat-
terns of intracranial electroencephalography (iEEG) data for clustering sleep spindle
networks, where such patterns are represented in terms of eigenvalues and eigenvec-
tors of augmented data matrices (Brunton et al 2016). In our approach proposed in
this section, instead of performing statistical or spectral analysis, piecewise linear
approximations of EEG dynamics are constructed through the developed Koopman
framework, which gives rise to a robust classifier to distinguish the seizure and non-
seizure dynamics.

5.1 Dataset Description

In this section, we validate our Koopman framework by implementing it to a public
pediatric seizure dataset collected at Children’s Hospital Boston (Goldberger et al
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rhythm that is most prominent on the channels {F7 - T7, T7 - P7}. Other EEG

channels also exhibit a change following seizure onset. The channel {C3 - P3} de-

velops a theta band rhythm while the channel {FP2 - F8} develops a delta band

rhythm.

FP1-F7
F7-T7
T7-P7
P7-01
FP1-F3
F3-C3
C3-P3
P3-01
FP2-F4
F4-C4
C4-P4
P4-02
FP2-F8
F8-T8
T8-P8

P8-02
FZ-CZ
CZ-PZ

6307 6309 6311 6313 6315 6317 6319 6321 6323

Figure 2-6: Example of a seizure within the scalp EEG of Patient B. The seizure,
which begins at 6313 seconds, involves the appearance of a theta band rhythm on the
channels {F7 - T7, T7 - P7}.

Between seizures, the EEG of an individual with epilepsy may exhibit abnormal

rhythmic activity or discharges. The spatial and spectral characteristics of these dis-

charges varies across patients. Figure 2-7 illustrates an abnormal discharge within the

EEG of Patient A. The discharge, which involves most EEG channels, falls between

2884-2892 seconds, and is characterized by a repeating pattern of high-amplitude

spikes followed by broad waves. While these discharges are seen frequently in the

awake EEG of Patient A, they are not accompanied by the physical symptoms as-

sociated with Patient A's seizure (Figure 2-5). Consequently, a detector designed to

react to the seizures of Patient A should not produce an alarm upon the onset of one

of these discharges. In another patient, this type of activity may be associated with

physical symptoms, as is visible in the seizure illustrated in Figure 5-25.

Figure 2-8 illustrates abnormal rhythmic activity observed within the EEG of

Fig. 6 EEG signals containing abnormal rhythmic activity (Shoeb 2009). The seizure begins at the 6313th

second, which can be readily recognized by the EEG signals in the channels F7 - T7 and T7 - P7.

2000). This dataset is also known as CHB-MIT, and it contains scalp EEG signals
for 24 patients. For each patient, EEG signals of 9 to 42 hours were recorded in
multiple files. In addition, the time gaps between different files, where no signal was
recorded, are mostly no more than 10 seconds. Most of the files contain 23 channels
of EEG signals, and few files contain 24 or 26 channels. All of the EEG signals were
sampled at 256 samples per second with 16-bit resolution, and the International 10-20
system was applied to keep track of the electrode settings. Parts of the EEG signals
containing a seizure onset are shown in Figure 6.

5.2 Extraction of EEG Dynamics

The most significant difference between EEG and fMRI datasets is that EEG signals
have a very high ratio of temporal to spatial dimension. In our analysis, the number
of channels of the EEG recordings is interpreted as the spatial dimension of the EEG
dataset, which is in the range of 23 to 26. The duration of the recordings in each
file mostly lasts for one hour long. This gives the EEG signals, for example, those
recorded with 23 channels, the spatial and temporal dimension of 23 and 921,600
(256 samples × 3600 seconds), respectively. Therefore, the method of vector Prony
analysis introduced in Section 3.1 is preferred to extract the dynamics of the EEG
signals.

In addition, since EEG signals are not robust to external disturbance, filtering
serves as an important step to increase SNR before conducting any further analysis.
Specifically, we use a 10th-order Butterworth bandpass filter with the cutoff frequen-
cies 2 and 10 Hz and the sampling rate of 256 per second. The selected sub-band
contains all the information required to characterize the seizure behavior: delta (0.1-
3 Hz), theta (4-7 Hz), and alpha (8-12.5 Hz). Furthermore, we also precondition the
EEG time-series data by downsampling it. Although this may result in the loss of in-
formation, it helps with capturing the overall trend of the dynamics. Specifically, we
downsample the EEG signal to the rate of 32 per second, then concatenate 32 snap-
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shots of the downsampled signal into one Prony vector, and hence each Prony vector
contains 1-second evolution of the EEG signal. The next step is to extract dynamic
features that represent the dynamics of the EEG signals by applying the method of
vector Prony analysis introduced in Section 3.1. To determine the appropriate dimen-
sion of the dynamic features, we formulated an optimization problem to maximize
the classification accuracy over the dimension of the Krylov subspace. The solution
to this optimization problem is 4 , i.e., dynamic features generated by projecting the
5th snapshot to the space spanned by its previous 4 snapshots lead to the best classi-
fication result.

Similar to the cognitive classification presented in Section 4.2, these 4-dimensional
dynamic features are used to construct reduced linear systems to approximate the dy-
namics of the EEG signals. However, due to the high nonlinearity of the EEG signals,
linear approximation may not be accurate enough to recover the actual dynamics. In
the following section, we extend the developed Koopman framework to construct a
piecewise linear approximation of the EEG dynamics.

5.3 Piecewise Linear Approximation of EEG Dynamics

Let Y0, . . . , Yrm be a sequence of concatenated EEG data used for applying the method
of vector Prony analysis as described in the above section, i.e., each Yi contains one
second evolution of the downsampled EEG signals, then we can generate r Krylov
subspaces K1, . . . ,Kr of dimension m, where Ki = span{Y(i−1)m, . . . ,Yim−1}. The ap-
plication of the Prony method to these r Krylov subspaces yields r dynamic features,
c1, . . . ,cr ∈ Rm. Next, we concatenate these dynamic features, i.e.,

c =

⎡⎢⎣ c1
...

cr

⎤⎥⎦ ∈ Rrm,

to obtain an aggregated dynamic feature c. Notice that because each ci gives rise to a
linear approximation of the EEG dynamics, the aggregated dynamic feature c enables
a piecewise linear approximation scheme of the EEG dynamics under r coordinate
charts. Specifically, applying the method developed in Section 3.2 to each of the dy-
namic features ci, i = 1, . . . ,r, yields r linear systems. Concatenating the trajectories
of these r systems then gives a local embedding of the EEG data to Rm. Alternatively,
the aggregated trajectory can be equivalently generated by the following piecewise
linear system,

xk+1 = f (xk), x0 = e1

yk = h(xk) (13)
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where

f (xk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

C1xk, if 0 ≤ k ≤ m−1,
...

...
Cixk, if (i−1)m ≤ k ≤ im−1,

...
...

Crxk, if k ≥ rm,

h(xk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

H1xk, if 0 ≤ k ≤ m−1,
...

...
Hixk, if (i−1)m ≤ k ≤ im−1,

...
...

Hrxk, if k ≥ rm,

Hi = [Y(i−1)m · · · Yim−1], and Ci is the companion matrix induced by ci for each i =
1, . . . ,r. In particular, the initial condition of the first system is the first standard basis
vector e1 of Rm. Inductively, the initial condition of the successive system is then set
to be the final state of its predecessor. Furthermore, this choice of initial conditions
for each system in the concatenation also guarantees that the reduced flow, i.e., the
trajectory of the concatenated system, indeed represents the dynamics of the time-
series data. In the next section, we will perform seizure event detection based on the
concatenated trajectories and dynamic features c.

5.4 Binary Classification for Seizure Event Detection

Seizure event detection is to identify seizures with the greatest possible accuracy.
The first seizure event detector was created by J. Gotman in 1982 (Gotman 1982).
An experiment of the Gotman’s detector showed that the algorithm can detect 50%
of the tested seizures (Saab and Gotman 2005). Following Gotmam’s work, many
algorithms have been proposed in recent years to increase the detection accuracy
(Wilson et al 2004; Wilson 2005, 2006; Khan et al 2012; Alotaiby et al 2015). One
of the most famous ones is called the Reveal algorithm, whose detection accuracy is
76% on average (Wilson et al 2004). For patient-specific detections, the accuracy of
the Reveal algorithm can be improved up to 78% (Wilson 2005, 2006).

In our approach, each patient’s EEG signal is divided into multiple seizure and
non-seizure windows, where, for example, seizure windows are time intervals in
which seizure happens. For each window, we generate one trajectory of the piece-
wise linear system in (13) containing 16 snapshots, and then apply a binary classi-
fier to all of such trajectories using libsvm package in MATLAB R2017a to detect
the time windows over which seizures happen. Specifically, we concatenate two 4-
dimensional dynamic features for each window, i.e., r = 2 and m = 4, to construct a
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Table 5 Seizure event detection accuracy by classifying concatenating trajectories.

Case No. Euclidean projection Non-Euclidean projection

1 0.777 0.778
5 0.853 0.853
8 0.771 0.778

10 0.835 0.843
Average 0.809 0.813

Table 6 Seizure event detection accuracy by classifying concatenating dynamic features.

Case No. Euclidean projection Non-Euclidean projection

1 0.752 0.748
5 0.837 0.868
8 0.760 0.777

10 0.824 0.837
Average 0.793 0.808

piecewise linear system in the form of (13). We pick the cases 1, 5, 8 and 10 as ex-
amples to show the seizure event detection results in Table 5. In addition to detecting
seizure windows based on trajectories, we also conduct the same binary classification
on those concatenated dynamic features, and the results are shown in Table 6. For
both of these two feature section scenarios, the seizure detection accuracy is higher
than the Gotman and Reveal algorithms.

Comparing Table 5 with Table 6, we notice similar classification results based on
the concatenated trajectories and dynamic features, although trajectories are supposed
to more accurately represent the dynamics of the EEG signals as discussed in Section
4.5. This then implies that, for time-series data with highly nonlinear dynamics like
EEG signals, concatenating more dynamic features results in a better representation
and thus a more accurate approximation to the actual dynamics. Moreover, classifi-
cation by concatenated state trajectories still outputs slightly better accuracy because
in our implementations they contain more snapshots than the data used for dynamic
feature extraction.

5.5 Binary Classification for Seizure Onset Detection

In addition to seizure event detection, seizure onset detection algorithms are more
extensively explored (Khanmohammad and Chou 2018, 2016; Nasehi and Pourghas-
sem 2013; Alotaiby et al 2015; Shoeb 2009). The purpose of seizure onset detection
is to recognize the start of a seizure with the shortest possible delay. Generally, the
performance of a seizure onset detector is evaluated by its sensitivity (S), false alarm
rate (F), and latency (L), which are defined as follows. Let Ns and Nns denote the
number of seizure onsets and non-seizure records, respectively, si be a binary vari-
able with value 1 if the ith seizure is detected and 0 otherwise, fi be another binary
variable taking value 1 if the seizure alarm is triggered for the ith non-seizure record,
and τi denote the time delay between the onset of the ith seizure shown in the EEG
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signal and the detection recognition of this seizure, then

S =
1
Ns

Ns

∑
i=1

si, F =
1

Nns

Nns

∑
i=1

fi, L =
1
Ns

Ns

∑
i=1

τi.

In this section, dynamic features obtained by non-Euclidean projections are used
as features for the SVM classifier to design the seizure onset detector. Specifically,
features of seizure and non-seizure records are labeled by 1 and 0, respectively. In
order to increase the robustness of our detector to external disturbance, the seizure
alarm will be triggered if three consecutive 1 are detected. Recall that in the EEG dy-
namics extraction procedure, one second evolution of the EEG signal is represented
by one dynamic feature. Therefore, detecting three consecutive 1 requires three sec-
onds of ictal EEG signals, which implies that the latency of the designed seizure onset
detector is L = 3 seconds.

In Table 7, we compare the performance of the seizure onset detectors designed by
the Koopman framework and SVM classifiers with other published methods: the CSP
feature extraction with KNN classifiers (Khanmohammad and Chou 2016), statistical
and morphological feature extraction with ADCD classifiers (Khanmohammad and
Chou 2018), features extracted from different frequency bands with IPSONN classi-
fiers (Nasehi and Pourghassem 2013), and features extracted from different frequency
bands with SVM classifers (Alotaiby et al 2015). In particular, the detector designed
by the Koopman framework shows very high sensitivity and relatively low latency.
However, the tradeoff of the low latency is the relatively high false alarm rate. Figure
7 plots the false alarm rate versus the latency, where the false alarm rate is dramat-
ically decreased by increasing the latency. For all of the considered four cases, the
false alarm rates drop more than 400% by only doubling the latency, and particularly,
the false alarm rate of case 5 drops 1300%.

Remark 2 In cognitive and behavioral neuroscience, fMRI and EEG are techniques
used to measure and record brain activities in some specific neural substrates. Be-
cause brain activities vary with time, the inherent temporal structures and evolution
are important for the understanding and characterization of brain functions, e.g., cog-
nition, or brain disorders, e.g., seizures. In the proposed dynamic data mining frame-
work, brain activities are treated as the output of a dynamical system, and the system
representing brain dynamics in the neural substrates recorded with fMRI or EEG data
is effectively and precisely reconstructed. The two case studies in cognitive classifica-
tion and seizure detection show a great promise of using the dynamical systems idea
and the Koopman mining approach to time-series analysis in basic and computational
neuroscience.

6 Conclusion

In this paper, we develop a novel dynamic data mining framework that provides a
systematic and effective approach to extracting dynamics of nonlinear systems using
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Table 7 Comparison of seizure detection methods using CHB-MIT dataset.

Feature
Extraction Classifier Case No. Sensitivity (%)

False
alarm

rate (/h)
Latency (s)

CSP KNN

1 100% 2.22/h 0.94
5 75% 1.19/h 0.94
8 100% 0.45/h 1.34
10 100% 1.83/h 0.94

Average 93.75% 1.42/h 1.04

Statistical +
Morphological ADCD

1 100% 0.17/h 2.5
5 80% 0.2/h 20
8 100% 0.15/h 2.5
10 100% 0.03/h 7.5

Average 95% 0.14/h 8.13

Energy in different
frequency bands IPSONN

1 100% - -
5 100% - -
8 100% - -
10 100% - -

Average 100% 0.13/h 3

Energy in different
frequency bands SVM

1 90% - -
5 100% - -
8 100% - -
10 - - -

Average 96% - -

Koopman SVM

1 100% 4.87/h 3
5 100% 0.91/h 3
8 100% 4.77/h 3
10 100% 2.42/h 3

Average 100% 3.24/h 3

their time-series data. Our method integrates the Koopman operator and linear sys-
tems theory to construct a linear model that approximately represents the dynamics
of a nonlinear system on a linear space of reduced dimension based on the available
time-series data. The established reduced linear model is also a dimensionality re-
duction of high-dimensional time-series data to a low-dimensional linear space. In
particular, we use the temporal trajectories generated by this low dimensional lin-
ear system as features in machine learning to classify time-series data in terms of
the ‘distinction’ of system dynamics. The proposed data-driven method for learning
dynamics of nonlinear systems is highly efficient, because the essential step is to
solve least-squares problems induced by the spectral method, which is of low com-
putational complexity and effort. Furthermore, we demonstrate the applicability and
robustness of the developed methodology by studying pattern recognition problems
in bioinformatics and healthcare, including cognitive classification and seizure detec-
tion using public fMRI and EEG datasets, respectively. In particular, by comparing
with the state-of-the-art algorithms, we show the promise of our approach to report-
ing highly accurate and convincing classification results. Moreover, the developed
operator-theoretic data-driven method not only illuminates new insight into devising
novel mining and learning techniques for extracting dynamics of nonlinear systems,
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Fig. 7 The plot of the false alarm rate versus the latency for Cases 1, 5, 8, and 10, in which the false alarm
rate is dramatically decreased with the increase of the latency.

but also extends the applications of the Koopman operator theory to a broader spec-
trum of research fields.
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