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Abstract
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble

nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens

whenever the surface tension in the bubble wall exceeds an upper bound proportional to the

difference of the square roots of the true and false vacuum energy densities. Recently it was shown

that there is another type of thin-wall regime that differs from that of CDL in that the radius of

curvature grows substantially as one moves through the wall. Not only does the CDL derivation of

the bound fail in this case, but also its very formulation becomes ambiguous because the surface

tension is not well-defined. We propose a definition of the surface tension and show that it obeys

a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are

special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or

AdS false vacua. We discuss the limit where the parameters of the theory attain critical values

and the bound is saturated. The bounce solution then disappears and a static planar domain wall

solution appears in its stead. The scalar field potential then is of the form expected in supergravity,

but this is only guaranteed along the trajectory in field space traced out by the bounce.
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I. INTRODUCTION

In their classic study of vacuum decay via bubble nucleation, Coleman and De Luccia
(CDL) [1] discovered a surprising feature of decays from a Minkowski vacuum to an anti-de-
Sitter (AdS) vacuum or from one AdS vacuum to another. If a potential has two vacua of
differing energy, decay from the higher energy false vacuum to the lower energy true vacuum
is always possible, if gravitational effects are ignored. However, if the higher vacuum has
either zero or negative energy, such decays are quenched if the two vacua are sufficiently
close in energy. In the thin-wall approximation of CDL, bubble nucleation is only possible
if

σ <
2√
3κ

(

√

|Utv| −
√

|Ufv|
)

. (1.1)

Here σ is the surface tension in the bubble wall, Ufv and Utv are the energy densities of the
false and true vacua, and κ = 8πGN .

As in the non-gravitational case, the CDL thin-wall approximation requires that the two
vacua be close in energy. In addition, one must require that the radius of curvature of the
wall can be treated as being constant as one moves through the bubble wall. Recently it was
shown [2] that there are regions of parameter space that allow a new type of thin-wall regime
in which the latter requirement is violated. In this case not only does the CDL derivation of
Eq. (1.1) fail, but also its very formulation becomes ambiguous, because the surface tension
is not well-defined. In this paper we will show how this inequality can be generalized to this
new thin-wall regime. Furthermore, we show how these bounds for the thin-wall cases can
be seen as special cases of a more general bound, applicable even to bounce solutions that
are in no sense thin-wall.

We also discuss the case where the parameters of the theory are taken to the boundary
beyond which nucleation is quenched. As the boundary is approached, the bubble radius at
nucleation increases without bound. When the critical values of the parameters are actually
achieved, the bounce solution is absent. In its stead there is a static planar domain wall [3, 4].
Such walls have been constructed as BPS solutions in supergravity theories [5–9], but they
can also arise as solutions that only possess what has been termed “fake supersymmetry” [10–
12]. We will describe how this happens in our approach. We will also recall the related work
of Abbott and Park [13, 14] connecting the existence of bounces to the vacuum stability
results of Boucher [15]

The remainder of this manuscript is organized as follows. In Sec. II we review the CDL
formalism, including their thin-wall approximation. In Sec. III the new thin-wall regime is
described and the generalization of Eq. (1.1) to this new regime is derived. In Sec. IV we
derive the more general bound that applies to all bounces. In Sec. V we discuss the approach
to the critical quenching limit where the Euclidean bounce disappears and a static planar
domain wall appears, and make connections to supersymmetry. Section VI summarizes our
results and comments on the extension to theories with multiple scalar fields. There is an
appendix that addresses some special issues that arise when the false vacuum is Minkowskian.

II. THE CDL FORMALISM

We consider a theory with a real scalar field φ governed by a potential U(φ) that has
two metastable vacua at φtv and φfv. The values of the potential at these vacua satisfy
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Utv < Ufv ≤ 0. Thus, the higher false vacuum can be either Minkowski or AdS, while the
true vacuum is AdS.1 The AdS vacua have characteristic lengths given by

ℓfv =
(κ

3
|Ufv|

)−1/2

=
(

−κ
3
Ufv

)−1/2

(2.1)

and similarly for ℓtv. Following CDL, we seek bounce solutions of the Euclidean field equa-
tions. Making the standard assumption of O(4) symmetry, we can write the Euclidean
metric in the form

ds2 = dξ2 + ρ(ξ)2 dΩ2
3 . (2.2)

For the cases we are considering, decays from a Minkowski or AdS vacuum, ρ(ξ) has a single
zero and ξ runs from 0 to ∞. The bounce thus has R4 topology, in contrast with the de
Sitter bounces that are topologically four-spheres.

The Euclidean action can then be written in the form2

S = 2π2

∫ ∞

0

dξ

{

ρ3
[

1

2
φ′2 + U(φ)

]

− 3

κ

(

ρρ′2 + ρ
)

}

(2.3)

and a bounce must satisfy

φ′′ +
3ρ′

ρ
φ′ =

dU

dφ
, (2.4)

ρ′2 = 1 +
κ

3
ρ2
[

1

2
φ′2 − U(φ)

]

, (2.5)

subject to the boundary conditions

φ′(0) = 0 , φ(∞) = φfv , ρ(0) = 0 , (2.6)

where primes denote derivatives with respect to ξ. Equations (2.4) and (2.5) imply the
useful equation

ρ′′ = −κ
3
ρ
[

φ′2 + U(φ)
]

. (2.7)

We now note that ρ(ξ) is a monotonically increasing function. To establish this, note first
that the boundary conditions imply that ρ′(0) = 1. Requiring that the bounce approach
the pure false vacuum solution at large ξ implies that ρ must asymptotically increase with ξ
either linearly (for a Minkowski false vacuum) or exponentially (for an AdS false vacuum).
If ρ were not monotonic between these limits, it would have a local minimum at some finite
ξ̄. This would require that ρ′(ξ̄) = 0 and ρ′′(ξ̄) > 0. However, this cannot be, since Eq. (2.5)
shows that U(φ) must be positive at any zero of ρ′, while Eq. (2.7) implies that ρ′′ can only
be positive if U(φ) is negative.

1 Note that an AdS vacuum can correspond to a local maximum of U(φ), provided that the Breitenlohner-

Freedman bound is respected.
2 The Gibbons-Hawking boundary term [16] does not appear here because it is exactly canceled by the

surface term from the integration by parts that removes the ρ′′ that appears in the curvature scalar R.

In fact, the tunneling rate is unaffected by the inclusion or omission of the boundary term, because its

contributions to the bounce action and the false vacuum action are equal, and so cancel in the tunneling

exponent B [2].
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We will find it useful to rewrite some of these results in terms of a Euclidean pseudo-
energy

E =
1

2
φ′2 − U(φ) . (2.8)

Because of the φ′ “friction” term in Eq. (2.4), this is not conserved, but instead obeys

E ′ = −3ρ
′

ρ
φ′2

= −φ′2

√

9

ρ2
+ 3κE (2.9)

with the second line following with aid of Eq. (2.5). We just showed that ρ is a monotonically
increasing function of ξ. It then follows that E is monotonically decreasing from an initial
maximum E(0) < |Utv| to an asymptotic minimum E(∞) = |Ufv|.

The tunneling exponent B is obtained by subtracting the action of the homogeneous false
vacuum solution from that of the bounce. For configurations that satisfy Eq. (2.5) the action
can be rewritten as

S = 4π2

∫ ∞

0

dξ

[

ρ3U(φ)− 3

κ
ρ

]

= 4π2

∫ ∞

0

dρ
1

ρ′

[

ρ3U(φ)− 3

κ
ρ

]

. (2.10)

The actions of the bounce and the false vacuum are both divergent, so we must regulate the
integrals. Thus, we define

S(L) = 4π2

∫ L

0

dρ
1

ρ′

[

ρ3U(φ)− 3

κ
ρ

]

(2.11)

and obtain a finite value for

B = lim
L→∞

[Sbounce(L)− Sfv(L)] . (2.12)

In particular, for an AdS false vacuum, with φ = φfv everywhere,

ρfv = ℓfv sinh(ξ/ℓfv) . (2.13)

Integrating the action density gives

Sfv(L) = Afv(0, L) (2.14)

where

Afv(ρ1, ρ2) = 4π2

∫ ρ2

ρ1

dρ
1

ρ′

[

ρ3Ufv −
3

κ
ρ

]

= −4π
2

κ
ℓ2fv

[

(

1 +
ρ22
ℓ2fv

)3/2

−
(

1 +
ρ21
ℓ2fv

)3/2
]

. (2.15)
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A. The CDL thin-wall approximation

In the CDL thin-wall approximation the bounce solution is divided into three parts: an
exterior region of pure false vacuum, an interior region of pure true vacuum, and a thin wall
that separates the two. For such a configuration we can write

B(ρ) = Bexterior(ρ) +Binterior(ρ) +Bwall(ρ) (2.16)

with ρ being the curvature radius of the wall. In the false vacuum exterior region the actions
of the bounce and the false vacuum cancel completely, and so Bexterior = 0. The contribution
in the interior region is the difference of true- and false-vacuum terms,

Binterior = Atv(0, ρ)−Afv(0, ρ) . (2.17)

Finally, we have the contribution from the wall, which can be written in the form

Bwall = 2π2ρ3σ (2.18)

where the surface tension σ is given by the flat-spacetime expression3

σ = 2

∫

wall

dξ [U(φbounce)− Ufv] (2.19)

and the integration over ξ is restricted to the wall region4

It is crucial here that the field profile in the wall, and hence σ, are to a good approxi-
mation independent of ρ, a consequence of the fact that the bounce radius is much greater
than the thickness of the wall. This approximation becomes better as the difference be-
tween the true and false vacuum energies decreases, not because the wall gets thinner (it
doesn’t), but because the bounce gets bigger. Indeed, one might term this the “large-bounce
approximation”.

Note that Eq. (2.18) implicitly assumes that ρ is essentially constant as one moves through
the wall. The CDL thin-wall analysis is only valid if this is the case. In Sec. III we will
consider thin-wall configurations for which this assumption fails.

The bounce is obtained by requiring that the wall radius be a stationary point ρ̄ of B(ρ).
Setting dB/dρ = 0 leads to

σ =
2

κ

(
√

1

ℓ2tv
− 1

ρ̄2
−
√

1

ℓ2fv
− 1

ρ̄2

)

<
2

κ

(

1

ℓtv
− 1

ℓfv

)

. (2.20)

with the bound being approached in the limit ρ̄ → ∞. Using Eq. (2.1) to rewrite the
inequality on the second line yields the bound in Eq. (1.1).

3 The absence of gravitational corrections in the CDL expression for the surface tension will be justified in

Sec. III.
4 More precisely, CDL replace U in the integral by a function U0 that has minima at φtv and φfv and is

equal to Ufv at both minima. In the thin-wall limit the effect of this replacement is higher order.
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III. THIN-WALL BOUNCES BEYOND CDL

Reference [2] examined tunneling in the more general case where the true and false vacua
are not close in energy and the conditions for CDL’s thin-wall approximation are not met.
It was found that as the mass scales in the potential are increased, making gravitational
effects stronger, a new type of thin-wall regime emerges. More specifically, for any given
potential one can define a quantity β as the ratio of a mass scale in the potential to the
Planck mass. Gravitational effects become stronger as β is increased. Eventually, as β
approaches a critical value, the bounce radius tends to infinity. In the limit the bounce
solution disappears, tunneling is completely quenched, and the false vacuum is stabilized.

In this new thin-wall regime the scalar field profiles are qualitatively similar to those in
the CDL thin-wall bounces. There is an interior region, 0 < ξ < ξ1, that is approximately
pure true vacuum, an exterior region, ξ2 < ξ <∞, that is almost pure false vacuum, and a
narrow transition region, or wall, that separates the two, with the wall thickness5 ∆ξ = ξ2−ξ1
being small compared to ξ1. However, they differ from their CDL counterparts in that ρ(ξ)
grows considerably as one passes through the wall, and so cannot be approximated as being
constant.

As with the CDL thin-wall approximation, it is convenient to write the tunneling exponent
as the sum of three terms, each of which is the difference between a bounce action term and
a corresponding false vacuum term. In order to be consistent with the form of the long-
distance regulator of the action integrals, Eq. (2.12), the corresponding regions of the bounce
and the false vacuum must be defined by values of ρ, rather than ξ. Thus, if the wall in
the bounce solution runs between ξ1 and ξ2, then the corresponding false vacuum region is
bounded by ρ1 ≡ ρ(ξ1) and ρ2 ≡ ρ(ξ2).

With this understanding, we obtain for the interior region, ρ < ρ1,

Binterior = Atv(0, ρ1)− Afv(0, ρ1)

= −4π
2

κ

{

ℓ2tv

[

(

1 +
ρ21
ℓ2tv

)3/2

− 1

]

− ℓ2fv

[

(

1 +
ρ21
ℓ2fv

)3/2

− 1

]}

; (3.1)

i.e., the CDL result with ρ = ρ1. In the exterior region the actions of the bounce and the
false vacuum exactly cancel, so Bexterior = 0.

In the wall region we have

Bwall = 4π2

∫ ρ2

ρ1

dρ

{

1

ρ′b

[

ρ3U(φb)−
3

κ
ρ

]

− 1

ρ′fv

[

ρ3Ufv −
3

κ
ρ

]}

= 4π2

∫ ξ2

ξ1

dξ

[

ρ3U(φb)−
3

κ
ρ

]

− Afv(ρ1, ρ2) . (3.2)

In the first line the subscripts on ρ′ and in the potential term indicate that in the first term
these are to be evaluated from the bounce solution, and in the second term from the pure
false vacuum solution.

5 This definition of the wall thickness differs from that used in [2], which only included regions where

U(φ) > Ufv.
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This expression for Bwall should reduce to the CDL result in the limit where ∆ρ = ρ2−ρ1
is small. To verify this, we write the false vacuum contribution to Eq. (3.2) as

−Afv(ρ1, ρ1 +∆ρ) =
4π2

κ
(3ρ1)

√

1 +
ρ21
ℓ2fv

∆ρ+O[(∆ρ)2] . (3.3)

Now ∆ρ = ρ′(ξ1)∆ξ. In the false vacuum, ρ′ =
√

1 + ρ2/ℓ2fv. Using these facts, we obtain

−Afv(ρ1, ρ1 +∆ρ) =
4π2

κ
(3ρ1)

(

1 +
ρ21
ℓ2fv

)

∆ξ +O[(∆ξ)2]

= 4π2

(

3ρ1
κ
− ρ31Ufv

)

∆ξ +O[(∆ξ)2] . (3.4)

Combining this result with the contribution from the bounce, and working to first order in
∆ξ, we recover the CDL result, with the surface tension given by Eq. (2.19). Note that this
justifies CDL’s use of the flat-spacetime expression for the surface tension.

Let us now return to the more general case, with ρ2−ρ1 not assumed to be small. We can
no longer approximate ρ as being constant through the wall. One consequence is that the
identification of a surface tension becomes problematic. One usually defines surface tension
in terms of an energy per unit area (or action per unit hypersurface area). Because ρ(ξ)
grows in the wall, the area of the outer surface of the wall is larger than that of the inner
surface of the wall. Which, if either, should be used? In fact, it is not even obvious that the
wall action can be written as the product of an area and a radius-independent factor.

To answer these questions we need to examine the form of these new thin-wall solutions
in more detail. The scalar field at the center of the bounce, φ(0), is very close to φtv. The
field remains close to φtv until ξ ≈ ξ1, so for the interior region, ξ . ξ1, we have, analogously
to Eq. (2.13),

ρ ≈ ℓtv sinh(ξ/ℓtv) . (3.5)

If gravitational effects are made stronger by increasing β, ξ1 increases and ρ1 grows expo-
nentially.

In the near critical regime the growth of ρ in the interior region is such that at ξ1 the
first term on the right-hand side of Eq. (2.5) can be neglected. If ρ1 ≫ ℓfv this remains true
throughout the wall, and beyond. We can then write

ρ′

ρ
=

√

κ

3

√

1

2
φ′2 − U(φ) (3.6)

so that Eq. (2.4) becomes

φ′′ +
√
3κ

√

1

2
φ′2 − U(φ) φ′ =

dU

dφ
. (3.7)

Note that ρ does not appear in this equation. Hence the profile of φ(ξ) in the wall is
independent of ρ.

Furthermore, integration of Eq. (3.6) gives

ρ(ξ) = ρ1 e
G(ξ) (3.8)
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where

G(ξ) =

√

κ

3

∫ ξ

ξ1

dξ

√

1

2
φ′2 − U(φ) (3.9)

is also independent of ρ. This allows us to rewrite Eq. (3.2) as

Bwall = 4π2

∫ ln(ρ2/ρ1)

0

dG

{

1

G′
b

[

ρ31U(φb) e
3G − 3

κ
ρ1 e

G

]

−
√

3

κ

1√−Ufv

[

ρ31Ufve
3G − 3

κ
ρ1e

G

]

}

.

(3.10)
In the limit of large bounce radius (ρ1 ≫ lfv), the terms cubic in ρ1 dominate. Keeping

only these, we have

Bwall = 4π2ρ31

√

3

κ

∫ ln(ρ2/ρ1)

0

dG e3G





U(φb)
√

1
2
φ′2

b − U(φb)
+
√

−Ufv



 . (3.11)

This suggests that we write
Bwall = 2π2ρ31σ̃ (3.12)

where 2π2ρ31 is the area of the inner surface of the wall and

σ̃ =

√

12

κ

∫ ln(ρ2/ρ1)

0

dG e3G





U(φb)
√

1
2
φ′2

b − U(φb)
+
√

−Ufv



 (3.13)

can be viewed as a generalization of the CDL surface tension σ.6 (Note that, like σ, it is
independent of ρ.) With this definition, the total expression for B takes the same form as
in the CDL thin-wall limit, but with the replacements ρ̄ → ρ1 and σ → σ̃. The line of
reasoning that led to Eq. (2.20) and then to Eq. (1.1) now leads to

σ̃ <
2√
3κ

(

√

|Utv| −
√

|Ufv|
)

. (3.14)

IV. A BOUND FOR ALL BOUNCES

We have obtained upper bounds on the surface tension for both the thin-wall approxi-
mation of CDL and the generalized thin-wall regime of [2]. However, thin-wall bounces of
either type are special cases. There are bounce solutions that are not in any sense thin-wall,
including some for which it is difficult to even define a surface tension. This raises the ques-
tion of whether there is a more general bound that applies to all bounces and that reduces
to Eqs. (1.1) and (3.14) in the appropriate limits.

6 In the CDL expression for the surface tension, Eq. (2.19), the integrand is everywhere positive so σ is

manifestly positive. This is not the case for σ̃. Indeed, the integrand in Eq. (3.13) is negative in the lower

part of the integration range and positive in the upper part. In the next section we will show that this

expression for σ̃ is a special case of a more general expression that is manifestly positive.
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We now show that there is. To begin, we recall the definition of the pseudo-energy,
Eq. (2.8), and the expression for its derivative, Eq. (2.9). If follows from the latter that

d
√
E

dξ
= −
√
3κ

2

√

1 +
3

κEρ2
φ′2 . (4.1)

Integrating this, we find that

√

E(0)−
√

E(∞) =

√
3κ

2

∫ ∞

0

dξ

√

1 +
3

κEρ2
φ′2

>

√
3κ

2

∫ ∞

0

dξ φ′2 . (4.2)

Noting that E(0) ≤ |Utv| and recalling that E(∞) = |Ufv|, we have

∫ ∞

0

dξ φ′2
b <

2√
3κ

(

√

|Utv| −
√

|Ufv|
)

. (4.3)

This inequality is exact, and does not depend on any approximations. It therefore applies
to any bounce solution. In particular, it should reduce to our previous results for thin-wall
bounces. In these bounces φ′ is taken to vanish outside the wall region, so the integration
can be restricted to the range ξ1 < ξ < ξ2. In the CDL thin-wall approximation the bounce
profile in the wall region is approximately that of a (1+1)-dimensional kink. Equation (2.19)
gives the surface tension in terms of an integral of the potential U(φb). A virial theorem [17]
relates this to the integral of φ′2 and shows that the bounds of Eqs. (1.1) and (4.3) are
equivalent within the accuracy of the approximation.

For the new thin-wall case, demonstrating the equivalence of Eqs. (1.1) and (3.14) requires
a bit more work. We begin by noting the identity

1

3κ

∫ ξ2

ξ1

dξ
d

dξ

(

ρ3
√
E
)

=

∫ ξ2

ξ1

dξ ρ3U(φb)

√

1 +
3

κEρ2
, (4.4)

which is obtained by evaluating the derivative inside the integral on the left-hand side and
using Eq. (4.1).

Alternatively, using the fact that the integrand is a total derivative gives

1

3κ

∫ ξ2

ξ1

dξ
d

dξ

(

ρ3
√
E
)

=
1

3κ

[

−(ρ32 − ρ31)
√

E2 − ρ31(
√

E2 −
√

E1)
]

=
1

3κ

[

−(ρ32 − ρ31)
√

E2 − ρ31

∫ ξ2

ξ1

dξ
d
√
E

dξ

]

= − 1

κℓfv
(ρ32 − ρ31)−

1

2
ρ31

∫ ξ2

ξ1

dξ φ′2

√

1 +
3

κEρ2
. (4.5)

In the last equality we have used the definition of the AdS length, Eq. (2.1), and the fact
that E2 = −Ufv. Comparing Eqs. (4.4) and (4.5), we have

∫ ξ2

ξ1

dξ ρ3U(φb)

√

1 +
3

κEρ2
+

1

κℓfv
(ρ32 − ρ31) = −

1

2
ρ31

∫ ξ2

ξ1

dξ φ′2

√

1 +
3

κEρ2
. (4.6)
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In the range of integration, ξ1 ≤ ξ ≤ ξ2, the pseudo-energy satisfies E ≥ E2 = |Ufv|, while
ρ ≥ ρ1. It follows that

3

κEρ2
<

ℓ2fv
ρ21

. (4.7)

Hence in the limit of large bounce radius, ρ1 ≫ ℓfv, the square roots in Eq. (4.6) can be set
equal to unity, giving

∫ ξ2

ξ1

dξ ρ3U(φb) +
1

κℓfv
(ρ32 − ρ31) = −

1

2
ρ31

∫ ξ2

ξ1

dξ φ′2 . (4.8)

In this same limit Eq. (3.2) reduces to

Bwall = 4π2

∫ ξ2

ξ1

dξ ρ3U(φb) +
4π2

κℓfv
(ρ32 − ρ31)

= 2π2ρ31

∫ ξ2

ξ1

dξ φ′2 (4.9)

where the second line follows from Eq. (4.8). Dividing by the surface area, 2π2ρ31, gives

σ̃ =

∫ ξ2

ξ1

dξ φ′2 (4.10)

and demonstrates the equivalence of Eqs. (3.14) and (4.3) in this regime.

V. BOUNCES AND WALLS IN THE CRITICAL LIMIT

It is instructive to examine the behavior of the bounce solution as the parameters of the
theory approach the critical limit where the nucleation of AdS bubbles is totally quenched.
As this limit is approached the wall radius of the bounce solution grows without bound,
with both ξ1 and ρ1 diverging. When the parameters are actually at their limiting values,
there is no Euclidean bounce at all.

Now let us focus on the fixed time slice through the center of the bounce, t = 0, when
the bubble is nucleated. The bubble is instantaneously at rest, while the spatial part of the
metric is

dℓ2 = dξ2 + ρ(ξ)2dΩ2
2 (5.1)

with ρ(ξ) taken over from the bounce and ξ again being a radial coordinate. The limit of
infinite bubble radius can be viewed, in a certain sense, as a planar wall separating two
metastable vacua.

The metric for a static planar wall can be written as

ds2 = A(z)(−dt2 + dx2 + dy2) + dz2 (5.2)

with z being the spatial coordinate orthogonal to the wall. For our theory with a single
scalar field, the field equations are

A′2 =
κ

3
A2

(

1

2
φ′2 − U

)

(5.3)
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φ′′ +
3A′

A
=

dU

dφ
(5.4)

with primes indicating differentiation with respect to z. These are to be solved subject to
the boundary conditions that φ take its false (true) vacuum value at z =∞ (z = −∞).

If we make the correspondence

ξ ←→ z , ρ←→ A , (5.5)

these equations differ from Eqs. (2.4) and (2.5) only by the omission of the factor of unity
on the right-hand side of Eq. (2.5). The boundary conditions at ξ = ∞ and z = ∞ agree.
Although those at ξ = 0 and z = −∞ differ, they coincide in the limit of infinite bubble
radius.

There is an interesting connection with supersymmetry when the parameters are near
the critical limit. Let us suppose that we are given φ(ξ) and ρ(ξ) satisfying the bounce
equations Eqs. (2.4) and (2.5). Because φ is a monotonic function of ξ, we can view ξ, and
therefore φ′, E, and ρ, as functions of φ in the neighborhood of the bounce solution. We
can then define a function f(φ) by

f(φ)2 =
1

3κ

(

1

2
φ′2 − U

)

=
1

3κ
E . (5.6)

The derivative of f with respect to φ is

df

dφ
=

df/dξ

dφ/dξ

=
1√
3κ

d
√
E

dξ

1

φ′

= −1
2
φ′α−1 (5.7)

where the last line follows from Eq. (4.1) and

α(φ) =

(

1 +
1

κ2ρ2f 2

)−1/2

. (5.8)

Solving Eq. (5.7) for φ′ and substituting the result into Eq. (5.6) leads to

U = 2α2

(

df

dφ

)2

− 3κf 2 . (5.9)

If α were equal to unity, this would be the form for the potential in a supergravity theory,
with f being the superpotential. In fact, α ≈ 1 wherever ρ≫ ℓfv. Thus, for a near-critical
bounce the deviation from the supersymmetric form is confined to a region of approximate
true vacuum in the center of the bounce.7

Repeating the calculation for the static planar wall, one finds that α = 1 everywhere in
space. The domain wall would then have the form of a supersymmetric wall interpolating

7 This assumes that the false vacuum is AdS. The case of a Minkowski false vacuum is addressed in the

appendix.
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between isolated vacua of an N = 1 supergravity potential, with the disappearance of the
bounce solution guaranteeing the stability of each of these vacua against decay by nucleation
of bubbles of the other. Note, however, that our construction is restricted to the interval of
field space between the two vacua; the form of U(φ) outside this interval is unconstrained
and need not be derivable from a superpotential.

An alternative path to demonstrating vacuum stability is to prove a positive energy
theorem or a BPS bound. In the presence of gravity, Boucher [15], generalizing Witten’s
work [18, 19], gave the following criteria: an extremum φ̄ of a potential U(φ) with U(φ̄) < 0
is stable if there exists a real function W (φ) such that

2

(

dW

dφ

)2

− 3κW 2 = U(φ) ∀φ (5.10)

and
W (φ̄) =

[

−U(φ̄)/3κ
]1/2

. (5.11)

These criteria make no direct reference to bubble nucleation. That connection was drawn
by Abbott and Park [14]. Given a potential U(φ), one can obtain W (φ) by integrating
Eq. (5.10), provided that U + 3κW 2 remains positive. Abbott and Park showed that if the
latter becomes negative at some φ = φs before one reaches an extremum of U , then φs is
the starting point φ(0) for a bounce solution that governs the decay via bubble nucleation
of the φ̄ vacuum.

VI. CONCLUDING REMARKS

Gravity can quench the nucleation of bubbles in a Minkowski or AdS false vacuum.
This result was proven analytically by Coleman and De Luccia in a thin-wall limit where
the energy difference between the true and false vacua is small. Their analysis implies
an inequality, Eq. (1.1), that relates the surface tension σ and the true- and false-vacuum
energies. It is essential for this inequality that σ is independent of the radius of curvature of
the bounce wall, and that the contribution of the wall to the Euclidean action is the product
of σ and the surface area of the wall.

Subsequently, numerical analyses have generalized this claim to a wider variety of poten-
tials [2, 20–22]. As the boundary beyond which nucleation is quenched is approached, the
bubble radius at nucleation increases without bound and a new thin-wall regime emerges
[2]. This new thin-wall regime differs from the CDL thin-wall regime in that the wall radius
of curvature ρ grows exponentially as one moves through the bubble wall. It is then far
from obvious that the wall action can be decomposed as the product of a surface tension
and an area. Indeed, it is not even clear how the area should be defined. In Sec. III we used
the fact that the matter field profile in the wall is independent of the curvature of the wall
to define a modified surface tension σ̃ that is ρ-independent. We were then able to show
analytically that the wall action is σ̃ times the area of the inner surface of the bounce wall.
Closely following the reasoning of CDL then led to the bound of Eq. (3.14) on σ̃.

In Sec. IV we proved that the upper bounds on the surface tensions in the two thin-wall
regimes are limiting cases of a more general bound, Eq. (4.3), that is satisfied by all bounces.
Gravity sources a frictional force that depletes the pseudo-energy as it evolves through the
radial direction of the bounce. This bound expresses the constraint on this frictional force
that is required if the bounce is to interpolate between the two vacua.

12



The work presented here was limited to single-field potentials, but the proof of the bound
of Eq. (4.3), the existence of the generalized thin-wall regime [2] and the definition of surface
tension in this regime, Eq. (3.13), should extend to multifield potentials. With N scalar fields
φi the bounce should satisfy

φi
′′ +

3ρ′

ρ
φ′
i =

dU

dφi
, (6.1)

ρ′2 = 1 +
κ

3
ρ2

[

∑

i

1

2
φ′2
i − U(φi)

]

. (6.2)

Solving these will lead to a trajectory through field space of the form φi(ξ) = gi(ξ). In the
neighborhood of this bounce trajectory we can introduce a coordinate Φ along the trajectory,
defined by

dΦ2 =
N
∑

i=1

dg2i (6.3)

together with N − 1 fields normal to the trajectory.
In these new coordinates the action along the bounce

S = 2π2

∫ ∞

0

dξ

{

ρ3
[

1

2
Φ′2 − U(Φ)

]

− 3

κ
(ρρ′2 + ρ)

}

(6.4)

only depends on Φ. The form of U(Φ) depends on the explicit bounce solution, but the only
information that was assumed about the potential was that it was a continuous function
interpolating between Utv and Ufv. The formal arguments made in Secs. III and IV should
extend to the field Φ, and the bound of Eq. (4.3) will be satisfied.

In the single-field case U(φ) approached a supersymmetric form as the parameters of the
theory approached the boundary where nucleation was quenched. Precisely on this boundary,
where the false vacuum becomes stable against decay by tunneling, a static planar domain
wall appears. U(φ) takes on the supergravity form and can be written in terms of a fake
superpotential W (φ). However, this form is only guaranteed on the interval in field space
lying between the true and false vacua. For the multifield case similar arguments allow one
to define a fake superpotential, but only along the trajectory of the bounce in field space
and only encoding a dependence on Φ, but not on the fields normal to the trajectory.

Even though these restrictions weaken the connection between stability and supersymme-
try, recent claims [23–25] based on the weak gravity conjecture [26] assert the instability of
all non-supersymmetric vacua in a UV complete theory. Said differently, theories for which
stable domain walls do not obey Eq. (1.1) live in the swampland, with gravity never strong
enough to quench a decay. See [27–30] for more examples of this instability.
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Appendix: Minkowski false vacuum

At some points in our analysis we have relied on the condition that ρ1 ≫ ℓfv. With an
AdS false vacuum this can always be achieved by going sufficiently close to the critical limit.
This is not the case if the false vacuum is Minkowskian, with Ufv = 0 implying ℓfv = ∞.
Here we examine the consequences of this fact.

In our analysis we used this inequality to argue that in the wall and in the entire exterior
region the right-hand side of Eq. (2.5) was dominated by the second term. This led to
the conclusion that the field profile in the wall was independent of ρ. It also allowed us
to approximate the square roots in Eq. (4.6) as unity, which led to Eq. (4.10) and the
equivalence of Eqs. (3.14) and (4.3).

Now suppose that the false vacuum is Minkowskian. By going sufficiently close to the
critical limit we can always ensure that the second term dominates the right-hand side of
Eq. (2.5) near the inner edge of the wall, but as E decreases with increasing ξ there comes
a ξ̄ where

κ

3
E =

κ

3

[

1

2
φ′2 − U

]

=
1

ρ2
. (A.1)

For a thin-wall bubble (of either kind) ρ is already exponentially large at ξ1, which means
that E, U(φb), and φ′2 will all have become exponentially small by the time that ξ̄ is
reached. Thus, the nontrivial part of the field profile will lie in the region ξ < ξ̄ and will
be independent of ρ, just as with an AdS false vacuum. Near the critical limit ξ̄ will lie
outside the wall (i.e., ξ̄ > ξ2), so the square roots in Eq. (4.6) will remain close to unity for
the entire range of integration.

We saw in Sec. V that the potential closely approximates the supergravity form wherever
α ≈ 1 or, equivalently, κEρ2 ≫ 1. With an AdS false vacuum E has a nonzero lower
bound, and so for near-critical bounces these conditions hold everywhere except for a region
of approximate true vacuum in the center of the bounce. With a Minkowski false vacuum
E tends to zero as ρ → ∞, so the large-distance behavior requires closer examination. To
begin, note that

(Eρ2)′ = 2ρρ′E + ρ2E ′

= ρρ′
(

2E − 3φ′2
)

= −2ρρ′
(

U + φ′2
)

. (A.2)

When φ is close to its value at the Minkowski false vacuum minimum, U(φ) is positive, so
the quantity in parentheses on the last line is positive definite, but exponentially decreasing
in magnitude. Near the false vacuum ρ grows linearly with ξ, so the integrated decrease in
Eρ2 as ξ → ∞ is finite. Hence, for near-critical bounces where Eρ2 is large even near the
end of the wall region, it will remain large as ξ increases. Just as with an AdS false vacuum,
in a near-critical bounce α will only deviate from unity near the center of the bounce, far
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from the wall.
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