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A B S T R A C T

Rivers are essential to the Earth’s water cycle and deeply impact many human societies and ecosystems, yet
they are currently monitored poorly at the global scale. In-situ gauging stations are distributed sparsely and
heterogeneously and do not cover much of the world, whereas remotely sensed images are spatially and
temporally dense and available globally. Remotely sensed multispectral images, such as the ones acquired
by Landsat missions, are available to enable the analysis and surveying of rivers using suitable algorithms.
However, existing algorithms are limited in ways that restrict the coverage of the produced results and that
prevent the automated analysis of river networks at large scales over short periods of time. Ideally, river
maps should be as “live” as possible, e.g., computed quickly and continuously as new Earth imaging data
becomes available. Towards advancing progress on this problem, we describe an automated river analysis
and mapping engine, RivaMap, that enables the computation of large-scale hydrography data sets from
remotely sensed data in a short period of time. RivaMap facilitates water resource management by providing
tools to delineate rivers and to estimate their width. As a practical application of RivaMap, we present a
continental-scale centerline and width data set of North American rivers, that is automatically computed on
Landsat data. We validate our mapping engine by comparing the RivaMap-generated data to a similar data
set, NARWidth, and also to in-situ measurements. Our experimental results show that RivaMap is able to
efficiently and accurately extract rivers from remotely sensed images at large scales. The outcomes of this
research, the software, and the computed exemplary data set are publicly available.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

River networks are the veins of the Earth, delivering fresh water
to ecosystems and societies. Despite the crucial importance of fresh
water for life, obtaining accurate global knowledge of the spatiotem-
poral dynamics of surface freshwater remains challenging1 (Alsdorf
et al., 2007). In-situ networks of gauges are rare and distributed
sparsely, even in well-monitored countries (Gleason & Smith, 2014;
Pavelsky et al., 2014). Satellite imagery, on the other hand, provides
broad coverage of the Earth at high spatial and temporal resolu-
tions. Landsat missions, for example, have provided multispectral
images of the Earth with global coverage since 1972 (Kovalskyy &
Roy, 2013; Loveland & Dwyer, 2012; USGS Landsat Missions, 2016).
Remotely sensed images can be utilized to develop large-scale data

* Corresponding author.
E-mail address: paola@austin.utexas.edu (P. Passalacqua).

1 Very recently, Pekel et al. (2016) described an advanced tool to capture the
spatiotemporal dynamics of global surface water, which appeared as the current
manuscript was nearing publication.

sets that can help enable the monitoring of hydrological change in
space and time.

Algorithms that create hydrological data sets in a fully automated
manner have great potential value when studying rivers and identi-
fying the causes and consequences of global environmental change.
Existing methods have demonstrated the effectiveness of using
remote sensing data to create large-scale hydrological data sets, such
as the HydroSHEDS (Hydrological data and maps based on SHuttle
Elevation Derivatives at multiple Scales) (Lehner et al., 2008), NAR-
Width (North American River Width) (Allen & Pavelsky, 2015), and
GWD-LR (Global Width Database for Large Rivers) (Yamazaki et al.,
2014) data sets. HydroSHEDS used a steepest descent based flow
direction algorithm to trace rivers on Shuttle Radar Topography Mis-
sion (SRTM) data, whereas NARWidth used a software tool, RivWidth
(Pavelsky & Smith, 2008), to delineate and estimate the widths of
the North American rivers on Landsat images. These remotely sensed
data sets provide valuable information regarding river width and
flow direction. However, the input data and aspects of the algorithms
that were used to create these data sets imposed some limitations
on their accuracy and usability. For example, HydroSHEDS and NAR-
Width contain limited or no data on certain regions, including coastal
areas which are hotspots for environmental change. Difficulties in
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defining the boundary between rivers and oceans led to the exclu-
sion of some rivers in coastal regions, since they were treated as
oceans. Furthermore, the creation of these data sets required labo-
rious manual inspection and corrections. For example, an extensive
manual correction protocol was required to improve the quality of
HydroSHEDS (Lehner et al., 2008). NARWidth used an algorithm
that required a binary water mask indicating water and land pixels
(Pavelsky & Smith, 2008) as input. These land-water masks were
obtained by an automatic water classification procedure (Li & Sheng,
2012) followed by visual inspection and correction. To automatically
derive a global database for large rivers, GWD-LR used the SRTM
Water Body Data (SWBD) and the HydroSHEDS flow direction map.
As a result of using SWBD as a baseline water mask, rivers narrower
than 300 m have limited coverage in the GWD-LR data set.

The amount of time and effort needed to create large-scale data
sets using methods that require manual corrections greatly limits the
analysis of river networks over time. A completely automatic data set
creation engine, on the other hand, would significantly reduce the
effort, and the temporal resolution of the obtained results would be
limited only by the frequency of image acquisition on a given region.
For example, the temporal resolution can be as low as 8 days for
Landsat-derived data sets, since the Landsat 7 and 8 satellites com-
plete imaging the entire Earth every 16 days with an 8-day offset
from each other (USGS Landsat 8, 2016). Automatically deriving sur-
face water data sets from Landsat images as they are acquired would
help facilitate the “live” analysis of water resources over time.

The results produced by such an algorithm could be used in
a wide variety of studies that help improve life on Earth. For
example, an automatically created continental-scale spatiotemporal
data set of hydrological measurements would allow monitoring
water resources over vast spatial extents and over time. Such a data
set could offer crucial information to scientists towards better under-
standing the implications of human-induced activities and global
environmental change on ecosystems. Subsequently, the outcomes
could be used to inform policy makers and governments to act more
effectively.

Recently, we developed a method (Isikdogan et al., 2015) of
automatically extracting rivers at multiple scales directly from satel-
lite imagery, without requiring a binary water mask as input. This
river extraction algorithm runs in a fully automatic manner and can
quickly and accurately extract complex network structures, such as
braided rivers and deltaic patterns. Adapting this algorithm can elim-
inate or alleviate the aforementioned limitations, while providing
an automatically updating monitoring and analysis tool that can
produce automatic updates whenever required.

We have significantly improved this earlier, preliminary develop-
ment work on the extraction of river networks, by creating a more
sophisticated model that produces better estimates of river cen-
terlines and widths. Using this improved river network extraction
algorithm, we have developed a fully automated river analysis and
mapping engine, called RivaMap, that is able to create large scale
maps of rivers (Section 2). We demonstrate a large-scale application
of RivaMap (Section 3) by deriving a data set of North American rivers
from Landsat data. We systematically compare this exemplary data
set that was automatically generated by RivaMap to existing data
sets to evaluate its performance.

The major contribution of this paper is a fully automatic river
mapping software package that is capable of extracting rivers from
Landsat imagery without any user intervention, that maps coastal
systems and braided rivers, that can process Landsat images at large
scales, and that can be used to monitor water resources over large
spatiotemporal extents. A secondary contribution of this paper is an
exemplary automatically generated width data set of North Amer-
ican rivers, which demonstrates the capabilities of the proposed
method at continental-scale. By applying our RivaMap tool, a user
may generate their own similar dataset using the most recently

available Landsat imagery whenever they require it. The software
tools and the generated data set are freely available at http://live.ece.
utexas.edu/research/rivamap/.

2. Methods

This section presents the methods employed in our river analysis
engine, RivaMap. The processes composing the engine include the
acquisition of the images, creating cloud-free composites, enhancing
water features, extracting and delineating rivers, and estimating
river width (Fig. 1).

2.1. Acquisition of Landsat images

There are several ways to obtain Landsat data. Landsat images can
be accessed free of charge through USGS websites and third party
environmental data catalogs: LandsatLook Viewer, USGS GloVis: The
Global Visualization Viewer, USGS Earth Explorer (Landsat Science:
Where to Get Data, 2016), and Google Earth Engine (2016). Google
Earth Engine is a cloud computing platform that has a catalog of
public data sets and a library of functions for performing analyses on
the data. The platform is optimized for parallel processing to reduce
computing time (Thau, 2015). The data catalog provides fast and easy
access to images from Earth-observing satellites, including Landsat
archives. An API allows users to access a library of functions and run
scripts on the Earth Engine. We use the Earth Engine Python API to
select, preprocess, and download images in batch.

Fig. 1. Flowchart of the automated river analysis and mapping engine, RivaMap.

http://live.ece.utexas.edu/research/rivamap/
http://live.ece.utexas.edu/research/rivamap/
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2.2. Creating water-enhanced cloud-free composites

The quality of the automatically generated maps depends heavily
on the quality of the input images. Cloud coverage, in particular, has
a prominent impact on the quality of the information derived from
remotely sensed imagery. For example, it might not be possible to
derive useful information from images that have large cloud cover-
age. To reduce the impact of clouds, cloud-free scenes can be selected
automatically, using the estimated percentage of cloud coverage
that is provided for each scene in the Landsat archives. However, in
many cases where cloud-free scenes might not be available, further
processing of images is necessary to remove clouds.

We employ a multitemporal complementation based method to
create cloud-free Landsat composites using the Google Earth Engine.
The method creates composites that minimize cloud coverage given
a set of scenes by selecting the least cloudy images for a given
location and time interval and by computing the temporal sample
median of those pixels that are least likely to be cloudy. To determine
the cloud-likelihood of a pixel, the Earth Engine uses a simple cloud
scoring algorithm that makes use of brightness, temperature, and a
normalized difference snow index (Lobell et al., 2015).

To enhance water features and suppress built-up land, vegetation,
and soil noise in the cloud-free composites, we employ the Modified
Normalized Difference Water Index (MNDWI) (Xu, 2006), which is
defined as follows:

MNDWI =
Green − MIR
Green + MIR

(1)

where MIR is a middle infrared band (e.g., band 5 in Landsat 7 and
band 6 in Landsat 8) and Green is a green band (e.g., band 2 in Landsat
7 and band 3 in Landsat 8). After computing the water index, we
download the water-enhanced cloud-free composite images from
the Earth Engine and further process the images locally to extract
river centerline and width.

2.3. Curvilinear structure extraction

In our recent work (Isikdogan et al., 2015), we have demon-
strated the effectiveness of a modified and elaborated version of the
multiscale singularity index (Muralidhar et al., 2013a,b) for achiev-
ing fully automated extraction of river networks from remotely
sensed images. The multiscale singularity index is a dimensionless
ratio index that is defined as:

(xf )(x, y,s) =

∣∣f0,h,s (x, y) f2,h,s (x, y)
∣∣

1 +
∣∣ f1,h,as (x, y)

∣∣2
. (2)

where, f0,h,s (x, y), f1,h,s (x, y), and f2,h,s (x, y) are the responses to the
zero, first, and second order derivatives of Gaussians, and s and
h(x, y) specify the scale of the Gaussians and direction of the deriva-
tives, respectively. The directions of the derivatives are orthogonal
to the curvilinear singularities in the input and are estimated by
computing the direction along which the second order derivative
attains a local extremum (Freeman & Adelson, 1991; Muralidhar et
al., 2012). The constant a in the denominator of Eq. (2) has a fixed
value of 1.7754, which achieves maximum attenuation of the side
lobe response of the index as shown by Muralidhar et al. (2013b).
This attenuation is important for minimizing responses to step-like
image edges.

The singularity index responds strongly to curvilinear structures,
where the second derivative in the numerator is large, and weakly
to edges where the first derivative in the denominator is large. Since
rivers are curvilinear structures, the singularity index can be used to
extract them from remotely sensed images. The input of the index
can be any image that has a contrast between water and land. Such

input images can be obtained from a single band, such as a mid-
dle infrared band, or from multiple bands using a water index. The
input images do not require thresholding since the algorithm does
not require a binary water mask as input. We use the MNDWI to
obtain the input images, since it enhances the contrast between land
and water. Using MNDWI reduces the chances of detecting other
curvilinear structures, such as roads, as rivers.

The singularity index responds to curvilinear structures in the
input regardless of their polarity, i.e. whether the structure or its
neighboring area has larger intensity values. As a result, islands in an
input image could be mistaken for rivers, especially in braided rivers.
The island response can be discriminated from the river response by
retaining the sign of the second derivative in the singularity index (2)
as follows:

(xf )(x, y,s) =

∣∣ f0,h,s (x, y)
∣∣ f2,h,s (x, y)

1 +
∣∣ f1,h,as (x, y)

∣∣2
. (3)

Rivers of different size can be captured by computing the sin-
gularity index over multiple scales. Rivers that are wider than smin

and narrower than sN can be extracted by computing (xf )(x, y,s)

for sn = smin
√

2
(n−1)

, n = 1, 2, . . . , N. However, the singularity
index response is expected to decrease with increasing scale, since
the amplitudes of spatial derivatives generally decrease as the scale
increases (Lindeberg, 1998). Motivated by Lindeberg’s c-normalized
derivatives (Lindeberg, 1998), the drop in the response with increas-
ing scale can be compensated by scale-normalizing the singularity
index as (xnorm f )(x, y,s) = s2(xf )(x, y,s) (Muralidhar et al., 2013b).
We compute the scale-normalized singularity index over the scales
sn = smin

√
2

(n−1)
, n = 1, 2, . . . , N, where the maximum scale sN is

upper bounded by the image size. The number of scales N can be set
to its upper bound, which is determined automatically for each input
image by finding the largest scale such that the filter dimension is
smaller than both image dimensions (Isikdogan et al., 2015).

The singularity index is sensitive to the intensity of the input
signal. Therefore, the presence of intensity variations in the input
image could lead to variations in the output. In remotely sensed
images, any non-uniformity of atmospheric conditions could cause
structurally irrelevant intensity variations. To provide invariance to
local intensity variations, an input image should be locally debiased.
This can be achieved by subtracting a Gaussian filtered version of
the input image from the input. As explained in Muralidhar et al.
(2013b), the standard deviation of the Gaussian filter sg can be cho-

sen as sg ≥ sn

√
1−42

42 , where 4 = 0.2 and sn is the scale of the
input signal. We debias the input image by using a Gaussian with
sg = 5sn > sn

√
1−42

42 before computing the singularity index at each
scale sn, n = 1, 2, . . . , N.

We combine the multiscale singularity index response into a
single-band overall response image to highlight channelized areas in
a given MNDWI image. Our initial approach to the overall response
computation (Isikdogan et al., 2015) involved pooling the maxi-
mum singularity index response across scales. However, this process
could create artificial ripple-like discontinuities near the channel
banks, requiring post processing of the response with an adaptive
smoothing algorithm. In this work, we use the Euclidean norm of the
multiscale singularity index response across scales to compute the
overall magnitude of the response as:

∥∥(xf )(x, y)
∥∥ =

√√√√ N∑
n=1

(xf )(x, y,sn)2. (4)

Using the Euclidean norm instead of maximum-pooling produces
a seamless response, therefore removing the need for an adaptive
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smoothing algorithm. The overall magnitude of the multiscale sin-
gularity index highlights channels, helps isolate rivers from other
high-MNDWI land features, and defines a soft boundary between
rivers and oceans in coastal regions (Fig. 2).

2.4. River centerline delineation

River centerlines can be delineated by suppressing the non-
maxima response on the overall magnitude of the multiscale sin-
gularity index response along the dominant orientation. Similar to
the non-maxima suppression procedure in the Canny edge detector
(Canny, 1986), the overall singularity index response can be non-
maxima suppressed to obtain the river centerline. Our automated
river analysis engine, RivaMap, executes a process of non-maxima
suppression at each pixel along the dominant orientation on the
Euclidean norm of the multiscale singularity index response. The
dominant orientation h is orthogonal to the channel direction, com-
puted as explained in Freeman & Adelson (1991) and Muralidhar
et al. (2012). The channel direction h⊥ at a given spatial location

denotes the elongation axis of the channel along which the width is
computed (Fig. 3).

To produce a binary map of river centerlines, we apply a hystere-
sis threshold to the non-maxima suppressed response. Hysteresis
thresholding uses two threshold levels: tl (low) and th (high). Values
below tl are discarded, values above th are classified as centerlines,

(a)

(b)

Fig. 2. Highlighting channelized areas on MNDWI response. (a) MNDWI response,
(b) overall magnitude of the multiscale singularity index response. Wax Lake and
Atchafalaya Deltas, LA.

Fig. 3. A quiver plot of channel direction h⊥ and magnitude ‖(xf)(x, y) ‖ of the overall
singularity index response in the Wax Lake Delta, LA. The length and orientation of
the lines show the magnitude and angle of the singularity index response at a given
spatial location, respectively.

and values between tl and th are classified as centerlines only if they
are adjacent to other centerline pixels. This approach helps preserve
the connectivity of rivers while eliminating spurious responses.

In our earlier work (Isikdogan et al., 2015), we chose th using
Otsu’s threshold selection method (Otsu, 1975) and fixed tl to a frac-
tion of th for each input image. This strategy works if the channelized
areas in the image are sufficiently large such that the distribution
of x is bimodal. In large-scale processing, however, the distribution
of x is usually unimodal (e.g., Fig. 4), since the rivers constitute a
small portion of the input images. Therefore, using Otsu’s method
to determine the thresholds for each input tile can amplify noise in
images where there is little or no river presence. We address this
problem by determining the thresholds based on the overall dis-
tribution of x at continental-scale, which was estimated using the
Gaussian kernel density estimation function in R (R Documentation,
2016). To determine the thresholds, we use a simple geometrical
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Fig. 4. Determining the thresholds: lower threshold tl at the peak of the distribu-
tion (0.012), middle threshold tm at the corner of the distribution (0.061), and upper
threshold th at tm + (tm − tl).
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method that is based on Rosin’s unimodal thresholding algorithm
(Rosin, 2001). Rosin’s algorithm consists of drawing a straight line
from the peak to the end of the distribution and selecting a thresh-
old at the point where the perpendicular distance between the line
and the distribution function is maximum (Fig. 4). Using this method,
we first find a middle threshold tm at the corner of the distribution.
Then, we choose the lower and upper thresholds as tm ± 4T, where 4T

is a tolerance variable that is empirically set to the distance between
the peak of the distribution and tm. More specifically, we choose
the lower threshold tl at the peak of the distribution and the upper
threshold th at tm+(tm−tl), bisecting the middle threshold between
tl and th. In our experiments, we estimated the overall distribution
of x by computing the density of 108 centerline points (i.e., x > 0)
obtained by computing x over randomly sampled cloud-free com-
posite image patches from North America. Our analysis yielded the
lower and upper thresholds tl = 0.012 and th = 0.11, respectively.
By following this procedure, RivaMap is able to reliably detect rivers
in a variety of environments, including coastal areas (Fig. 5).

2.5. Width estimation

Locating the dominant scale at which the singularity index
response is the largest is useful for estimating the river width at a
given spatial coordinate. A simple approach to estimate the width
would be determining the dominant scale where the singularity
index response is maximum, sd = argmaxs(xf)(x, y,s), then cor-
relating sd with the width. However, such an approach can only
provide a broad description of the width while failing to capture
sub-scale width differences between rivers. The maximum singular-
ity index response in scale can instead be estimated by interpolation
(Fig. 6). Estimating the accurate scale that maximizes the singularity
index response is particularly important at coarser scales, since the
step size between scales grows exponentially.

To estimate the dominant scale at sub-scale accuracy, we first
locate sd, the scale that has the highest singularity index response.
Then, we fit a quadratic curve to the singularity index response at sd

and its neighboring scales. Finally, we locate the dominant scale as
the vertex of the quadratic function. Formally, the dominant scale ŝ

is computed as:

ŝ =
1
2

s2
d+1Dx1 + s2

d Dx2 + s2
d−1Dx3

sd+1Dx1 + sdDx2 + sd−1Dx3
(5)
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Fig. 6. An example of estimation of scale for a given river centerline point. The verti-
cal axis shows the magnitude of the singularity index at a given scale s . The dashed
line indicates the estimated location of the scale that maximizes the singularity index
response. The horizontal axis s is plotted on a logarithmic scale.

where sd±1 are the neighbors of sd in scale and

Dx1 = (xf )(x, y,sd−1) − (xf )(x, y,sd)

Dx2 = (xf )(x, y,sd+1) − (xf )(x, y,sd−1)

Dx3 = (xf )(x, y,sd) − (xf )(x, y,sd+1)

(6)

at a given spatial coordinate (x, y).
To compute an accurate estimate of the river width, the algorithm

needs the dominant scale to be larger than or equal to the second
finest scale. As a result, widths of narrow rivers get overestimated if
the dominant scale is smaller than the second finest scale. To esti-
mate the widths of narrow rivers, we make use of the magnitude
of the overall singularity index response ‖(xf ) ‖, which correlates
well with river width for small values of ‖(xf ) ‖ (�0.25) (Section 3,
Fig. 10). We pass ‖(xf ) ‖ /0.25 through a hyperbolic tangent function
and use the result as a scale factor. The hyperbolic tangent function is
used as a blending function for the scale factor, limiting the range of
input values that correlate with the width to [0,1]. Finally, the river

Fig. 5. Automatically delineated rivers in the Wax Lake and Atchafalaya Deltas, LA.
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width w is estimated as ŵ = k × tanh(
∥∥(xf )

∥∥/0.25) × ŝ , where k is
a scalar variable that depends on the resolution of the input image,
allowing conversion from scale in pixels to width in meters.

2.6. Direct use of intermediate outputs

The final products of RivaMap consist of river centerline and
width measurements on a given input image. In addition to these
final products, the responses produced by intermediate processes,
such as the overall magnitude of the multiscale singularity index
response, can be used to analyze and quantify the dynamics of rivers.
These intermediate outputs can be used to directly develop surface
water and inundation metrics to assist in the analysis of patterns
in river networks, particularly in coastal systems. For example, the
overall magnitude of the positive and negative polarity singular-
ity index (Eq. (3)) response can be used to quantify the islandness
and channelness of a river delta (e.g. Fig. 2b highlights the channel-
ized areas). Subsequently, channel and island gain/loss in response
to inundation can be measured as the difference of channelness and
islandness over time. Furthermore, channel and island instability in
a delta can be formulated as the variance of channelness/islandness
over time, showing the parts of the delta that changed the most
over a given period of time (Fig. 7). Other metrics, such as river
width distribution, sinuosity, and symmetry (Liang et al., 2016),
can be derived from the river width, centerline, and orientation
information.

3. Experiments

To evaluate the effectiveness of the RivaMap engine for large-
scale data set creation, we first automatically generated a map of the
North American rivers and small lakes using RivaMap. Then, we com-
pared the resultant data against similar data sets. In our experiments,
we empirically set the minimum scale smin = 1.2 pixels, as the
corresponding output of the finest scale singularity index response
captured marginally more detail than its recommended value smin =

1.5 (Isikdogan et al., 2015; Muralidhar et al., 2013b). We also set
the width scalar k to 2Lm, where the resolution of the input Landsat
images is Lm = 30 m /pixel.

3.1. Developing a width data set of North American rivers

To create a data set that spans the entire North America,
we first created a grid that covers North America with cells of
1-degree height and width. To prevent boundary artifacts, the
cells were buffered 50% to overlap. For each cell in the grid, we
generated cloud-free composite images using Landsat-8 data drawn
from the last 3 years. We created a map of river centerline and
width for each cell using RivaMap. Processing of each cell (∼6000 ×
6000 pixel image) took ∼2 min on average on a single core of a
desktop CPU. We processed all the cells in parallel on 8 cores of
an Intel(R) Core(TM) i7 CPU, which took about 1 day to complete.
Finally, we aggregated the results we obtained from individual cells
to create a continental-scale data set.

The data set consists of 4.8 × 108 data points, including mea-
surements of rivers (Fig. 8). Each data point in the data set contains
latitude, longitude, and the corresponding width and channel ori-
entation of a centerline point at any given spatial location. Also
included in the data set are reservoirs and small and mid-size lakes.
Rivers in the data set can be differentiated from other types of surface
water by their length to width ratio. The data set excludes bodies of
surface water larger than the tile size. The tile size could be increased
to include larger water bodies, such as the great lakes. However,
larger tiles would require more memory.

3.2. Comparison to other data sets

We compared our RivaMap-generated data set to the NARWidth
data set and a set of in-situ measurements (Allen & Pavelsky, 2015).
Rivers wider than 2000 m were excluded in NARWidth as they made
up a small portion of all measurements but skewed the results sig-
nificantly. Consequently, we compared only rivers narrower than

2.5 0 2.5 5 7.5 10 km

Fig. 7. Channel (blue) and island (red) instability in Wax Lake and Atchafalaya Deltas between 1985 and 2015 (light: stable, dark: unstable).
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Fig. 8. A simple visualization of the RivaMap-generated data set showing the overall coverage of the dataset. Channels that have a strong overall singularity index response
(x > th) and that are longer than 10 km among the overlapping points from the NARWidth and RivaMap results are drawn thicker. The data points in the figure are heavily
subsampled for visualization purposes only.

2000 m, although wider rivers are included in our data set. We used
the same set of in-situ river width records that were used in the
validation of the NARWidth data set. The set included 1049 mea-
surements obtained from the U.S. Geological Survey (USGS) and the
Water Survey of Canada (WSC). In our comparisons, we included
902 of the 1049 in-situ measurements, which were detected auto-
matically by our algorithm. The remaining 147 measurements were
not detected by RivaMap as the overall magnitude of the singular-
ity index response fell below the thresholds for those measurements.
The in-situ gauging stations were located near the river banks,
whereas RivaMap produces width estimates for every centerline
sample point. To estimate the readings of width at a given in-situ
gauging station, we computed the average of the width estimates
for the centerline points that were within a given distance from the
station, where the distance is determined by the width of the river
measured at the gauging station.

We calculated Spearman’s rank-order correlation coefficients
(Spearman, 1904) to compare the RivaMap river width estimates to
the NARWidth estimates and the in-situ measurements. We found
the RivaMap width estimates to be similar to the NARWidth esti-
mates at the in-situ measurement locations (Spearman correlation
of 0.85, 0.83, and 0.81 between RivaMap and in-situ, NARWidth
and in-situ, and RivaMap and NARWidth measurements, respec-
tively, Fig. 9). Incorporating the magnitude of the overall singularity
index response (Fig. 10) as a scaling factor into the width estima-
tion formula in RivaMap improved the correlation value from 0.74 to
0.85 (Fig. 9a and b). Without the scaling factor, the algorithm could
not estimate the sub-scale width at the finest scale, resulting in a
threshold (Fig. 9b). Although the scaling factor helped improve the
accuracy of the estimates of the widths of narrow rivers, RivaMap
overestimated them. This overestimation is due to the capability of
our algorithm to capture rivers of width less than the lower bound
required for width estimation, such as sub-pixel wide rivers, when
there is a visible contrast between the river and its surrounding
area in the input image. Similarly, NARWidth also overestimated
the width of narrow rivers having widths close to the resolution of
the Landsat imagery (Allen & Pavelsky, 2015). RivaMap estimates
showed little mean bias (−1.94 m) and root mean square error

(RMSE) (65.1 m) with respect to the in-situ measurements, larger
than but comparable to the NARWidth measurements (mean bias:
−0.35 m, RMSE: 38.0 m).

NARWidth reports the widths of the rivers that were likely at
mean discharge, as it was derived from Landsat scenes sampled at
mean discharge. The RivaMap-generated data set, on the other hand,
does not guarantee that the extracted widths correspond to mean
discharge, since the data set was derived from imagery selected
based on minimal cloud coverage rather than on consistent hydro-
logical conditions. Therefore, the correlations with the in-situ data
and the NARWidth data set might be negatively impacted by the time
difference between the compared data samples. Of course, RivaMap
could be easily applied to hydrologically consistent data.

Although the RivaMap-generated data set was not based on the
same Landsat scenes as NARWidth, it produced similar results. The
RivaMap-generated data set overlapped with over 5.7 × 106 out
of 7.7 × 106 NARWidth measurements of width < 2000 m. On
these overlapping measurements, Spearman’s correlation between
the RivaMap estimates and NARWidth was 0.80. To compare the
distributions of width in the overlap, we computed histograms of
overlapping RivaMap and NARWidth river width estimates. Compar-
ison of the histograms showed that the distributions of the two data
sets were similar (Fig. 11).

3.3. Visual evaluation of results

In addition to this systematic evaluation, we evaluated the results
visually over regions selected to have different characteristics. The
selected regions included braided rivers and deltas, which are usu-
ally excluded or not represented accurately by existing methods. To
visualize the automatically extracted rivers, we drew a line of length
ŵ orthogonal to the river orientation at a given centerline point for
every data point in the selected regions (Fig. 12). Our visual evalu-
ation showed that RivaMap can properly extract rivers at different
scales and represent braided patterns (e.g. Fig. 12a), oxbow lakes (e.g.
Fig. 12a and c), and delta networks (e.g. Fig. 12b and d) correctly.

We observed some false negative and false positive centerlines,
especially at high latitudes (Fig 13). False positive centerlines were
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Fig. 9. Comparison of: (a) RivaMap estimates of river width against in-situ measurements (Spearman correlation: 0.85); (b) RivaMap estimates without scaling factor against in-
situ measurements (Spearman correlation: 0.74); (c) NARWidth river width against in-situ measurements (Spearman correlation: 0.83); and (d) RivaMap estimates of river width
against NARWidth estimates (Spearman correlation: 0.81).

mostly caused by false positive responses in the MNDWI images.
MNDWI poorly differentiates between water, snow, and terrain
shadows (Feng et al., 2015). As a result, false positives arose in
the presence of snow and strong curvilinear shadows, where the
singularity index response was strong enough to clear the thresh-
olds. Similarly, false negatives occurred where the singularity index
response fell below the thresholds. A river may produce a weak
singularity index response due to several factors, including a low
contrast between land and water in the input image, a width that
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Fig. 10. Correlation between the magnitude of the overall singularity index response
‖(xf ) ‖ and the river width measurements is observed where ‖(xf ) ‖� 0.25.

exceeds the input image dimensions, large bifurcation points, and
obstacles breaking the continuity of the river. Most of these could be
ameliorated by improving the input data, or by preprocessing it.

3.4. Limitations

The coverage and resolution of the RivaMap-produced data sets
are limited by the input and the methods used. Rivers with a width
narrower than or close to the resolution of the input images are
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Fig. 11. Comparison of river width distributions.
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either not detected or have their width overestimated. Additionally,
creating completely cloud-free composites might not be possible for
some regions, especially if the region had constantly cloudy weather
conditions for a given time interval. Since the cloud-free composites
are created by sampling the least cloudy pixels, the measurements
are not guaranteed to capture rivers at mean discharge for a given

(a) (b)

(c)

(d)

Fig. 12. Automatically extracted rivers overlaid on Google Earth imagery. The
extracted rivers are visualized by drawing lines of length ŵ orthogonal to the channel
orientation for every data point in the selected regions. (a) Mississippi and Iowa rivers
near Keithsburg, IL, (b) Wax Lake Delta, LA, (c) Greater Austin Area, TX, (d) Mississippi
River Delta, LA.

time period. Rivers could be extracted for a specific time by filtering
the set of input images by date. However, a narrow range of dates
may lead to a larger cloud coverage in the resultant composites.

We used 3-year Landsat composites as input to generate an
exemplary data set having minimal cloud coverage. The time interval
between the composites can be narrowed to produce results that are
as “live” as possible. Technically, RivaMap does not require inputs
to be composite images. Even a single Landsat scene can be used to
produce river maps. From a computational perspective, RivaMap can
process Landsat images as soon as they become available. However,
creating live maps in certain regions, or during certain seasons, might
not possible, since clouds may eliminate the required image.

RivaMap relies on MNDWI to enhance water features. There-
fore, snow and mountain shadows sometimes can be mistaken for
water bodies and detected as rivers. Although the curvilinear struc-
ture extraction process helps isolate rivers using shape information,
non-river features can still be mistaken for rivers if they have a high
MNDWI response and curvilinear shape (Fig 13). Supplementary data
such as digital elevation models and water body data sets (Feng et
al., 2015; Mueller et al., 2016; Verpoorter et al., 2014; Yamazaki et
al., 2015) can be used to eliminate these false positives. This could be
done by replacing MNDWI with a more sophisticated algorithm that
uses multiple data sources to separate snow, ice, cloud, and shadow
from water. Very recently, Pekel et al. (2016) developed an effec-
tive rule-based algorithm to detect surface water. Their algorithm
separates non-valid observations (snow, ice, cloud or sensor-related
issues) from water using ancillary data. This new algorithm could
easily be used to supply improved input data to RivaMap as an
alternative to MNDWI, to produce cleaner results.

Currently, RivaMap produces a set of points rather than a fully-
connected network of rivers. Therefore, there is room for improve-
ment in the representation of river networks and further work is
needed to improve river connectivity. It is trivial to connect neighbor
points, where the distance between the points is equal or nearly
equal to the resolution of the input data. However, several factors,
such as bridges, dams, and imaging artifacts in the input images,
may cause gaps between points along a river. Furthermore, RivaMap
extracts the centerlines of rivers and smaller tributaries, but does

Fig. 13. An example of false positive and false negatives. Extracted rivers are overlaid
on inverted MNDWI image. Mountains near Kluane Lake, Yukon Territory.
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not connect the centerlines of tributaries to the centerlines of the
channels they flow into. As a consequence, gaps occur at the points
where channels having different widths meet. Channel orientation
and width information could be used to connect broken links. For
example, pairs of unconnected centerline points having similar ori-
entation can be connected if they are within the river width. The
tributaries could be connected to the main channels within the width
of the larger river and within a certain range of angles between the
vector of the tributary and the one of the main channels. In addition,
RivaMap estimates the channel orientation, along which a channel
is elongated at a given spatial location (Fig. 3), but it does not pro-
vide any information about the flow direction. Complementary data
might be necessary to define upstream-downstream relationships.
We plan to explore ideas, including the aforementioned ones, to
improve connectivity. Having the connectivity information would
help analyze global and regional statistics descriptive of river length,
bifurcations, junctions, and outlets.

4. Conclusions and future work

We have proposed an automated river analysis and mapping
engine, RivaMap, which is capable of creating large-scale data sets
of river widths and centerlines. We derived a continental-scale river
width data set from Landsat data by running the engine over the
entire North America, demonstrating the potential of the engine.
We validated our methodology by comparing our automatically
created data set to in-situ measurements and a similar data set,
NARWidth, which was also created using Landsat images. Although
we used only Landsat images in this work, the engine we proposed
can be extended to process other types of remotely sensed images,
including digital elevation models, synthetic aperture radar images,
and aerial photographs.

In the future, we plan to use the RivaMap engine and Landsat
archives for developing a global-scale spatiotemporal river data set.
The data set would allow monitoring of hydrological changes over
space and time, providing both current and retrospective informa-
tion regarding river networks. Such a data set would offer crucial
information to scientists towards better understanding the implica-
tions of human-induced activities and global environmental change
on ecosystems.
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