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either not detected or have their width overestimated. Additionally,
creating completely cloud-free composites might not be possible for
some regions, especially if the region had constantly cloudy weather
conditions for a given time interval. Since the cloud-free composites
are created by sampling the least cloudy pixels, the measurements
are not guaranteed to capture rivers at mean discharge for a given
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Fig. 12. Automatically extracted rivers overlaid on Google Earth imagery. The
extracted rivers are visualized by drawing lines of length ŵ orthogonal to the channel
orientation for every data point in the selected regions. (a) Mississippi and Iowa rivers
near Keithsburg, IL, (b) Wax Lake Delta, LA, (c) Greater Austin Area, TX, (d) Mississippi
River Delta, LA.

time period. Rivers could be extracted for a specific time by filtering
the set of input images by date. However, a narrow range of dates
may lead to a larger cloud coverage in the resultant composites.

We used 3-year Landsat composites as input to generate an
exemplary data set having minimal cloud coverage. The time interval
between the composites can be narrowed to produce results that are
as “live” as possible. Technically, RivaMap does not require inputs
to be composite images. Even a single Landsat scene can be used to
produce river maps. From a computational perspective, RivaMap can
process Landsat images as soon as they become available. However,
creating live maps in certain regions, or during certain seasons, might
not possible, since clouds may eliminate the required image.

RivaMap relies on MNDWI to enhance water features. There-
fore, snow and mountain shadows sometimes can be mistaken for
water bodies and detected as rivers. Although the curvilinear struc-
ture extraction process helps isolate rivers using shape information,
non-river features can still be mistaken for rivers if they have a high
MNDWI response and curvilinear shape (Fig 13). Supplementary data
such as digital elevation models and water body data sets (Feng et
al., 2015; Mueller et al., 2016; Verpoorter et al., 2014; Yamazaki et
al., 2015) can be used to eliminate these false positives. This could be
done by replacing MNDWI with a more sophisticated algorithm that
uses multiple data sources to separate snow, ice, cloud, and shadow
from water. Very recently, Pekel et al. (2016) developed an effec-
tive rule-based algorithm to detect surface water. Their algorithm
separates non-valid observations (snow, ice, cloud or sensor-related
issues) from water using ancillary data. This new algorithm could
easily be used to supply improved input data to RivaMap as an
alternative to MNDWI, to produce cleaner results.

Currently, RivaMap produces a set of points rather than a fully-
connected network of rivers. Therefore, there is room for improve-
ment in the representation of river networks and further work is
needed to improve river connectivity. It is trivial to connect neighbor
points, where the distance between the points is equal or nearly
equal to the resolution of the input data. However, several factors,
such as bridges, dams, and imaging artifacts in the input images,
may cause gaps between points along a river. Furthermore, RivaMap
extracts the centerlines of rivers and smaller tributaries, but does

Fig. 13. An example of false positive and false negatives. Extracted rivers are overlaid
on inverted MNDWI image. Mountains near Kluane Lake, Yukon Territory.
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not connect the centerlines of tributaries to the centerlines of the
channels they flow into. As a consequence, gaps occur at the points
where channels having different widths meet. Channel orientation
and width information could be used to connect broken links. For
example, pairs of unconnected centerline points having similar ori-
entation can be connected if they are within the river width. The
tributaries could be connected to the main channels within the width
of the larger river and within a certain range of angles between the
vector of the tributary and the one of the main channels. In addition,
RivaMap estimates the channel orientation, along which a channel
is elongated at a given spatial location (Fig. 3), but it does not pro-
vide any information about the flow direction. Complementary data
might be necessary to define upstream-downstream relationships.
We plan to explore ideas, including the aforementioned ones, to
improve connectivity. Having the connectivity information would
help analyze global and regional statistics descriptive of river length,
bifurcations, junctions, and outlets.

4. Conclusions and future work

We have proposed an automated river analysis and mapping
engine, RivaMap, which is capable of creating large-scale data sets
of river widths and centerlines. We derived a continental-scale river
width data set from Landsat data by running the engine over the
entire North America, demonstrating the potential of the engine.
We validated our methodology by comparing our automatically
created data set to in-situ measurements and a similar data set,
NARWidth, which was also created using Landsat images. Although
we used only Landsat images in this work, the engine we proposed
can be extended to process other types of remotely sensed images,
including digital elevation models, synthetic aperture radar images,
and aerial photographs.

In the future, we plan to use the RivaMap engine and Landsat
archives for developing a global-scale spatiotemporal river data set.
The data set would allow monitoring of hydrological changes over
space and time, providing both current and retrospective informa-
tion regarding river networks. Such a data set would offer crucial
information to scientists towards better understanding the implica-
tions of human-induced activities and global environmental change
on ecosystems.
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