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Abstract

Motivation: Reprogramming somatic cells into neurons holds great promise to model neuronal de-
velopment and disease. The efficiency and success rate of neuronal reprogramming, however,
may vary between different conversion platforms and cell types, thereby necessitating an un-
biased, systematic approach to estimate neuronal identity of converted cells. Recent studies have
demonstrated that long genes (>100 kb from transcription start to end) are highly enriched in neu-
rons, which provides an opportunity to identify neurons based on the expression of these long
genes.

Results: We have developed a versatile R package, LONGO, to analyze gene expression based on
gene length. We propose a systematic analysis of long gene expression (LGE) with a metric termed
the long gene quotient (LQ) that quantifies LGE in RNA-seq or microarray data to validate neuronal
identity at the single-cell and population levels. This unique feature of neurons provides an oppor-
tunity to utilize measurements of LGE in transcriptome data to quickly and easily distinguish neu-
rons from non-neuronal cells. By combining this conceptual advancement and statistical tool in a
user-friendly and interactive software package, we intend to encourage and simplify further investi-
gation into LGE, particularly as it applies to validating and improving neuronal differentiation and
reprogramming methodologies.

Availability and implementation: LONGO is freely available for download at https://github.com/
biohpc/longo.

Contact: yooa@wustl.edu or ted.ahn@slu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Both RNA microarray and RNA sequencing (RNA-seq) are well-
matured techniques for the study of global and differential gene
expression to infer underlying cellular regulatory networks in organ-
isms. They have shown associated results for the same biological
samples that have been analyzed using both technologies after nor-
malizing the RNA-seq data into read counts per millions (CPM)
(Malone and Oliver, 2011). Many algorithms have been developed
to state the global and differential gene expression for both RNA
microarray and RNA-seq techniques, but R Bioconductor packages

©The Author(s) 2018. Published by Oxford University Press.

are the most widely used tools for gene expression analysis (Love
et al., 2015). Bioconductor provides well-developed suits including
DESeq2 (Love et al., 2014), EdgeR (Robinson ez al., 2010) and
limma (Ritchie ef al., 2015) for gene expression with the genome-
wide detection of differentially expressed genes between samples
from different conditions. Together with the growing popularity of
deep-sequencing techniques, unbiased and high-throughput single-
cell RNA-seq methods enable the transcriptome analysis of individ-
ual cells (Kolodziejczyk et al., 2015).
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Non-neuronal somatic cells can be directly reprogrammed into
functional neurons (Abernathy et al., 2017; Mertens et al., 2016),
and there is a growing interest in innovating and improving neuron-
al reprogramming methods due in part to the promise of modeling
human neurological disorders using patient cells. However, these
efforts are hindered by the lack of reliable measures for neuronal
identity. Electrical activity, one hallmark of neurons, can only be
measured in a handful of cells in a given experiment and can be
biased, as cells targeted for analysis may not be representative of the
entire population. Expression of a small subset of neuronal proteins
measured by immunocytochemistry (ICC) is also used to mark neur-
onal identity but is often subjective and highly variable.
Furthermore, interpretation of ICC is unreliable, given that extrinsic
factors used during neuronal reprogramming may selectively in-
crease the expression of several neuronal genes without necessarily
resulting in complete cell-fate transition. Whole transcriptome data
has potential to overcome these limitations, and several complex
computational approaches such as iterative principal component
analysis (PCA) and iterative weighted gene co-expression network
analysis (WGCNA) have been successful in classifying cell types
(Tasic et al., 2016). However, these methods require a positive con-
trol and at least 15 samples for accuracy. A simpler and more easily
assessable measure of neuronal identity at the transcriptome level
would greatly facilitate the development and validation of neuronal
reprogramming methods.

Recent studies have shown that long genes (>100kb from tran-
scription start to end) are selectively expressed in neurons (Gabel
et al., 2015; King et al., 2013; Sugino et al., 2014). This unique fea-
ture of neurons may provide an opportunity to utilize measurements
of long gene expression (LGE) in transcriptome data to quickly and
easily distinguish neurons from non-neuronal cells. We therefore
developed LONGO (https://github.com/biohpc/longo), an open
source computational package based in R with the interactive web-
supporting library, R-Shiny, that standardizes measurement of LGE
within RNA-seq and microarray data formats. By providing an inter-
active and convenient analysis of LGE within transcriptome data,
LONGO allows researchers to identify neurons, and to explore gene
ontology (GO) terms associated with enriched neuronal genes.

2 Materials and methods

2.1 LONGO algorithm and framework

We developed LONGO, an R package that takes gene expression
data from transcriptome experiments (e.g. RNA-seq or RNA micro-
array, as can be found on the Gene Expression Omnibus (GEO;
Edgar et al., 2002)) as inputs from species represented on the
ENSEMBL BioMart project (Smedley et al., 2015). Figure 1 shows
an overview of the LONGO algorithm using Rat BodyMap data
(Yu et al., 2014). The length of genes from the user-specified species
is calculated from gene start and stop positions, which are retrieved
automatically using the biomaRt package (Durinck ez al., 2009).
Gene-length dependent expression of samples is then calculated using
a sliding window of genes sorted in ascending order by the length of
the genes. LONGO quantile normalizes and filters input data (option-
al), calculates the median expression (or mean expression optionally)
of genes binned by length (default genes per bin: 200), and then con-
secutively calculates the expression of the next bin (default step size:
40 genes). LONGO comes in two versions: one with a local HTML
GUI for interactive work using the R Shiny package (LONGO) and
one without a GUI for batch processing of data files (LONGOcmd).
One strength of LONGO is provided through interactive plots—users
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Fig. 1. lllustration of LONGO output using Rat BodyMap data. RNA-seq of rat
tissues from Rat BodyMap (Yu et al., 2014): non-neuronal tissues (black) and
brain tissues (red). (a) User inputs gene expression table into LONGO, which
associates gene lengths with each gene. (b) LONGO calculates rolling median
per user-defined parameters (For this figure: 200 gene bins, 40 gene step).
(¢) LONGO calculates partial increasing JSD from short genes to long genes
between each sample and a user-defined control sample. (d) LONGO calcu-
lates a partial LQ (left) and final LQ (right). (e) LONGO identifies GO term by
gene set enrichment analysis

have the option to modify parameters such as bin size, step size, slid-
ing window mean or median, graph scales, as well as which samples
are used as controls for downstream analyses. The significant differ-
ence of gene-length dependent expression is statistically tested by the
Jensen-Shannon divergence (JSD) and the long gene quotient (LQ),
which we develop herein. In addition, LONGO shows plot of
p-values generated using the Wilcox test comparing the binned gene
expression values to the control.

2.2 Measuring Jensen-Shannon divergence

The Kullback-Leibler divergence (KLD) is a non-commutative measure
of the difference between two probability distributions P and Q, typic-
ally P representing the ‘true’ distribution and QO representing an arbi-
trary probability distribution. One symmetrized and smoothed version
of the KLD is the JSD (Endres and Schindelin, 2003), defined as

1 1
Dys(PIIQ) = 3 Dxt (PIIM) + 2 D (QIIM)
where M= 0.5(P + Q) and the KLD is defined to be
_ Mog L)

where Q(i) # 0, and the summation is taken over histogram bins.
Therefore, for gene expression data ordered by gene length, we set
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P as the distribution from the control sample, and Q the distribution
obtained from each of the testing samples. Smaller values of KLD
represent more similar distributions. LONGO first measures the
JSD for the shortest genes in two samples, then iteratively re-
computes the JSD after adding the next longest until all genes in re-
spective datasets have been added. The final JSD is the JSD between
all expressed genes.

2.3 Developing the long gene quotient

To systematically discover disproportionately elevated long versus
short gene expression between two samples, we adapted the JS di-
vergence to generate the long gene quotient. LONGO first removes
all genes whose gene length is less than the median gene length (typ-
ically ~30kb) for the dataset, which allows a clearer assessment of
differences in long gene expression. Then LONGO calculates the
partial LQ (PLQ) for any testing sample O (i = 1,...,#n), which we
define as

D'ys(P||Q))
max{Djs(P||Q;), j=1,...,n}

PLO; =

where P represents the distribution of the control sample and D’
only considers long genes (>150kb). The PLQ describes the relative
change in JSD of each sample compared with the maximum changes
of JSD across all samples, so its magnitude ranges from 0 to 1.

Because the underlying JSD does not distinguish the directional-
ity of changes, we define the final LQ as LQ=S(PLQ), where
S=—1 if mean(Q) < mean(P). This ensures that LQ is positive only
if LGE is higher in the testing sample than in the control sample.
The LQ is dependent on the control sample selected, as well as the
sample with the most extensive LGE. Therefore, while LQ is effect-
ive at distinguishing neuronal from non-neuronal cells in the absence
of a positive control, we strongly encourage including a positive con-
trol neuronal sample. The LQ is also dependent on the sliding win-
dow bin and step size; for the default of 200 genes per bin with a 40
gene-step, using the median, neuronal cells typically exceed an LQ
of 0.25.

In addition to LQ, the correlation between binned gene expres-
sion and median length of bins (default genes per bin: 200; default
step size: 40 genes) for genes longer than 100 kb also identifies neur-
onal sample when highly positive (Supplementary Fig. S1). Together
with LQ, these metrics reliably distinguish neurons from non-
neuronal samples.

2.4 Gene ontology (GO) analysis

Gene Ontology (GO) analysis allows understanding of the overall
differences of gene expression among multiple samples. This is
accomplished by utilizing the GO database. The GO database con-
tains information that links genes to GO terms. These GO terms can
be broad, encompassing a large variety of biological functions, or
narrow, including only a few specific functions. This allows the
overall expression patterns of the genes to be categorized and then
quantitatively measured. The hierarchies of GO terms provide an
overview of the intersection of genes to biological functions. This
intersection provides an insight into to the different cellular mecha-
nisms by simplifying the data. One problem with using GO analysis
is that as new information is discovered the genes for GO terms can
be changed. Using an up-to-date database of GO terms can be used
to avoid this problem but may lead to different results over time.
Since the GO terms are determined by previous knowledge it can
limit the potential to discover new features of genes.

The LONGO package handles GO analysis by utilizing topGO
(Alexa et al., 2006). LONGO allows multiple parameters in the
GO analysis step. The main two are the statistical test and the
method for graphing. The statistical test is used to determine the
significance of the biological functions and the method for graph-
ing is used to determine how the significant nodes should be
graphed.

2.5 Cellular reprogramming and analyses

Human adult dermal fibroblasts from healthy individuals were
acquired from the Coriell Institute for Medical Research: ND34769
(female, 68years old at sampling; WT4) and AG04148 (male,
56 years old; WT2). Cells were reprogrammed as described in Victor
et al. (2014) using a lentiviral cocktail of rtTA, pTight-9-124-BclxL,
CTIP2, MYT1L, DLX1 and DLX2. Immunocytochemistry was also
performed as described in Victor et al. (2014) using primary anti-
body of rabbit anti-g-III tubulin (BioLegend, 1:2000) and secondary
antibody of anti-rabbit IgG conjugated with Alexa-488 (Invitrogen,
1: 1000). Images were captured using a Leica SP5X white light
laser confocal system with Leica Application Suite Advanced
Fluorescence 2.7.3.9723. RNA-seq raw data was recently published
(Victor et al., 2018). Briefly, RNA was extracted from converted
neurons and isolated with TRIzol reagent (Thermo Fisher Scientific)
per manufacturer’s instructions. After treating samples with
Ribo-Zero kit (Illumina), cDNA library was sequenced in Illumina
HiSeq 2500. Sequence reads were aligned to the human genome
(hg38) with STAR v2.4.2a. Gene counts were derived from the
number of uniquely aligned unambiguous reads by Subread:
featureCount, version 1.4.6, with GENCODE gene annotation
(V23).

3 Results

3.1 LGE identifies neurons upon differentiation and
maturation during development

To demonstrate LGE as an indicator of neuronal identity, we first
analyzed RNA-seq gene expression profiles at the tissue level from
the Rat BodyMap database (Yu et al., 2014), which profiled 32 rats
across 10 different organs (i.e. adrenal gland, brain, heart, kidney,
liver, lung, muscle, spleen, thymus and testis or uterus), using
LONGO. Consistent with previous reports of LGE in brain tissues
(Gabel et al., 2015), we found that LONGO clearly distinguishes
the brain from all other non-neuronal tissues with an LQ of 0.31
(Fig. 1b). Additionally, by measuring the collective levels of long
gene expression, neuronal samples become readily identifiable in a
population of non-neuronal samples without depending on the indi-
vidual expression levels of known neuronal markers (Supplementary
Fig. S1).

To further evaluate LGE in assessing post-mitotic neurons during
neural development, we used LONGO to analyze transcriptome
datasets collected from distinct regions of the developing human
cortex (Miller ez al., 2014). Interestingly, LGE analysis distinguished
cortical and subcortical regions (i.e. intermediate zone, subcortical
plate, cortical plate, subpial granular zone and marginal zone;
max LQ of 0.55) from other zones in which proliferative neural pro-
genitors are prominent (i.e. ganglionic eminences, ventricular and
sub-ventricular zones; max LQ of 0.13) (Fig. 2a). Our finding is con-
sistent with the neuronal populations observed in cortical and sub-
cortical regions (Miller ez al., 2014), and the increase in LGE likely
reflects the number of differentiated neurons within each layer. To
further pinpoint the cellular source of differential LGE, we analyzed
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Fig. 2. LONGO output of neuronal differentiation and maturation during de-
velopment. From left to right, reference for input data, rolling media of gene
expression versus length (200 gene bins, 40 gene step), partial LQ and final
LQ. (a) Layers of the developing human cortex (Miller et al., 2014): ganglionic
eminences (MGE, LGE, CGE; blue); ventricular zones (VZ and SVZ; black); and
post-mitotic zones (SG, MZ, CP, SP and 1Z; red). (b) scRNA-seq neural cell
subtypes from mouse visual cortex (Tasic et al., 2016): glial cells (endothelial
cells, microglia, astrocytes, oligodendrocytes and OPCs) shown in black;
neuronal subtypes (Th, Pvalb, L4, L2.3, L5, Chodl, Sst, Vip, Ndnf and L6)
shown in red. (¢) Div-seq of adult newborn neurons in the neurogenic niche
of mouse hippo-campus (Habib et al., 2016): neural stem cells (NSCs), neural
progenitor cells (NPCs) and neuroblasts (NBs) shown in black; immature neu-
rons (IN) shown in red. Samples are numbered according to their maturity
(Habib et al., 2016)

LGE in different cell types isolated by fluorescence activated cell
sorting (FACS) from the cortex (Zhang et al., 2016), and found that
only neurons displayed significantly enriched LGE in contrast to
other cell types including astrocytes and oligodendrocytes, suggest-
ing that increased LGE in whole cortex is likely due to neurons
(Supplementary Fig. S2a). Similarly, LGE analysis of single-cell
RNA-seq of mouse visual cortex (Tasic et al., 2016) identified
increased LGE and LQ only for neurons, further validating LGE as
a unique feature of neurons (Fig. 2b). Furthermore, by applying
LONGO to data generated by Habib ez al. (2016), where single-
nucleus RNA-seq was combined with pulse-labeling of proliferating
cells by EdU to track transcriptional dynamics of newborn neurons
within the neurogenic niche of the adult hippocampus, we found
that LGE increased as neural progenitor cells (NPCs) exited the cell
cycle and continued to differentiate into neurons and mature in vivo
(Fig. 2c), perfectly matching the maturation trajectory determined
by Habib et al., and validating LGE as a reliable marker for post-
mitotic mature neurons. In order to address whether increased
LGE is also a feature of cultured neurons, we applied LONGO to
the transcriptome data of motor neurons differentiated from mouse
embryonic stem cells (ESCs) (Mahony et al., 2011). Although minor
differences in LGE were observed between embryoid body forma-
tion and induction of NPCs by retinoic acid, the largest increase in
LGE occurred when progenitors differentiated into post-mitotic
motor neurons (Supplementary Fig. S2b). This finding is consistent
with the notion that onset of LGE occurs during differentiation
of NPCs to neurons, which is also apparent in tissue culture condi-
tions. Together, our findings demonstrate LGE as a hallmark of
neuronal development assayed at the single-cell and population
levels.

validating LGE analysis as a reliable approach to assess neuronal
conversion. To test microRNA-based neuronal conversion (Victor
et al., 2014), we prepared RNA from an unpurified population of
human striatal medium spiny neurons (MSNs) converted from fibro-
blasts and performed RNA-seq. When we applied LONGO to con-
verted MSNs, we observed a dramatic increase in LGE similar to
ESC-derived human neurons (Fig. 3b), despite that samples were un-
purified. Furthermore, we find that LONGO detects variable con-
version efficiencies inherent in different fibroblast samples—one
fibroblast cell line (HAF2) that we previously found to display a
lower conversion efficiency (Supplementary Fig. S4) yielded an aver-
age LQ barely reaching 0.25, whereas the other fibroblast cell line
(HAF1) yielded an average LQ of 0.67 (Fig. 3b). Analysis of direct
neuronal reprogramming of human fibroblasts by small molecules
(Hu et al., 2015) also revealed increased LGE approaching the levels
obtained by ESC-derived neurons by prolonged treatment with small
molecules (Supplementary Fig. S5a). However, knockdown of
PTBP1, which reportedly generates neuronal-like cells from HAFs
(Xue et al., 2016), does not increase LGE at the population level
(Supplementary Fig. S5b). Under these conditions, Xue et al.
reported little expression of neuronal markers, such as MAP2 and
NeuN, and the absence of neuronal electrical activity (Xue et al.,
2016), which is consistent with our finding of unaltered LGE. It will
be interesting to apply LGE analysis to sequential knockdown of
PTBP1 and PTBP2, which reportedly generated more functional
neurons (Xue et al., 2016). Finally, we analyzed RNA-seq data from
MEFs overexpressing neuronal transcription factors Foxgl, Sox2,
Ascl1, DIx5 and Lhx6, which has been previously reported to gener-
ate GABAergic interneurons (Colasante et al., 2015). Cells were
purified by FACS based on the expression of GAD67, a marker for
GABAergic interneurons, but were not electrically active at this
time-point (Colassante et al. reported that cells became electrically
active only after 4 weeks of co-culture with rat hippocampal neu-
rons). Supporting LGE as a marker for mature neurons, we only
detected increased LGE for control interneurons (GAD67), not for
induced GABAergic interneurons (iGABA) in monoculture (Fig. 3c).

3.3 GO analysis of neuronal differentiation

GO enrichment analysis of mouse ESC differentiation to motor neu-
rons in vitro (Mahony et al., 2011) is shown in Figure 4. The experi-
ment has multiple GO terms identified as being significant.
Rectangle color represents the relative significance, ranging from
dark red (most significant) to bright yellow (least significant). The
two lines show the GO identifier and a trimmed GO name.

6102 AINF 0€ U Josn Aleiqr Jo)uaD sa0UsIdS YieaH Aq 608SY0S/ZZHI/E L/EN0EIISqe-0oILE/SONEULIO}UIOIq/ W00 dNO"dlWapede//:sdny Wolj papeojumoq



i426

M.J.McCoy et al.

(a)
Mouse oy
— 1 T 1.0 — LateiN — Myocyte 0.8
S 5 - Early IN - — |ntermed.
) T = 0.8 — Failed  — |nduced 0.6
o g’E o : — MEF o
GEs @ 8 06 e = 0.4
<SEE S| @ [\ =
Z8® &| g 04 -
=2¢ 5| 3 @ 027
TaE 2| o 02
282 3| ¢
R o
Eg§ 8l © 0.0+ | T | 1
(2= E 0 200 400 600 800
e Gene length (kb)
(b)
Human < 800+ — MSN1 0.8+
- P Eﬂ%%—éleuron
o & £ 600~ 05+
EgS 5 g
EY2 | £ aoo- s
52 - =| & &
gonN o Ed @ 0.2
oz S| 9 200 B
@ =X @
CEd B I
80 .| ©
28y 8| O 0 T S e R
o I% .g 0 200 400 600 800 1,000
93 Gene length (kb)
(c)
Mouse
s GADB7 0.8+
3 — iGABA
2. | s o 06
ETwp in c
L ; =
£<Z gl 3 5 047
€99 2| @ &
g35 T o & 0.2
§cf o o
E?a gl = 0-07
o m @
ouw 2 G I | I I 1
a 5 0 200 400 600 800
Q Gene length (kb)

0.0~

0.0-----4

1 I I 1
200 400 600 800 o 2 o‘: ph oﬁo.{l,

< S <V
& S
Gene length (kb) ‘:‘f@&;\@bﬁﬁ.\?‘é}\%@bg\\;@\
(\\Q QQ\Q \(\\‘5 @e\?

T T T 1 V2T T T T T T T T
0 200 400 600 800 1,000 Nl N O DD DD
L% & Vo o O vl
Gene length (kb) FIIY @\@.\f@\x@ S
Q/G"
0.4
0.3+
g 0.2
// 1
IIIO 'D‘1I1Iilllll«
200 400 600 800 - I P - T =
Py o0 o0 B a2 421
G length (kb & & oo
et SRR

Fig. 3. LONGO output of somatic cell direct neuronal reprogramming. From left to right, reference for input data, rolling median of gene expression versus length
(200 gene bins, 40 gene step), partial LQ and final LQ. (a) Direct reprogramming of mouse embryonic fibroblasts (MEFs) to neurons by transcription factors
(Treutlein et al., 2016): MEFs, myocytes, intermediate reprogramming (D2 and D5) and induced MEFs (D2) shown in black; failed reprogramming (D5 and D22)
shown in purple; early (D5) and late (D22; dotted-line) successful reprogramming in red. (b) Direct reprogramming of human adult fibroblasts (HAFs) to striatal
medium spiny neurons (MSNs) by microRNAs: HAFs from two different cell lines (black); MSNs derived from HAF2 (MSN2; purple); ESC-derived neurons(Gill
et al., 2016) (dotted-line) and MSNs derived from HAF1 (MSN1) shown in red. (c) Direct reprogramming of MEFs to iGABA by Foxg1, Sox2, Ascl1, DIx5 and Lhx6
(Colasante et al., 2015): MEFs (black); iGABA (dark purple); GAD67+ interneurons (red)

The two categories identified are embryogenesis and neurogen-
esis. These results are in line with the source of the dataset that was
an experimental differentiation of embryonic stem cells to neurons.
As the cells differentiate, the genes they express are altered providing
the enriched GO terms.

4 Discussion and conclusion

One of the known correlates of gene length is the levels of alterna-
tive splicing (McGuire et al., 2008), which is a feature also enriched
in vertebrate and invertebrate nervous systems (Barbosa-Morais
et al., 2012; Jelen et al., 2007; Merkin et al., 2012). Some of these
long genes encode over 20 000 different protein isoforms, and are
uniquely expressed in individual neurons, endowing each neuron
with a unique molecular profile (Miura ez al., 2013). So, while each
neuron expresses copies of long genes, these copies are not identical
to even neighboring neurons of the same tissue. This allows us to

measure the expression of long genes collectively to determine if a

cell or tissue is neuronal but does not typically provide the resolution
to determine differences between one type of neuron versus another,
or one type of neural tissue versus another.

For investigators interested in adopting an existing reprogram-
ming technique in their research programs, LONGO provides a
metric for evaluating the efficiency of different techniques. The ro-
bustness of LGE analysis provided by LONGO and the steadily
declining cost of transcriptome analyses lead us to strongly advise
investigators who perform neuronal reprogramming or differenti-
ation to routinely generate transcriptome data and analyze LGE to
confirm neuronal identity.

Secondary to the LGE feature, the gene ontology analysis pro-
vides another easily accessible view of the transcriptome data.
LONGO contains a simplified point and click approach to predict
neuronal identity and determination of differentially enriched genes.
The ease of input options allowing multiple gene identifiers for mul-
tiple species to determine the gene length and the connected GO
terms provides a low barrier of entry in using LONGO compared to
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Fig. 4. LONGO interactive GO analysis snapshot using incorporated topGO R package. Enrichment analysis of mouse ESC differentiation to motor neurons
in vitro (Mahony et al., 2011). Rectangle color represents the relative significance, ranging from dark red (most significant) to bright yellow (least significant).

The two lines show the GO identifier and a trimmed GO name

other tools. The ability to simply alter the options for analyzing the
data creates a simple, easy to use and flexible tool.

As interest in modeling neuronal cell fate acquisition and neuro-
logical diseases using reprogrammed neurons continues to grow, so
will the need to validate and improve methodologies for neuronal
reprogramming. Toward this end, we have proposed LGE as a sim-
ple and easily assessable metric of neuronal identity and have pro-
vided a computational package for its analysis in RNA-seq as well
as RNA microarray data. This tool and conceptual advancement
will greatly facilitate and expedite exploration of LGE in other sys-
tems and experimental conditions.
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