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SPECIAL ISSUE ON SCIENTIFIC OCEAN DRILLING: LOOKING TO THE FUTURE

e e —
. &

4
N ‘
L NN . ‘]
l“-;,_tf r=r—_ "
11

AN .
S
' T
#’
4l

L]

Meteorite
Impacts

By Christopher M. Lowery, Joanna V. Morgan,
Sean P.S. Gulick, Timothy J. Bralower,
Gail L. Christeson, and the Expedition 364 Scientists
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ABSTRACT. Extraterrestrial impacts that reshape the surfaces of rocky bodies are
ubiquitous in the solar system. On early Earth, impact structures may have nurtured
the evolution of life. More recently, a large meteorite impact off the Yucatan Peninsula
in Mexico at the end of the Cretaceous caused the disappearance of 75% of species
known from the fossil record, including non-avian dinosaurs, and cleared the way for
the dominance of mammals and the eventual evolution of humans. Understanding the
fundamental processes associated with impact events is critical to understanding the
history of life on Earth, and the potential for life in our solar system and beyond.
Scientific ocean drilling has generated a large amount of unique data on impact pro-
cesses. In particular, the Yucatan Chicxulub impact is the single largest and most sig-
nificant impact event that can be studied by sampling in modern ocean basins, and
marine sediment cores have been instrumental in quantifying its environmental, cli-
matological, and biological effects. Drilling in the Chicxulub crater has significantly
advanced our understanding of fundamental impact processes, notably the formation
of peak rings in large impact craters, but these data have also raised new questions to be
addressed with future drilling. Within the Chicxulub crater, the nature and thickness of
the melt sheet in the central basin is unknown, and an expanded Paleocene hemipelagic
section would provide insights to both the recovery of life and the climatic changes that
followed the impact. Globally, new cores collected from today’s central Pacific could
directly sample the downrange ejecta of this northeast-southwest trending impact.
Extraterrestrial impacts have been controversially suggested as primary drivers for
many important paleoclimatic and environmental events throughout Earth history.
However, marine sediment archives collected via scientific ocean drilling and geo-
chemical proxies (e.g., osmium isotopes) provide a long-term archive of major impact
events in recent Earth history and show that, other than the end-Cretaceous, impacts

do not appear to drive significant environmental changes.

INTRODUCTION

Large meteorite impacts have signifi-
cantly influenced Earth history, pos-
sibly driving the early evolution of life
(e.g., Kring, 2000, 2003; Nisbet and
Sleep, 2001) and the initial composi-
tions of the ocean and the atmosphere
(e.g., Kasting 1993). They also have the
potential to completely reshape the bio-
sphere (e.g., Alvarez et al, 1980; Smit
and Hertogen, 1980). The Cretaceous-
Paleogene (K-Pg) mass extinction, almost
certainly caused by the impact of a mete-
orite on the Yucatan carbonate platform
of Mexico 66 million years ago, known as
the Chicxulub impact, is the most recent
major mass extinction of the so-called
Big Five (e.g., Raup and Sepkoski, 1982).
It ended the dominance of non-avian
dinosaurs, marine reptiles, and ammo-
nites, and set the stage for the Cenozoic
dominance of mammals that eventually
led to the evolution of humans (Schulte
et al, 2010; Meredith et al., 2011). The
environmental effects of the Chicxulub

impact and the resulting mass extinction
occurred over a geologically brief time
period, with the major climatic changes
lasting years to decades (e.g., Brugger
et al, 2017). The subsequent recovery
of life provides an important analog for
the potential recovery of biodiversity fol-
lowing geologically rapid anthropogenic
extinction due to climate change, acidifi-
cation, and eutrophication.

The K-Pg impact hypothesis was con-
troversial when first proposed (Alvarez
et al., 1980; Smit and Hertogen, 1980),
but careful correlation of impact mate-
rial from K-Pg boundary sections across
the world led to its gradual acceptance
(e.g., Schulte et al, 2010). The discov-
ery of the Chicxulub crater (Penfield
and Carmargo, 1981; Hildebrand et al,
1991) and its clear genetic relation-
ship with K-Pg boundary ejecta pro-
vided compelling evidence for this
hypothesis. Scientific ocean drilling has
been instrumental in discovering wide-
spread physical, chemical, and biological

supporting evidence, and in document-
ing the global environmental and biotic
effects of the impact (e.g., see sum-
mary in Schulte et al., 2010). Drilling by
International Ocean Discovery Program
Expedition 364 into the Chicxulub cra-
ter has yielded valuable insights into the
mechanisms of large impact crater for-
mation and the recovery of life (Morgan
et al,, 2016, 2017; Artemieva et al., 2017;
Christeson et al., 2018; Lowery et al,
2018; Riller et al., 2018).

Although the K-Pg is the only mass
extinction that is widely (though not uni-
versally) accepted to have been caused by
an extraterrestrial collision, impacts have
been suggested at one point or another
as drivers for every major Phanerozoic
extinction event (e.g., Rampino and
Stothers, 1984) and many other major
climate events (e.g., Kennett et al., 2009;
Schaller et al., 2016). The discovery of an
iridium layer at the K-Pg boundary as the
key signature of extraterrestrial material
(Alvarez et al., 1980) spurred the search
for other impact horizons through careful
examination of many other geologically
significant intervals. So far no other geo-
logic event or transition has met all the
criteria to indicate causation by an impact
(e.g., the presence of iridium and other
platinum group elements in chondritic
proportions, tektites, shock-metamorphic
effects in rocks and minerals, perturba-
tion of marine osmium isotopes, and,
ideally, an impact crater), although many
periods would meet at least one of these
(e.g., Sato et al., 2013; Schaller et al., 2016;
Schaller and Fung, 2018). The search for
impact evidence continues.

For the last 50 years, analyses of
geological and geophysical data col-
lected by the Deep Sea Drilling Project
(DSDP), Ocean Drilling Program (ODP),
Integrated Ocean Drilling Program, and
International Ocean Discovery Program
(IODP) have provided a unique perspec-
tive on Earth history. Rock samples col-
lected by IODP and its sister organi-
zation, the International Continental
scientific Drilling Program (ICDP), have
provided insights into impact cratering
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processes and the effects of events of
different magnitudes on the climate
and the biosphere, supplying an excep-
tional record of processes that are ubiq-
uitous across the solar system (and, pre-
sumably, beyond). This article focuses on
ocean drilling perspectives on meteorite
impacts. We examine the contributions
of scientific ocean drilling to our under-
standing of impact events, from detailed
records of extinction and chemical and
physical perturbation in the marine

realm to the mechanisms by which rocks
are deformed to create peak rings (a dis-
continuous ring of hills) in impact cra-
ters. The exciting results of drilling in
the Chicxulub crater in 2016 raise new
questions and suggest promising new
challenges and avenues of investigation
of deep-sea records of impact events
that can only be undertaken by a pro-
gram such as IODP. (Note that import-
ant contributions from onshore drilling
by the ICDP into the Chicxulub, Lake
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FIGURE 1. Marine osmium isotopes (a) through the Cenozoic (after Peucker-Ehrenbrink and Ravizza,
2012). These data, the majority of which come from DSDP/ODP/IODP cores, record the long-term
trend toward more radiogenic (i.e., continental-weathering derived) '®’Os/'®8Os ratios in the ocean
throughout the Cenozoic. Superimposed on this long-term trend are several major, rapid shifts
toward unradiogenic ratios driven by impact of extraterrestrial objects. This effect is evident in
intervals associated with impact events, including (b) the Chicxulub impact and (c) the Chesapeake
Bay impact. Other intervals of major environmental change lack the diagnostic negative excur-
sion, including (d) the Paleocene-Eocene Thermal Maximum, (e) the Miocene Climate Transition,
and (f) the Younger Dryas. Red lines are well-dated large (>35 km crater diameter) impacts (after
Grieve, 2001). Note that these data are plotted against the 2012 Geologic Time Scale (Peucker-
Ehrenbrink and Ravizza, 2012); more recent dating puts the K-Pg boundary at 66.0 million years ago

(Renne et al., 2013).
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Bosumtwi, Chesapeake Bay, and Lake
Elgygytgyn impact craters are summa-
rized by, respectively, Urrutia-Fucugauchi
et al., 2004; Koeberl et al., 2007; Gohn
et al., 2008; and Melles et al., 2012).

MARINE RECORD OF IMPACTS
Scientific ocean drilling provides the raw
materials that enable scientists to gener-
ate high-resolution composite records
of geochemical changes in the ocean
through time. One of the geochemi-
cal proxies used is the isotopic ratio of
osmium (*¥70Os/'%0s) in seawater, as
reflected in marine sediments. Osmium
(Os) isotopes in ocean water are the result
of secular changes in the amount of man-
tle-derived (depleted in '¥Os) and crustal
materials (enriched in '%QOs) (Pegram
et al.,, 1992). Changes in '%0s/"¥80s of
marine sediments over time can be used
as proxies for flood basalt volcanism
(e.g., Turgeon and Creaser, 2008), weath-
ering flux (Ravizza et al, 2001), ocean
basin isolation (e.g., Poirier and Hillaire-
Marcel, 2009), and, importantly for our
purposes, the detection of impact events
(Turekian, 1982; Peucker-Ehrenbrink and
Ravizza, 2000, 2012; Paquay et al., 2008).
Chondritic meteors have an Os isoto-
pic ratio similar to that of Earth’s man-
tle, and extraterrestrial impacts result in
a strong, rapid excursion to unradiogenic
(i.e., closer to 0) marine '¥7QOs/'#Os ratios
(Luck and Turekian, 1983; Koeberl, 1998;
Reimold et al., 2014; Figure 1). The only
two such excursions in the Cenozoic are
Chicxulub (Figure 1b) and the late Eocene
(~35 million years ago; Poag et al., 1994;
Bottomley et al., 1997) dual impacts at
Chesapeake Bay on the North American
Atlantic coastal plain and Popigai in
Siberia (Figure 1c; Robinson et al., 2009;
Peucker-Ehrenbrink and Ravizza, 2012).
Such Os isotope excursions would only
be expected from chondritic impactors,
but it is important to note that the scale
of the impact is not necessarily reflected
in the size of the Os excursion (Morgan,
2008). Other major climate events that
have been proposed to be associated with
impacts, such as the Paleocene-Eocene



Thermal Maximum (PETM; e.g., Schaller
et al., 2016; Figure 1d), and the Younger
Dryas (e.g., Kennett et al., 2009; Figure 1f)
are not associated with any clear excur-
sion toward unradiogenic values,
despite relatively high sample resolu-
tion (e.g., Paquay et al, 2009). Rather,
the PETM shows a positive excursion
of Os isotope values associated with
enhanced weathering during the event
(Ravizza et al., 2001).

Ocean drilling has directly sampled
ejecta from several Cenozoic craters in
the form of black glassy spherical tek-
tites, created from melt droplets caused
by a meteor impact. Tektites from the
late Eocene Chesapeake Bay and Popigai
impacts were recovered from DSDP
and ODP Sites 94 (Gulf of Mexico),
149 (Caribbean), and 612, 903, 904, and
1073 (New Jersey margin) in the Atlantic
(Glass, 2002); from DSDP Sites 65, 69, 70,
161, 162, 166, 167, and 292 in the equa-
torial Pacific (Glass et al., 1985); and
from DSDP Site 216 in the Northeast
Indian Ocean (Glass, 1985). They have
also been found in the South Atlantic at
Maud Rise (ODP Site 689; Vonhof et al.,
2000). These microtektites include a
large number of clinopyroxene-bearing
spherules (termed “microkrystites” by
Glass and Burns, 1988) found in the
Pacific and South Atlantic. An irid-
ium anomaly was reported to occur in
association with these ejecta (Alvarez
1982), but higher-resolution
work revealed that this iridium anom-

et al,

aly occurs below the microtektite layer
(Sanfilippo et al., 1985). This position-
ing indicates that there were actually two
impacts at this time (Chesapeake and
Popigai), one that produced an iridium
anomaly and microkrystites and a second
that did not produce an iridium anom-
aly and that created chemically distinct
microtektites (Glass et al., 1985; Vonhof
and Smit, 1999). The iridium anomaly
is also found at the Eocene-Oligocene
Stratotype Section at Massignano, Italy,
where it occurs ~12 m below or ~1 mil-
lion years before the base of the Oligocene
(Montanari et al., 1993). Nevertheless,

some researchers have inferred a causal
relationship between these impacts and
latest Eocene cooling and faunal change
(e.g., Keller, 1986; Vonhof et al., 2000; Liu
etal., 2009), which would imply a climate
feedback that amplified the short-term
cooling directly caused by the impact
(Vonhof et al., 2000).

irrefutable proof that it was formed by
an extraterrestrial impact (Bohor et al,
1984). When a high-pressure shock wave
passes through rocks, common miner-
als such as quartz and feldspar are per-
manently deformed (referred to as shock
metamorphism) and produce diagnos-
tic features (e.g., Reimold et al., 2014)

Rock samples collected by IODP and its sister

organization, the International Continental scientific

Drilling Program (ICDP), have provided insights

into impact cratering processes and the effects of

events of different magnitudes on the climate and

the biosphere, supplying an exceptional record

of processes that are ubiquitous across the solar
system (and, presumably, beyond).

THE CHICXULUB IMPACT AND
ITS PHYSICAL EFFECTS

The most important impact of the
Phanerozoic, and the one that has been
best studied by scientific ocean drilling,
is the Chicxulub impact. The hypothe-
sis that an impact caused the most recent
major mass extinction was founded on
elevated iridium levels in the K-Pg bound-
ary clays within outcrops in Spain, Italy,
and Denmark (Alvarez et al., 1980; Smit
and Hertogen, 1980). The impact hypoth-
esis was initially quite controversial, and
one of the early objections was that irid-
ium had only been measured at a few
sites across a relatively small area of west-
ern Europe and may have reflected a con-
densed interval and not a discrete impact
(Officer and Drake, 1985). Researchers
then began to investigate and document
other K-Pg boundary sites around the
globe, many of which were DSDP/ODP
drill sites (Figure 2). High iridium abun-
dances were soon found at other sites
(e.g., Orth et al., 1981; Alvarez et al,
1982), and the identification of shocked
minerals within the K-Pg layer added

that, on Earth, are only found in asso-
ciation with impacts and nuclear test
sites. Since 1985, many ODP and IODP
drill sites have recovered (and often spe-
cifically targeted) the K-Pg boundary
(Figure 2), further contributing to our
understanding of this event and demon-
strating that ejecta materials were depos-
ited globally (Figure 3).

The Chicxulub impact structure, on
the Yucatan Peninsula, Mexico, was first
identified as a potential impact crater
by Penfield and Carmargo-Zanoguera
(1981), and then as the site of the K-Pg
impact by Hildebrand et al. (1991). These
authors noted that the size of the shocked
quartz and thickness of the K-Pg bound-
ary deposit increased globally toward
the Gulf of Mexico, and they located the
Chicxulub crater by its association with
strong, circular, potential field gravity
anomalies. Core samples from onshore
boreholes drilled by Petréleos Mexicanos
(“Pemex”) confirmed the crater’s impact
origin. Although some authors have
argued against a link between Chicxulub
and the K-Pg boundary (see Keller et al.,
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2004, 2007, for mature forms of that posi-
tion), accurate “*Ar/*Ar dating of impact
glass within the K-Pg layer (Renne et al,,
2013, 2018), as well as dating of micro-
crystalline melt rock (Swisher et al., 1992)
and shocked zircon (Krogh et al., 1993;
Kamo et al., 2011) from Chicxulub and
the K-Pg layer, clearly demonstrate that
Chicxulub is the site of the K-Pg impact.
Hildebrand et al. (1991) also noted that
Gulf of Mexico DSDP Sites 94, 95, 536,
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and 540 contained deepwater grav-
ity flows and turbidity-current deposits
adjacent to Campeche Bank, and DSDP
Sites 603B, 151, and 153, as well as out-
crops along the Brazos River in Texas,
contained potential tsunami wave depos-
its (Bourgeois et al., 1988), all of which
suggested these deposits were a result
of the Chicxulub impact. Increasingly,
opponents of the impact hypothesis have
accepted an end-Cretaceous age for the
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Chicxulub crater, and have focused their
arguments on the Deccan Traps in India
as the sole or contributing cause of the
mass extinction (see Chenet et al., 2009;
Punekar et al, 2014; Mateo et al., 2017;
and Keller et al., 2018, and references
therein for a recent summary; Schulte
et al,, 2010, remains the best rebuttal of
these arguments).

Many studies have subsequently con-
firmed that at sites proximal to Chicxulub

FIGURE 2. (a) Map of DSDP/ODP/IODP Sites that recovered the K-Pg boundary, up to Expedition 369. The base map is adapted from the PALEOMAP
Project (Scotese, 2008). (b) Number of K-Pg papers by site, according to Google Scholar as of November 30, 2018 (search term: Cretaceous AND Tertiary
OR Paleogene OR Paleocene AND ‘Site ###’). As with any such search, there are some caveats, for example, inclusion of papers that match the search
terms but are not strictly about the K-Pg, and papers that are missing because they are not cataloged by Google Scholar. However, this is a good approx-
imation of the reams of articles that have been written about the K-Pg based on DSDP, ODP, and IODP cores, and the clear impact (sorry) of scientific
ocean drilling on the K-Pg literature. n = 8,679, but there are duplicates because some papers cover multiple sites. The most recent site is U1514 (n = 3).
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(<2,000 km), the impact produced mul-
tiple resurge, tsunami, gravity flow, and
shelf collapse deposits (e.g., Bohor and
Betterton, 1993; Bralower et al, 1998;
Grajales-Nishimura et al., 2000; Schulte
et al,, 2010; Hart et al., 2012; Vellekoop
et al., 2014). Well logs, DSDP cores, and
seismic data show margin collapse depos-
its reach hundreds of meters thick locally,
making the K-Pg deposit in the circum-
Gulf of Mexico the largest known sin-
gle event deposit (Denne et al, 2013;
Sanford et al.,, 2016). Complex stratigra-
phy (Figure 3) and a mixture of nanno-
fossil and foraminiferal assemblages
of different ages that contain impact-
derived materials characterize proxi-
mal deepwater DSDP and ODP sites in
the Gulf of Mexico (DSDP Sites 95, 535-
538, and 540) and the Caribbean (ODP
Sites 999 and 1001), all exhibiting sequen-
tial deposition of material from seismically
driven tsunamis, slope collapses, gravity
flows, and airfalls (Sigurdsson et al., 1997;
Bralower et al., 1998; Denne et al., 2013;
Sanford et al., 2016). Bralower et al. (1998)
termed this distinct assemblage of materi-
als the K-Pg boundary “cocktail”

At  intermediate distances from
Chicxulub (2,000-6,000 km), the K-Pg
boundary layer is only 1.5-3 cm thick, as
observed in North America (Smit et al,,
1992; Schulte et al., 2010), on Demerara
Rise in the western Atlantic at ODP
Site 1207 (K.G. MacLeod et al., 2007;
Schulte et al., 2009), and on Gorgonilla
Island, Colombia (Bermudez et al., 2016).
At the first two locations, it has a dual-
layer stratigraphy. The lower layer con-
tains goyazite and kaolinite spherules,
which have splash-form morphologies
such as tear drops and dumbbells, and is
overlain by the “boundary clay” that con-
tains the iridium anomaly and nickel-rich
spinels (Smit and Romein, 1985; Bohor
etal.,, 1989, 1993; Bohor and Glass, 1995).
The similarity between spherules found
in Haiti (~800 km from Chicxulub) and
those found in the lower layer in North
America has led to their joint interpre-
tation as altered microtektites (Smit and
Romein, 1985; Sigurdsson et al., 1991;

Bohor et al, 1993; Bohor and Glass,
1995). Large-scale mass wasting has
also been documented along the North
Atlantic margins of North America
and Europe, including on Blake Plateau
(ODP Site 1049), Bermuda Rise (DSDP
Sites 386 and 387), the New Jersey margin
(DSDP Site 605), and the Iberian abyssal
plain (DSDP Site 398) (Klaus et al., 2000;
Norris et al., 2000).

At distal sites (>6,000 km), the K-Pg
boundary becomes a single layer with
a fairly uniform 2-3 mm thickness,
and it has a chemical signature simi-
lar to the upper layer in North America
(e.g., Alvarez et al., 1982; Rocchia et al,,
1992; Montanari and Koeberl, 2000;
Claeys et al., 2002). See, for example,
DSDP Site 738 on the southern Kerguelen
Plateau (Thierstein et al., 1991), DSDP
Site 577 on Shatsky Rise (Zachos et al.,
1985), DSDP Site 525 in the South
Atlantic (Li and Keller, 1998), ODP
Site 761 on Exmouth Plateau (Pospichal
and Bralower, 1992), and ODP Site 1262
on Walvis Ridge (Bernaola and Monechi,
2007). The most abundant component
(60%-85%) of the distal ejecta layer is
microkrystites with a relict crystalline
texture (Smit et al., 1992) that are thought
to have formed from liquid condensates
within the expanding plume (Kyte and
Smit, 1986). Ubiquitous alteration of
these microkrystites means that they are
now primarily composed of clay (smec-
tite, illite, and limonite). Some spherules
contain skeletal magnesioferrite spinel
(Smit and Kyte 1984; Kyte and Smit, 1986;
Robin et al., 1991) that appears to be the
only pristine phase to have survived dia-
genetic alteration (Montanari et al., 1983;
Kyte and Bostwick, 1995). Shocked min-
erals are present in the K-Pg layer at
all distances from Chicxulub, and are
co-located with the elevated iridium unit
(Smit, 1999).

DSDP, ODP, 10DP
(Figure 2) have all been employed in

and sites
mapping the global properties of the
K-Pg layer. Sites close to the crater appear
to have a slightly lower total iridium flux
at 10-45x 10 gcm™ (e.g., Rocchia et al.,

1996; Claeys et al., 2002; K.G. MacLeod
etal., 2007), as compared to a global aver-
age of ~55 x 10 g cm™ (Kyte, 2004).
Maximum iridium concentrations are
quite variable (<1 to >80 ppb; Claeys
et al., 2002). Attempts have been made to
locate the ultimate carrier of the iridium
in the sediment layer, but it is evidently
too fine-grained to be identified with
conventional techniques. Siderophile
trace elements in the distal and upper
K-Pg layer exhibit a chondritic distribu-
tion (Kyte et al., 1985), the isotopic ratio
of the platinum group element osmium
is extraterrestrial (Luck and Turekian,
1983; Meisel et al., 1995), and the chro-
mium isotopic composition indicates
that the impactor was a carbonaceous
chondrite (Kyte, 1998; Shukolyukov
and Lugmair, 1998).

The most common explanation for
the origin of the microtektites at prox-
imal and intermediate sites is that they
are formed from melted target rocks that
were ejected from Chicxulub and solid-
ified en route to their final destination
(e.g., Pollastro and Bohor, 1993; Alvarez
et al., 1995). Ejecta at distal sites and
within the upper layer at intermediate
sites, including the shocked minerals and
microkrystites, are widely thought to have
been launched on a ballistic trajectory
from a rapidly expanding impact plume
(Argyle, 1989; Melosh et al., 1990). There
are, however, several observations that
are difficult to reconcile with these expla-
nations. For example: (1) microkrystites
within the global layer all have roughly the
same mean size (250 um) and concentra-
tion (20,000 cm~2) (Smit, 1999), whereas
shocked minerals show a clear decrease
in number and size of grains with increas-
ing distance from Chicxulub (Hildebrand
et al., 1991; Croskell et al., 2002); (2) if
shocked quartz were ejected at a high
enough velocity to travel to the other side
of the globe, the quartz would anneal on
reentry (Alvarez et al, 1995; Croskell
et al., 2002); and (3) if the lower layer
at intermediate sites were formed from
melt droplets ejected from Chicxulub
on a ballistic path, the thickness of the
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lower layer would decrease with dis-
tance from Chicxulub, whereas across
North America, it is close to constant.
The interaction of reentering ejecta with
Earth’s atmosphere appears to be neces-
sary to explain all of these observations,
with the ejecta being redistributed later-
ally by atmospheric heating and expan-
sion (Goldin and Melosh, 2007, 2008;
Artemieva and Morgan, 2009; Morgan
etal., 2013).

Differences in the K-Pg boundary
layer around the globe have been used
to infer different angles and directions
for the Chicxulub impactor. Schultz and
D’Hondt (1996) argued that several fac-
tors, including the dual-layer stratig-
raphy and particularly large fragments
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of shocked quartz in North America,
indicated an impact direction toward
the northwest. However, comparable
2 cm thick K-Pg layers at sites to the
south of Chicxulub at equivalent paleo-
distances have been identified (Schulte
et al., 2009; Bermudez et al., 2016), and
it now appears that the ejecta layer is
roughly symmetric, with the number and
size of shocked quartz grains decreasing
with distance from Chicxulub (Croskell
et al,, 2002; Morgan et al, 2006). One
asymmetric aspect of the layer is the
spinel chemistry: spinel from the Pacific
(e.g., DSDP Site 577) is characterized by
higher Mg and Al content than European
(e.g., Gubbio, Italy) and Atlantic spinel
(e.g., DSDP Site 524; Kyte and Smit,

Blake Nose
ODP Site 1049

Danian

Cenomanian
(not plotted)

1986). The higher Mg-Al Pacific spinel
represents a higher temperature phase,
and thus the impact direction must have
been toward the west, because the plume
would be hottest in the downrange direc-
tion (Kyte and Bostwick, 1995). However,
thermodynamic models of sequential
condensation within the cooling impact
plume suggest the opposite: that the
spinels from Europe and the Atlantic
represent the higher temperature phases
and, thus, that the impact direction was
toward the east (Ebel and Grossman
2005). An argument that sought to use
position of crater topography relative to
the crater center (Schultz and D’Hondt,
1996) has been questioned through com-
parisons with Lunar and Venutian craters
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FIGURE 3. Representative K-Pg boundary sections from scientific ocean drilling cores. The peak ring of the Chicxulub crater itself shows pelagic
post-impact sediments overlaying downward-coarsening suevite on top of impact melt rock, which in turn overlays fractured pre-impact granite cut by
impact dikes (Morgan et al., 2016). Eastern Gulf of Mexico cores show the proximal deep-sea expression of the boundary layer, with massive slumps
caused by platform margin collapse overlain by turbidites associated with secondary mass wasting, overlain by fallout of iridium-rich clay (Sanford et al.,
2016). Blake Nose represents the dual-layer stratigraphy of many mid-distance localities, with impact ejecta overlain by an iridium-rich clay layer (Schulte
et al., 2010). Shatsky Rise is typical of distal deep-sea sites, with a color change the only core-scale evidence of the impact (Schulte et al., 2010). The
Chicxulub crater illustration is redrawn from Morgan et al. (2016), the eastern Gulf of Mexico image is redrawn from Sanford et al. (2016), and the Blake
Nose and Shatsky Rise core photographs are from the IODP Janus database.
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with known impact trajectories (Ekholm
and Melosh, 2001; McDonald et al,
2008). The best estimate of impact direc-
tion to date, based on three-dimensional
numerical simulations of crater forma-
tion that incorporate new data from
IODP Site M0077 in the Chicxulub cra-
ter, indicates that an impact toward the
southwest at a ~60° angle produces the
best match between the modeled and
observed three-dimensional crater struc-
ture (Collins et al., 2017).

OCEAN DRILLING PERSPECTIVE
ON MASS EXTINCTION AND

THE SUBSEQUENT RECOVERY
OF LIFE

Paleontologists have long recognized a
major mass extinction at the end of the
Cretaceous with the disappearance of
non-avian dinosaurs, marine reptiles,
and ammonites, although the first indi-
cation of the rapidity of this event came
from microfossils. The earliest studies of
the extinction of the calcareous micro-
fossils across the K-Pg boundary came
from outcrops on land (e.g., Luterbacher
and Premoli-Silva, 1964; Perch Nielsen
et al., 1982; Percival and Fischer, 1977;
Romein, 1977; Smit, 1982; M.J. Jiang and
Gartner, 1986; Hollis, 1997; Harwood,
1988; Hollis and Strong, 2003). However,
the full taxonomic scope of the extinction
and how it related to global biogeography
and ecology is largely known from scien-
tific ocean drilling (e.g., Thierstein and
Okada, 1979; Thierstein, 1982; Pospichal
and Wise, 1990; N. MacLeod et al., 1997;
Bown et al, 2004). Deep-sea sites also
serve as the basis for our understand-
ing of the subsequent recovery of life
(Bown, 2005; Coxall et al., 2006; Bernaola
and Monechi, 2007; S. Jiang et al., 2010;
Hull and Norris, 2011; Hull et al., 2011;
Koutsoukos, 2014; Birch et al, 2016;
Lowery et al., 2018). The K-Pg bound-
ary has been recovered in dozens of cores
from all major ocean basins, includ-
ing some from the earliest DSDP legs
(Figure 2; Premoli Silva and Bolli, 1973;
1977; Thierstein and
Okada, 1979; see summary of terrestrial

Perch-Nielsen,

and marine K-Pg sections in Schulte et al.,
2010). Deep-sea cores generally afford
excellent microfossil preservation, con-
tinuous recovery, and tight stratigraphic
control, including magnetostratigraphy
and orbital chronology (R6hl et al., 2001;
Westerhold et al., 2008).

Studies of deep-sea sections have
exposed the severity of the mass extinc-
tion among the calcareous plankton,
with over 90% of heterotroph foramin-
ifera and autotroph nannoplankton spe-
cies becoming extinct (Thierstein, 1982;
D’'Hondt and Keller, 1991; Coxall et al.,
2006; Hull et al., 2011). The extinction
was highly selective, as siliceous groups
experienced relatively low rates of extinc-
tion (Harwood, 1988; Hollis et al., 2003).
Among the calcareous plankton groups,
survivors include high-latitude and near-
shore species (D'Hondt and Keller, 1991;
Bown, 2005), suggesting that these species
adapted to survive variable environments
in the immediate aftermath of the impact.
Benthic foraminifera survived the impact
with little extinction (Culver, 2003).

A key component of the post-
extinction recovery of life on Earth
is the revival of primary productiv-
ity. Photosynthesis favors 12C over *C,
enriching organic material in the former.
Sinking of dead organic matter in the
ocean removes >C from the upper water
column; thus, under normal conditions,
there is a carbon isotope gradient from
the surface waters to the seafloor. After
the Chicxulub impact, this vertical gradi-
ent was non-existent for ~4 million years
(e.g., Coxall et al., 2006). This phenom-
enon was originally interpreted as indi-
cating the complete or nearly complete
cessation of surface ocean productivity
(Hsti and McKenzie, 1985; Zachos et al.,
1989; the latter from DSDP Site 577 on
Shatsky Rise), a hypothesis that became
known as the Strangelove Ocean (after
the 1964 Stanley Kubrick movie; Hsii and
McKenzie, 1985). D’Hondt et al. (1998)
suggested that surface ocean productiv-
ity continued, but the extinction of larger
organisms meant that there was no easy
mechanism (e.g., fecal pellets) to export

this organic matter to the deep sea—a
modification of the Strangelove Ocean
hypothesis that they called the Living
Ocean hypothesis (D’Hondt, 2005; see also
Adams et al., 2004). The observed changes
in carbon isotopes can be explained by
just a slight increase (from 90% to 95%)
in the fraction of organic matter reminer-
alized in the upper ocean (D’Hondt et al.,
1998; Alegret et al, 2012), although a
more precipitous drop in export produc-
tivity (Coxall et al., 2006) has also been
suggested. The lack of a corresponding
benthic foraminiferal extinction indicates
that the downward flux of organic car-
bon may have decreased somewhat but
remained sufficiently elevated to provide
the carbon necessary to sustain the ben-
thic community (Hull and Norris, 2011;
Alegret et al., 2012). Research on barium
fluxes in deep-sea sites across the ocean
shows that, in fact, export productivity
was highly variable in the early Danian
(the age that immediately followed the
end of the Cretaceous, when K-Pg extinc-
tion begins), with some sites recording an
increase in export production during the
period of supposed famine in the deep sea
(Hull and Norris, 2011).

However, any shift in the surface-to-
deep carbon isotope gradient does have
significant implications for biogeochem-
ical cycling. The extinction of pelagic cal-
cifiers such as planktic foraminifera and
calcareous nannoplankton caused pro-
found changes in the cycling of carbon
from the surface to the deep sea. Pelagic
calcifiers are a key component of the car-
bon cycle as they export carbon in the
form of CaCO, from the surface ocean
to the seafloor. The near eradication of
these groups must have made surface-
to-deep cycling less efficient, explain-
ing the decreased carbon isotope gra-
dient (Hilting et al., 2008; Alegret et al.,
2012; Henehan et al., 2016). This also led
to the weakening of the marine “alkalinity
pump” (D’Hondt, 2005; Henehan et al.,
2016). The resulting carbonate oversatu-
ration improved carbonate preservation
in the deep sea, which can be observed
as a white layer that overlies the K-Pg
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boundary at numerous sites, including the
eastern Gulf of Mexico (DSDP Site 536;
Bufiler et al., 1984), the Caribbean (ODP
Sites 999 and 1001; Sigurdsson et al,
1997), Shatsky Rise in the western Pacific
(Figure 3; ODP Sites 1209-1212; Bralower
et al,, 2002), and in the Chicxulub crater
(IODP Site M0077; Morgan et al., 2017).
Records from cores across the ocean
basins indicate that the post-extinction
recovery of export productivity (e.g., Hull
and Norris, 2011) and calcareous plank-
ton diversity (e.g., S. Jiang et al., 2010) was
geographically heterogeneous, with some
localities recovering rapidly and others
taking hundreds of thousands (for pro-
ductivity) to millions (for diversity) of
years to recover. Among the nannoplank-
ton, Northern Hemisphere assemblages
are characterized by a series of high-
dominance, low-diversity “boom-bust”
species (Bown, 2005), while Southern
Hemisphere assemblages contain a some-
what more diverse group of surviving
species (Schueth et al., 2015). In general,
diversity of Northern Hemisphere assem-
blages took longer to recover (S. Jiang
et al., 2010). Recovery of export produc-
tivity likewise appears to have been slower
in the North Atlantic and Gulf of Mexico
(e.g., S. Jiang et al., 2010; Hull and Norris,
2011; Alegret et al, 2012), suggesting
that sites proximal to the impact crater
had a slower recovery. Some authors
(e.g., S. Jiang et al,, 2010) attributed this
to direct environmental effects of the
impact, such as the uneven distribution
of toxic metals in the ocean. If recovery is
slower closer to the crater, then it should
be slowest in the crater itself. However,
recent drilling within the Chicxulub cra-
ter shows rapid recovery of life, with
planktic and benthic organisms appear-
ing within just a few years of the impact
and a healthy, high-productivity ecosys-
tem established within 30,000 years of
the impact, much faster than estimates
for other Gulf of Mexico and North
Atlantic sites (Lowery et al., 2018). This
rapid recovery rules out an environ-
mental driver for heterogeneous recov-
ery and instead suggests that natural
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ecological factors, including incumbency;,
competitive exclusion (e.g., Hull et al,
2011; Schueth et al.,, 2015), and morpho-
space reconstruction (Lowery and Fraass,
2018), were the dominant controls on
the recovery of the marine ecosystem.
The recovery of diversity took millions
of years to even begin to approach pre-
impact Cretaceous levels (Bown et al,
2004; Coxall et al, 2006; Fraass et al,
2015). This delay in the recovery of diver-
sity appears to be a feature of all extinc-
tion events (Kirchner and Weil, 2000;
Alroy, 2008) and bodes ill for the recovery
of the modern biosphere after negative
anthropogenic impacts of, for example,
ocean acidification and hypoxia, subside.

UNIQUE INSIGHT INTO THE
CHICXULUB CRATER

In 2016, the joint IODP-ICDP
Expedition 364 drilled into the peak
ring of the Chicxulub impact crater at
Site M0077 (Morgan et al., 2017). Peak
rings are elevated topography that pro-
trude through the crater floor in the
inner part of large impact structures.
Prior to drilling, there was no consensus
on the nature of the rocks that form peak
rings or their formational mechanism
(Baker et al., 2016). To form large craters
like Chicxulub, rocks must temporarily
behave in a fluid-like manner during cra-
ter formation (Melosh, 1977; Riller et al.,
2018). Two hypotheses, developed from
observations of craters on other planets,
provided possible explanations for the
processes by which peak rings form. The
first, the dynamic collapse model (first
put forward by Murray, 1980) predicted
that the Chicxulub peak ring would be
formed from deep crustal rock, pre-
sumably crystalline basement. The sec-
ond, the nested melt-cavity hypothesis
(conceived by Cintala and Grieve, 1998)
predicted that the Chicxulub peak ring
would be underlain by shallow crustal
rock, presumably Cretaceous carbonates.
Thus, Expedition 364 was able to answer
a major question about impact cratering
processes simply by determining what
rock comprises the peak ring (Figure 3).

Geophysical data acquired prior to drill-
ing indicated that there are sedimen-
tary rocks several kilometers beneath the
Chicxulub peak ring, and that the peak-
ring rocks have a relatively low veloc-
ity and density, suggesting that they are
highly fractured (Morgan et al., 1997;
Morgan and Warner, 1999; Gulick et al,,
2008, 2013; Morgan et al., 2011).

The discovery that the peak ring was
formed from fractured, shocked, uplifted
granitic basement rocks supports the
dynamic collapse model of peak-ring
formation (Morgan et al, 2016; Kring
et al., 2017). Structural data from wire-
line logging, CT scans, and visual core
descriptions provide an exceptional
record of brittle and viscous deforma-
tion mechanisms within the peak-ring
rocks. These data reveal how deformation
evolved during cratering, with dramatic
weakening followed by a gradual increase
in rock strength (Riller et al., 2018). The
peak-ring rocks have extraordinary phys-
ical properties: the granitic basement has
P-wave velocities and densities that are,
respectively, ~25% and ~10% lower than
expected, and a porosity of 8%-10%.
These values are consistent with numer-
ical simulations that predict the peak-
ring basement rocks represent some of
the most shocked and damaged rocks in
an impact basin (Christeson et al., 2018).
Site M0077 cores and measurements have
been used to refine numerical models of
the impact and provide new estimates
on the release of cooling climatic gases
by the Chicxulub impact. Previous stud-
ies estimated that the Chicxulub impact
released anywhere from 30-1,920 Gt
of sulfur from the evaporite-rich target
rocks and formed sulfate aerosols in the
atmosphere that block incoming solar
radiation (see Tyrrell et al, 2015, and
references therein)—a recent global cli-
mate model indicates that a modest injec-
tion of 100 Gt of sulfur may have resulted
in a 26°C drop in global temperatures
(Brugger et al.,, 2017). New impact mod-
els calibrated with data from Site M0077
suggest that between 195 Gt and 455 Gt
of sulfur were released and may have led



to even more radical cooling during the
so-called “impact winter” (Artemieva
et al, 2017). However, it appears that
only the most extreme estimates of sul-
fur release would have driven ocean acid-
ification severe enough to explain the
extinction of calcareous plankton (Tyrrell
et al, 2015), suggesting that the sharp
reduction in sunlight for photosynthesis
drove the extinction.

NEW CHALLENGES

The scientific community’s understand-
ing of the Chicxulub impact event and
the K-Pg mass extinction has grown
immensely since Smit and Hertogen
(1980) and Alvarez et al. (1980) proposed
the impact hypothesis, and many of the
advances were the direct result of scien-
tific ocean drilling data. However, there
is still a great deal that we do not know.
New K-Pg boundary sites from under-
sampled regions (the Pacific, the Indian
Ocean, and the high latitudes) are essen-
tial to reconstruct environmental gradi-
ents in the early Paleocene and to under-
stand geographic patterns of recovery
and global environmental effects as well
as what drives them. IODP Site U1514,
on the Naturaliste Plateau on the
Southwest Australian margin (Figure 2),
drilled in 2017 on Expedition 369 (Huber
et al., 2018), is a perfect example of the
kind of new site we need to drill—at a
high latitude and far from existing K-Pg
boundary records.

New data from the Chicxulub crater
have resulted in refined impact models
that suggest the asteroid impacted toward
the southwest (Collins et al.,2017), in con-
trast with previously inferred directions
that placed the Northern Hemisphere in
the downrange direction. Although the
most proximal Pacific crust at the time of
impact has since been subducted, very lit-
tle drilling has been conducted on older
crust in the central and eastern Pacific
(red circle in Figure 2). New drilling on
seamounts and rises on the easternmost
Cretaceous crust in the equatorial Pacific
could shed new light on the environ-
mental and biological consequences of

Impact Petrologists Ludovic Ferriere (Natural History Museum, Austria) and Naotaka Tomioka
(JAMSTEC) at the visual core description table at the IODP Bremen Core Repository during the
onshore science party for IODP Expedition 364, Chicxulub: Drilling the K-Pg Impact Crater. Photo
credit: V. Diekamp, ECORD/IODP

the Chicxulub impact in a close-by and
downrange location. Samples from these
locations may finally yield some frag-
ments of the impactor.

In the end, the Chicxulub struc-
ture remains an important drilling tar-
get to address questions that can only be
answered at the K-Pg impact site. IODP
Site M0077, which was drilled at the loca-
tion where the peak ring was shallow-
est, recovered a relatively thin Paleocene
section with an unconformity present
prior to the Paleocene-Eocene bound-
ary. Seismic mapping within the crater
demonstrates that the Paleocene section
greatly expands into the annular trough
(Figure 4), providing an exciting oppor-
tunity to study the return of life to the
impact crater at an even higher resolu-
tion than Lowery et al. (2018) achieved.
Additionally, continuous coring within
an expanded Paleocene section and the
underlying impactites would better con-
strain climatologic inputs from the vapor-
ization of evaporites.

Equally intriguing is the interaction
of impact melt rock, suevite, and post-
impact hydrothermal systems for study-
ing how subsurface life can inhabit and
evolve within an impact basin. Such set-
tings were common on early Earth and

provide an analog for the chemical evo-
lution of pre-biotic environments as well
as biologic evolution in extreme environ-
ments. Full waveform images (Figure 4)
suggest tantalizing morphologic com-
plexities within the low-velocity suevite
layer above the high-velocity central
melt sheet that are tempting to interpret
as ancient hydrothermal vent systems of
the kind often seen at mid-ocean ridges.
Drilling into the Chicxulub melt sheet
would be ideal for studying the hydro-
geology and geomicrobiology of impact
melt sheets buried by breccias as a (new)
habitat for subsurface life, providing an
opportunity for scientific ocean drilling
to sample the best analog for the habitat
in which life may have initially formed on
early Earth and on rocky bodies across
the solar system and beyond.

The successful cooperation between
IODP and ICDP during Expedition 364
serves as a model for future drilling in
the Chicxulub crater as well as for future
IODP mission-specific platform expe-
ditions. High-quality marine seismic
data from an offshore portion of the
Chicxulub crater (Morgan et al., 1997;
Gulick et al, 2008; Christeson et al,
2018) permitted detailed characteriza-
tion of the subsurface before drilling even
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FIGURE 4. (a) Full wavefield inverted (FWI) velocity
model (colors) and migrated seismic reflection image
for profile CHIX 10 crossing IODP Hole MOO77A (black
line). The seismic image has been converted to depth
using the inverted velocity model. Potential sites for
future drilling are shown with white lines. Drilling in
the annular trough site would encounter an expanded
Paleocene section, underlain by suevite (low veloci-
ties) and possible impact melt rock (high velocities).
Coring in the central basin site would target an inter-
preted hydrothermal upflow zone (disrupted low
velocities) above the impact melt sheet (high veloc-
ities) as well as an expanded Paleocene section.
(b) Location map showing the gravity-indicated struc-
ture of the crater and the position of the seismic line
used in (a). Modified from Gulick et al. (2008)
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began (Whalen et al., 2013). In turn, this
allowed Hole M0077A to precisely target
not just the peak ring but a small depres-
sion on top of the peak ring expected to
contain earliest Paleocene age sediments
that provided the basis for unprecedented
study of this unique interval at ground
zero (Lowery et al.,, 2018, and a number
of upcoming papers). As we plan for the
next 50 years of scientific ocean drilling,
we should look for additional opportuni-
ties to leverage the clarity and resolution
of marine seismic data with the preci-
sion drilling possible from a stable plat-
form provided by ICDP (Expedition 364
achieved essentially 100%
Morgan et al., 2017).

recovery;
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