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Abstract A family of periodic orbits is proven to exist in the spatial lunar
problem that are continuations of a family of consecutive collision orbits, per-
pendicular to the primary orbit plane. This family emanates from all but two
energy values. The orbits are numerically explored. The global properties and
geometry of the family is studied.
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1 Introduction

We consider the three-dimensional circular restricted three-body problem. This
models the three-dimensional motion of a particle, Py, of zero mass in the
Newtonian gravitational field generated by two particles, P;, P> of respective
positive masses, my,mo, in a mutual uniform circular motion. It is assumed
that my is much larger than mso. This problem is studied in a rotating coordi-
nate system that rotates with the same constant frequency, w of the circular
motion of Py, P, so that in this system P, and P, are fixed. Because m; is
much larger than ms, we refer to P, as the Earth and P, as the Moon, for
convenience.
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When Py moves about the larger particle, P;, the motion of P, can be
completely understood if, for example, Py is restricted to the two-dimensional
plane of motion of P;, P». In this case, with my = 0, assume that P, has
precessing elliptic motion, of elliptic frequency w* about P;, precessing with
frequency w. Then the Kolmogorov-Arnold-Moser(KAM) Theorem proves that
this precessing motion persists if mo is sufficiently small and if w and w*
are sufficiently noncommensurate. Otherwise, the motion is chaotic due to
heteroclinic dynamics. That is, invariant KAM tori foliate the phase space.
The motion of P, is proven to be stable [17]. When the initial elliptic motion
of Py is not in the same plane as the Py, P; then under similar assumptions
although KAM tori can be proven to exist, but stability cannot be guaranteed.

In this paper we study the three-dimensional motion of Py about P,. This
is referred to as the three-dimensional, or spatial, lunar problem. Relatively
little is proven in general about the motion of Py unless the initial motion
starts infinitely close to P». The proof of existence of KAM tori in the three-
dimensional lunar problem was obtained by M. Kummer under the assumption
that the initial motion of P, lies infinitely near to P, [12]. !

The main result of this paper is to prove the existence of a special family
of periodic orbits about P, nearly perpendicular to the primary orbit plane.
More precisely, if we normalize m; = 1 — u,my = u, then in the case of
= 0 there exists a family of periodic orbits on the z—axis through P,
so perpendicular to the P;, P, plane, parameterized by their energy h. This
family consists of consecutive collision orbits: Starting at collision at P, they
extend up the z—axis to a maximal distance d = d(h), then fall back to P,
and periodically repeat this oscillation, where d can have any positive value.
We label these as ¢*(¢,h). These orbits have period T*(h). We prove that
@*(t, h) continuously varies as a function of y, sufficiently small, into a unique
periodic orbit ¢(t, 1) of period T'= T'(u), T(0) = T™*, on the associated Jacobi
energy surface, provided a non-degeneracy condition holds. This condition is
satisfied for every energy value except two. The resulting family periodic orbits
is labeled, F(h, ;). This family depends on /i real analytically.

The method of proof of F(h, ) is to make use of the proof of existence of an
analogous family of orbits about the primary mass P; [2]. A three-dimensional
regularization defined first in [2] is performed. This uses a fractional linear
Mobius transformation which can be represented elegantly using a Jordan
algebra. We also exploit symmetry properties of the lunar problem.

The resulting family of orbits is numerically investigated and has interest-
ing properties. The properties are analogous to those in [3] for very negative
energy, but differ markedly for larger energy. In particular, the polar orbit
in this paper has hyperbolic rather than elliptic behavior for large
Jacobi energy.

The main theorem for this paper is stated as Theorem 1 in Section 2. The
proof is done in Section 3. In Section 4, we describe numerical results. These

1 Kummer proved the existence of KAM tori in the planar lunar problem sufficiently near
to P> [11]. This also proves the stability of the Hill periodic orbits. [8].
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include stability properties as well as the evolution of the polar orbit
as a function of the parameters. A theoretical justification for the
evolution is given in [4].

‘We conclude the introduction with brief summary of the role of
the Hamiltonians that we shall use.

— H will denote the Hamiltonian of the restricted three-body prob-
lem with the origin at the center of of mass. It is defined in (1).

— H,, is the Hamiltonian of the restricted three-body problem with
the origin at the second primary. It is defined in (4).

— H*" is a rescaled version of H,,, still centered at the second pri-
mary, but zoomed in at the Hill’s region around the second pri-
mary. It is defined in Equation (8) and simplified in Equation (9).
Both distances and energies are affected by this rescaling prob-
lem, but it still describes the restricted three-body problem.

As i goes to 0, the Hamiltonian H* converges to the Hamiltonian
of Hill’s lunar problem, which is given by H°. One can also take the
limit y goes to 1 of H™. This gives the rotating Kepler problem. The
latter problem was used in [2]. We do not use the rotating Kepler
problem except for comparison which we do detail in Remark 1.

2 Spatial Lunar Problem and Main Result

The three-dimensional restricted three-body problem in a rotating coordinate
system with coordinates ¢ = (q1, g2, q3) € R? and momenta, p = (p1, p2, p3) €
R3, for the motion of the zero mass particle P, is defined by the Hamiltonian
system,

o l—p
g—m| |g—e
¢=H, p=-—Hg, (2)

1
H = §|pl2 o ‘ +w(qip2 — @2p1), (1)

- =d/dt, t € R is time, H, = 0H/dp, where the masses of Pj, P are nor-
malized to be my = 1 —pu, my = p, respectively, u € (0,1]. The center of
mass is placed at the origin. Py, P, are fixed on the ¢-axis at the respective
locations, e = (—p,0,0), m = (1—p,0,0), where e, m denotes Earth, Moon,
respectively. w is the frequency of the rotating frame that is normalized to be
1, where we use w for generality. A solution ¢ = ¢(t) € RS of (2) lies on the
5-dimensional energy surface

Zn ={(q,p) € R°|H(q,p) = —h}, (3)

where h € R! is a constant. (In nonsymplectic coordinates, H can be written
in another form called the Jacobi integral.)

Definition. The spatial lunar problem is defined by viewing the motion of F,
from (2) to lie near P, and assuming that p is small.



4 Edward Belbruno et al.

We will now show how to derive the spatial lunar problem as a
limit case of the restricted three body problem following the compu-
tation on page 77 of [7], see also page 143-144 of [13]. A translation T'
is made to center the coordinates at Py by moving P; to e; = (0,0,0) and P» to
the origin: q; = q1 —m1, g3 =42, 43 = g3, Pz = P2 — M1, Py = P1, P3 = P3.
This is a symplectic map yielding a Hamiltonian, H(T~1(¢’,p’)). We add a

(1—p)*
2

vector field, and end up with H,,(¢,p") = H(T~'(¢,p")) + % For sim-
plicity of notation, we replace ¢’,p’ by g, p, not to be confused with previous
notation.

Thus, the spatial lunar problem in translated P, centered coordinates can
be represented as a Hamiltonian system, with Hamiltonian,

1
+(J1>~ (4)
Vi +1)2+E+¢@

constant, to this Hamiltonian as this does not change the Hamiltonian

1 H
H,, = §|pl2 — m+w(q1p2 —q2p1) — (1—M)(

The flow is given by,

q = Hmpa p = _qu- (5)
The energy surface X'y becomes,
EH'm. = {(q,p) € R6|Hm(qap) = _h}a (6)

In order to study the flow in the coordinates (¢, p) defined by H,, near P, we
magnify the flow near P, by the map, M : (¢,p) — (4, D),

M: p=p"5p, G=p"iq. (7)

Thus, for p small, as we are assuming for this paper, the coordinates (§,p)

are defined in a magnified neighborhood about P,. This implies that when

solutions are found in these coordinates, in the original coordinates (g, p), the
solutions lie close to P, as determined by (7).

The transformation given by (7) is not symplectic. In order to obtain a

Hamiltonian system in the coordinates (p,§), it is noted that M is confor-

mally symplectic with constant conformal factor /3. It is verified that a new
Hamiltonian incorporating this magnification is given by,

H"(q,9) = = (Hu (M7 (5,4) + 1 p).
This can be simplified using a Taylor expansion. This follows since,
J 1. 1 A A
H"(q,p) = §|1@|2 il + w(@1p2 — G2p1)
3 1— M( 1 (8)
u2/3 \/(Ml/Sgl +1)2 + M2/3Q§ + ,U2/3(j?2,
It is verified that the term within the square root in the last term of H* can

be written as 14 2u'/3¢; + p?/3|G|?. Setting 2 = 2u'/3G¢; + 1?/3|4|?, and using
the formula,

+ '3 — 1)-

1 x 32
=1-S4+=+0(*
Ttz 5+ TOE)
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for |z| < 1, which is satisfied for u sufficiently small, it is verified that,
PSR SO 1, 3.,
H"(q,p) = §|P\ i + w(@1P2 — G2p1) + §|Q| Todi T oWw), (9)

where the term O(,/z) is a real analytic function of ¢ and /i, and
depends continuously p. The Hamiltonian flow is given by,

qg=H";, p=—H", (10)
The Hamiltonian flow takes place on fixed energy surfaces,
Tnn(h) = {(¢,p) € R°|H"(q,p) = —h}. (11)

It is remarked that setting p = 0 defines Hill’s Problem. For small p, the
(rescaled) restricted three-body problem represents a perturbation of order
b

The function H*(p, §) has the form of a Hamiltonian for a perturbed rotat-
ing Kepler problem similar to what occurs in the restricted three-body problem
about the primary mass point. As was studied in [2] for motion about the pri-
mary mass point Pj, this system for g = 0 has the ¢s-axis as an invariant
submanifold for the flow for ¢(t),p(t).

Let g{)* (t) represent the solution on the §s-axis for u = 0. Setting §x =
0,pr = 0,k = 1,2, one obtains an integrable Hamiltonian system of 1 degree
of freedom in the variables (g3, p3). After regularizing collisions, Py moves to
some finite distance d(h) from the origin, where s = 0, and then falls back
to Py for another collision. It continues to do this in a periodic fashion for
all time. This defines a periodic consecutive collision orbit with energy —h
and with period T%. As h varies, T* = T*(h) varies in a continuous manner.
In contrast to the family studied in [2], the family studied here exists for all
energies h. In particular, as h increases to 0, the distance d remains bounded.
The family extends to positive energy h, and d tends to oo as h goes to co. 2

In summary, the family of consecutive collision orbits, for g = 0 for System
(10) on the ¢3-axis with frequency T (h) lies on the energy surface X'gu (h)|,=0.
This family is denoted by F*(h) and an orbit of this family is labeled o (t, h).
This orbit moves a maximal distance d(h). (In the original system given by
(5) one has a similar family of consecutive collision orbits for p = 0 on the
energy surface Xy, given by (6) which move close to Ps to within O(ut/?).

We will prove the following theorem,

Theorem 1 On each fized energy surface Xgu(h) for System (10), there ex-
ists a unique periodic orbit, ¢(t, h, u), for p sufficiently small, where ¢(t, h,0) =

¢*(t,h) and whose period T(u) continuously tends to T(0) = T™*, provided the

2 Tt is noted that there are two consecutive collision orbits, one on the positive §3-axis and
the other on the negative ¢3-axis. We just consider the orbit on the positive axis, without
loss of generality.
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orbit ¢(t, h,0) is non-degenerate. (A # 0 (see (13).)) The orbits of this family,
F(h, ), are symmetric to the §ags-plane, and F(h,0) = F*(h). F(h,u) and
T'(1) depend continuously on y and in a real analytic fashion on /.

We will refer to the orbits of this theorem as polar orbits.

Remark 1 We shall see in the numerical section that the non-degeneracy con-
dition appears to fail only twice: once for h < 0, or once for A > 0, see
Figures 4.1 and 4.6. This is in contrast to the polar orbit in the rotating Ke-
pler problem, which becomes degenerate infinitely many times. This may seem
surprising given the similarities between the Hamiltonians of Hill’s lunar prob-
lem and the rotating Kepler problem. However, we point out several important
differences:

1. The rotating Kepler problem is completely integrable, whereas Hill’s lunar
problem H? is not: the additional terms in the potential describe a tidal
and centrifugal force.

2. The period of the polar orbit in the rotating Kepler problem goes to infinity
as the Jacobi energy goes to 0. For Jacobi energy h > 0, a regularized orbit
moving on the z-axis escapes to infinity. In Hill’s lunar problem, the region
consisting of the intersection of the Hill’s region with the z-axis (containing
the origin) is bounded for all energies h. As a result consecutive collision
orbits in Hill’s lunar problem are periodic for all energies h.

3. From a physical point of view there is a large difference between these
problems. In the rotating Kepler problem, the rotational term gi1p2 — qap1
is due to the rotating coordinate system centered at the larger primary
in 0. In Hill’s lunar problem, the center of rotation is infinitely far away:
the physical meaning of the rotational term is hence more complicated,
resulting in additional terms corresponding to a tidal/centrifugal force.

4. The orbits in Hill’s lunar problem become unstable for large h. Intuitively,
the instability in the polar orbits in Hill’s lunar problem for large energies is
easy to understand: for sufficiently large energy h they spend a considerable
time away from the smaller primary centered at the origin, so that the tidal
forces can destabilize the orbit.

Distance of orbits to the Moon

The map M given by (7) scales the coordinates of the periodic orbits by /1,%
when mapping back to the original (g, p) coordinates of (5). Thus for p small,
the periodic orbits remain close to P> to within the distance, p = O(u%). This
distance, however, is significant and can extend to the L1, Ly Lagrange points.

Bounded period and existence for all energies

We estimate the period of the polar orbit in Hill’s lunar problem. The rota-
tional term drops out on the z-axis, so the energy equals

1
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where we take Hill’s lunar potential restricted to the z-axis, given by V(z) =
—i + %22. Fix the energy to the value h. The particle moves between z = 0
and z = d(h), where d(h) is a solution to V(z) = h. This equation is equivalent
to the cubic equation

22 —2hz—2=0,

which clearly has a unique, positive solution, which can be found with Car-
dano’s formula. Using the energy, we can compute the speed, and find for the
period

1

d(h) 1 d(h)
T*:2/ 7dz:2/ —dz
0 V2h=V(2) 0\ /2h 4222

This integral can be evaluated exactly using elliptic integrals as one may verify
with a computer algebra system such as Maple. The expression is not too
illuminating, and we will only establish a period bound here. We compute

1
™ o= 2 / d(h)du
u=z/d(n) Jo \/Zh + e — d(h)?u?

<2/\/

In other words, the polar orbit in Hill’s lunar problem has a uniform period
bound holding for all h. Furthermore, this period bound is so small that the
polar orbit always closes up before the rotational term can finish even one
revolution. We shall see that the orbit still becomes degenerate due to the
tidal and centrifugal force terms.

1
du =2 —du
— 2 /0 V1—u?

d(h 7+ ay

3 Proof

In this section we prove Theorem 1. It is necessary to regularize the flow since
the consecutive collision orbits for y = 0 collide with P,. After that is done,
making use of the symmetry of the orbits, allows a section to be defined. The
existence of the periodic orbit family then results from an application of the
implicit function theorem.

The main Hamiltonian, H*(§, p), (9), in this paper that we want to regular-
ize has a form similar to the Hamiltonian in [2](Equ. 1, p. 397). The differences
are that roles of the ¢; and ¢y axis are reversed, and (9) has the extra term,

3.
E = +*If1|2 -5

This term is smooth(real analytic) at ¢ = 0, and will not affect the regulariza-
tion.
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It is remarked that the additional term —F; is introduced to the
Hamiltonian differential equations for 13 that are not present in the
Hamiltonian differential equation of p for [2](Equ. 1, p. 397). An-
other notable difference in the Hamiltonians is that the additional
perturbation terms in [2](Equ. 1, p. 397) are O(u), whereas the per-
turbation terms in (9) are O(,/iz) for y small.

The idea of regularization is to make a symplectic transformation of the
coordinates,

(j:F(P7Q)7 ﬁ:G(P7Q>7

where Q € R3, P € R? and a transformation of time ¢ — s, so that in the new
coordinates, the Hamiltonian flow is well defined at collision.

In three degrees of freedom, regularizations are considerably more complex
than in two degrees of freedom, where, for example, the Levi-Civita transfor-
mation can be readily applied. A regularization for three degrees of freedom
is developed and applied in [2] that is ideal for the collision at Ps, since, as
noted, the Hamiltonian H in [2] is very close to H*(§,p).

The regularization in [2] is a higher dimensional M6bius transformation.
It is represented in a clear manner by defining a Jordan algebra that serves
as a generalization of the complex numbers. This is a nonassociative algebra
defined on the space A,, which is isomorphic to R?*! as a vector space. Its
product structure is defined as follows. Write z € A,, as

z =20+ 1121 + 1222 + ... +1n2n,

zi € R! for i = 1,2,...,n. The R-linear multiplication is then defined by
imposing
b = —6ap.
Conjugation is defined as
Z=2z90— 1121 — 1222 — ... — ipZn.
One then obtains, zz = |z|? = 22 + 22 + ... + 22. Division is defined as

1z
RER

N

Although this algebra is commutative, it is non-associative. A measure of the
non-associativity is the ’associator’ a = x(yz) — (zy)z, x,y, z are each in A,,.
Since our variables are of three components, the case n = 2 is of relevance,
where a = (2221 — 122)(i1y2 — i2y1). Further details are in [2].

With coordinates in this Jordan algebra A, we will obtain a simple form for
a symplectic transformation that regularizes collisions. Since the axes in this
paper differ from those in [2], we first interchange the first two components:
4 = (g2,41,ds) and p = (pe, p1,P3). After that, we use the transformation

. 1+P _ Q
Pp=—"7 ng

P (1-P)*> - (QP)P + Q(PP).
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As in [2], we will see that the Hamiltonian I" given by
I'=(1/2)|P = (1,0,0)]*|Q|(H" + h)

regularizes the energy level H*# = —h; we use the time transformation ¢t — s
given by t = [*|g|ldr = (1/2) [*|P — (1,0,0)|?|Q|dT for the rescaling of the
Hamiltonian. The new level set of interest, corresponding to H* = —h will be
denoted by

Sr={(P.Q) eR°II'=0}.

The new Hamiltonian has the form of [2](Equ. 22) with the addition of
the term E(Q, P). Here E(Q,P) = £|P — (1,0,0)[*|Q|* — 2 f*(Q, P), where
f(Q, P) is the first component of the transformation of q.

I= %UP +(1,0,0)]* + 2(h + wa(Q, P))|P — (1,0,0)°}
— 1+ (1/2)E(Q, P)IP — (1,0,0)]*|Q| + O(/p).
The Hamiltonian flow is defined by,
Q =Ip, P =—Ig,

where ' = %. To check that the Hamiltonian flow X(s) = (Q(s), P(s))

is regular at collision orbits, we note that collision occurs when é* (t,h) =
(g*(t),p*(t)) tends to (0,0,0;0,0,00). In the coordinates @, P, any collision
point corresponds to P = (1,0,0) and |Q| = 1; the collision point X (0) =
(0,0,—1;1,0,0). We see that the Hamiltonian I" is smooth near collision points,
so the collision orbit, which we label by X*(s), is indeed regularized and be-
comes a well defined periodic orbit on Y. We will denote its period by S*.

The existence of a unique periodic orbit X (s, Xo, ) near X*(s), X (0, Xo, ft)
Xo, of period S near S* for p sufficiently small, is obtained by the implicit
function theorem, applied to the subset of symmetric orbits, as we shall now
see.

The Hamiltonian flow is symmetric with respect to the §i, ¢3-plane, because
the Hamiltonian H* is invariant under the map

t— 7ta (ljlv(j27qA3af)laﬁ27ﬁ3) - (ljlv 7@27@37 713171327 7133)

Keeping in mind our interchange of components, this implies that the involu-
tion

§— —8, (Q17Q27Q33P17P27P3) — (_Q17Q27Q37P17_P27_P3)'

preserves I'. Solutions that are symmetric with respect to this involution are
characterized by the condition,

Q1(0) = P»(0) = P5(0) = 0.
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This means that symmetric solutions are characterized by three initial values
Q2(0),Q3(0), P;(0). This can be reduced to two initial values on the energy
surface near X*(0). Namely at X*(0) we can verify that

ar
90, — 170 (12)

Thus, by the implicit function theorem, near X*(0), we can eliminate the Q3
coordinate and characterize symmetric solutions by two initial values,

@2(0), P1(0).
In addition, the time of intersection of solutions near X*(0) can be deter-
mined from (12) as s = s(Q2, @3, P1) by the implicit function theorem for p

sufficiently small.
This defines a three-dimensional surface of section

S = {Q2,Q3, P[Q1(0) = P,(0) = P5(0) = 0}.

A solution starting on this section at time s = 0, then reintersecting the
section at time s = S/2 yields a symmetric periodic orbit of period S. This is
satisfied by the consecutive collision orbit, X*(s) with s = §* /2. For this to be
satisfied near X*(s) for small x by a solution X (s, Xy, 1) yields a periodic orbit
of period S(p) near S*, such that S(0) = S*. This can be satisfied provided
the determinant

9(Q1, P, Ps)
(57 Q2(0)7 PI(O))

A= deta (13)

does not vanish at p = 0,5 = 5*/2, X (0) = X*(0). When A # 0 is satisfied, we
say that the periodic orbit ¢(¢, h, 0) is non-degenerate. It is numerically shown
next, in Section 4, that ¢(¢, h,0) is non-degenerate except for two values of h.

This concludes the proof of Theorem 1.

4 Numerical Results

We start with a summary of the numerical results. Throughout, we will be
comparing Hill’s lunar problem with the rotating Kepler problem. The reason
for this is twofold.

— The same type of polar orbit has been studied before in [2]. Comparison
will hence clarify differences and similarities.

— We can consider the two types of polar orbits as part of a larger family
of periodic orbits in the restricted three-body problem. Both the rotating
Kepler problem and Hill’s lunar problem are limit cases where the polar
orbit has a particularly simple form.

Here is a list of the main results. We will write H? for Hill’s lunar problem
and K for the rotating Kepler problem.
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4.0.1 Stability properties for fized :

H°: The polar orbit goes through four bifurcations for h € (—o0,00): they
are a period doubling bifurcation, a simple degeneracy, another simple
degeneracy, and a period halving bifurcation. The polar orbit is elliptic for
h < —1.03 and complex hyperbolic for A > 0.11.3

K: The polar orbit goes through infinitely many simple degeneracies for h €
(—00,0), and the orbit is elliptic for all A < 0. Simple degeneracies occur
whenever the period of the polar orbit is a multiple of 27, the rotation
period of the coordinate system.

4.0.2 Variation of the family F(h, u) with fized p and varying h

We consider small deformations of Hill’s lunar Hamiltonian, i.e. small g in H*
and of the rotating Kepler problem, i.e. i close to 1 in H,,.

HY: The polar orbit starts out as a very eccentric ellipse, staying near the z-
axis: the projection to the xy-plane looks like an oval. After becoming
degenerate twice, the orbit starts to develop a cusp in the yz-projection.

K: The orbit also starts out as a very eccentric ellipse, near the z-axis: the
projection to the xy-plane looks like an oval for very negative energy. As h
increases, the shape ceases to be convex and the orbit becomes degenerate.
With each degeneracy, the winding number of the polar orbit around 0
increases; in other words, the orbit accumulates loops as the Jacobi energy
increases.

4.0.3 A bridge between polar orbits in the rotating Kepler problem and the
restricted three-body problem mear the light primary

Suppose that we are given a smooth l-parameter family of vector
fields depending on a parameter s. In analogy with the results of
Schmidt, [16], we will refer to a smooth 1-parameter family of peri-
odic orbits v, of X, as a bridge for v, varying between v, and ;.

For energy h < —1.50 4 we will see that there is a bridge with constant
Jacobi energy h connecting polar orbits near the smaller primary, meaning
small ¢ in H,,, to polar orbits in the rotating Kepler problem, meaning u = 1
for the Hamiltonian H,,. The orbits near the smaller primary can be continued
to Hill’s lunar problem after rescaling the coordinates.

3 A quick overview of the terminology: by elliptic we mean two conjugate eigenvalues on
the unit circle. This implies a weak form of stability: nearby orbits cannot escape quickly.
By hyperbolic we mean two real eigenvalues: A and 1/\. We add “negative” to indicate that
A < 0. The return map in the spatial problem has four eigenvalues, satisfying the symmetry
property: if X is an eigenvalue, then so are A, 1/\ and 1/). This leaves an one additional
cases in this dimension, namely none of the eigenvalues are purely real, nor do they lie on
the unit circle: we will call this complex hyperbolic.

All forms of hyperbolicity implies instability in the sense that nearby orbits tend to escape
quickly: how quickly depends on the absolute value of the largest eigenvalue.

4 We remind the reader that the critical energy for u = 0.5 equals —2.0.
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For very negative Jacobi energy this bridge does not involve any dynamical
transitions. For larger Jacobi energy, orbits near the light primary are hyper-
bolic, whereas orbits in the rotating Kepler problem are elliptic, so this bridge
necessarily involves bifurcations.

4.0.4 Non-collision polar orbits in the Moon-FEarth system

We continue the polar orbit into the Moon-Earth system where the polar orbit
turns out to be a physical non-collision orbit for sufficiently high Jacobi energy.
A plot of the periapsis and apoapsis as function of the energy is given in Fig-
ure 4.13. It also undergoes a period doubling bifurcation, making a transition
from stable to unstable in the same energy range.

4.1 Details concerning the numerical procedure
4.1.1 Regularization scheme

We will use the Moser-Belbruno-Osipov regularization scheme to regularize the
flow. We use the incarnation due to Moser, which we will refer to as just Moser
regularization, and the incarnation due to Belbruno specialized to collision
orbits as in [2], which we will refer to as Belbruno transform; this scheme was
described in Section 3. Both schemes are detailed in the appendices.

As a short summary, the Moser scheme regularizes the energy hypersurface
below the critical value to the unit cotangent bundle of the three-sphere and
has the advantage that it is global, i.e. no local charts are needed.(see Ap-
pendix) However, to do computations in the Moser scheme we need to impose
constraints to stay on this space, which we view as a submanifold of T*R*;
this leads to a slightly larger computational effort.

The Belbruno transform uses a generalized M&bius transformation, based
on the Jordan algebra described in Section 3. For this regularization scheme,
the advantages and disadvantages as described above are reversed. The scheme
is local, and gives a chart, which some orbits could escape from. On the other
hand, the Belbruno regularization does not require constraints.

4.1.2 Integration scheme

For numerical integration we have used a Taylor integrator with both variable
stepsize and order. The typical order with a double and long double, which
corresponds to about 15-16 digits and 18-19 digits precision, respectively, was
between 20 and 30. We have used three different implementations of the Taylor
integrator: the Taylor translator described in [9], the CAPD-libary, [5], and a
homegrown Taylor library.

To find periodic orbits for p > 0, we made use of a local surface of section
and the familiar homotopy method to follow solutions from p = 0 to the
desired value of p in sufficiently steps of pu. We choose a linear surface of
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section perpendicular to the z-axis. This is useful to follow the orbits for large
parameter changes. As usual, we followed the orbit until it crossed the surface
of section, and found a more accurate intersection by normalizing the flow.

For the stability analysis of the polar orbit, we choose a symmetric surface
of section in line with the proof in Section 3. This has the advantage that the
symmetry properties can be exploited more effectively.

A final remark concerning the Hamiltonian: for the lunar problem we use
the regularization of H#*, the Hamiltonian given in (8), but some care has to
be taken to deal with the catastrophic cancellation in the final term.

4.2 Detailed results
4.2.1 Non-degeneracy of the lunar and Kepler orbit for h <0

To apply the theorem, we need to know whether the non-degeneracy condition
holds. To check this, we numerically compute the linearized return map trans-
verse to the flow. We can represent this as a symplectic 4 x 4-matrix, so its
eigenvalues have some symmetry properties. Namely, if A is an eigenvalue of
a symplectic 4 x 4-matrix, then A, 1/\ and 1/ are also eigenvalues (possibly
equal). In general, this leaves a lot of possibilities. However, it turns out that
the linearized return map is elliptic, i.e. all eigenvalues lie on the unit circle,
for very negative energies h. The behavior for the lunar problem, which is of
primary interest here, turns out to differ from the behavior in the rotating
Kepler problem studied in [2].

See Figure 4.1 for the eigenvalues in the lunar problem. For very negative
energies, the return map is elliptic. For h ~ —1.03, the orbit goes through a
period doubling/halving bifurcation: the orbit goes from being purely elliptic
to mixed elliptic/negative hyperbolic without becoming degenerate; its double
cover does become degenerate.

At energy h ~ —0.86, the orbit itself becomes degenerate resulting in a
positive hyperbolic/negative hyperbolic pair of eigenvalues.

This is in contrast to the situation for the rotating Kepler problem, where
the orbit stays elliptic up to h = 0. Furthermore, the polar orbit in the rotating
Kepler problem becomes degenerate infinitely many times as the energy goes
to 0, and its behavior changes every time when it does. This results in loops
appearing in the perturbations of the rotating Kepler problem. This behavior
was found by Belbruno in [2]. We include an illustration for the convenience
of the reader in Figure 4.3. Most of the other illustrations of the orbits will
involve only projections to the xy- and yz-plane.

Remark 2 The plot in Figure 4.2 was obtained through numerical means, and
we want to point out that one can obtain an analytical expression for the
eigenvalues of the linearized return map.
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Fig. 4.1 The real part of the four eigenvalues for y = 0, the lunar problem, as a function of
the energy h in the Hamiltonian H* for h < 0. Bifurcations from an elliptic to a hyperbolic
eigenvalue appear twice.
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Fig. 4.2 The real part of two eigenvalues for u = 1, the rotating Kepler problem, as a
function of the energy h in the Hamiltonian H,,. All eigenvalues are elliptic, and bifurcations
occur whenever an eigenvalue passes through 1.

4.2.2 Stability properties of the polar orbit in the lunar problem for h > 0

In Hill’s lunar problem, the polar orbit remains a periodic orbit for A > 0,
and its stability properties there are very interesting. To understand the situ-
ation, recall that eigenvalues of a symplectic matrix come with symmetries as
mentioned in Section 4.2.1. In the spatial problem, there are four eigenvalues,
and an orbit can lose stability without becoming degenerate by the following
mechanism:

1. at parameter h; all eigenvalues are elliptic, i.e. on the unit circle.

2. as the parameter h — hy the eigenvalues stay elliptic, but they collide in
pairs: i.e. there are only two distinct eigenvalues.

3. for h > h; the eigenvalues move off the unit circle as sketched in Figure 4.5.
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Fig. 4.3 A periodic polar orbit in RTBP for large mass ratio, close to the rotating Ke-
pler problem. This orbit has picked up many loops as described in Section 4.0.2. On the
right, the zy- and yz-projections of the orbit. The xz-projection can be found in
Figure 4.4.
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Fig. 4.4 The zz-projection of the orbit from Figure 4.3.
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It turns out that this mechanism occurs in for Hill’s lunar problem for
h > 0.

4.0

2.0

real part of eigenvalue

0.2 0.3 0.4 h 0.5

Fig. 4.6 Bifurcation of the polar orbit for A > 0 in Hill’s lunar problem: the real part of
the four eigenvalues of the linearized return map.

We briefly explain the bifurcation points in Figure 4.6.

a the orbit becomes degenerate and goes from being hyperbolic/negative
hyperbolic to elliptic/negative hyperbolic for h ~ 0.044.

b the orbit goes through a period doubling/halving bifurcation: it goes from
elliptic/negative hyperbolic to elliptic/elliptic for h ~ 0.091.

¢ the orbit goes through an eigenvalue collision for A ~ 0.11 and the eigen-
values move from away from the unit circle. They do not appear to return
to the unit circle, so stability seems to be lost for large h > 0. Beyond point
¢, the eigenvalues move “freely” in the complex plane, so the real part has
then little meaning by itself. In particular, the additional “intersection” is
not an intersection in the complex plane.

Remark 3 The same mechanism of losing stability takes place for small > 0.

4.3 Bifurcations

Let v, denote the polar orbit in Hill’s lunar problem as a function
of the energy h. We have found the following bifurcation behavior
of v:

1. a period doubling/halving bifurcation for h € [—1.025245, —1.025225]
and in the interval [0.0909615,0.0909616].

2. asimple degeneracy in two intervals, namely, for h € [—0.85556, —0.85555]
and for h € [0.043843,0.043844].
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3. an eigenvalue collision for h € [0.109989,0.109990].

We verified this statement using a computer-assisted argument with
interval arithmetic to obtain rigorous error bounds. This method
was also used in for example [10]. The above bifurcations of the
polar orbit orbit 4, are recognized by noting that in each case we
have a specific behavior of the eigenvalues of the linearized return
map. Namely,

1. In this case the linearized return map has an eigenvalue equal
to —1 for some parameter in the given interval, and a pair of
eigenvalues moves from the unit circle to the positive real axis
or vice versa.

2. In this case the linearized return map has an eigenvalue equal to 1
for some parameter in the given interval, and a pair of eigenvalues
moves from the unit circle to the positive real axis or vice versa.

3. In this case the linearized return map has two eigenvalues on the
unit circle that are equal, and not equal to —1 or 1 for some pa-
rameter in the given interval, and in addition, the corresponding
pairs of eigenvalues move away from the unit circle.

‘We have proceeded by making the proof from Section 3 more quan-
titative, and we have used the linearized flow to obtain a tight en-
closure of the return map. Such a scheme is similar to the rigorous
bifurcation results in the Rossler system obtained in [18]. We will
briefly outline how we deduced the bifurcations. After obtaining
an enclosure for the return map using the linearized flow, we have
computed the coefficients of the characteristic polynomial of the re-
striction of the linearized flow to a transverse slice. Let us denote
this restriction by . The charcteristic polynomial of ¢ is given by

X(W)(2) = a* = s1()x + s2()2” = s3(¥)a + det(t)).

Here s;(¢) denotes the elementary symmetric polynomial in the
roots of the characteristic polynomial of degree i, so s1(¢) = Tr(¢). A
4x4 symplectic matrix satisfies det(¢)) = 1 and s3(¢)) = s1(¢)). Hence we
can compute the entire characteristic polynomial by just computing
s1 and s5. Using the standard formula for a quadratic polynomial we
find all roots with good error bounds. Based on numerical experiments,
we obtain the following.

Observation 1 The orbit is elliptic for h < —1.03 and complex hyperbolic for
h > 0.11

Although we have checked the statement for some finite intervals using interval
arithmetic, we do not have a full proof that works for all energies.
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4.3.1 Evolution of the polar orbit as a function of the energy

Here we fix a small mass parameter g > 0, namely g = 1070 in the
figures, and vary the energy. We plot the projection to the zy-plane and to
the yz-plane, and look at the evolution as function of the energy. The typical
situation for h < 0 is drawn in Figure 4.7. For h > 0, the typical situation is
drawn in 4.8 with the pointed tip in the yz-plane becoming more pronounced
as the energy increases.

8:10° 0.0
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0 0.3
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810° -0.6
0 110° 210° 310° 410° -810° -410° 0 410° y8-10‘5
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Fig. 4.7 The zy- and the yz-projection of a periodic polar orbit in the lunar problem:
uw=10"1%and h = —1.5

0.002 4.0
y z
0.001 3.0
0.000 2.0
-0.001 1.0
-0.002 0.0
-0.004 -0.003 -0.002 -0‘001)(0.000 -0.002 -0.001 0.000 0.001 y0.()02

Fig. 4.8 The xy- and the yz-projection of a periodic polar orbit in the lunar problem:
u=10"10 and h = +8.0

Remark 4 Periodic polar solutions can be found in Hill’s lunar problem for
all energies, even for h > 0. Indeed, the Hill’s region becomes unbounded, but
remains bounded in the z-direction. This is of course not true for the restricted
three-body problem, which we will discuss next.

4.8.2 Solutions for the restricted three-body problem

The solutions we find for the rescaled Hamiltonian H* can be continued to
larger p as solutions for the unrescaled problem. The energy is rescaled, and
periodic polar orbits do not exist for all energies anymore. Indeed, for h > 0
the orbits will typically escape a given region around the masses.
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For small p and suitably rescaled energy, the behavior of the orbits is of
course the same as before. We will just mention one case that is of partic-
ular interest, namely the case g ~ 0.01215, which is the mass ratio of the
Moon/Earth. We found that the periodic polar orbit can be continued to suf-
ficiently large h ~ —1.52 such that it is no longer a physical collision orbit. This
value of the Jacobi energy exceeds that of the first critical value. A 3d-plot of
this orbit is given in Figure 4.9.
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Fig. 4.9 A periodic polar orbit in RTBP for the mass ratio Moon-Earth. The minimal
distance to the center of the Moon, the black ball, is 4389 km. This orbit is mixed el-
liptic/negative hyperbolic. Projections to the zy- and yz-plane are drawn on the
right.The projection to the zz-plane is drawn in Figure 4.10.
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Fig. 4.10 The projection to the zz-plane of the orbit from Figure 4.9.

We also remark that solutions in the restricted three-body problem include
the families discussed in [2]. In the next section we see that the new family
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from the main theorem is for some energies a continuation of an orbit found
in [2].

4.3.3 Evolution of the polar orbit as a function of

Here we fix the Jacobi energy of the Hamiltonian H,, and start at small,
and small positive o at a near collision orbit. We will investigate how the
polar orbit v, evolves as ;1 changes from small values to p = 1. This
gives part of a bridge connecting the polar orbits from this paper to the polar
orbits from [2].

Remark 5 We point out that the part of the bridge indicated in the figures
here is in the unrescaled problem. In other words, we are using the Hamiltonian
H,,, rather than H*.

The bridge is constructed using a numerical homotopy. The homotopy becomes
more difficult to carry out, i.e. smaller parameter steps are needed, for larger
h. In particular, for h close to —1.5, the period of polar orbits near the smaller
primary becomes very large.

‘We make the following observations

— When /£ is sufficiently negative, e.g. h < —2, there are no bifurca-
tions in the evolution of the polar orbit as the mass parameter
goes from small ;1 to large p. In particular, v, is elliptic in this
case.

— The projection of the orbit 7, to the zy-plane grows in area as
i increases until the area reaches a maximum near p ~ 0.5, after
which the projection shrinks to a point for 4 =1 (which is is col-
lision orbit). This is illustrated in zy-projections of Figures 4.11
and 4.12. Also note that the projection of the orbit does not
bound a convex region for large u.

— For larger Jacobi energy h, the polar orbit in the lunar prob-
lem becomes hyperbolic, whereas the polar orbit in the rotating
Kepler problem, i.e. H,, with © = 1, remains elliptic. For these
values of h, a bridge involves bifurcations.

4.3.4 Periapsis, apoapsis for Moon-FEarth system

We approximate the Moon-Earth system with the restricted three-body prob-
lem. For the distance Earth-Moon we take 386,000 km. Following the above
scheme we find the polar orbit as a function of the Jacobi energy. It turns
out that the polar orbit does not collide with the Moon for sufficiently large
energy. We have included a plot of the periapsis and of the apoapsis of the
polar orbit.

The stability properties of the polar orbit in the Moon-Earth system,
though similar to those of the Hill’s lunar system, are plotted in Figure 4.14.
The bifurcation point indicates a period doubling/halving bifurcation.



A Family of Periodic Orbits in the Three-Dimensional Lunar Problem 21

y z
1 =0.02
0.00
0.010 010
=1 =0.18 -0.05
0.005 m—lu=0.26 .0.10
=——u=034
=042 O
0.000 L=050 -0.20
-0.005 -0.25
-0.30
-0.010 -0.35
0.002 20.001 0.000 0010 0005 0.000 0.005 0,010
X

Fig. 4.11 The zy- and yz-projection of an orbit in the bridge from lunar to
rotating Kepler: for h = —2.0 as p varies from 0 to 0.5

y z
0.010 |l =0.52 0.0
|l =0.68 -0.1
0.005 m— 1 =0.76
|1 =0.84 0.2
0.000 —=0.92
-0.3
-0.005
-0.4
-0.010 05
-0.0020 -0.0010 0.0000 7-0.010 -0.005 0.000 0.005 0.010
X y

Fig. 4.12 The zy- and yz-projection of an orbit in the bridge from lunar to
rotating Kepler: for h = —2.0 as p varies from 0.5 to 1.0
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Fig. 4.13 Periapsis (left) and apoapsis (right) in km as function of the Jacobi energy. At
the light blue line, the orbit just hits the surface of the Moon (taken to have a radius of
1716 km), and at the dark blue line, the orbit reaches a periapsis that is least 50 km above
the surface.

The effect of the instability that appears after the period doubling/halving
bifurcation is indicated in Figure 4.15. We make the following observation: the
periapsis of the polar orbit exceeds 1766 km (just 50km above the surface of
the Moon) just before losing stability. The values are so close though that the
approximations we made (circular restricted three-body problem) most likely
spoil stability of a physical non-collision orbit.
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Fig. 4.14 The real part of the eigenvalues of the linearized return map for the polar orbit
in the Moon-Earth system as function of the Jacobi energy.
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Fig. 4.15 An orbit starting close to the periodic polar orbit: it is shifted by about 400 km
in the y-direction (orbits are fairly stable under shifts in the z-direction), and followed for
five periods of the polar orbit.
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Appendix: Regularization in coordinates

Moser regularization is based on n—dimensional stereographic projection. The
position and momentum variables are given by ¢ = (q1,¢2,...,¢n) € R™ |
p = (p1,p2,..-sDn) € R™. (q,p) € T*R™ is the tangent bundle of R", where we
think of R as a chart for S™ = {|¢|*> = X &2 = 1}, € = (&0,&1, -, ). We
set © = —p and y = ¢, and define the tangent bundle of S™ as

TS" ={(&n) e TR [P =1, (& m) = TLo&n: = 0}.
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To go from T*S™ to T*R™ we use the map
x = 3
1—-¢ (14)
y = o + (1 — &),
where € = (&1,&2, ..., &,). Collision corresponds to &y = 1.
To go from T*R"™ to T*S", we use the inverse given by
2
z|* -1
i
|z|2 4+ 1
g . 2z
2P+l (15)
o = —(z,y)
_ JzP+1
="y~ {zy

The Belbruno transform employs a Mébius transformation which sends to
the collision point |p| = oo to P = (1,0,...,0) € R™. In coordinates for three
dimensions(the index j = 2, 3), the forward Belbruno transformation is given

by
leigﬁer%M@HJ)
Q; = |p‘22+ 1Qj +p1g; — Piq1 — (¢, P)p;
2
e :z]j+_1l1
2 .
%ZMH%P'

The inverse Belbruno transform is given by

1—|P|?
w=""or@pm -
P2+1
q; = %Qj - PQ;+ PQ:1—(Q,P)P;
_1—|P]?
P11 = 7|P— 1‘2
2P

Pi=1p—ape
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Appendix: Hamiltonian vector field with constraints

The setup is the following. We are given a manifold M, which is a symplectic
submanifold of the symplectic manifold (N, {2). We denote the inclusion by
t: M — N, and the induced symplectic form on M by w := (*£2. We assume
that M = f;71(0) N 5 2(0). In addition, we are given a Hamiltonian function
Hy : N — R, and we have the induced Hamiltonian Hjy; = +*Hy. In our case
N =T*R*"! and M :=T*S™.

The functions that define M are
1.5 1

In our case, the symplectic manifold N = T*R"*! has a global chart, but
T*S™ has not. We will give a formula for the Hamiltonian vector field Xy on
M in terms of Hamiltonian vector field on N. In our example, this means that
we can use the global coordinates on N = T*R"*!. We have

XH:XHN+Cle1+CQXf2 (16)
where

Z@HN _OHy 0

Xuy —_—
" < oy 0¢; 0 oy

j=

af1 0 df:1 0 0
Xy = Ja vy Y Y _
! Z a77J 651 85]' 8773' EJ:@ 3771

Ofy 0 Ofs 0 0 0
Xy, = g2 Y Y2 Y _ 7, 2
% Z < On; 9&; 95 O Zg] 3 i o

_ dfz(XHN) __{f2Hn}
B df2(Xf1) - {fhfz}
o — dfi(Xuy) _ {fi,Hn}
Tdh(Xp) (N f)

{fQ’HN}

={f1,Hn}.

The Poisson brackets, defined by {f, g} := w(Xy, X,} are of course not needed
to do the computations, but the clarify that the situation is if M is symplectic
submanifold of higher codimension, where a matrix filled with {f;, f;} has to
be inverted. A computation shows that the above vector field is tangent to the
submanifold M and that it is the Hamiltonian vector field.
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