2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

SORA: Scalable Overlap-graph Reduction
Algorithms for Genome Assembly using Apache
Spark in the Cloud

Alexander J. Paul', Dylan Lawrence?, Myoungkyu Song?, Seung-Hwan Lim*, Chongle Pan®, Tae-Hyuk Ahn%*
'Bioinformatics and Computational Biology Program, Saint Louis University, St. Louis, MO, US
2Computational and Systems Biology Program, Washington University in St. Louis, St. Louis, MO, US
3Department of Computer Science, University of Nebraska at Omaha, Omaha, NE, US
4Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, US
5School of Computer Science, University of Oklahoma, Norman, OK, US
6Department of Computer Science, Saint Louis University, St. Louis, MO, US
L6 falex.paul,ted.ahn} @slu.edu,?dylan.lawrence @ wustl.edu,> myoungkyu @unomaha.edu,*lims1 @ornl.gov,’cpan @ou.edu
*Corresponding author

Abstract—The advent of high-throughput DNA sequencing
techniques has permitted very high quality de novo assemblies
of genomes, but raise an issue of requiring large amounts of
computer memory to resolve the large genome graphs generated
by most overlap graph de novo assemblers. To address these
limitations, we present a novel algorithmic approach; Scalable
Overlap-graph Reduction Algorithms (SORA). SORA adapts
string graph reduction algorithms for the genome assembly
using a distributed computing platform. To efficiently compute
coverage for enormous paths in the graphs, SORA uses Apache
Spark which is a cluster-based engine designed on top of Hadoop
to handle very large datasets in the cloud. The experimental
results show that SORA can process a nearly one billion edge
graph in a distributed cloud cluster as well as smaller graphs
on a local cluster with a short turnaround time. Moreover,
our algorithms scale almost linearly with increasing numbers
of virtual instances in the cloud. SORA is freely available for
download at https://github.com/BioHPC/SORA/ .

Index Terms—graph reduction, apache spark, genome assem-
bly, cloud, overlap-layout-consensus,

I. INTRODUCTION

De novo genome assembly—the reconstruction process of
aligning and merging complete genome sequences from frag-
mented DNA sequences—is essential and inherently chal-
lenging in bioinformatics research [1]. After next-generation
sequencing (NGS) techniques [2]-[4] have been introduced,
tremendous changes and impacts happened on biological
sciences, especially genomics [4]. NGS has revolutionized
DNA sequencing by reducing the overall sequencing cost
and increasing throughput, read length, and read accuracy;
however, NGS requires analysis of a significant amount of
sequencing data. According to previous studies [5], NGS
has several limitations. For example, the fragmented DNA
sequences (i.e., reads) have lengths (100~400bp) which are
shorter than the sequence lengths generated by first-generation
Sanger sequencing (500~1000bp). Third-generation sequenc-
ing techniques including Pacific Biosciences (PacBio) and

978-1-5386-5488-0/18/$31.00 ©2018 IEEE 718

Oxford Nanopore can provide long reads up to 60 kbp that
greatly benefits in de novo genome assembly [6], but NGS is
still dominant with low cost and low error rate.

The complexity of genome assembly is caused by multiple
circumstances including the ploidy and heterozygosity, mainly
affected by two factors: the number of reads and the length of
the reads. Due to the complexity in genomic analysis, a time
complexity and a space complexity of de novo assemblers are
very sensitive for newly released sequencing techniques. To
cope with both speed and sensitivity, most de novo genome as-
semblers adapt two widely used assembly paradigms: Overlap-
layout-consensus (OLC) and de Bruijin graph (DBG) [7]. In
the era of first-generation sequencing techniques, OLC ap-
proaches, such as Celera [8], have achieved adequate accuracy
to accommodate the long reads and low sequencing depth
generated by Sanger sequencing. Newbler [9], an assembler
for Roche / 454 Life Sciences, also used OLC paradigm.
Most OLC-based genome assemblers compute the sequence
assembly of whole, complex genomes based on three steps:
(1) finding Overlaps among all reads or between fragments
to model a graph, (2) building a stretched Layout of the
overlap-graph, and (3) determining the most likely Consensus
sequence.

As an alternative approach to designing alignment and as-
sembly algorithms, NGS techniques have emerged to produce
shorter reads, but at much higher throughput. In NGS, DBG-
based assemblers have been widely used to decompose reads
into k-mers. Several techniques use memory-efficient DBG
traversal to reduce the memory footprint of an assembly (e.g.,
efficient search for redundant k-mers), including Velvet [10],
AbySS [11] and SOAPdenovo [12]. In contrast to the OLC ap-
proach which is less computationally efficient (e.g., expensive
memory consumption and execution time for each assembler),
most DBG assemblers use a genome-sized graph with less
dependence on the sequencing depth, but create a larger
memory overhead. The DBG approach performs relatively fast

overlapping computation for short and high-throughput reads,
while the OLC approach performs better for longer reads.
These techniques use hashing based algorithms which have
higher relative error rates but perform faster than the OLC
approach. [13].

Recently, probabilistic algorithms using the MinHash tech-
nique have been developed to efficiently detect numerous
overlaps between noisy, long reads from third-generation se-
quencing data [14], [15]. Canu, a successor of Celera assem-
bler that is specifically designed for long and noisy single-
molecule sequences [15]. However, assembling raw or pro-
cessed sequences still generates a computationally expensive
overlap graph that must be reduced or simplified. Additionally,
the analysis of reads with a large amount of overlap is
not easily parallelized as it requires extensive computational
resources in both memory and processing time. As a result,
these assemblers do not scale to large genomes. Few MPI-
based scalable assemblers were previously proposed including
Ray [16], AbySS [11], and SWAP2-Assembler [17], but the
scalability and performance of the assemblers are limited and
restricted.

To address these limitations, we present a novel OLC based
algorithmic approach for genome assembly, called Scalable
Overlap-graph Reduction Algorithms (SORA). SORA sup-
ports large-scale parallel processing by leveraging Apache
Spark.! Spark provides an open source, general purpose,
and distributed computing engine for cluster based compu-
tation [18], [19]. It performs efficient in-memory computation
for fast large scale data processing in data intensive clus-
ter computation. Unlike conventional distributed processing
frameworks such as Apache Hadoop,?> Spark caches datasets
to memory which can increase the computational performance
up to 100x faster for interactive jobs and iterative analytics.

Based on the Spark’s cluster computing engine, SORA
computes the genome assemblies by resolving repetitive se-
quences either in the cloud or on a local cluster system.
SORA performs genome assembly by applying three overlap-
graph reduction algorithms, Transitive Edge Reduction, Dead-
End Removal, and Composite Edge Contraction algorithms,
respectively. It processes a large-scale dataset containing a
graph with nearly one billion edges with a short turnaround
time on a distributed cloud computing cluster as well as a
smaller dataset containing a graph with over 8 million edges on
a local computing cluster. Spaler [20] is another Apache Spark
and GraphX based de novo genome assembler using DBG
construction and contraction, but SORA is the first proposed
Spark-based scalable assembler using OLC approach in our
limited knowledge. Our benchmark results demonstrate two
main thrusts; (1) SORA realizes a cloud scalable de novo
genome assembler by leveraging a state of the art graph pro-
cessing framework, Spark; (2) SORA shows the applicability
of cloud computing infrastructures to genome assembly and
other biological applications using graph algorithms.

! Apache Spark — https:/spark.apache.org
2 Apache Hadoop — http://hadoop.apache.org

719

II. BACKGROUND

A. Overlap-Layout-Consensus

The first step in OLC, Overlap, typically finds overlaps
of reads by all-to-all pair-wise alignments. To find overlaps
between reads efficiently a prefix/suffix hash table technique
is a popular technique for overlap-based genome assembly
[21]. To efficiently find all reads overlapping with a read
r, every proper substring of minimum overlap in read r is
searched in the hash table, and all retrieved reads are compared
with the read r. As a result, the Overlap step constructs an
overlap-graph that places reads as nodes and assigns an edge
between two nodes when the two corresponding reads overlap
by more than a specified cutoff. The number of nodes is equal
to the number of unique reads, but the number of edges is
dependent on the number of overlaps between reads. In the
Layout and Consensus steps, the constructed overlap-graph
is reduced and stretched into the most probable contiguous
sequences, called contigs. The Layout step is a Hamiltonian
path problem that is required to travel every read in the
graph to produce longer sequences. The final Consensus step
considers the alignment of all the original reads onto the draft
contigs from the Layout step and utilizes a simple majority-
based consensus to clean up draft sequences. To decrease
extraneous edges in the graph, SORA adapts three overlap-
graph reduction algorithms such as Transitive Edge Reduction
(TER), Composite Edge Contraction (CEC), and Dead-End
Removal (DER) [22]. Section III describes the details of how
SORA applies these overlap-graph reduction algorithms.

B. Apache Spark

Apache Spark is a cluster-based engine to process large-
scale datasets. In contrast to Hadoop that processes data on-
disk, Spark provides a built-in batching system which handles
input data stream in-memory, divides the data into batches for
each node of a cluster, and generates the final stream of results
in batches. To support a distributed graph-parallel computation
in Spark, GraphX supplies graph abstraction models and a set
of fundamental operations. It allows SORA to manipulate and
execute queries on graphs represented as database entries. The
design and implementation in SORA leverages a collection
of computational operations in GraphX for graph loading,
construction, transformation, and computations.

Although SORA is currently implemented in Scala, the
design is portable and the core components are designed
to be adapted with lower development costs by using other
programming languages such as Java or Python.

III. OVERLAP-GRAPH REDUCTION ALGORITHMS

This section describes how SORA adapts three overlap-
graph reduction algorithms to the distributed cloud computing
cluster using Spark. Figure 1 illustrates the overview of each
workflow how each algorithm computes the overlap-graph
reduction.

(c) CEC

(x2, £3, x4, ¥6, £7, £8)

Fig. I. The overlap-graph reduction algorithms: (a) Transitive Edge Reduction
(TER). (b) Dead-End Removal (DER), and (¢) Composite Edge Contraction
(CEC).

A. Transitive Edge Reduction

Transitive edge reduction is a method of reducing complex-
ity in graphs and helps provide clearer contigs by eliminating
extraneous paths in the graph. After finding overlaps, the initial
overlap graph contains many unnecessary edges. Note that
read a overlaps read b which overlaps read ¢ subsequently,
which results in a shorter overlap length between read a and
read ¢. Then, the string graph edge @ — ¢ is unnecessary
because one can use the edges @ — b — ¢ without a — ¢ to
spell the same sequence. The edge a — ¢ is then identified as
a transitive edge and is deleted. Removing all transitive edges
significantly simplifies the overlap graph without losing any
information.

The general transitive edge reduction algorithm takes
O(ED) time where E is the number of edges and D is
the maximum out degree for the read, but Myer proposed
a linear O(F) expected time transitive reduction algorithm
shown in [22]. In Algorithm 1 we use the GraphX library
operators to implement the transitive edge reduction algo-
rithm based on graph-parallel abstraction. After construct-
ing the initial property graph from the edge properties,
the aggregateMessages operator can compute the set
of neighbors for each vertex and retrieve the edge prop-
erties including overlap length at the same time. The re-
quired set of neighbors can be joined with the graph using
outerJdoinVertices. After comparing overlap lengths of
the edges for each vertex in parallel, the edges are marked as
TRUE if the edges can be removed. The subgraph operator
returns a new graph containing only the edges not marked for
removal.

B. Dead-End Removal

Dead-End Removal (DER) eliminates short dead-ends or
spurs from the graph, reduces erroneous reads, and decreases
the graph complexity. The short dead-end paths are mostly
caused by sequencing errors and false-positive joins of over-
lapping of chimeric sequences. Most assemblers identify the

Algorithm 1 Spark Algorithm for Transitive Edge Reduction

Input: Let overlapG be an overlap graph G(V. E).
Output: Let reducedG be a reduced graph G(V', E").

: /f Compute the set of neighbors for each vertex.

2 neighborVix = aggregateMessages{overlapG(V, E)) {

3 for v £ V do

4 ort +— getOrientation{v}

5 sendToSre(getDstld(v), ort, getOverlapLen(v))

6 sendToDst(getSrcld(v), ort, getOverlapLen(v))

% end for

8 }

9/ Join graph with neighbors.

10: joinedG = outerJoinVertices(overlapG(V.E).neighborVix)

11: I Traverse each edge and mark frue if the edge is removable.

12 markedG = mapTriplets(joinedG(V, E) {
1% for e £ edges of adjacent vertices of a vertex in V do

14 if getOverlapLen(e) < getMaxOverlapLen(e) then
15 e lrue

16 end if

172 end for

19: /f Remove the marked edge using subgraph.
20: reducedG = subgraph(markedG(V. E))

Algorithm 2 Spark Algorithm for Dead End Removal

Input: Let overlapG be an overlap graph G(V, E).
Output: Let reducedG be a reduced graph G(V', E").

12/ Compute the infout edge counts for each vertex.

2 inOutVix = aggregateMessages(overlapG(V, E)) {

M for v € V do

4 ort +— getOrientation(v)

51 il ort == +— then

o sendToSre(1,0); sendToDst(1.0)

% end if

& ifort == > —— < then

9 sendToSre((,1): sendToDst(0,1)

10: end if

1 if ort == = || ort == «—~ then

12: sendToSre(0,1): sendToDst(1,0)

13 end if

14: end for

15}

16: !/ Join graph with neighbors,

17: joinedG = outerJoinVertices(overlapG(V. E). inOutVix)
18: // Traverse each edge and mark frue if the edge is removable.

19: markedG = mapTriplets(joinedG(V. E) {
20, for e € edges of adjacent vertices of a vertex in V do

21 if e.out == () then
n ¢ — true

23 end if

24 end for

26: /f Remowve the marked edge using subgraph,
27: reducedG = subgraph(markedGi(V. E))

dead-ends by considering short length edges with low-depth
coverage to be dead-ends.

Algorithm 2 describes the DER algorithm based on the
GraphX operators. Algorithm 2 takes as input the reduced
graph that Algorithm 1 has produced as the output and
executes the aggregateMessages operator to compute the
number of edges going in and out of each vertex depending on
the orientation of the edge. This information can be joined with
the input reduced graph by using cuterJoinVertices.
In parallel, if the number of outgoing edges from a node
is zero and the edge can be removed mark the edge TRUE.
The subgraph operator returns a new graph with the edges
marked TRUE removed.

C. Composite Edge Contraction

Composite Edge Contraction (CEC) reduces the computa-
tional complexity by processing larger volumes of data in the

graph. Especially, CEC merges vertices guaranteed to process
the graph without loss of information. In the case of OLC, a
read is represented for branching to two additional reads which
deviate from each other by one nucleotide, both of which then
overlap back to the same read. In contrast to OLC, the CEC
algorithm simplifies the path analysis by removing redundancy
and reducing complexity of the graph, considering only the
contractible edges without loss of information. To simplify the
overlap graph, a simple vertex, r, along with its in-arrow edge
(u, r) and out-arrow edge (r,w), are replaced by a composite
edge (u,w) in the overlap graph.

Algorithm 3 describes the CEC by using the operators of
GraphX and GraphFrames. After receiving the reduced graph
from Algorithm 2, the operator aggregateMessages com-
putes the number of edges going in and out of each vertex
depending on the orientation of the edge. The result of a
processed set of vertices and edges is integrated with the input
reduced graph by using the operator cuterJoinVertices,
The operator mapTriplets is parallelized to investigate
the edges of each adjacent vertex to determine whether the
vertex only includes a pair of incoming and outgoing edges.
It then marks the edge TRUE if they can be contracted. The
subgraph operator returns a new graph with only the con-
tractable edges. The operator connectedComponent iden-
tifies the connection relationship among contractible vertices
and produces the vertex information with the vertex IDs for
the connected contractible subgraphs. Given the contractible
vertex information, the operator innerJoin performs an
inner join between each contractible and internal vertex to
produce a set of the new vertex properties, which is used in
the operator aggregateUsingIndex to aggregate the con-
tracted vertices ensuring consistency by joining the IDs among
vertices. Then, the operator subgraph filters out the edges
marked FALSE to remove the contractible edges from the
original graph. Finally, the operator cuterJoinVertices
generates the contracted edges, which parameterize the oper-
ator graph to construct a new reduced graph.

IV. EXPERIMENTAL RESULTS

Figure 2 shows a practical pipeline of genome assembly us-
ing SORA. In our experiments, we applied three overlap-graph
reduction algorithms (Transitive Edge Reduction, Dead-End
Removal, and Composite Edge Contraction) in SORA to two
different types of benchmark datasets. For the first experiment
described in Section IV-A, we downloaded a metagenomic
dataset from a repository Sequence Read Archive at the
National Center for Biotechnology Information (NCBI) [21].%
The metagenomic dataset is considerably large containing
mixed DNA especially 64 diverse bacterial and archaeal mi-
croorganisms [23]. For the second experiment described in
Section IV-B, we obtained a single genome dataset of Conyza
canadensis (also known as horseweed) [24].

3The accession number is SRX200676.

Algorithm 3 Spark Algorithm for Composite Edge Contrac-
tion

Input: Let overlapG be an overlap graph G(V. E).
Output: Let contractedG be a contracted graph G(V'. E").
1: ff Compute the infout edge counts for each vertex.

2 imOwVix = aggregateMessages(overlapG(V. E)) {
for v € V do

ort +— getOrientation{v)

if ort == +— then

sendToSre(1.,0): sendToDst(1,0)

end if

ifot == > —— < then
@ sendToSre(0,1); sendToDst(0.1)
0 end if
1 if ort == »— or ort == «— then
12 sendToSrc(0,1}; sendToDst(1.0}
13: end if
14: end for
15}
16 Join graph vertices with m/out edge counts.
17: joinedG = outerJoinVertices(overlapG(V, E), inOutVix)
1%: N Traverse euch edge and mark frue if edge is contractuble.
19 markedG = mapTriplets(joinedG(V, E)) {
20 for e € edges of adjacent vertices of a vertex in V do

o

21 if e.out == | and e.in == | then

2 e — lrue

2% end if

26; end for

25: /f Remove the edges marked true using subgraph

26 contraG = subgraph(markedG(V, E))

27 /f Caleulate the connected components for each node.

2% conVix = connectedComponents(contraG(V, E))

29: /f Combine connected vertices with graph,

a: dupVix = vertices.innerjoinimarkedG(V, E). conVix)

31 contraVix = vertices.aggregateUsingIndex(markedG(V, E). dupVix)
3% /f Remove the edges marked false using subgraph,

33: remainedG = subgraph{markgedG(V. E))

34 contraEdges = outerJoinVertices(remainedG(V, E), conVix)

35 ff Generate a new graph using the modified edges and vertices,

36: contractedG = graphicontraVix, contraEdges)

High-Throughput Reads
(fasta or fastq)

Y

Overlapper
(BBTools — Dedupe)

Overlap l e

Overlap Graph
{unitig graph)
Layout < SORA
GraphX
GraphFrames

S
Spark’ Graphx

Reduced Graph

\ R
mm m
nx=

Consensus 7 P .
v

Consensus Tool
(E.g. Racon)

Assembled Sequences
(Contigs)

Fig. 2. Overview of analysis pipeline using SORA.

A. Metagenomic Dataset Analysis

In the experiment, we observed that SORA significantly
reduced the number of reads in the metagenomic datasets,

TER and DER/CEC Modules

2
=3
o
kS
QE, Module
e DER/GEG
x 24
TER
£ [|
o
3
=

Quarter Half Full
5 10 15 5 10 15 5 10 15
Number of Nodes

Fig. 3. Wall-clock time for different number of nodes with the metagenomic
dataset.

which consequently allows binning of the contigs to re-
construct genomic bins more quickly and efficiently. The
benchmark was performed on Amazon Web Service (AWS)
Elastic Computing Cloud (EC2) 15 m4.xlarge instances where
each instance (node) has 2.3 GHz Intel Xeon E5-2686 v4
(Broadwell) processors (4 vCPU) and 16 GB memory.

1) Overlap Graph Construction: The sequence dataset ob-
tained from NCBI contains 100-bp roughly 109 million paired-
end. Reads shorter than 60bp and containing multiple Ns
were removed using Sickle (https://github.com/najoshi/sickle)
and error correction was done using the BBNorm
(https://sourceforge.net/projects/bbmap).

2) Transitive Edge Reduction: The Transitive Edge Reduc-
tion (TER) step showed a drastic reduction on the number
of edges in the graph. Table I shows the reduction results
according to three types of data size such as quarter, half, and
full datasets. Given the full dataset with 868 million edges,
the TER algorithm generated the reduced graph consisting of
57.4 million edges with 93.39% reduction.

Figure 3 shows the efficient scalability of the TER algorithm
where the computational time decreases as the number of
cluster nodes increases. For example, the TER algorithm
completed the reduction of the graph using 5 cluster nodes
in 2.92 hours, while completing with 15 cluster nodes in 1.37
hours.

3) Dead-End Removal and Composite Edge Contraction:
Table I shows the evaluation results of the combination of two
algorithms Dead-End Removal (DER) and Composite Edge
Contraction (CEC) with the quarter, half, and full datasets.
Given the quarter dataset containing 12.5 million edges, the
combined DER-CEC algorithm generated the reduced graph

722

TABLE 1
THE OVERLAP-GRAPH REDUCTION RESULTS WITH THE METAGENOMIC
DATASET. #EDGE DENOTES THE NUMBER OF EDGES OF THE GRAPH AND
TIME THE RUNNING TIME (HOURS) FOR THE COMPUTATION.

Algorithm Size #EDGE (before) #EDGE (after) TIME
TER Quarter 217,002,504 12,482,946 0.57
Half 434,005,009 23,318,401 0.80
Full 868,010,019 57,363,515 1.37
DER-CEC Quarter 12,482,946 469,130 0.13
Half 23,318,401 763,474 0.23
Full 57,363,515 2,341,610 0.40

with 0.5 million edges with 96% reduction; given the full
dataset with 57.3 million edges, the DER-CEC algorithm
resulted in the reduced graph comprising 2.3 million edges
with 95.97% reduction.

Figure 3 shows the scalability of the combined DER-CEC
algorithm by measuring each running time per different num-
bers of cluster nodes within the same sized dataset. As taking
one of the best examples in the full dataset, we compared
the running time between 5 and 15 cluster nodes. The DER-
CEC algorithm completed the reduction of the graph using
5 cluster nodes in 1.35 hours, while fast completing with 15
cluster nodes in 0.4 hours.

4) Benchmark to Omega: To demonstrate the benefits of
SORA’s distributed cloud computation, we compared two
approaches: SORA and Omega. Omega is another overlap
graph metagenome assembler implemented in C++ [21]. We
could choose another baseline application such as Spaler [20],
which is a Spark-based de novo genome assembler using
DBG, but it is not publicly available to download. SORA
shows higher performance with 1.77 hour running time than
Omega with 7.5 hour running time. In addition to efficient
speedy performance, SORA uses the less amount of system
memory compared to Omega since it breaks down the graph
computation tasks to process them in parallel, thereby allowing
more of the graph to be in memory and speeding up the
analysis.

B. Horseweed Dataset Analysis

To show the flexibility and usability of SORA, we applied
SORA to a single genome dataset to generate a reduced graph.
Total size of 72 FASTQ paired-end files is 108 GB. We used
a local computational workstation that has 32 cores (Intel
Xeon Processor E5-2640 V3 2.6GHz) and 128 GB of memory
(DDR4 2133MHz ECC).

1) Overlap Graph Construction: To demonstrate a large
dataset genome assembly from single genome, we imple-
mented a shell script as a batch process that performs error
correction on the genome dataset, finds overlaps of the cor-
rected reads and generates a large overlap graph, and thereafter
executes SORA. The dataset was initially processed for the
normalization and graph construction containing 8.3 million
edges. The pipeline including SORA completed the assembly
in 9.75 hours where the SORA core modules (TER, DER, and
CEC) took less than 10 minutes.

2) Transitive Edge Reduction: Table II shows the evalu-
ation result of the TER algorithm with the single genome
dataset containing 8.3 million edges. The TER algorithm
produced the reduced graph consisting of 5.4 million edges.
This step also was efficient with memory consumption not
requiring above 22% of overall memory (128 GB total system
memory).

3) Dead-End Removal and Composite Edge Contraction:
Table II also shows the results of overlap-graph reduction
of the combined DER-CEC algorithm with the dataset—the
graph containing 5.4 million edges that the TER algorithm
generated above. The DER-CEC algorithm completed the
computation in 8.23 minutes with the maximum 37% con-
sumption of the 128 GB total memory.

TABLE I
THE OVERLAP-GRAPH REDUCTION RESULTS WITH THE HORSEWEED
DATASET. #EDGE DENOTES THE NUMBER OF EDGES OF THE GRAPH AND
TIME THE RUNNING TIME FOR THE COMPUTATION.

#EDGE (before)
8,259,543
5,386,287

#EDGE (after)
5,386,287
1,027,959

TIME (mins)
1.02
8.23

TER
DER-CEC

V. DISCUSSION AND CONCLUSION

As the price of sequencing continues to drop and the
emergence and fine tuning of new sequencing technologies
increase the amount of raw data is growing exponentially.
Current algorithms can handle the large influx of raw reads
but require a large and expensive computational cluster with
a large amount of computer memory. This is generally only
available to large labs that can afford to buy and maintain a
computational cluster. SORA helps bridge this gap for smaller
labs by providing an efficient method for contigs generation
using distributed computing in the cloud. This provides all labs
the ability to analyze whole genome sequencing and generate
novel sequenced contigs.

OLC models are a well-known method for de novo assem-
bly, but can be problematic for large amounts of short reads
leading to false alignments. This increases the computational
memory needed for storing and analyzing the graphs generated
from these reads efficiently. SORA can handle these problems
by using the Apache Spark engine to manage the distributed
computation in the cloud. Apache Spark efficiently uses in
memory storage across multiple nodes to provide a perfor-
mance boost compared to standard disk reading and writing
which would normally be required for large datasets on a
single computer.

ACKNOWLEDGEMENTS

TA is supported by NSF-1566292, NSF-1564894, Saint
Louis University President’s Research Fund 2018, and Ama-
zon Web Service (AWS) Cloud Credits for Research. DL
is supported by T32 HGO000045 from the National Human
Genome Research Institute.

723

(1]
(2]
(3]

(4]

[5

[t}

(el
(7]
(8]
(91
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

[23]

(24]

REFERENCES

P. Flicek and E. Birney, “Sense from sequence reads: methods for
alignment and assembly,” Nat Methods, vol. 6, no. 11 Suppl, pp. S6-S12.
W. J. Ansorge, “Next-generation dna sequencing techniques,” New
biotechnology, vol. 25, no. 4, pp. 195-203, 2009.

D. G. Hert, C. P. Fredlake, and A. E. Barron, “Advantages and
limitations of next-generation sequencing technologies: a comparison
of electrophoresis and non-electrophoresis methods,” Electrophoresis,
vol. 29, no. 23, pp. 4618-4626, 2008.

M. L. Metzker, “Sequencing technologies - the next generation,” Nature
Reviews Genetics, vol. 11, no. 1, pp. 31-46.

P. K. Wall, J. Leebens-Mack, A. S. Chanderbali, A. Barakat, E. Wolcott,
H. Liang, L. Landherr, L. P. Tomsho, Y. Hu, J. E. Carlson et al., “Com-
parison of next generation sequencing technologies for transcriptome
characterization,” BMC genomics, vol. 10, no. 1, p. 347, 2009.

J. Eid and et al., “Real-time dna sequencing from single polymerase
molecules,” Science, vol. 323, no. 5910, pp. 133-8.

J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for next-
generation sequencing data,” Genomics, vol. 95, no. 6, pp. 315-27.

E. W. Myers and et al., “A whole-genome assembly of drosophila,”
Science, vol. 287, no. 5461, pp. 2196-204.

M. Margulies and et al., “Genome sequencing in microfabricated high-
density picolitre reactors,” Nature, vol. 437, no. 7057, pp. 376-80.

D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de bruijn graphs,” Genome Res, vol. 18, no. 5, pp. 821-9.
J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome Res, vol. 19, no. 6, pp. 1117-23.

R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li,
G. Shan, K. Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang, “De
novo assembly of human genomes with massively parallel short read
sequencing,” Genome Res, vol. 20, no. 2, pp. 265-72.

M. Pop, “Genome assembly reborn: recent computational challenges,”
Brief Bioinform, vol. 10, no. 4, pp. 354-66.

K. Berlin, S. Koren, C. S. Chin, J. P. Drake, J. M. Landolin, and A. M.
Phillippy, “Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing,” Nat Biotechnol, vol. 33, no. 6, pp. 623—
30.

S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and
A. M. Phillippy, “Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation,” Genome Res, vol. 27,
no. 5, pp. 722-736.

S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: Simultaneous assembly
of reads from a mix of high-throughput sequencing technologies,”
Journal of Computational Biology, vol. 17, no. 11, pp. 1519-1533.

J. Meng, S. Seo, P. Balaji, Y. Wei, B. Wang, and S. Feng, “Swap-
assembler 2: Optimization of de novo genome assembler at extreme
scale,” in 2016 45th International Conference on Parallel Processing
(ICPP), 2016, pp. 195-204.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: cluster computing with working sets,” pp. 10-10, 2010.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing,” pp. 2-2,
2012.

A. Abu-Doleh and U. V. Catalyurek, “Spaler: Spark and graphx based
de novo genome assembler,” in 2015 IEEE International Conference on
Big Data (Big Data), 2015, pp. 1013-1018.

B. Haider, T.-H. Ahn, B. Bushnell, J. Chai, A. Copeland, and C. Pan,
“Omega: an overlap-graph de novo assembler for metagenomics,” Bioin-
formatics, vol. 30, no. 19, pp. 2717-22.

E. W. Myers, “The fragment assembly string graph,” Bioinformatics,
vol. 21 Suppl 2, pp. ii79-85.

M. Shakya, C. Quince, J. H. Campbell, Z. K. Yang, C. W. Schadt,
and M. Podar, “Comparative metagenomic and rrna microbial diversity
characterization using archaeal and bacterial synthetic communities,”
Environmental Microbiology, vol. 15, no. 6, pp. 1882-1899.

Y. Peng, Z. Lai, T. Lane, M. Nageswara-Rao, M. Okada, M. Jasieniuk,
H. O’Geen, R. W. Kim, R. D. Sammons, L. H. Rieseberg, and C. N.
Stewart, “De novo genome assembly of the economically important
weed horseweed using integrated data from multiple sequencing plat-
forms,” vol. 166, no. 3, pp. 1241-1254, 2014.

