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Abstract—The advent of high-throughput DNA sequencing
techniques has permitted very high quality de novo assemblies
of genomes, but raise an issue of requiring large amounts of
computer memory to resolve the large genome graphs generated
by most overlap graph de novo assemblers. To address these
limitations, we present a novel algorithmic approach; Scalable
Overlap-graph Reduction Algorithms (SORA). SORA adapts
string graph reduction algorithms for the genome assembly
using a distributed computing platform. To efficiently compute
coverage for enormous paths in the graphs, SORA uses Apache
Spark which is a cluster-based engine designed on top of Hadoop
to handle very large datasets in the cloud. The experimental
results show that SORA can process a nearly one billion edge
graph in a distributed cloud cluster as well as smaller graphs
on a local cluster with a short turnaround time. Moreover,
our algorithms scale almost linearly with increasing numbers
of virtual instances in the cloud. SORA is freely available for
download at https://github.com/BioHPC/SORA/ .

Index Terms—graph reduction, apache spark, genome assem-
bly, cloud, overlap-layout-consensus,

I. INTRODUCTION

De novo genome assembly—the reconstruction process of

aligning and merging complete genome sequences from frag-

mented DNA sequences—is essential and inherently chal-

lenging in bioinformatics research [1]. After next-generation

sequencing (NGS) techniques [2]–[4] have been introduced,

tremendous changes and impacts happened on biological

sciences, especially genomics [4]. NGS has revolutionized

DNA sequencing by reducing the overall sequencing cost

and increasing throughput, read length, and read accuracy;

however, NGS requires analysis of a significant amount of

sequencing data. According to previous studies [5], NGS

has several limitations. For example, the fragmented DNA

sequences (i.e., reads) have lengths (100∼400bp) which are

shorter than the sequence lengths generated by first-generation

Sanger sequencing (500∼1000bp). Third-generation sequenc-

ing techniques including Pacific Biosciences (PacBio) and

Oxford Nanopore can provide long reads up to 60 kbp that

greatly benefits in de novo genome assembly [6], but NGS is

still dominant with low cost and low error rate.

The complexity of genome assembly is caused by multiple

circumstances including the ploidy and heterozygosity, mainly

affected by two factors: the number of reads and the length of

the reads. Due to the complexity in genomic analysis, a time

complexity and a space complexity of de novo assemblers are

very sensitive for newly released sequencing techniques. To

cope with both speed and sensitivity, most de novo genome as-

semblers adapt two widely used assembly paradigms: Overlap-

layout-consensus (OLC) and de Bruijin graph (DBG) [7]. In

the era of first-generation sequencing techniques, OLC ap-

proaches, such as Celera [8], have achieved adequate accuracy

to accommodate the long reads and low sequencing depth

generated by Sanger sequencing. Newbler [9], an assembler

for Roche / 454 Life Sciences, also used OLC paradigm.

Most OLC-based genome assemblers compute the sequence

assembly of whole, complex genomes based on three steps:

(1) finding Overlaps among all reads or between fragments

to model a graph, (2) building a stretched Layout of the

overlap-graph, and (3) determining the most likely Consensus

sequence.

As an alternative approach to designing alignment and as-

sembly algorithms, NGS techniques have emerged to produce

shorter reads, but at much higher throughput. In NGS, DBG-

based assemblers have been widely used to decompose reads

into k-mers. Several techniques use memory-efficient DBG

traversal to reduce the memory footprint of an assembly (e.g.,

efficient search for redundant k-mers), including Velvet [10],

AbySS [11] and SOAPdenovo [12]. In contrast to the OLC ap-

proach which is less computationally efficient (e.g., expensive

memory consumption and execution time for each assembler),

most DBG assemblers use a genome-sized graph with less

dependence on the sequencing depth, but create a larger

memory overhead. The DBG approach performs relatively fast
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overlapping computation for short and high-throughput reads,

while the OLC approach performs better for longer reads.

These techniques use hashing based algorithms which have

higher relative error rates but perform faster than the OLC

approach. [13].

Recently, probabilistic algorithms using the MinHash tech-

nique have been developed to efficiently detect numerous

overlaps between noisy, long reads from third-generation se-

quencing data [14], [15]. Canu, a successor of Celera assem-

bler that is specifically designed for long and noisy single-

molecule sequences [15]. However, assembling raw or pro-

cessed sequences still generates a computationally expensive

overlap graph that must be reduced or simplified. Additionally,

the analysis of reads with a large amount of overlap is

not easily parallelized as it requires extensive computational

resources in both memory and processing time. As a result,

these assemblers do not scale to large genomes. Few MPI-

based scalable assemblers were previously proposed including

Ray [16], AbySS [11], and SWAP2-Assembler [17], but the

scalability and performance of the assemblers are limited and

restricted.

To address these limitations, we present a novel OLC based

algorithmic approach for genome assembly, called Scalable

Overlap-graph Reduction Algorithms (SORA). SORA sup-

ports large-scale parallel processing by leveraging Apache

Spark.1 Spark provides an open source, general purpose,

and distributed computing engine for cluster based compu-

tation [18], [19]. It performs efficient in-memory computation

for fast large scale data processing in data intensive clus-

ter computation. Unlike conventional distributed processing

frameworks such as Apache Hadoop,2 Spark caches datasets

to memory which can increase the computational performance

up to 100x faster for interactive jobs and iterative analytics.

Based on the Spark’s cluster computing engine, SORA

computes the genome assemblies by resolving repetitive se-

quences either in the cloud or on a local cluster system.

SORA performs genome assembly by applying three overlap-

graph reduction algorithms, Transitive Edge Reduction, Dead-

End Removal, and Composite Edge Contraction algorithms,

respectively. It processes a large-scale dataset containing a

graph with nearly one billion edges with a short turnaround

time on a distributed cloud computing cluster as well as a

smaller dataset containing a graph with over 8 million edges on

a local computing cluster. Spaler [20] is another Apache Spark

and GraphX based de novo genome assembler using DBG

construction and contraction, but SORA is the first proposed

Spark-based scalable assembler using OLC approach in our

limited knowledge. Our benchmark results demonstrate two

main thrusts; (1) SORA realizes a cloud scalable de novo

genome assembler by leveraging a state of the art graph pro-

cessing framework, Spark; (2) SORA shows the applicability

of cloud computing infrastructures to genome assembly and

other biological applications using graph algorithms.

1Apache Spark – https://spark.apache.org
2Apache Hadoop – http://hadoop.apache.org

II. BACKGROUND

A. Overlap-Layout-Consensus

The first step in OLC, Overlap, typically finds overlaps

of reads by all-to-all pair-wise alignments. To find overlaps

between reads efficiently a prefix/suffix hash table technique

is a popular technique for overlap-based genome assembly

[21]. To efficiently find all reads overlapping with a read

r, every proper substring of minimum overlap in read r is

searched in the hash table, and all retrieved reads are compared

with the read r. As a result, the Overlap step constructs an

overlap-graph that places reads as nodes and assigns an edge

between two nodes when the two corresponding reads overlap

by more than a specified cutoff. The number of nodes is equal

to the number of unique reads, but the number of edges is

dependent on the number of overlaps between reads. In the

Layout and Consensus steps, the constructed overlap-graph

is reduced and stretched into the most probable contiguous

sequences, called contigs. The Layout step is a Hamiltonian

path problem that is required to travel every read in the

graph to produce longer sequences. The final Consensus step

considers the alignment of all the original reads onto the draft

contigs from the Layout step and utilizes a simple majority-

based consensus to clean up draft sequences. To decrease

extraneous edges in the graph, SORA adapts three overlap-

graph reduction algorithms such as Transitive Edge Reduction

(TER), Composite Edge Contraction (CEC), and Dead-End

Removal (DER) [22]. Section III describes the details of how

SORA applies these overlap-graph reduction algorithms.

B. Apache Spark

Apache Spark is a cluster-based engine to process large-

scale datasets. In contrast to Hadoop that processes data on-

disk, Spark provides a built-in batching system which handles

input data stream in-memory, divides the data into batches for

each node of a cluster, and generates the final stream of results

in batches. To support a distributed graph-parallel computation

in Spark, GraphX supplies graph abstraction models and a set

of fundamental operations. It allows SORA to manipulate and

execute queries on graphs represented as database entries. The

design and implementation in SORA leverages a collection

of computational operations in GraphX for graph loading,

construction, transformation, and computations.

Although SORA is currently implemented in Scala, the

design is portable and the core components are designed

to be adapted with lower development costs by using other

programming languages such as Java or Python.

III. OVERLAP-GRAPH REDUCTION ALGORITHMS

This section describes how SORA adapts three overlap-

graph reduction algorithms to the distributed cloud computing

cluster using Spark. Figure 1 illustrates the overview of each

workflow how each algorithm computes the overlap-graph

reduction.
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Fig. 3. Wall-clock time for different number of nodes with the metagenomic
dataset.

which consequently allows binning of the contigs to re-

construct genomic bins more quickly and efficiently. The

benchmark was performed on Amazon Web Service (AWS)

Elastic Computing Cloud (EC2) 15 m4.xlarge instances where

each instance (node) has 2.3 GHz Intel Xeon E5-2686 v4

(Broadwell) processors (4 vCPU) and 16 GB memory.

1) Overlap Graph Construction: The sequence dataset ob-

tained from NCBI contains 100-bp roughly 109 million paired-

end. Reads shorter than 60bp and containing multiple Ns

were removed using Sickle (https://github.com/najoshi/sickle)

and error correction was done using the BBNorm

(https://sourceforge.net/projects/bbmap).

2) Transitive Edge Reduction: The Transitive Edge Reduc-

tion (TER) step showed a drastic reduction on the number

of edges in the graph. Table I shows the reduction results

according to three types of data size such as quarter, half, and

full datasets. Given the full dataset with 868 million edges,

the TER algorithm generated the reduced graph consisting of

57.4 million edges with 93.39% reduction.

Figure 3 shows the efficient scalability of the TER algorithm

where the computational time decreases as the number of

cluster nodes increases. For example, the TER algorithm

completed the reduction of the graph using 5 cluster nodes

in 2.92 hours, while completing with 15 cluster nodes in 1.37

hours.

3) Dead-End Removal and Composite Edge Contraction:

Table I shows the evaluation results of the combination of two

algorithms Dead-End Removal (DER) and Composite Edge

Contraction (CEC) with the quarter, half, and full datasets.

Given the quarter dataset containing 12.5 million edges, the

combined DER-CEC algorithm generated the reduced graph

TABLE I
THE OVERLAP-GRAPH REDUCTION RESULTS WITH THE METAGENOMIC

DATASET. #EDGE DENOTES THE NUMBER OF EDGES OF THE GRAPH AND

TIME THE RUNNING TIME (HOURS) FOR THE COMPUTATION.

Algorithm Size #EDGE (before) #EDGE (after) TIME

TER Quarter 217,002,504 12,482,946 0.57

Half 434,005,009 23,818,401 0.80

Full 868,010,019 57,363,515 1.37

DER-CEC Quarter 12,482,946 469,130 0.13

Half 23,818,401 763,474 0.23

Full 57,363,515 2,341,610 0.40

with 0.5 million edges with 96% reduction; given the full

dataset with 57.3 million edges, the DER-CEC algorithm

resulted in the reduced graph comprising 2.3 million edges

with 95.97% reduction.

Figure 3 shows the scalability of the combined DER-CEC

algorithm by measuring each running time per different num-

bers of cluster nodes within the same sized dataset. As taking

one of the best examples in the full dataset, we compared

the running time between 5 and 15 cluster nodes. The DER-

CEC algorithm completed the reduction of the graph using

5 cluster nodes in 1.35 hours, while fast completing with 15

cluster nodes in 0.4 hours.

4) Benchmark to Omega: To demonstrate the benefits of

SORA’s distributed cloud computation, we compared two

approaches: SORA and Omega. Omega is another overlap

graph metagenome assembler implemented in C++ [21]. We

could choose another baseline application such as Spaler [20],

which is a Spark-based de novo genome assembler using

DBG, but it is not publicly available to download. SORA

shows higher performance with 1.77 hour running time than

Omega with 7.5 hour running time. In addition to efficient

speedy performance, SORA uses the less amount of system

memory compared to Omega since it breaks down the graph

computation tasks to process them in parallel, thereby allowing

more of the graph to be in memory and speeding up the

analysis.

B. Horseweed Dataset Analysis

To show the flexibility and usability of SORA, we applied

SORA to a single genome dataset to generate a reduced graph.

Total size of 72 FASTQ paired-end files is 108 GB. We used

a local computational workstation that has 32 cores (Intel

Xeon Processor E5-2640 V3 2.6GHz) and 128 GB of memory

(DDR4 2133MHz ECC).

1) Overlap Graph Construction: To demonstrate a large

dataset genome assembly from single genome, we imple-

mented a shell script as a batch process that performs error

correction on the genome dataset, finds overlaps of the cor-

rected reads and generates a large overlap graph, and thereafter

executes SORA. The dataset was initially processed for the

normalization and graph construction containing 8.3 million

edges. The pipeline including SORA completed the assembly

in 9.75 hours where the SORA core modules (TER, DER, and

CEC) took less than 10 minutes.
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2) Transitive Edge Reduction: Table II shows the evalu-

ation result of the TER algorithm with the single genome

dataset containing 8.3 million edges. The TER algorithm

produced the reduced graph consisting of 5.4 million edges.

This step also was efficient with memory consumption not

requiring above 22% of overall memory (128 GB total system

memory).

3) Dead-End Removal and Composite Edge Contraction:

Table II also shows the results of overlap-graph reduction

of the combined DER-CEC algorithm with the dataset—the

graph containing 5.4 million edges that the TER algorithm

generated above. The DER-CEC algorithm completed the

computation in 8.23 minutes with the maximum 37% con-

sumption of the 128 GB total memory.

TABLE II
THE OVERLAP-GRAPH REDUCTION RESULTS WITH THE HORSEWEED

DATASET. #EDGE DENOTES THE NUMBER OF EDGES OF THE GRAPH AND

TIME THE RUNNING TIME FOR THE COMPUTATION.

#EDGE (before) #EDGE (after) TIME (mins)

TER 8,259,543 5,386,287 1.02

DER-CEC 5,386,287 1,027,959 8.23

V. DISCUSSION AND CONCLUSION

As the price of sequencing continues to drop and the

emergence and fine tuning of new sequencing technologies

increase the amount of raw data is growing exponentially.

Current algorithms can handle the large influx of raw reads

but require a large and expensive computational cluster with

a large amount of computer memory. This is generally only

available to large labs that can afford to buy and maintain a

computational cluster. SORA helps bridge this gap for smaller

labs by providing an efficient method for contigs generation

using distributed computing in the cloud. This provides all labs

the ability to analyze whole genome sequencing and generate

novel sequenced contigs.

OLC models are a well-known method for de novo assem-

bly, but can be problematic for large amounts of short reads

leading to false alignments. This increases the computational

memory needed for storing and analyzing the graphs generated

from these reads efficiently. SORA can handle these problems

by using the Apache Spark engine to manage the distributed

computation in the cloud. Apache Spark efficiently uses in

memory storage across multiple nodes to provide a perfor-

mance boost compared to standard disk reading and writing

which would normally be required for large datasets on a

single computer.

ACKNOWLEDGEMENTS

TA is supported by NSF-1566292, NSF-1564894, Saint

Louis University President’s Research Fund 2018, and Ama-

zon Web Service (AWS) Cloud Credits for Research. DL

is supported by T32 HG000045 from the National Human

Genome Research Institute.

REFERENCES

[1] P. Flicek and E. Birney, “Sense from sequence reads: methods for
alignment and assembly,” Nat Methods, vol. 6, no. 11 Suppl, pp. S6–S12.

[2] W. J. Ansorge, “Next-generation dna sequencing techniques,” New

biotechnology, vol. 25, no. 4, pp. 195–203, 2009.
[3] D. G. Hert, C. P. Fredlake, and A. E. Barron, “Advantages and

limitations of next-generation sequencing technologies: a comparison
of electrophoresis and non-electrophoresis methods,” Electrophoresis,
vol. 29, no. 23, pp. 4618–4626, 2008.

[4] M. L. Metzker, “Sequencing technologies - the next generation,” Nature

Reviews Genetics, vol. 11, no. 1, pp. 31–46.
[5] P. K. Wall, J. Leebens-Mack, A. S. Chanderbali, A. Barakat, E. Wolcott,

H. Liang, L. Landherr, L. P. Tomsho, Y. Hu, J. E. Carlson et al., “Com-
parison of next generation sequencing technologies for transcriptome
characterization,” BMC genomics, vol. 10, no. 1, p. 347, 2009.

[6] J. Eid and et al., “Real-time dna sequencing from single polymerase
molecules,” Science, vol. 323, no. 5910, pp. 133–8.

[7] J. R. Miller, S. Koren, and G. Sutton, “Assembly algorithms for next-
generation sequencing data,” Genomics, vol. 95, no. 6, pp. 315–27.

[8] E. W. Myers and et al., “A whole-genome assembly of drosophila,”
Science, vol. 287, no. 5461, pp. 2196–204.

[9] M. Margulies and et al., “Genome sequencing in microfabricated high-
density picolitre reactors,” Nature, vol. 437, no. 7057, pp. 376–80.

[10] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo short read
assembly using de bruijn graphs,” Genome Res, vol. 18, no. 5, pp. 821–9.

[11] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and
I. Birol, “Abyss: a parallel assembler for short read sequence data,”
Genome Res, vol. 19, no. 6, pp. 1117–23.

[12] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li,
G. Shan, K. Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang, “De
novo assembly of human genomes with massively parallel short read
sequencing,” Genome Res, vol. 20, no. 2, pp. 265–72.

[13] M. Pop, “Genome assembly reborn: recent computational challenges,”
Brief Bioinform, vol. 10, no. 4, pp. 354–66.

[14] K. Berlin, S. Koren, C. S. Chin, J. P. Drake, J. M. Landolin, and A. M.
Phillippy, “Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing,” Nat Biotechnol, vol. 33, no. 6, pp. 623–
30.

[15] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and
A. M. Phillippy, “Canu: scalable and accurate long-read assembly via
adaptive k-mer weighting and repeat separation,” Genome Res, vol. 27,
no. 5, pp. 722–736.

[16] S. Boisvert, F. Laviolette, and J. Corbeil, “Ray: Simultaneous assembly
of reads from a mix of high-throughput sequencing technologies,”
Journal of Computational Biology, vol. 17, no. 11, pp. 1519–1533.

[17] J. Meng, S. Seo, P. Balaji, Y. Wei, B. Wang, and S. Feng, “Swap-
assembler 2: Optimization of de novo genome assembler at extreme
scale,” in 2016 45th International Conference on Parallel Processing

(ICPP), 2016, pp. 195–204.
[18] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,

“Spark: cluster computing with working sets,” pp. 10–10, 2010.
[19] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing,” pp. 2–2,
2012.

[20] A. Abu-Doleh and U. V. Catalyurek, “Spaler: Spark and graphx based
de novo genome assembler,” in 2015 IEEE International Conference on

Big Data (Big Data), 2015, pp. 1013–1018.
[21] B. Haider, T.-H. Ahn, B. Bushnell, J. Chai, A. Copeland, and C. Pan,

“Omega: an overlap-graph de novo assembler for metagenomics,” Bioin-

formatics, vol. 30, no. 19, pp. 2717–22.
[22] E. W. Myers, “The fragment assembly string graph,” Bioinformatics,

vol. 21 Suppl 2, pp. ii79–85.
[23] M. Shakya, C. Quince, J. H. Campbell, Z. K. Yang, C. W. Schadt,

and M. Podar, “Comparative metagenomic and rrna microbial diversity
characterization using archaeal and bacterial synthetic communities,”
Environmental Microbiology, vol. 15, no. 6, pp. 1882–1899.

[24] Y. Peng, Z. Lai, T. Lane, M. Nageswara-Rao, M. Okada, M. Jasieniuk,
H. O’Geen, R. W. Kim, R. D. Sammons, L. H. Rieseberg, and C. N.
Stewart, “De novo genome assembly of the economically important
weed horseweed using integrated data from multiple sequencing plat-
forms,” vol. 166, no. 3, pp. 1241–1254, 2014.


