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Abstract

Background: Metagenomics is the application of modern genomic techniques to investigate the members of a

microbial community directly in their natural environments and is widely used in many studies to survey the
communities of microbial organisms that live in diverse ecosystems. In order to understand the metagenomic
profile of one of the densest interaction spaces for millions of people, the public transit system, the MetaSUB
international Consortium has collected and sequenced metagenomes from subways of different cities across the
world. In collaboration with CAMDA, MetaSUB has made the metagenomic samples from these cities available for
an open challenge of data analysis including, but not limited in scope to, the identification of unknown samples.

Results: To distinguish the metagenomic profiling among different cities and also predict unknown samples

precisely based on the profiling, two different approaches are proposed using machine learning techniques; one is
a read-based taxonomy profiling of each sample and prediction method, and the other is a reduced representation
assembly-based method. Among various machine learning techniques tested, the random forest technique showed
promising results as a suitable classifier for both approaches. Random forest models developed from read-based
taxonomic profiling could achieve an accuracy of 91% with 95% confidence interval between 80 and 93%. The
assembly-based random forest model prediction also reached 90% accuracy. However, both models achieved
roughly the same accuracy on the testing test, whereby they both failed to predict the most abundant label.

Conclusion: Our results suggest that both read-based and assembly-based approaches are powerful tools for the
analysis of metagenomics data. Moreover, our results suggest that reduced representation assembly-based methods
are able to simultaneous provide high-accuracy prediction on available data. Overall, we show that metagenomic
samples can be traced back to their location with careful generation of features from the composition of microbes
and utilizing existing machine learning algorithms. Proposed approaches show high accuracy of prediction, but
require careful inspection before making any decisions due to sample noise or complexity.

Reviewers: This article was reviewed by Eugene V. Koonin, Jing Zhou and Serghei Mangul.
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Background

While microbes make up a significant proportion of the
biomass on the planet, their contributions to the func-
tion of most environments have only recently been
explored. Starting in the 1980s with 16S rRNA profiling
to metagenomic analyses today we have begun to probe
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how these microbial assemblages, the microbiome, shape
their environments. Metagenomics, specifically, has fun-
damentally changed the way we think of the microbial
landscape of countless biological and environmental
spaces. From profiling soil communities [1, 2] to investi-
gating the microbiome associated with human health and
diseases [3], we can now explore how the microbiome
creates harmony with other organisms in these spaces.
Metagenomic profiling has been particularly explored
as a function of microbial impact on human health and
diseases. This exploration exists as a function of direct
analysis of human derived samples and samples of the
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human occupied environment. In 2007, the framework
for the Human Microbiome Project (HMP) was set
forward [3]. This project was a direct consequence of
the Human Genome Project failing to account for the
total function found to exist within the human body.
The project sought to clearly define the concept of a
core microbiome of healthy human participants while
accounting for lifestyle, environment, physiology, etc. By
2012, after generating over 5000 samples and 3.5 teraba-
sepairs (Tbp) of next-generation sequencing (NGS) data,
the HMP identified trends in the structure of human
microbiome, but also an incredible amount of diversity
[4, 5]. This diversity stems from multiple backgrounds of
human samples relative to phenotype, lifestyle, and coun-
try of origin [6-8]. Moreover, changes in the human
microbiome have been associated with Clostridioides
difficile infection [9-11], bacterial vaginosis [12-15],
Parkinson’s disease [16], and potentially even common-
place challenges with mental health [17, 18].

As humans spend roughly 90% of their time indoors,
the frequent association with microbial populations and
human health has prompted deep exploration into the
microbial landscape of the built environment [19]. Clear
associations have been found in built environment-asso-
ciated microbiomes as a function of ventilation, building
purpose, and even within buildings as a function of
room-purpose [20-24]. Of particular interest to human
health is the microbiome of public transit systems,
ever-increasing resources upon which millions of people
rely every day. A recent analysis of New York City public
transit systems showed a wealth of microbial data that is
unable to be annotated as well as a microbial diversity
that correlates with the diversity of the public transit
users [25]. An analysis of the Hong Kong subway system
showed that the airborne microbiome dynamically
changes with human density [26]. These results often
largely corroborate findings of human-derived samples
that show high levels of diversity and that multiple fac-
tors explain the variance of the datasets.

With the increasing number of trends correlated with
microbiome data is an increasing amount of data to be
analyzed for any particular question. For example the
HMP, as of 2012, had already generated nearly 3.5 Tbhp
of sequences after application of a quality control proto-
col from a total 8.8 Tbp that included human sequence
removal, quality filtering and trimming of reads [4]. As
of 2017, the second phase of the study (HMP1-II)
increased the volume to over 24 Tbp [27] and total post
analysis data could be a few times bigger than the
sequences alone. It is only now becoming commonplace
for labs to store that much data, but it is rare for labs to
have the capacity to analyze that much data. In addition
to the obvious challenge of metagenome assembly, there
are increasing trends toward quantifying the total
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genomic content of a species (pan-genomes) [28], com-
paring disparate metagenomes, and even the functional
analysis of those metagenomes. All of this brings
forward an interesting computational challenge that has
to be addressed moving forward. These computational
challenges are a prime example of big data explorations
in the biological sciences, a key interest of the commit-
tee on the Critical Assessment of Massive Data Analysis
(CAMDA) [29]. In 2018, one of their major challenges is
the construction and fingerprinting of a city-specific
metagenome as characterized by the city’s subway
system [30]. Here, we present our interpretation of
that challenge.

Over the past decade, diverse metagenomics software
tools have been developed for 16S analysis and shotgun
metagenomic analysis [31]. Shotgun metagenomics data
can be analyzed using several different approaches. The
methodological approaches can be divided into two
categories: read-based and assembly-based [32]. Read-based
metagenomics analysis is useful for quantitative community
profiling and identification of organisms especially if rele-
vant references are available. MetaPhlAn2 [33] identifies
clade-specific marker genes for evidence of the associated
clade presence. This allows for rapid assignment relative to
a small database as compared to a full database including
many whole genomes using the mapping aligner, Bowtie2
[34]. Nucleotide taxonomic classification tools including
Kraken [35], Centrifuge [36], and Megan [37] are generally
used for precise estimation of taxonomic abundances by
aligning reads to k-mers or full reference genomes.
Assembly-based workflows attempt to assemble the reads
from one or more samples, group (bin) the contigs from
these samples into genomes, then analyze the genes and
contigs. Megahit [38], MetaSPAdes [39], and IDBA-UD
[40] are the most widely used k-mer based assemblers for
high-throughput NGS metagenomic data. Most meta-
genomic classification tools match reads or assembled
contigs against a database of microbial genomes to identify
the taxon of each sequence. Several strain-level resolution
taxonomic profilers were recently developed [41-45].

There are few software tools providing the sta-
tistical methods and machine learning modules to
derive microbiome-phenotype associations along with
metagenomics-based prediction using taxonomic
profiling. For example, MetAML [46] was developed
for metagenomics-based prediction tasks and for
quantitative assessment of the strength of potential
microbiome-phenotype associations. Reiman et al.
[47] explored convolutional neural network to pre-
dict the phenotype of a genomic sample based on its
microbial taxonomic abundance profile. Additionally,
VirFinder [48] was developed for virus contig identi-
fication with a k-mer frequency-based machine
learning model from metagenome assemblies.
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However, they all vary from the goal of our work
which is to compare two widely-used methodological
approaches, read-based and assembly-based, for
metagenomics researches with multiple machine
learning methods and a focus on extremely large
data sets.

In this paper, we present two approaches using various
machine learning techniques. First, we propose a read-
based taxonomy profiling and prediction method. Both
genus and species level information are explored as
machine learning features and used for prediction from
individual metagenomic profiling of samples. Second, we
investigate a reduced-representation assembly-based ma-
chine learning prediction method. From various experi-
ments using diverse machine learning techniques in the
two proposed approaches, the Random Forest (RF) tech-
nique outperforms other machine learning techniques
with a higher level of accuracy.

Methods

Data sets

CAMDA delegates received access to hundreds of novel
MetaSUB samples, comprising several hundred gigaba-
sepairs (Gbp) of whole genome shotgun (WGS) meta-
genomics data. Samples were collected from multiple
surfaces in mass-transit systems (handrails, ticket
machines screens and keypads, plastic, metal, wooden
benches, etc.). The primary data set covered multiple
cities around the world, with tens of samples per city.
The info of samples of eight different cities are provided
in Table 1. Together, they form a unique resource for
the study of biodiversity within and across geographic
locations or surface types.

In addition to the primary data set, complementary
independent data sets were provided for exploration. In
our analysis, we focused on the presentation of 30 new
samples that accompanied the goal of predicting the city
of origin. Throughout our analysis we refer to this set as
the ‘the test set’ or ‘the unknown data set’. The challenge
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also provided two other questions, not addressed here,
about ‘mystery’ cities not featured in the primary data
set. The number of samples and sequence sizes of that
primary data set are described in Table 1.

Computing facilities

We performed the large scale analyses using in-house
computing facilities. One workstation (Intel Xeon
E5-2640 v3 2.6GHz 16 cores 32 threads, 128GB RAM,
50 TB disk), one small cluster (3 nodes, each node has
24 cores 48 threads with 2 X Intel Xeon E5-2650 v4
2.2GHz and 256GB memory, 50 TB disk), and a univer-
sity computer cluster consisting of 100 compute nodes,
the 20 newest of which contain Intel Xeon E5-2690 v3
@ 2.60GHz processors. We especially used high memory
nodes with 512GB of RAM, 117 TB InfiniBand con-
nected network storage, and Infiniband interconnection
of nodes.

Sample preprocessing

BBDuk of the BBTools suite [49], designed for filtering
or trimming reads for adapters and contaminants using
k-mers, was used for quality filtering and for the removal
of potential adapter contamination from all the samples.
Specifically, reads were trimmed for quality from both
the right and left termini (option: qtrim =rl) at a quality
threshold of Q10 (option: trimq = 10). Adapters were re-
moved based on the precompiled list of adapters in
BBDuk.

Approach

In order to efficiently handle the magnitude of data re-
quired for this analysis, we opted to explore these data
using two major approaches that greatly reduce the compu-
tational load of analyses at any given time: one is a
read-based taxonomy profiling and quantification, and the
other is a metagenome assembly-based approach as shown
in Fig. 1. For each of these approaches, we generated abun-
dances of the microbial species (or proxies thereof) for the
use in machine learning-based predictions.

Table 1 Primary and unknown data sets. Sample size for different cities and unknown, along with clean files (size is in GB)

Location Acronym Number of samples Total size (GB) of clean files (FASTQ format) Total number of reads (filtered)
Auckland, New Zealand AKL 15 478 136,022,160

Hamilton, Canada HAM 16 61.5 179,554,428

Sacramento, US SAC 16 36.5 105,326,430

Santiago, Chile SCL 20 2153 613,721,390

Offa, Nigeria OFA 20 438.2 1,267,427,220

Porto, Portugal PXO 60 1322 380,372,340

Tokyo, Japan TOK 20 308.6 1,103,076,136

New York, US NYC 26 368.8 1,086,713,476

Unknown UNK 30 753 219,935,058
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Fig. 1 The analysis pipeline presented in this paper. Here we show the
two-pronged approach used in this analysis. The data were analyzed
under a read-based and assembly-based approach. In the read-based
approach, we used taxonomic profiling for the generation of machine
learning features for city prediction. In the assembly-based approach,
we used two different reduced representation paradigms to generate
features for machine learning features

Read-based taxonomic profiling and quantification
Read-based metagenomic profiles were obtained for
the preprocessed samples using MetaPhlAn2 [33]. We
note, that while some interpretations of MetaPhlAn2
include limited sensitivity especially on the case of
similar genomes presenting in a sample [50], we have
included it in this analysis for precisely that reason - it
limits the potential search space for taxonomic profil-
ing by the marker-gene database. We executed each it-
eration of MetaPhlAn2 wusing 16 cores. The
metagenomic profile and the estimate of the number of
the reads in each clade obtained after running Meta-
PhlAn2 were extracted from each output file using
custom script and the number of reads in each clade
was merged into a table using the MetaPhlAn2 utility
script. From the merged table, species and genus level
information was extracted and used for building the
machine learning model.
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Metagenome assembly and quantification

For the assembly-based metagenomic analysis, we fur-
ther divided the work into two analysis paradigms to
ease the computational necessity of the analysis. These
paradigms are summarized in Additional file 1: Figure
S1, where the paradigm PP (the paired end paradigm)
extracted a random set of all reads while maintaining
the paired end structure of the data, and PL (the
left-only paradigm) used only the left reads from each
sample. After extraction of these reads, Megahit [38]
was used to assemble the reads in each of the two para-
digms with default assembly parameters on a university
cluster node with 512 GB of RAM. Megahit was allowed
access to all of that memory (option: --mem-flag 2) and
a verbose output was written (option: --verbose). The
abundance of each generated sequence was estimated
for all paired-end reads with BBMap, a short-read
aligner for DNA and RNA-seq data of BBTools [49], and
each set of sequences was filtered such that only long
sequences were retained, but the mapping rate of both
assemblies was roughly equal (Additional file 2: Figure S2).
This meant that PP was filtered for sequences longer
than 5000 bp and PL was filtered for sequences longer
than 1000 bp.

Machine learning and city prediction

To analyze large scale and complex biological data sets
effectively, we notice an increasing use of machine learn-
ing techniques. Based on prior work, we analyzed each
of the approaches using two major algorithms: linear
discriminant analysis (LDA) and random forests (RF).
LDA is a supervised classification technique proposed
for dimensionality reduction to project the features in
higher dimension space onto a lower dimensional space.
RF is a scheme of ensemble-based decision trees with a
combination of tree predictors where each tree in the
ensemble is grown correspondingly with a random
subset of features. We selected LDA and RF to compare
parametric (LDA) vs nonparametric (RF) machine
learning techniques. In the areas of biomedical science
and bioinformatics, the LDA and RF are popular choices
for efficiency and accuracy. Support vector machines
(SVM) and multi-layer perceptrons (MLP) are also
tested for benchmark to the RF.

In each approach, the abundances (either derived from
MetaPhlAn2 for read-based or BBMap for assembly-based)
were used as features for city-based predictions. Machine
learning analyses were conducted using Scikit-Learn [51]
and caret R-package [52] - both of which are popular
implementations of common machine learning algorithms
in Python and R respectively. For the LDA, default parame-
ters were used. For the RE, 50 random decision trees were
used in the following naive hyperparameter searching
through cross validation (Additional file 3: Figure S3). For
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each analysis, the metric of interest was the accuracy of
prediction  (Accuracy = (TP + TN)/(TP + TN + FP + EN))
and this metric is presented in two ways: 1) a 10-fold cross
validation accuracy and 2) the performance on 30 samples
held out by CAMDA. For 10-fold cross validation accu-
racies, the data were randomly split in ten train/test par-
titions, and the final prediction were made using a model
trained on all available samples.

Results

Read-based machine learning prediction

For the fast turnaround time of running MetaPhlAn2
with 223 primary data sets from eight cities, we used
both multi-threaded option provided in MetaPhlAn2
and multi-job submission script to run the MetaPhlAn2
jobs in parallel in our many-node cluster. Then, we
merged each sample taxonomic profile into one large
table. The merged table has four kingdoms, 17 phyla, 33
classes, 59 orders, 160 families, 353 genera, and 865 spe-
cies, and the relative abundance of each was quantified.
We first evaluated the prediction accuracy using the pri-
mary data set after splitting the data set into ten randomly
generated 70/30 training/test partitions. To generate
model training features, we tested both genus-level tax-
onomy profile and species-level taxonomy profile. In
short, species-level model predictions outperformed that
of the genus-level. Below we report results from the
species-level prediction.

We investigated linear discriminant analysis (LDA)
and random forest (RF) machine learning techniques.
Based on species-level LDA, the samples from each city
displayed very little variance (Fig. 2a), but the model had
a very low prediction accuracy (~20%). Like the prin-
cipal component analysis (PCA) dimension reduction
approach, the LD scatter plot using the 1st two discri-
minant dimensions can show the supervised clustering

Page 5 of 13

of each group. The LDA model was tested again after re-
moving the rare species where the abundances of species
present in <5% of samples. The rare-species-removed
LDA experiment shows much better separation of cities
(Fig. 2b), but the model prediction was still very low
(22.08% accuracy range of 9.52-43.85%). To try to im-
prove the model performance, we examined the RF
model using default parameters. The ten-fold 70/30
train/test partitions were able to achieve a mean accu-
racy 83% (Fig. 3a, for example) accuracy with 95% confi-
dence interval between 70 and 91%. Figure 3a shows the
confusion matrix that is a technique for summarizing
the performance of a classification algorithm. Because
classification accuracy alone can be misleading if there
are an unequal number of observations in each class or
more than two classes in the data set, calculating a
confusion matrix can provide a better idea of what the
classification model is getting right and what types of
errors it is making. In machine learning classification
problems, an imbalance of the frequencies (e.g., sample
size) of the observed classes can have a significant nega-
tive impact on model fitting. One technique to resolve
such a class imbalance is to subsample the training data
in a manner that mitigates the issues. Using the sub-
sample technique optimization, we increased the accu-
racy of prediction to 91% with a 95% confidence interval
of 80-93% (Fig. 3b). To compare approximate system
usage and elapsed time for read-based and
assembly-based analyses, we used one-node based calcula-
tion in Table 2. The wall-clock time using read-based ap-
proach can be reduced and near linearly scaled if
multi-node cluster is available.

After we exhaustively validated model performance in
our assigned training data set, we used the entire
assigned data set as training data set to predict and
assigned 30 unknown samples (Table 3). Based on the
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Fig. 2 LDA plots of the read-based approach. a LDA with all species. b LDA with rare species (present in < 5% of samples) removed
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Fig. 3 Confusion matrices for the read-based approach. a Confusion matrix for the random forest model trained on a random 70/30 train/test data
partition. b Confusion matrix for the random forest model trained on a random 70/30 train/test data partition of the rare-species-removed data set

provided true labels from CAMDA, Table 3 shows that
the read-based RF model correctly identified 18 out of
30 samples. 10 out of 12 false predicted samples are
from New York city. The accuracy rate is lower than
primary data set prediction by the New York city
samples, but the read-based RF approach shows good
prediction in most of other cities.

Assembly-based machine learning prediction

In order to efficiently handle the magnitude of data
required for this analysis, we additionally opted to use a
reduced-representation assembly-based methodology.
This has been achieved using two different paradigms:
PL represents a metagenome assembly using only the
left reads from all samples and PP stands for a paired-
end assembly using only a random even subset from all
cities. The PL approach was hypothetically more com-
putationally efficient without considering paired-end
information in the assembly program, but the PP should
have generated higher quality sequences. As we expected
PP generated many more longer sequences. To test dif-
ferent scenarios, we used PP assembled length > 5000 bp

Table 2 The system usage for read-based approach and two (PP
and PL) assembly-based approaches (1 node based calculation)

Method CPU usage  Wall clock time (Hours) ~ Memory usage
Read-based 16 cores 1872 62 GB of RAM

PP Assembly 24 cores 83.28 500 GB of RAM
PL Assembly 24 cores 384 500 GB of RAM

(242,348 assembled sequences) and PL assembled
length > 1000 bp (2,070,675 assembled sequences) for
training features which minimized the number of
features for computation, but approximately normalized
the mapping rates of the raw reads back to the assembly
(Additional file 2: Figure S2).

As the read-based experiments, we explored LDA and
RF machine learning techniques using ten 70/30 train/
test partitions of the primary data set. While the separ-
ation was not as clear as the rare-species removed model
in the read-based approach, the PP-based model did
achieve an accuracy of 71.8% (57.1-93.8%) (Fig. 4a)
Using a random forest the accuracy improved consi-
derably at 88.5% (76.4—95.2%) as shown in Fig. 5a. For
the PL-approach, results were very similar with the
linear discriminant analysis showing an accuracy of
69.3% (58.5—82.4) (Fig. 4b) and the random forest show-
ing an accuracy of 89.7% (64.7-100%) (Fig. 5b). To put
these results in a broader context, we tested other
commonly used models in bioinformatics including the
support vector machine (SVM; default params) and the
multi-layer perceptron (MLP) using the PP paradigm.
SVM models were tested using both normalized
(SVM-N) and non-normalized (SVM) data, and the
MLP models were tested using both default nodal archi-
tectures (1X100; MLP) and a more complex nodal archi-
tecture [((4X256) + (4X128) + (4X32) + (8X16)); MLP-C].
These models consistently performed poorly using the
PP paradigm (Table 4), so they were not explored in the
larger PL paradigm.
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Table 3 The evaluation of 30 unknown cities prediction from read-based RF and PP-assembly-based RF. The predictions that do not
match true labels, and do not match between two predictions are shown in red. The predictions that do not match true labels, but

match between two predictions are shown in blue

Sampl City Read-based RF | PP-A: bly-based RF
CAMDAI8_MetaSUB_CI_I SCL SCL SCL
CAMDA8_MetaSUB_CI_2 SCL SCL SCL
CAMDA8_MetaSUB_CI_3 OFA AKL OFA
CAMDAI8_MctaSUB_C1_4 PXO SAC PXO
CAMDAI8_MetaSUB_CI_5 OFA OFA OFA
CAMDA18_MetaSUB_C1_6 PXO PXO PXO
CAMDA I8_MetaSUB_CI_7 SCL SCL SCL
CAMDA18_MetaSUB_CI_8 PXO PXO PXO
CAMDA 18_MetaSUB_CI_9 NYC OFA HAM
CAMDA 18_MetaSUB_CI_10 PXO PXO PXO
CAMDA18_MetaSUB_CI_I1 SCL SCL SCL
CAMDA I8_MetaSUB_CI_I2 OFA OFA OFA
CAMDA18_MetaSUB_CI_I3 PXO PXO PXO
CAMDA18_MetaSUB_CI_L14 SCL SCL SCL
CAMDAI8_MetaSUB_CI_15 NYC HAM HAM
CAMDA18_MetaSUB_C1_16 NYC AKL AKL
CAMDA18_MetaSUB_C1_17 PXO PXO PXO
CAMDAI8_MetaSUB_CI_I8 NYC OFA HAM
CAMDA18_MetaSUB_CI_19 NYC HAM HAM
CAMDAI8_MetaSUB_CI_20 OFA OFA OFA
CAMDA8_MetaSUB_CI_21 NYC HAM HAM
CAMDA 8_MetaSUB_C1_22 PXO PXO PXO
CAMDA I8_MetaSUB_CI1_23 NYC AKL AKL
CAMDA 8_MetaSUB_C1_24 NYC AKL AKL
CAMDAI8_MetaSUB_C1_25 NYC HAM HAM
CAMDA18_MetaSUB_C1_26 PXO PXO PXO
CAMDA18_MetaSUB_C1_27 PXO PXO PXO
CAMDA18_MetaSUB_C1_28 OFA OFA OFA
CAMDA18_MetaSUB_C1_29 NYC PXO AKL
CAMDA18_MetaSUB_C1_30 PXO PXO PXO

After we completed the experiments of prediction Discussion

of the primary data set, we used the assembly se-
quences as features of a training data set to predict
unknown 30 samples. Based on the provided true la-
bels from CAMDA, Table 3 shows that the
assembly-based RF model accurately predicted all cit-
ies except New York city. This approach correctly
identified 20 out of 30 samples without the 10 sam-
ples from New York City. The assembly-based and
the read-based results show very comparable and re-
lated predictions.

The data presented in the CAMDA challenge offer a
unique ability to identify methods of appropriate analysis
for large and noisy metagenomic data sets. Here we pro-
posed two different approaches to collect features from
the same city samples to utilize them for unknown sam-
ple prediction using machine learning techniques. The
first approach is a read-based taxonomy profiling and
prediction method. The second approach is an
assembly-based profiling and prediction technique.
Although the final random forest prediction results for
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Fig. 4 LDA of the assembly-based approach. a LDA of the random paired-end subset assembly (PP). b LDA of the left-only subset assembly (PL)
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both approaches show very similar accuracies, the two
approaches have significant differences especially in sys-
tem usage. As CAMDA focuses on exploring and solving
big data challenges in life science using advanced and
modernistic ideas, it is worthy to describe the design
concept of two proposed approaches and their benefits
and detriments as they apply to massive-scale metage-
nomic data analysis.

Overall, our results indicate that while both ap-
proaches have different advantages and drawbacks, they
provided very similar results when it comes to the final
analysis. More specifically, even though the approaches
are different, they both underperformed in the predic-
tion of one specific city label, NYC. The differences in

Table 4 Model prediction accuracies based on cross-validation
of the training set. RF-10: Random forest with 10 random
decision trees, RF-20: Random forest with 20 random decision
trees, SVM: default support vector machine, SYM-N: SVM with
normalized features, MLP: default Multilayer perceptron, MLP-C:
Multilayer perceptron with complex nodal architecture
(described in methods)

Model Accuracy
RF-10 879
RF-20 89.7
SVM 43.1
SVM-N 328
MLP 63.7
MLP-C 552

the approaches indicate that this performance is most
likely outside the purview of the approaches themselves.
Most likely, samples were taken from a variety of sur-
faces that could foster different microbial taxa and the
full extent of that space may have been unavailable in
the initial training data. Interestingly, our results may
have broader implications. Namely, our results indicate
that read-based profiling is functionally equivalent, and
in fact slightly worse when looking to the test set, than
essentially throwing away half of the available data for
the assembly-based protocols. While this result is theor-
etically reasonable as our taxonomy-based approach
should lower sensitivity, the scope of this finding is sub-
stantial and favors the use of metagenomic
assembly-based protocols. The remainder of this dis-
cussion should serve to guide biologists to make appro-
priate decisions for analyzing large metagenomics data
sets under variable circumstances and their questions.
The first read-based approach is good for users who
do not have large-memory system. In here, we used
MetaPhlAn2 for each sample profiling. MetaPhlAn2 or
other read mapping based software tools usually do not
use high-memory for one sample analysis. For example,
MEGAN [37], a widely used taxonomy profiling algo-
rithm with read mapping, usually uses ~5X the memory
of the sample size depending on algorithm selection (for
example, the weighted LCA algorithm uses higher mem-
ory than the LCA algorithm). MEGAN-LR [53], a newer
LCA-based algorithm for taxonomic binning, also uses
desktop level memory on the scale of tens of GB per
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sample. Most alignment-based metagenomic profiling
tools use fast and memory efficient aligners such as
Bowtie2 [34], BWA [54], and LAST [55]. The user,
however, should consider running time. Aligning and
profiling of one metagenomic sample is not that long,
but if you have thousands of samples, it will take roughly
thousands of times of each sample run time. If user can
access a multi-node cluster, batch job scripts or simple
message-passing-interface (MPI) programs can reduce
the wall-clock time dramatically.

The second assembly-based approach is an appropriate
method for users who can access large memory computing
resources. Although there are few scalable de-novo meta-
genome assembly programs (such as Ray Meta [56]) avail-
able, most metagenome assembly programs require very
large memory (10X of sample size) for the large-scale
merged data set. Here, we showed that reduced-represen-
tation subset of the total data set also can derive precise
prediction when used in conjunction with machine learn-
ing. We showed that this was a valid approach using two
different assembly-based paradigms. First, we showed that
a random subset of paired end reads (PP) were sufficient
to predict the correct city label. This approach is especially
useful for researchers who have access to large computa-
tional resources but may be time limited. Subsetting the
data requires only a fraction of the time for assembly. Sec-
ond, we showed that the left-only paradigm (PL) per-
formed just as well as the random subset of paired end
reads. This result is especially useful in time-limited sys-
tems as the assembly takes roughly half the time of the of
the PP-based subset. Here, we do warn users that
paired-end data tend to generate better (less fragmented)
assemblies. The fragmentation of the PL method meant
that more sequences were required to generate the same
mapping rates as the PP method. This meant that the
resultant ML models had ~10X as many features. This
meant that models like LDA and RF took longer (albeit on
the scale of minutes), but larger models like multi-layer
perceptrons with complex nodal architectures took too
long to fully consider in the scope of this manuscript.

While the topic of biological interpretation of these
data are beyond the scope of this analysis, many
researches will likely include biological interpretation
downstream in their analysis. The read-based approach,
shown here with MetaPhlAn2 is an excellent choice for
these analyses. Inherent in the execution of MetaPhlAn2,
the data are placed in a biological context. Users would
be able to see how different bacterial families, genera, or
species compare within and between samples. This is
also possible in the assembly-based approach, but re-
quires even more computationally intensive analyses.
For example, the metagenomes can be binned using
alignment based binning tools [57-60], and the binned
metagenomes could be taxonomically assigned using
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SendSketch [49] or BLAST [61]. Additionally, the diffe-
rent approaches could be combined, and the meta-
genomes can be fed to community profiling tools like
MetaPhlAn?2 for biological interpretation.

Conclusions

For the last decade, a cultivation-independent meta-
genomics approach, in which all microorganisms in a sam-
ple are directly sequenced together, has been intensely
applied to understand microbes’ impact on human health,
plant, soil, water, and so on. A new generation of sequen-
cing technologies accelerated research, but left a vast
amount of metagenomic sequencing data to be analyzed.
Software and high-performance computing systems that
could speed analysis are still lacking. It is important to
develop novel computational algorithms or pipelines to
decipher terabytes of metagenomic sequencing data quickly
and precisely. We here proposed two approaches to analyze
the large-scale data set efficiently: one is read-based
profiling approach and the other is reduced data set
assembly-based approach. Multiple machine learning tech-
niques were investigated and incorporated in the pipeline
to predict unknown samples precisely. Overall, these
approaches shows promise although more dedicated work
is required to increase the prediction accuracy.

Reviewers’ comments
Reviewer’s report 1 - Eugene V. Koonin
Reviewer comments: The authors present two machine
learning techniques to analyze metagenomic data. I
believe that the methods are sound and could be useful
to many researchers working with metagenomes. The
authors explicitly indicate that biological interpretation
is beyond the scope of the present work and briefly
discuss the directions for extending their methods into
the biological domain. This approach somewhat limits
the impact of the article but is fully legitimate. Within
the limitations mentioned above, I do not see significant
flaws in the article.

Author’s response: The authors would like to thank
you for your time and effort to review our paper. The
comments are greatly appreciated.

Reviewer’s report 2 - Jing Zhou

Reviewer comments: In this paper, the authors explored
different abundance-based machine learning methods to
predict city identity based on its subway metagenome.
They examined two different approaches to generate
metagenomic profiles — one is sample-based taxonomy
profiling and the other one is reduced-representation
assembly-based method. They found the Random Forest
(RF) machine learning method yielded highest prediction
accuracy (i.e. 91%) among other machine learning
methods. For an independent testing set, the RF method
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with sample-based taxonomy profiling method correctly
identified 18/30 samples. Although both profiling
methods have shown very similar accuracy using RF
methods, the authors pointed out the two methods have
different requirement in system usage and provided rec-
ommendation for different systems. This information
would be very useful, when it comes to choose profiling
methods and prediction methods. I believe this paper fit
the standard of Biology Direct and should publish with
the following comments addressed.

Author’s response: The authors would like to thank
you for your time and effort to review our paper. The
comments are greatly appreciated.

Reviewer comments: Major Comments: 1) In the
background session, I would expect the authors provide
more background on the methods they used in the
paper—especially the profiling methods.

Author’s response: We agree that the methodology of
our approaches should have been more explicitly stated
in the “Background” section. As such, we have amended
out “Background” section to include this level of detail.

Reviewer comments: 2) Also, is there any other paper
has used a similar combination of genomic profiling and
machine learning methods? If there is any, how the
results compared to the study here?

Author’s response: To address this, we included a
paragraph in the “Background” section.

Reviewer comments: 3) I wonder if surfaces informa-
tion is also available in the data set. If so, is that possible
to use the best approach used in this paper to predict
city identity+ surface identity? It may beyond the scope
of this paper, but it would be an interesting question to
explore in the future.

Author’s response: This is an excellent comment,
Unfortunately, we were not provided with the surface
information for all of the samples through the CAMDA
challenge. As such, we are unable to adequately analyze
these data in that light. However, we absolutely agree
that this would be a great comment to explore in the
future in CAMDA challenges.

Reviewer comments: Minor Comments: 1) The con-
clusions in the abstract did not provide any useful
information to the readers. The main findings in the paper
should be emphasized 2) The authors should provide the
prediction accuracy for the independent testing set in the
abstract as well. 3) In the method part, I think they should
move the second paragraph to introduction. Also, it is
confusing to me, how did the authors know which 30 were
new samples? It states in the paper “About 30 new
samples from different cities and surface types already
featured in the primary dataset- can you tell which?”

Author’s response: We have updated the “Results”
and “Conclusions” paragraphs in the “Abstract”. “Data
sets” subsection in the “Methods” section has been
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amended to more clearly describe our approaches to the
specific challenge.

Reviewer’s report 3 - Serghei Mangul

Reviewer comments: Major comments: The caption to
the figures are missing and need to be added More de-
tails of sequencing datasets need to be provided. For ex-
ample, read the length of each dataset (Table 1).

Author’s response: The authors would like to thank
you for your time and effort to review our paper. The
comments are greatly appreciated. We would like to
kindly point that the captions of figures were provided in
the main manuscript prior to the References section
called “Figure Descriptions:” after following Biology
Direct journal submission guidelines about figures. As
reviewer commented, a column with read information
has been added to Table 1.

Reviewer comments: According to a recent bench-
marking paper, Metahplan2 suffers from low sensitivity:
Sczyrba, Alexander, et al. “Critical assessment of meta-
genome interpretation—a benchmark of metagenomics
software.”; Nature methods 14.11 (2017): 1063. Authors
need to comment on these issues with Metahplan2 and
warn the users about this.

Author’s response: We agree that MetaPhlAn2.0
could have low sensitivity especially in the case of
closely-related genomes coexisting in the samples. That is
why several strain-level resolution taxonomic profilers
were recently published including Sigma (1), that we de-
veloped before, ConStrains (2), MIDAS (3), StrainPhlAn
(4), and StrainEst (5). However, most strain-level re-
solution profilers are computationally expensive and
requiring large reference database with many genomes.
In the CAMI manuscript, the authors stated that “In
terms of precision, MetaPhlAn 2.0 and “Common Kmers”
demonstrated an overall superior performance, indi-
cating that these two are best at only predicting organ-
isms that are actually present in a given sample and ...”
. In addition, MetaPhlAn2 allows very fast assignment by
the smaller marker gene and fast mapping aligner,
Bowtie2 that has a great fit into this massive meta-
genomic analysis. That is why we selected MetaPhlAn2
for our massive data analysis, and the results showed
good accuracy from it. Based on reviewer’s comment, we
added sentences in the “Read-based taxonomic profiling
and quantification” subsection in “Methods”.

Reviewer comments: P 7.line 162. Details of the pack-
ages used needs to be explained. What exactly they do?

Author’s response: The sentences about machine
learning library have been updated.

Reviewer comments: Line 176. Data were divided into
training and test partitions. The validation datasets need
to be added. Ideally from a different cohort or from the
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same one. If this is impossible, the authors need to
clearly provide reasoning.

Author’s response: This is a very valid criticism of
our manuscript. For this analysis, we opted not to
include a validation set so as to maximize the volume of
data available to train the models. We contend that, as
this is a purely theoretical exercise not to be used for ac-
tual model deployments, this deviation from expected
protocols is justified. We hold this to be true for two
major reasons: 1) the data are highly imbalanced and 2)
we have relatively few samples. This could then give us a
very biased interpretation of our results. Using our
method, we set aside the initial test set and then esti-
mated model performance using different random parti-
tions of the available training data (comprehensive cross
validation). Perhaps, our most egregious deviation from
expected protocols was attempting to tune the random
forest hyperparameter (n_estimators in SciKit Learn)
within this framework. In our approach, we simply used
a relaxed implementation of the bootstrapping to iterate
over several random cross-validation splits to find an
appropriate range (Efron and Gong 1983). We have
clarified out language to describe this throughout mul-
tiple section of the manuscript.

Reviewer comments: The paper suggests that the
prediction accuracy was 20%. Page 8. Line 182. How the
prediction accuracy was calculated? This needs to be
added to the paper.

Author’s response: In the “Machine learning and city
prediction” subsection in “Methods” section, we have
amended the manuscript methods to include a definition
of accuracy.

Reviewer comments: Line 201/ page 9. The paper
claims that many NYC sample failed to be identified.
The immediate reason can be that NY is low coverage
samples (>2M reads). The authors need to further
investigate this and adjust for total coverage if this is
was not done before. One approach is to subsample all
samples to the same coverage (number of reads). Also
was the read length of NY different from the rest?

Author’s response: The reviewer outlines several
really good potential explainers of our inability to appro-
priately predict the NY samples. Unfortunately, they are
probably no closer than what we could come up with. As
we added a column to Table 1, NY is the third largest
sample. As our models are relative-abundance based, we
opted not to adjust for coverage. This was primarily be-
cause we could not have applied the same filters to the
testing set.

Reviewer comments: The figure comparing marker
gene-based approach (Metahplan2) and assembly one
(Megahit) needs to be added. Maybe with the best classi-
fier. This will help the reader better understand the dif-
ference between those approached.
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Author’s response: Table 3 shows the evaluation of 30
unknown cities prediction from read-based RF and
PP-assembly-based RF to compare the power of two
approaches. Figures 3 and 5 also show confusion matrices
of training dataset for the read-based approach and the
assembly-based approach.

Reviewer comments: P 11. Line 257. Both marker
gene-based approach (Metahplan2) and assembly one
(Megahit) show similar results. The interpretation if this
needs to be added to the Discussion section. Why low
sensitivity of Metahplan2 does not affect the results.

Author’s response: We have added a paragraph to
the “Discussion” section addressing this issue and discus-
sing our results overall.

Reviewer comments: Minor comments: The paper
mentioned the association of microbiome with mental
health. The authors are recommended to add an
additional citation supporting the association of micro-
biome with mental health: Loohuis, Loes M. Olde, et al.
“Transcriptome analysis in whole blood reveals increased
microbial diversity in schizophrenia.” Translational psy-
chiatry 8.1 (2018): 96. P 3 line 75.

Author’s response: Thank you for providing the re-
ference paper. We have amended the citation for this
section to include this work and a couple more recent
analyses of similar approached.

Reviewer comments: The paper claims that post ana-
lysis is at least a few times bigger than the sequencing
data. This is unexpected and needs to be clarified with
supporting results or reference.

Author’s response: [n most bioinformatics researches,
it is naturally common to keep intermediate processed
files with original sequence files for possible secondary
analyses or any other purposes. Therefore, it will be safe
for researchers to prepare few times larger available
storage than amount of sequencing data size to analyze
the data, but it is not always true as reviewer com-
mended. By following of reviewer’s comment, we modified
the sentence.

Reviewer comments: P 4. Line 77. Definition of pan-
genomes needs to be provided.

Author’s response: We have updated the paragraph.

Additional files

Additional file 1: Figure S1. A schematic view of the reduced-
representation paradigms for the assembly-based approach. In the
random paired-end subset (PP), half of each city was extracted randomly
while maintaining the paired-end structure of the data. In the left-only
subset (PL), only the left read from each sample were used for the
assembly. (PDF 656 kb)

Additional file 2: Figure S2. Mapping rates of the cleaned reads back
to the metagenome assembly. The random paired-end subset (PP)
assembly is shown in red. The left-only subset (PL) assembly is shown in
green. (PDF 5 kb)
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Additional file 3: Figure S3. Hyperparameter tuning for n_estimators in
the assembly-based approach. Each figure shows accuracy results from a
series of random decision tree constructions and random train/test
partitions for each of those constructions. (A) Hyperparameter tuning of
the random paired-end subset assembly (PP). (B). Hyperparameter tuning
of the left-only assembly (PL). Note: The difference is point count is from
fewer tests in the PL assembly as it had 10X as many features and took
much longer to train and test. (PDF 2103 kb)
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