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Abstract

Background: Metagenomics is the application of modern genomic techniques to investigate the members of a

microbial community directly in their natural environments and is widely used in many studies to survey the

communities of microbial organisms that live in diverse ecosystems. In order to understand the metagenomic

profile of one of the densest interaction spaces for millions of people, the public transit system, the MetaSUB

international Consortium has collected and sequenced metagenomes from subways of different cities across the

world. In collaboration with CAMDA, MetaSUB has made the metagenomic samples from these cities available for

an open challenge of data analysis including, but not limited in scope to, the identification of unknown samples.

Results: To distinguish the metagenomic profiling among different cities and also predict unknown samples

precisely based on the profiling, two different approaches are proposed using machine learning techniques; one is

a read-based taxonomy profiling of each sample and prediction method, and the other is a reduced representation

assembly-based method. Among various machine learning techniques tested, the random forest technique showed

promising results as a suitable classifier for both approaches. Random forest models developed from read-based

taxonomic profiling could achieve an accuracy of 91% with 95% confidence interval between 80 and 93%. The

assembly-based random forest model prediction also reached 90% accuracy. However, both models achieved

roughly the same accuracy on the testing test, whereby they both failed to predict the most abundant label.

Conclusion: Our results suggest that both read-based and assembly-based approaches are powerful tools for the

analysis of metagenomics data. Moreover, our results suggest that reduced representation assembly-based methods

are able to simultaneous provide high-accuracy prediction on available data. Overall, we show that metagenomic

samples can be traced back to their location with careful generation of features from the composition of microbes

and utilizing existing machine learning algorithms. Proposed approaches show high accuracy of prediction, but

require careful inspection before making any decisions due to sample noise or complexity.

Reviewers: This article was reviewed by Eugene V. Koonin, Jing Zhou and Serghei Mangul.
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Background

While microbes make up a significant proportion of the

biomass on the planet, their contributions to the func-

tion of most environments have only recently been

explored. Starting in the 1980s with 16S rRNA profiling

to metagenomic analyses today we have begun to probe

how these microbial assemblages, the microbiome, shape

their environments. Metagenomics, specifically, has fun-

damentally changed the way we think of the microbial

landscape of countless biological and environmental

spaces. From profiling soil communities [1, 2] to investi-

gating the microbiome associated with human health and

diseases [3], we can now explore how the microbiome

creates harmony with other organisms in these spaces.

Metagenomic profiling has been particularly explored

as a function of microbial impact on human health and

diseases. This exploration exists as a function of direct

analysis of human derived samples and samples of the
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human occupied environment. In 2007, the framework

for the Human Microbiome Project (HMP) was set

forward [3]. This project was a direct consequence of

the Human Genome Project failing to account for the

total function found to exist within the human body.

The project sought to clearly define the concept of a

core microbiome of healthy human participants while

accounting for lifestyle, environment, physiology, etc. By

2012, after generating over 5000 samples and 3.5 teraba-

sepairs (Tbp) of next-generation sequencing (NGS) data,

the HMP identified trends in the structure of human

microbiome, but also an incredible amount of diversity

[4, 5]. This diversity stems from multiple backgrounds of

human samples relative to phenotype, lifestyle, and coun-

try of origin [6–8]. Moreover, changes in the human

microbiome have been associated with Clostridioides

difficile infection [9–11], bacterial vaginosis [12–15],

Parkinson’s disease [16], and potentially even common-

place challenges with mental health [17, 18].

As humans spend roughly 90% of their time indoors,

the frequent association with microbial populations and

human health has prompted deep exploration into the

microbial landscape of the built environment [19]. Clear

associations have been found in built environment-asso-

ciated microbiomes as a function of ventilation, building

purpose, and even within buildings as a function of

room-purpose [20–24]. Of particular interest to human

health is the microbiome of public transit systems,

ever-increasing resources upon which millions of people

rely every day. A recent analysis of New York City public

transit systems showed a wealth of microbial data that is

unable to be annotated as well as a microbial diversity

that correlates with the diversity of the public transit

users [25]. An analysis of the Hong Kong subway system

showed that the airborne microbiome dynamically

changes with human density [26]. These results often

largely corroborate findings of human-derived samples

that show high levels of diversity and that multiple fac-

tors explain the variance of the datasets.

With the increasing number of trends correlated with

microbiome data is an increasing amount of data to be

analyzed for any particular question. For example the

HMP, as of 2012, had already generated nearly 3.5 Tbp

of sequences after application of a quality control proto-

col from a total 8.8 Tbp that included human sequence

removal, quality filtering and trimming of reads [4]. As

of 2017, the second phase of the study (HMP1-II)

increased the volume to over 24 Tbp [27] and total post

analysis data could be a few times bigger than the

sequences alone. It is only now becoming commonplace

for labs to store that much data, but it is rare for labs to

have the capacity to analyze that much data. In addition

to the obvious challenge of metagenome assembly, there

are increasing trends toward quantifying the total

genomic content of a species (pan-genomes) [28], com-

paring disparate metagenomes, and even the functional

analysis of those metagenomes. All of this brings

forward an interesting computational challenge that has

to be addressed moving forward. These computational

challenges are a prime example of big data explorations

in the biological sciences, a key interest of the commit-

tee on the Critical Assessment of Massive Data Analysis

(CAMDA) [29]. In 2018, one of their major challenges is

the construction and fingerprinting of a city-specific

metagenome as characterized by the city’s subway

system [30]. Here, we present our interpretation of

that challenge.

Over the past decade, diverse metagenomics software

tools have been developed for 16S analysis and shotgun

metagenomic analysis [31]. Shotgun metagenomics data

can be analyzed using several different approaches. The

methodological approaches can be divided into two

categories: read-based and assembly-based [32]. Read-based

metagenomics analysis is useful for quantitative community

profiling and identification of organisms especially if rele-

vant references are available. MetaPhlAn2 [33] identifies

clade-specific marker genes for evidence of the associated

clade presence. This allows for rapid assignment relative to

a small database as compared to a full database including

many whole genomes using the mapping aligner, Bowtie2

[34]. Nucleotide taxonomic classification tools including

Kraken [35], Centrifuge [36], and Megan [37] are generally

used for precise estimation of taxonomic abundances by

aligning reads to k-mers or full reference genomes.

Assembly-based workflows attempt to assemble the reads

from one or more samples, group (bin) the contigs from

these samples into genomes, then analyze the genes and

contigs. Megahit [38], MetaSPAdes [39], and IDBA-UD

[40] are the most widely used k-mer based assemblers for

high-throughput NGS metagenomic data. Most meta-

genomic classification tools match reads or assembled

contigs against a database of microbial genomes to identify

the taxon of each sequence. Several strain-level resolution

taxonomic profilers were recently developed [41–45].

There are few software tools providing the sta-

tistical methods and machine learning modules to

derive microbiome-phenotype associations along with

metagenomics-based prediction using taxonomic

profiling. For example, MetAML [46] was developed

for metagenomics-based prediction tasks and for

quantitative assessment of the strength of potential

microbiome-phenotype associations. Reiman et al.

[47] explored convolutional neural network to pre-

dict the phenotype of a genomic sample based on its

microbial taxonomic abundance profile. Additionally,

VirFinder [48] was developed for virus contig identi-

fication with a k-mer frequency-based machine

learning model from metagenome assemblies.
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However, they all vary from the goal of our work

which is to compare two widely-used methodological

approaches, read-based and assembly-based, for

metagenomics researches with multiple machine

learning methods and a focus on extremely large

data sets.

In this paper, we present two approaches using various

machine learning techniques. First, we propose a read-

based taxonomy profiling and prediction method. Both

genus and species level information are explored as

machine learning features and used for prediction from

individual metagenomic profiling of samples. Second, we

investigate a reduced-representation assembly-based ma-

chine learning prediction method. From various experi-

ments using diverse machine learning techniques in the

two proposed approaches, the Random Forest (RF) tech-

nique outperforms other machine learning techniques

with a higher level of accuracy.

Methods

Data sets

CAMDA delegates received access to hundreds of novel

MetaSUB samples, comprising several hundred gigaba-

sepairs (Gbp) of whole genome shotgun (WGS) meta-

genomics data. Samples were collected from multiple

surfaces in mass-transit systems (handrails, ticket

machines screens and keypads, plastic, metal, wooden

benches, etc.). The primary data set covered multiple

cities around the world, with tens of samples per city.

The info of samples of eight different cities are provided

in Table 1. Together, they form a unique resource for

the study of biodiversity within and across geographic

locations or surface types.

In addition to the primary data set, complementary

independent data sets were provided for exploration. In

our analysis, we focused on the presentation of 30 new

samples that accompanied the goal of predicting the city

of origin. Throughout our analysis we refer to this set as

the ‘the test set’ or ‘the unknown data set’. The challenge

also provided two other questions, not addressed here,

about ‘mystery’ cities not featured in the primary data

set. The number of samples and sequence sizes of that

primary data set are described in Table 1.

Computing facilities

We performed the large scale analyses using in-house

computing facilities. One workstation (Intel Xeon

E5-2640 v3 2.6GHz 16 cores 32 threads, 128GB RAM,

50 TB disk), one small cluster (3 nodes, each node has

24 cores 48 threads with 2 X Intel Xeon E5-2650 v4

2.2GHz and 256GB memory, 50 TB disk), and a univer-

sity computer cluster consisting of 100 compute nodes,

the 20 newest of which contain Intel Xeon E5-2690 v3

@ 2.60GHz processors. We especially used high memory

nodes with 512GB of RAM, 117 TB InfiniBand con-

nected network storage, and Infiniband interconnection

of nodes.

Sample preprocessing

BBDuk of the BBTools suite [49], designed for filtering

or trimming reads for adapters and contaminants using

k-mers, was used for quality filtering and for the removal

of potential adapter contamination from all the samples.

Specifically, reads were trimmed for quality from both

the right and left termini (option: qtrim = rl) at a quality

threshold of Q10 (option: trimq = 10). Adapters were re-

moved based on the precompiled list of adapters in

BBDuk.

Approach

In order to efficiently handle the magnitude of data re-

quired for this analysis, we opted to explore these data

using two major approaches that greatly reduce the compu-

tational load of analyses at any given time: one is a

read-based taxonomy profiling and quantification, and the

other is a metagenome assembly-based approach as shown

in Fig. 1. For each of these approaches, we generated abun-

dances of the microbial species (or proxies thereof) for the

use in machine learning-based predictions.

Table 1 Primary and unknown data sets. Sample size for different cities and unknown, along with clean files (size is in GB)

Location Acronym Number of samples Total size (GB) of clean files (FASTQ format) Total number of reads (filtered)

Auckland, New Zealand AKL 15 47.8 136,022,160

Hamilton, Canada HAM 16 61.5 179,554,428

Sacramento, US SAC 16 36.5 105,326,430

Santiago, Chile SCL 20 215.3 613,721,390

Offa, Nigeria OFA 20 438.2 1,267,427,220

Porto, Portugal PXO 60 132.2 380,372,340

Tokyo, Japan TOK 20 308.6 1,103,076,136

New York, US NYC 26 368.8 1,086,713,476

Unknown UNK 30 75.3 219,935,058
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Read-based taxonomic profiling and quantification

Read-based metagenomic profiles were obtained for

the preprocessed samples using MetaPhlAn2 [33]. We

note, that while some interpretations of MetaPhlAn2

include limited sensitivity especially on the case of

similar genomes presenting in a sample [50], we have

included it in this analysis for precisely that reason - it

limits the potential search space for taxonomic profil-

ing by the marker-gene database. We executed each it-

eration of MetaPhlAn2 using 16 cores. The

metagenomic profile and the estimate of the number of

the reads in each clade obtained after running Meta-

PhlAn2 were extracted from each output file using

custom script and the number of reads in each clade

was merged into a table using the MetaPhlAn2 utility

script. From the merged table, species and genus level

information was extracted and used for building the

machine learning model.

Metagenome assembly and quantification

For the assembly-based metagenomic analysis, we fur-

ther divided the work into two analysis paradigms to

ease the computational necessity of the analysis. These

paradigms are summarized in Additional file 1: Figure

S1, where the paradigm PP (the paired end paradigm)

extracted a random set of all reads while maintaining

the paired end structure of the data, and PL (the

left-only paradigm) used only the left reads from each

sample. After extraction of these reads, Megahit [38]

was used to assemble the reads in each of the two para-

digms with default assembly parameters on a university

cluster node with 512 GB of RAM. Megahit was allowed

access to all of that memory (option: --mem-flag 2) and

a verbose output was written (option: --verbose). The

abundance of each generated sequence was estimated

for all paired-end reads with BBMap, a short-read

aligner for DNA and RNA-seq data of BBTools [49], and

each set of sequences was filtered such that only long

sequences were retained, but the mapping rate of both

assemblies was roughly equal (Additional file 2: Figure S2).

This meant that PP was filtered for sequences longer

than 5000 bp and PL was filtered for sequences longer

than 1000 bp.

Machine learning and city prediction

To analyze large scale and complex biological data sets

effectively, we notice an increasing use of machine learn-

ing techniques. Based on prior work, we analyzed each

of the approaches using two major algorithms: linear

discriminant analysis (LDA) and random forests (RF).

LDA is a supervised classification technique proposed

for dimensionality reduction to project the features in

higher dimension space onto a lower dimensional space.

RF is a scheme of ensemble-based decision trees with a

combination of tree predictors where each tree in the

ensemble is grown correspondingly with a random

subset of features. We selected LDA and RF to compare

parametric (LDA) vs nonparametric (RF) machine

learning techniques. In the areas of biomedical science

and bioinformatics, the LDA and RF are popular choices

for efficiency and accuracy. Support vector machines

(SVM) and multi-layer perceptrons (MLP) are also

tested for benchmark to the RF.

In each approach, the abundances (either derived from

MetaPhlAn2 for read-based or BBMap for assembly-based)

were used as features for city-based predictions. Machine

learning analyses were conducted using Scikit-Learn [51]

and caret R-package [52] - both of which are popular

implementations of common machine learning algorithms

in Python and R respectively. For the LDA, default parame-

ters were used. For the RF, 50 random decision trees were

used in the following naïve hyperparameter searching

through cross validation (Additional file 3: Figure S3). For

Fig. 1 The analysis pipeline presented in this paper. Here we show the

two-pronged approach used in this analysis. The data were analyzed

under a read-based and assembly-based approach. In the read-based

approach, we used taxonomic profiling for the generation of machine

learning features for city prediction. In the assembly-based approach,

we used two different reduced representation paradigms to generate

features for machine learning features

Harris et al. Biology Direct _#####################_ Page 4 of 13



each analysis, the metric of interest was the accuracy of

prediction (Accuracy = (TP +TN)/(TP +TN+ FP + FN))

and this metric is presented in two ways: 1) a 10-fold cross

validation accuracy and 2) the performance on 30 samples

held out by CAMDA. For 10-fold cross validation accu-

racies, the data were randomly split in ten train/test par-

titions, and the final prediction were made using a model

trained on all available samples.

Results
Read-based machine learning prediction

For the fast turnaround time of running MetaPhlAn2

with 223 primary data sets from eight cities, we used

both multi-threaded option provided in MetaPhlAn2

and multi-job submission script to run the MetaPhlAn2

jobs in parallel in our many-node cluster. Then, we

merged each sample taxonomic profile into one large

table. The merged table has four kingdoms, 17 phyla, 33

classes, 59 orders, 160 families, 353 genera, and 865 spe-

cies, and the relative abundance of each was quantified.

We first evaluated the prediction accuracy using the pri-

mary data set after splitting the data set into ten randomly

generated 70/30 training/test partitions. To generate

model training features, we tested both genus-level tax-

onomy profile and species-level taxonomy profile. In

short, species-level model predictions outperformed that

of the genus-level. Below we report results from the

species-level prediction.

We investigated linear discriminant analysis (LDA)

and random forest (RF) machine learning techniques.

Based on species-level LDA, the samples from each city

displayed very little variance (Fig. 2a), but the model had

a very low prediction accuracy (~ 20%). Like the prin-

cipal component analysis (PCA) dimension reduction

approach, the LD scatter plot using the 1st two discri-

minant dimensions can show the supervised clustering

of each group. The LDA model was tested again after re-

moving the rare species where the abundances of species

present in < 5% of samples. The rare-species-removed

LDA experiment shows much better separation of cities

(Fig. 2b), but the model prediction was still very low

(22.08% accuracy range of 9.52–43.85%). To try to im-

prove the model performance, we examined the RF

model using default parameters. The ten-fold 70/30

train/test partitions were able to achieve a mean accu-

racy 83% (Fig. 3a, for example) accuracy with 95% confi-

dence interval between 70 and 91%. Figure 3a shows the

confusion matrix that is a technique for summarizing

the performance of a classification algorithm. Because

classification accuracy alone can be misleading if there

are an unequal number of observations in each class or

more than two classes in the data set, calculating a

confusion matrix can provide a better idea of what the

classification model is getting right and what types of

errors it is making. In machine learning classification

problems, an imbalance of the frequencies (e.g., sample

size) of the observed classes can have a significant nega-

tive impact on model fitting. One technique to resolve

such a class imbalance is to subsample the training data

in a manner that mitigates the issues. Using the sub-

sample technique optimization, we increased the accu-

racy of prediction to 91% with a 95% confidence interval

of 80–93% (Fig. 3b). To compare approximate system

usage and elapsed time for read-based and

assembly-based analyses, we used one-node based calcula-

tion in Table 2. The wall-clock time using read-based ap-

proach can be reduced and near linearly scaled if

multi-node cluster is available.

After we exhaustively validated model performance in

our assigned training data set, we used the entire

assigned data set as training data set to predict and

assigned 30 unknown samples (Table 3). Based on the

A B

Fig. 2 LDA plots of the read-based approach. a LDA with all species. b LDA with rare species (present in < 5% of samples) removed
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provided true labels from CAMDA, Table 3 shows that

the read-based RF model correctly identified 18 out of

30 samples. 10 out of 12 false predicted samples are

from New York city. The accuracy rate is lower than

primary data set prediction by the New York city

samples, but the read-based RF approach shows good

prediction in most of other cities.

Assembly-based machine learning prediction

In order to efficiently handle the magnitude of data

required for this analysis, we additionally opted to use a

reduced-representation assembly-based methodology.

This has been achieved using two different paradigms:

PL represents a metagenome assembly using only the

left reads from all samples and PP stands for a paired-

end assembly using only a random even subset from all

cities. The PL approach was hypothetically more com-

putationally efficient without considering paired-end

information in the assembly program, but the PP should

have generated higher quality sequences. As we expected

PP generated many more longer sequences. To test dif-

ferent scenarios, we used PP assembled length > 5000 bp

(242,348 assembled sequences) and PL assembled

length > 1000 bp (2,070,675 assembled sequences) for

training features which minimized the number of

features for computation, but approximately normalized

the mapping rates of the raw reads back to the assembly

(Additional file 2: Figure S2).

As the read-based experiments, we explored LDA and

RF machine learning techniques using ten 70/30 train/

test partitions of the primary data set. While the separ-

ation was not as clear as the rare-species removed model

in the read-based approach, the PP-based model did

achieve an accuracy of 71.8% (57.1–93.8%) (Fig. 4a)

Using a random forest the accuracy improved consi-

derably at 88.5% (76.4–95.2%) as shown in Fig. 5a. For

the PL-approach, results were very similar with the

linear discriminant analysis showing an accuracy of

69.3% (58.5–82.4) (Fig. 4b) and the random forest show-

ing an accuracy of 89.7% (64.7–100%) (Fig. 5b). To put

these results in a broader context, we tested other

commonly used models in bioinformatics including the

support vector machine (SVM; default params) and the

multi-layer perceptron (MLP) using the PP paradigm.

SVM models were tested using both normalized

(SVM-N) and non-normalized (SVM) data, and the

MLP models were tested using both default nodal archi-

tectures (1X100; MLP) and a more complex nodal archi-

tecture [((4X256) + (4X128) + (4X32) + (8X16)); MLP-C].

These models consistently performed poorly using the

PP paradigm (Table 4), so they were not explored in the

larger PL paradigm.

A B

Fig. 3 Confusion matrices for the read-based approach. a Confusion matrix for the random forest model trained on a random 70/30 train/test data

partition. b Confusion matrix for the random forest model trained on a random 70/30 train/test data partition of the rare-species-removed data set

Table 2 The system usage for read-based approach and two (PP

and PL) assembly-based approaches (1 node based calculation)

Method CPU usage Wall clock time (Hours) Memory usage

Read-based 16 cores 187.2 62 GB of RAM

PP Assembly 24 cores 83.28 500 GB of RAM

PL Assembly 24 cores 38.4 500 GB of RAM
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After we completed the experiments of prediction

of the primary data set, we used the assembly se-

quences as features of a training data set to predict

unknown 30 samples. Based on the provided true la-

bels from CAMDA, Table 3 shows that the

assembly-based RF model accurately predicted all cit-

ies except New York city. This approach correctly

identified 20 out of 30 samples without the 10 sam-

ples from New York City. The assembly-based and

the read-based results show very comparable and re-

lated predictions.

Discussion

The data presented in the CAMDA challenge offer a

unique ability to identify methods of appropriate analysis

for large and noisy metagenomic data sets. Here we pro-

posed two different approaches to collect features from

the same city samples to utilize them for unknown sam-

ple prediction using machine learning techniques. The

first approach is a read-based taxonomy profiling and

prediction method. The second approach is an

assembly-based profiling and prediction technique.

Although the final random forest prediction results for

Table 3 The evaluation of 30 unknown cities prediction from read-based RF and PP-assembly-based RF. The predictions that do not

match true labels, and do not match between two predictions are shown in red. The predictions that do not match true labels, but

match between two predictions are shown in blue

Sample City Read-based RF PP-Assembly-based RF

CAMDA18_MetaSUB_C1_1 SCL SCL SCL

CAMDA18_MetaSUB_C1_2 SCL SCL SCL

CAMDA18_MetaSUB_C1_3 OFA AKL OFA

CAMDA18_MetaSUB_C1_4 PXO SAC PXO

CAMDA18_MetaSUB_C1_5 OFA OFA OFA

CAMDA18_MetaSUB_C1_6 PXO PXO PXO

CAMDA18_MetaSUB_C1_7 SCL SCL SCL

CAMDA18_MetaSUB_C1_8 PXO PXO PXO

CAMDA18_MetaSUB_C1_9 NYC OFA HAM

CAMDA18_MetaSUB_C1_10 PXO PXO PXO

CAMDA18_MetaSUB_C1_11 SCL SCL SCL

CAMDA18_MetaSUB_C1_12 OFA OFA OFA

CAMDA18_MetaSUB_C1_13 PXO PXO PXO

CAMDA18_MetaSUB_C1_14 SCL SCL SCL

CAMDA18_MetaSUB_C1_15 NYC HAM HAM

CAMDA18_MetaSUB_C1_16 NYC AKL AKL

CAMDA18_MetaSUB_C1_17 PXO PXO PXO

CAMDA18_MetaSUB_C1_18 NYC OFA HAM

CAMDA18_MetaSUB_C1_19 NYC HAM HAM

CAMDA18_MetaSUB_C1_20 OFA OFA OFA

CAMDA18_MetaSUB_C1_21 NYC HAM HAM

CAMDA18_MetaSUB_C1_22 PXO PXO PXO

CAMDA18_MetaSUB_C1_23 NYC AKL AKL

CAMDA18_MetaSUB_C1_24 NYC AKL AKL

CAMDA18_MetaSUB_C1_25 NYC HAM HAM

CAMDA18_MetaSUB_C1_26 PXO PXO PXO

CAMDA18_MetaSUB_C1_27 PXO PXO PXO

CAMDA18_MetaSUB_C1_28 OFA OFA OFA

CAMDA18_MetaSUB_C1_29 NYC PXO AKL

CAMDA18_MetaSUB_C1_30 PXO PXO PXO

A B

Fig. 4 LDA of the assembly-based approach. a LDA of the random paired-end subset assembly (PP). b LDA of the left-only subset assembly (PL)
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both approaches show very similar accuracies, the two

approaches have significant differences especially in sys-

tem usage. As CAMDA focuses on exploring and solving

big data challenges in life science using advanced and

modernistic ideas, it is worthy to describe the design

concept of two proposed approaches and their benefits

and detriments as they apply to massive-scale metage-

nomic data analysis.

Overall, our results indicate that while both ap-

proaches have different advantages and drawbacks, they

provided very similar results when it comes to the final

analysis. More specifically, even though the approaches

are different, they both underperformed in the predic-

tion of one specific city label, NYC. The differences in

the approaches indicate that this performance is most

likely outside the purview of the approaches themselves.

Most likely, samples were taken from a variety of sur-

faces that could foster different microbial taxa and the

full extent of that space may have been unavailable in

the initial training data. Interestingly, our results may

have broader implications. Namely, our results indicate

that read-based profiling is functionally equivalent, and

in fact slightly worse when looking to the test set, than

essentially throwing away half of the available data for

the assembly-based protocols. While this result is theor-

etically reasonable as our taxonomy-based approach

should lower sensitivity, the scope of this finding is sub-

stantial and favors the use of metagenomic

assembly-based protocols. The remainder of this dis-

cussion should serve to guide biologists to make appro-

priate decisions for analyzing large metagenomics data

sets under variable circumstances and their questions.

The first read-based approach is good for users who

do not have large-memory system. In here, we used

MetaPhlAn2 for each sample profiling. MetaPhlAn2 or

other read mapping based software tools usually do not

use high-memory for one sample analysis. For example,

MEGAN [37], a widely used taxonomy profiling algo-

rithm with read mapping, usually uses ~5X the memory

of the sample size depending on algorithm selection (for

example, the weighted LCA algorithm uses higher mem-

ory than the LCA algorithm). MEGAN-LR [53], a newer

LCA-based algorithm for taxonomic binning, also uses

desktop level memory on the scale of tens of GB per

A B

Fig. 5 Confusion matrices for the assembly-based approach. a Confusion matrix for the random forest model trained on a random 70/30 train/

test data partition in the random paired-end subset assembly. b Confusion matrix for the random forest model trained on a random 70/30 train/

test data partition of the left-only assembly

Table 4 Model prediction accuracies based on cross-validation

of the training set. RF-10: Random forest with 10 random

decision trees, RF-20: Random forest with 20 random decision

trees, SVM: default support vector machine, SVM-N: SVM with

normalized features, MLP: default Multilayer perceptron, MLP-C:

Multilayer perceptron with complex nodal architecture

(described in methods)

Model Accuracy

RF-10 87.9

RF-20 89.7

SVM 43.1

SVM-N 32.8

MLP 63.7

MLP-C 55.2
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sample. Most alignment-based metagenomic profiling

tools use fast and memory efficient aligners such as

Bowtie2 [34], BWA [54], and LAST [55]. The user,

however, should consider running time. Aligning and

profiling of one metagenomic sample is not that long,

but if you have thousands of samples, it will take roughly

thousands of times of each sample run time. If user can

access a multi-node cluster, batch job scripts or simple

message-passing-interface (MPI) programs can reduce

the wall-clock time dramatically.

The second assembly-based approach is an appropriate

method for users who can access large memory computing

resources. Although there are few scalable de-novo meta-

genome assembly programs (such as Ray Meta [56]) avail-

able, most metagenome assembly programs require very

large memory (10X of sample size) for the large-scale

merged data set. Here, we showed that reduced-represen-

tation subset of the total data set also can derive precise

prediction when used in conjunction with machine learn-

ing. We showed that this was a valid approach using two

different assembly-based paradigms. First, we showed that

a random subset of paired end reads (PP) were sufficient

to predict the correct city label. This approach is especially

useful for researchers who have access to large computa-

tional resources but may be time limited. Subsetting the

data requires only a fraction of the time for assembly. Sec-

ond, we showed that the left-only paradigm (PL) per-

formed just as well as the random subset of paired end

reads. This result is especially useful in time-limited sys-

tems as the assembly takes roughly half the time of the of

the PP-based subset. Here, we do warn users that

paired-end data tend to generate better (less fragmented)

assemblies. The fragmentation of the PL method meant

that more sequences were required to generate the same

mapping rates as the PP method. This meant that the

resultant ML models had ~10X as many features. This

meant that models like LDA and RF took longer (albeit on

the scale of minutes), but larger models like multi-layer

perceptrons with complex nodal architectures took too

long to fully consider in the scope of this manuscript.

While the topic of biological interpretation of these

data are beyond the scope of this analysis, many

researches will likely include biological interpretation

downstream in their analysis. The read-based approach,

shown here with MetaPhlAn2 is an excellent choice for

these analyses. Inherent in the execution of MetaPhlAn2,

the data are placed in a biological context. Users would

be able to see how different bacterial families, genera, or

species compare within and between samples. This is

also possible in the assembly-based approach, but re-

quires even more computationally intensive analyses.

For example, the metagenomes can be binned using

alignment based binning tools [57–60], and the binned

metagenomes could be taxonomically assigned using

SendSketch [49] or BLAST [61]. Additionally, the diffe-

rent approaches could be combined, and the meta-

genomes can be fed to community profiling tools like

MetaPhlAn2 for biological interpretation.

Conclusions

For the last decade, a cultivation-independent meta-

genomics approach, in which all microorganisms in a sam-

ple are directly sequenced together, has been intensely

applied to understand microbes’ impact on human health,

plant, soil, water, and so on. A new generation of sequen-

cing technologies accelerated research, but left a vast

amount of metagenomic sequencing data to be analyzed.

Software and high-performance computing systems that

could speed analysis are still lacking. It is important to

develop novel computational algorithms or pipelines to

decipher terabytes of metagenomic sequencing data quickly

and precisely. We here proposed two approaches to analyze

the large-scale data set efficiently: one is read-based

profiling approach and the other is reduced data set

assembly-based approach. Multiple machine learning tech-

niques were investigated and incorporated in the pipeline

to predict unknown samples precisely. Overall, these

approaches shows promise although more dedicated work

is required to increase the prediction accuracy.

Reviewers’ comments

Reviewer’s report 1 - Eugene V. Koonin

Reviewer comments: The authors present two machine

learning techniques to analyze metagenomic data. I

believe that the methods are sound and could be useful

to many researchers working with metagenomes. The

authors explicitly indicate that biological interpretation

is beyond the scope of the present work and briefly

discuss the directions for extending their methods into

the biological domain. This approach somewhat limits

the impact of the article but is fully legitimate. Within

the limitations mentioned above, I do not see significant

flaws in the article.

Author’s response: The authors would like to thank

you for your time and effort to review our paper. The

comments are greatly appreciated.

Reviewer’s report 2 - Jing Zhou

Reviewer comments: In this paper, the authors explored

different abundance-based machine learning methods to

predict city identity based on its subway metagenome.

They examined two different approaches to generate

metagenomic profiles – one is sample-based taxonomy

profiling and the other one is reduced-representation

assembly-based method. They found the Random Forest

(RF) machine learning method yielded highest prediction

accuracy (i.e. 91%) among other machine learning

methods. For an independent testing set, the RF method
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with sample-based taxonomy profiling method correctly

identified 18/30 samples. Although both profiling

methods have shown very similar accuracy using RF

methods, the authors pointed out the two methods have

different requirement in system usage and provided rec-

ommendation for different systems. This information

would be very useful, when it comes to choose profiling

methods and prediction methods. I believe this paper fit

the standard of Biology Direct and should publish with

the following comments addressed.

Author’s response: The authors would like to thank

you for your time and effort to review our paper. The

comments are greatly appreciated.

Reviewer comments: Major Comments: 1) In the

background session, I would expect the authors provide

more background on the methods they used in the

paper—especially the profiling methods.

Author’s response: We agree that the methodology of

our approaches should have been more explicitly stated

in the “Background” section. As such, we have amended

out “Background” section to include this level of detail.

Reviewer comments: 2) Also, is there any other paper

has used a similar combination of genomic profiling and

machine learning methods? If there is any, how the

results compared to the study here?

Author’s response: To address this, we included a

paragraph in the “Background” section.

Reviewer comments: 3) I wonder if surfaces informa-

tion is also available in the data set. If so, is that possible

to use the best approach used in this paper to predict

city identity+ surface identity? It may beyond the scope

of this paper, but it would be an interesting question to

explore in the future.

Author’s response: This is an excellent comment.

Unfortunately, we were not provided with the surface

information for all of the samples through the CAMDA

challenge. As such, we are unable to adequately analyze

these data in that light. However, we absolutely agree

that this would be a great comment to explore in the

future in CAMDA challenges.

Reviewer comments: Minor Comments: 1) The con-

clusions in the abstract did not provide any useful

information to the readers. The main findings in the paper

should be emphasized 2) The authors should provide the

prediction accuracy for the independent testing set in the

abstract as well. 3) In the method part, I think they should

move the second paragraph to introduction. Also, it is

confusing to me, how did the authors know which 30 were

new samples? It states in the paper “About 30 new

samples from different cities and surface types already

featured in the primary dataset- can you tell which?”

Author’s response: We have updated the “Results”

and “Conclusions” paragraphs in the “Abstract”. “Data

sets” subsection in the “Methods” section has been

amended to more clearly describe our approaches to the

specific challenge.

Reviewer’s report 3 - Serghei Mangul

Reviewer comments: Major comments: The caption to

the figures are missing and need to be added More de-

tails of sequencing datasets need to be provided. For ex-

ample, read the length of each dataset (Table 1).

Author’s response: The authors would like to thank

you for your time and effort to review our paper. The

comments are greatly appreciated. We would like to

kindly point that the captions of figures were provided in

the main manuscript prior to the References section

called “Figure Descriptions:” after following Biology

Direct journal submission guidelines about figures. As

reviewer commented, a column with read information

has been added to Table 1.

Reviewer comments: According to a recent bench-

marking paper, Metahplan2 suffers from low sensitivity:

Sczyrba, Alexander, et al. “Critical assessment of meta-

genome interpretation—a benchmark of metagenomics

software.”; Nature methods 14.11 (2017): 1063. Authors

need to comment on these issues with Metahplan2 and

warn the users about this.

Author’s response: We agree that MetaPhlAn2.0

could have low sensitivity especially in the case of

closely-related genomes coexisting in the samples. That is

why several strain-level resolution taxonomic profilers

were recently published including Sigma (1), that we de-

veloped before, ConStrains (2), MIDAS (3), StrainPhlAn

(4), and StrainEst (5). However, most strain-level re-

solution profilers are computationally expensive and

requiring large reference database with many genomes.

In the CAMI manuscript, the authors stated that “In

terms of precision, MetaPhlAn 2.0 and “Common Kmers”

demonstrated an overall superior performance, indi-

cating that these two are best at only predicting organ-

isms that are actually present in a given sample and …”

. In addition, MetaPhlAn2 allows very fast assignment by

the smaller marker gene and fast mapping aligner,

Bowtie2 that has a great fit into this massive meta-

genomic analysis. That is why we selected MetaPhlAn2

for our massive data analysis, and the results showed

good accuracy from it. Based on reviewer’s comment, we

added sentences in the “Read-based taxonomic profiling

and quantification” subsection in “Methods”.

Reviewer comments: P 7.line 162. Details of the pack-

ages used needs to be explained. What exactly they do?

Author’s response: The sentences about machine

learning library have been updated.

Reviewer comments: Line 176. Data were divided into

training and test partitions. The validation datasets need

to be added. Ideally from a different cohort or from the

Harris et al. Biology Direct _#####################_ Page 10 of 13



same one. If this is impossible, the authors need to

clearly provide reasoning.

Author’s response: This is a very valid criticism of

our manuscript. For this analysis, we opted not to

include a validation set so as to maximize the volume of

data available to train the models. We contend that, as

this is a purely theoretical exercise not to be used for ac-

tual model deployments, this deviation from expected

protocols is justified. We hold this to be true for two

major reasons: 1) the data are highly imbalanced and 2)

we have relatively few samples. This could then give us a

very biased interpretation of our results. Using our

method, we set aside the initial test set and then esti-

mated model performance using different random parti-

tions of the available training data (comprehensive cross

validation). Perhaps, our most egregious deviation from

expected protocols was attempting to tune the random

forest hyperparameter (n_estimators in SciKit Learn)

within this framework. In our approach, we simply used

a relaxed implementation of the bootstrapping to iterate

over several random cross-validation splits to find an

appropriate range (Efron and Gong 1983). We have

clarified out language to describe this throughout mul-

tiple section of the manuscript.

Reviewer comments: The paper suggests that the

prediction accuracy was 20%. Page 8. Line 182. How the

prediction accuracy was calculated? This needs to be

added to the paper.

Author’s response: In the “Machine learning and city

prediction” subsection in “Methods” section, we have

amended the manuscript methods to include a definition

of accuracy.

Reviewer comments: Line 201/ page 9. The paper

claims that many NYC sample failed to be identified.

The immediate reason can be that NY is low coverage

samples (> 2M reads). The authors need to further

investigate this and adjust for total coverage if this is

was not done before. One approach is to subsample all

samples to the same coverage (number of reads). Also

was the read length of NY different from the rest?

Author’s response: The reviewer outlines several

really good potential explainers of our inability to appro-

priately predict the NY samples. Unfortunately, they are

probably no closer than what we could come up with. As

we added a column to Table 1, NY is the third largest

sample. As our models are relative-abundance based, we

opted not to adjust for coverage. This was primarily be-

cause we could not have applied the same filters to the

testing set.

Reviewer comments: The figure comparing marker

gene-based approach (Metahplan2) and assembly one

(Megahit) needs to be added. Maybe with the best classi-

fier. This will help the reader better understand the dif-

ference between those approached.

Author’s response: Table 3 shows the evaluation of 30

unknown cities prediction from read-based RF and

PP-assembly-based RF to compare the power of two

approaches. Figures 3 and 5 also show confusion matrices

of training dataset for the read-based approach and the

assembly-based approach.

Reviewer comments: P 11. Line 257. Both marker

gene-based approach (Metahplan2) and assembly one

(Megahit) show similar results. The interpretation if this

needs to be added to the Discussion section. Why low

sensitivity of Metahplan2 does not affect the results.

Author’s response: We have added a paragraph to

the “Discussion” section addressing this issue and discus-

sing our results overall.

Reviewer comments: Minor comments: The paper

mentioned the association of microbiome with mental

health. The authors are recommended to add an

additional citation supporting the association of micro-

biome with mental health: Loohuis, Loes M. Olde, et al.

“Transcriptome analysis in whole blood reveals increased

microbial diversity in schizophrenia.” Translational psy-

chiatry 8.1 (2018): 96. P 3 line 75.

Author’s response: Thank you for providing the re-

ference paper. We have amended the citation for this

section to include this work and a couple more recent

analyses of similar approached.

Reviewer comments: The paper claims that post ana-

lysis is at least a few times bigger than the sequencing

data. This is unexpected and needs to be clarified with

supporting results or reference.

Author’s response: In most bioinformatics researches,

it is naturally common to keep intermediate processed

files with original sequence files for possible secondary

analyses or any other purposes. Therefore, it will be safe

for researchers to prepare few times larger available

storage than amount of sequencing data size to analyze

the data, but it is not always true as reviewer com-

mended. By following of reviewer’s comment, we modified

the sentence.

Reviewer comments: P 4. Line 77. Definition of pan-

genomes needs to be provided.

Author’s response: We have updated the paragraph.

Additional files

Additional file 1: Figure S1. A schematic view of the reduced-

representation paradigms for the assembly-based approach. In the

random paired-end subset (PP), half of each city was extracted randomly

while maintaining the paired-end structure of the data. In the left-only

subset (PL), only the left read from each sample were used for the

assembly. (PDF 656 kb)

Additional file 2: Figure S2. Mapping rates of the cleaned reads back

to the metagenome assembly. The random paired-end subset (PP)

assembly is shown in red. The left-only subset (PL) assembly is shown in

green. (PDF 5 kb)
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Additional file 3: Figure S3. Hyperparameter tuning for n_estimators in

the assembly-based approach. Each figure shows accuracy results from a

series of random decision tree constructions and random train/test

partitions for each of those constructions. (A) Hyperparameter tuning of

the random paired-end subset assembly (PP). (B). Hyperparameter tuning

of the left-only assembly (PL). Note: The difference is point count is from

fewer tests in the PL assembly as it had 10X as many features and took

much longer to train and test. (PDF 2103 kb)
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