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Abstract

Background: De novo genome assembly refers to building genome of a specimen
using overlaps of genomic fragments without the help of reference sequence.
Sequence fragments (called reads) are assembled as contigs and scaffolds by the
overlaps, and the quality of the de novo assembly depends on the length and
continuity of the assembly. High-throughput next-generation sequencing and
long-reads-producing third-generation sequencing techniques enable faster and
more accurate assembly of any species, but resolving very huge-size overlap graph
usually requires large amounts of computer memory and is not easy to be
parallelized.

Results: To address such challenges, we propose an innovative algorithmic
approach; Scalable Overlap-graph Reduction Algorithms (SORA). SORA is a
package of Apache Spark based string graph reduction algorithms and their
implementations especially for de novo genome assembly on a single machine or
distributed computing platform. To efficiently compact the number of edges for
enormous graphing paths, SORA adapts scalable features of graph processing
libraries of Apache Spark, GraphX and GraphFrames.

Conclusions: The experimental results including graph reduction from a human
genome sample exemplify SORA’s ability to process a nearly one billion edge
graph in a distributed cloud cluster in addition to mid-to-small size graphs on a
single workstation within a short time frame. Moreover, our algorithms display an
almost linear scaling in relation to the number of virtual instances in the cloud.
SORA is publicly available to download at https://github.com/BioHPC/SORA/.

Keywords: graph reduction; apache spark; genome assembly; cloud computing;
overlap-layout-consensus

Background

Next-generation sequencing (NGS) refers high-throughput and in-parallel DNA se-

quencing technologies developed around 2007 after the Sanger DNA sequencing

method first emerged in 1977 [1]. NGS technologies are different from the long dom-

inated Sanger method in that NGS provides massive sequencing analysis with being

extremely high-throughput from multiple samples at much reduced cost. Following

the introduction of NGS techniques [2, 3], prodigious changes have occurred in the

biological and biomedical sciences, specifically in genomics [3]. With reductions in

sequencing cost and increased throughput, read length, and read accuracy NGS

has drastically recast DNA sequencing; however, NGS requires a significant body

of sequencing data for analysis. As reported by previous studies, NGS faces sev-

eral limitations [4]. For example, in comparison to the sequence length generated
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by first-generation Sanger sequencing (500∼1000bp), fragmented DNA sequences

(i.e. reads) are generally shorter (50∼300bp). Recently developed third-generation

sequencing techniques such as Pacific Bio-sciences (PacBio) and Oxford NanoPore

provide much longer reads (up to 2 Mbp) to the considerable benefit of the assembly.

However, NGS remains dominant due to its low cost and error rate.

Two different types are generally used for genome assembly: de novo assembly

and reference-based assembly. De novo assembly is the process of finding overlaps

and merging reads to complete genome sequence that is inherently challenging but

essential to bioinformatics research [5]. Reference-based assembly can construct a

new specimen genome with help of similar assembled genome. Third-generation

sequencing can produce reads having nearly similar size of bacterial genomes that

usually are few Mbp long, but cannot generate full sequences of eukaryotic genomes

up to several Gbp of length. For example, the haploid human genome size is over

3 Gbp and the Genome Reference Consortium Human Build 38 patch release 13

(GRCh38.p13) is the most recently released human genome assembly [6].

The elaboration of genome assembly stems from multiple issues including het-

erozygosity and ploidy, affected mainly by the length and numbers of the reads.

To assemble such large datasets, most de novo assembly programs are highly sen-

sitive to the changes in time and space complexity. To account for both sensitivity

and speed, most de novo genome assemblers commonly employed two assembly

paradigms. One is overlap-layout-consensus (OLC) algorithm and the other is de

Bruijin graph (DBG) [7]. During the first-generation Sanger sequencing technique

era, OLC approaches, i.e., Celera [8], reached accuracy adequate to accommodate

the low sequencing depth and longer reads output. Newbler [9] that was designed

for second-generation Roche / 454 Life Sciences sequences also adapted the OLC

approach. The majority of OLC-based genome assemblies produce the sequence

assembly of whole, complex genomes using below steps. First, finding Overlaps be-

tween fragments or among all reads by using a graph model. Second, using the

overlay-graph to construct a stretched Layout. Third, establishing the most prob-

able Consensus sequence.

Various alternate approaches using DBG concept were proposed to assemble a

genome with noticeably high-throughput and short reads from NGS technologies.

Under NGS, DBG-based assemblers have been commonly employed to degrade reads

into k-mers where a k-mer is a subsequence of a fixed-length, k. Various DBG-based

assemblers including AbySS [10], Velvet [11] and SOAPdenovo [12] utilize memory-

efficient DBG traversal to lessen the memory footprint of assembly including an

efficient identification of redundant k-mers. As opposed to the less computationally

efficient (e.g. costly execution time and memory consumption per assembler) OLC-

based approaches, most DBG-based assemblers reduce dependency on sequencing

depth using a genome-sized graph at the cost of a larger memory overhead. The

DBG-based approach achieves comparably fast overlapping computation for high-

throughput short reads, while the OLC-based approach performs more advanta-

geously for longer reads. Most of the DBG-based techniques adapt hashing algo-

rithms that have a chance to acquire higher relative error rates but usually perform

faster than the OLC-based approaches [13].
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Lately, probabilistic algorithms utilizing the MinHash technique have been devel-

oped to efficiently identify multiple overlaps between long, noisy reads from third-

generation sequencing data [14,15]. Canu, as a successor of the Celera assembler, was

designed for long and noisy single-molecule sequences [15]. However, the computa-

tionally expensive overlap graphs produced by the assembly of raw or processed se-

quences must be simplified or reduced. Several MPI-based scalable assemblies were

proposed previously; including Abyss [10], Ray [16], and SWAP2-Assembler [17].

Apache Spark serves an a general purpose and open source and distribution comput-

ing engine for cluster based computation with pre-build libraries such as GraphX,

MLlib (Machine Learning library), Spark Steaming, and so on [18, 19]. Utilizing

data intensive cluster computation, Apache Spark processes large scale data quickly

though efficient in-memory computation. Unlike the Apache Hadoop, a conventional

cloud-based distributed processing framework, Spark can accelerate computational

performance by up to 100 times compared to the Hadoop especially for interactive

jobs and iterative analytics by cacheing datasets in memory. MPI is a popular frame-

work for high performance parallel computing, but Spark provides an in-memory

implementation of MapReduce that is widely used in the big data industry.

Due to the extensive memory and processing time required, the analysis of

reads with significant overlap is not easily parallelized. To address these chal-

lenges, we propose a novel OLC-based algorithmic approaches for genome assem-

bly, called Scalable Overlap-graph Reduction Algorithms (SORA) by leveraging

Apache Spark especially with the GraphX and GraphFrames libraries. Using the

computing engine of Apache Spark, SORA accelerates the graph reductions for

genome assemblies by compacting repetitive information of sequence overlaps either

in the cloud, by a local cluster system, or using a stand-alone workstation. SORA

was developed as an open-source framework to provide pre-built modules for graph

reduction with useful scripts for genome assembly including sequence overlap finding

using BBtools (https://sourceforge.net/projects/bbmap/). SORA executes genome

assembly through the use of three overlap-graph reduction algorithms: Transitive

Edge Reduction, Dead-End Removal, and Composite Edge Contraction. It presents

a short turnaround time when processing a large-scale dataset consisting of a graph

with nearly one billion edges on a distributed cloud computing cluster or when

processing a smaller 8 million edge graph dataset on a local computing cluster.

Spaler [20] is another GraphX and Apache Spark based de novo genome assembler

utilizing DBG contraction and construction, but SORA is, to our knowledge, the

first proposed Spark-based scalable assembler utilizing the OLC approach. Our pre-

vious studies [21,22] were extensively extended in this paper. In detail, two primary

goals are demonstrated in our benchmark results; (1) SORA actualizes a cloud scal-

able de novo genome assembler through leveraging Apache Spark graph processing

libraries; (2) SORAdemonstrates the applicability of cloud computing infrastruc-

ture employing graphing algorithms to genome assembly and alternative biological

applications. The increasing popularity of Spark among computational researchers

has also influenced our decision to use Spark [23].

The remainder of the article is organized as follows. Section describes the OLC

algorithm and Apache Spark, then presents SORA’s algorithms and the implemen-

tation in detail. Section describes various experiments conducted to evaluate the
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scalability and usability of SORA using large and small scale datasets on cloud

followed by Discussion and Conclusions.

Methods

Overlap-Layout-Consensus

The Overlap process, the initial step of OLC, focuses on finding overlaps of all reads

using all-to-all pairwise alignments. To efficiently find overlaps between reads, the

prefix/suffix technique is commonly used for overlap-based genome assembly [24].

This hash table approach allows a nearly constant time search when reads are small

of all reads by their prefixes and suffixes. To efficiently search all overlapping reads

with a read r, each proper substring of minimum overlap in read r is found in

the hash table, and every retrieved read is compared to the read r. Therefore, an

overlap-graph that places reads as nodes and assigns edges between nodes whose

corresponding reads overlap exceeds a specified cutoff is constructed by the Overlap

step. As a result, the number of nodes will be proportionate to the number of unique

reads, while the number of overlaps between reads will determine the number of

edges.

During the Layout and Consensus steps, the manufactured overlap-graph is

stretched and reduced into the most probable contiguous sequences, labeled, con-

tigs. The Layout step acts as a Hamiltonian path problem where each read in the

graph must be visited to generate longer sequences. This is a computationally chal-

lenging problem caused by a large number of unnecessary edges that are mostly

produced by repeats or sequencing errors. As the final step, Consensus considers

the alignment of all original reads onto the draft contigs from the Layout step and

employs a straightforward majority-based consensus to improve the draft sequences.

To limit extraneous edges in the graph, SORA utilizes three overlaps-graph reduc-

tion algorithms: Transitive Edge Reduction (TER), Composite Edge Contraction

(CEC), and Dead-End Removal (DER) [25].

Apache Spark

Apache Spark is a cluster-based engine that processes very large-scale datasets. As

opposed to Hadoop’s on-disk data processing, Spark’s incorporated batching sys-

tem handles input data streams in-memory, separates the data into batches for

each node in a cluster, and produces the final stream of results in batches. For

fast and scalable distributed graph-parallel computation, Apache Spark provides

GraphX library that contributes a set of fundamental operations and graph ab-

straction models in parallel. This permits SORA to manipulate and execute queries

on graphs represented as database entries. The implementation and design in SORA

leverages an assortment of computational operations in GraphX for construction,

graph reading, transformation, and computation. GraphX extends Spark’s Resilient

Distributed Dataset (RDD) that embodies a read-only collection of objects that are

partitioned over machines. If any partition of an RDD is lost, Spark rebuilds it by

applying the filter on the corresponding block of the file in the file system. An RDD

can be cached in memory across machines and reused in multiple MapReduce-like

parallel operations.

To accommodate abstraction for manipulating structured data (e.g., tables or two-

dimensional arrays), SORA uses a graph processing library called GraphFrames that
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is built on Spark’s DataFrame implementation to process real-time exploration of

large-volume datasets. SORA leverages GraphFrames to execute pattern matching

and relational queries in tandem with GraphX to speed up the most common join in

iterative graph processing tasks. SORA was implemented in Scala, but the portable

design of the core components allows for adaptive use with other programming

languages like Java or Python with lower development costs.

Overlap-Graph Reduction Algorithms

This section illustrates SORA’s adaptation of three overlap-graph reduction algo-

rithms to the distributed cloud computing cluster utilizing Spark. Figure 1 repre-

sents the synopsis of each workflow as to how each algorithm computes overlap-

graph reduction.

Transitive Edge Reduction

Transitive edge reduction is a method of reducing complexity in graphs and helps

provide clearer contigs by eliminating extraneous paths in the graph. After finding

overlaps, the initial overlap graph contains many unnecessary edges. For example,

say read a overlaps with read b, which overlaps with read c subsequently, which

results in a shorter overlap length between read a and read c. Then, the string

graph edge a → c is unnecessary because one can use the edges a → b → c without

a → c to obtain the same sequence. The edge a → c is then identified as a transitive

edge and is deleted. Removing all transitive edges significantly simplifies the overlap

graph without losing information for genome assembly.

The general transitive edge reduction algorithm takes O(ED) time where E is the

number of edges andD is the maximum out degree for the read, but Myer proposed a

linear O(E) expected time transitive reduction algorithm shown in Algorithm 1 [25].

After the initial marking of every vertex and all related edges in the graph, each

vertex is then investigated to find eliminable edges of the vertex using the marking

strategies.

In Algorithm 2 we use the GraphX library operators to implement the tran-

sitive edge reduction algorithm based on the graph-parallel abstraction. The

GraphX library supports the graph-parallel computation APIs aggregateMessages(),

outerJoinVertices(), mapTriplets(), subgraph(), sendToSrc(), and sendToDst(). After constructing

the initial property graph from the edge properties, the aggregateMessages opera-

tor can compute the set of neighbors for each vertex and retrieve the edge properties

including overlap length at the same time. The required set of neighbors can be

joined with the graph using outerJoinVertices. After comparing overlap lengths

of the edges for each vertex in parallel, the edges are marked as TRUE if the edges

can be removed. The subgraph operator returns a new graph containing only the

edges not marked for removal.

Dead-End Removal

Dead-End Removal (DER) eliminates short dead-ends or spurs from the graph,

reduces erroneous reads, and decreases the graph complexity. The short dead-end

paths are mostly caused by sequencing errors and false-positive joins of overlapping

of chimeric sequences. Most assemblers identify the dead-ends by considering short
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Algorithm 1 Algorithm for Transitive Edge Reduction
Input: Graph (V, E)
Output: Reduced Graph (V’, E’)
1: for v ∈ V do
2: mark[v] ← vacant // Initially mark a vertex vi as vacant.

3: for v → w ∈ E do
4: reduce[v → w] ← false // Mark an edge wi as not reduced.

5: end for
6: end for
7: for v ∈ V do
8: // Mark a vertex vi reachable from vj as inplay

9: for v → w ∈ E do
10: mark[w] ← inplay
11: end for
12: longest ← maxwlen(v → w)
13: for v → w ∈ E in order of length do
14: // Traverse an edge wi marked inplay, indicating it is adjacent to v.

15: if mark[w] = inplay then
16: // Stop if an edge is too long to eliminate edges out of v.

17: for w → x ∈ E in order of length and
len(w → x) + len(v → w) ≤ longest do

18: if mark[x] = inplay then
19: mark[x] ← eliminated
20: end if
21: end for
22: end if
23: end for
24: // Conclude the processing of v by examining each adjacent vertex.

25: for v → w ∈ E do
26: if mark[w] = eliminated then
27: reduce[v → w]← true // Mark as needing reduction.

28: end if
29: mark[w] ← vacant // Restore each vertex mark to vacant.

30: end for
31: end for

Algorithm 2 Spark Algorithm for Transitive Edge Reduction
Input: Let overlapG be an overlap graph G(V, E).
Output: Let reducedG be a reduced graph G(V’, E’).
1: // Compute the set of neighbors for each vertex.

2: neighborVtx = aggregateMessages(overlapG(V, E)) {
3: for v ∈ V do
4: ort ← getOrientation(v)
5: sendToSrc(getDstId(v), ort, getOverlapLen(v))
6: sendToDst(getSrcId(v), ort, getOverlapLen(v))
7: end for
8: }
9: // Join graph with neighbors.

10: joinedG = outerJoinVertices(overlapG(V,E),neighborVtx)
11: // Traverse each edge and mark true if the edge is removable.

12: markedG = mapTriplets(joinedG(V, E)) {
13: for e ∈ edges of adjacent vertices of a vertex in V do
14: if getOverlapLen(e) < getMaxOverlapLen(e) then
15: e ← true

16: end if
17: end for
18: }
19: // Remove the marked edge using subgraph.

20: reducedG = subgraph(markedG(V, E))

length edges with low-depth coverage to be dead-ends. The DER algorithm iterates

over all reads, then stamps the edges if the reads have only one incoming edge and

the edges are short with low coverage.

Algorithm 3 describes the DER algorithm based on the GraphX operators. Algo-

rithm 3 takes as input the reduced graph that Algorithm 2 has produced as the out-
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Algorithm 3 Spark Algorithm forDead End Removal
Input: Let overlapG be an overlap graph G(V, E).
Output: Let reducedG be a reduced graph G(V’, E’).
1: // Compute the in/out edge counts for each vertex.

2: inOutVtx = aggregateMessages(overlapG(V, E)) {
3: for v ∈ V do
4: ort ← getOrientation(v)
5: if ort == ←→ then
6: sendToSrc(1,0)
7: sendToDst(1,0)
8: end if
9: if ort == > −− < then
10: sendToSrc(0,1)
11: sendToDst(0,1)
12: end if
13: if ort == � || ort == � then
14: sendToSrc(0,1)
15: sendToDst(1,0)
16: end if
17: end for
18: }
19: // Join graph with neighbors.

20: joinedG = outerJoinVertices(overlapG(V, E), inOutVtx)
21: // Traverse each edge and mark true if the edge is removable.

22: markedG = mapTriplets(joinedG(V, E)) {
23: for e ∈ edges of adjacent vertices of a vertex in V do
24: if e.out == 0 then
25: e ← true

26: end if
27: end for
28: }
29: // Remove the marked edge using subgraph.

30: reducedG = subgraph(markedG(V, E))

put and executes the aggregateMessages operator to compute the number of edges

going in and out of each vertex depending on the orientation of the edge. This infor-

mation can be joined with the input reduced graph by using outerJoinVertices.

In parallel, if the number of outgoing edges from a node is zero and the edge can

be removed mark the edge TRUE. The subgraph operator returns a new graph with

the edges marked TRUE removed.

Composite Edge Contraction

Composite Edge Contraction (CEC) reduces the computational complexity by pro-

cessing larger volumes of data in the graph. Especially, CEC merges vertices guaran-

teed to process the graph without loss of information. In the case of Overlap-layout-

consensus (OLC), a read is represented for branching to two additional reads which

deviate from each other at least one nucleotide, both of which then overlap back to

the same read. In contrast to OLC, the CEC algorithm simplifies the path analysis

by removing redundancy and reducing complexity of the graph, considering only the

contractible edges without loss of important information for the genome assembly.

To simplify the overlap graph, a simple vertex, r, along with its in-arrow edge (u,

r) and out-arrow edge (r,w), are replaced by a composite edge (u,w) in the overlap

graph.

Algorithm 4 describes the composite edge contraction by using the operators of the

graph-parallel computations provided by GraphX and GraphFrames. After receiving

the reduced graph from Algorithm 3, the operator aggregateMessages computes

the number of edges going in and out of each vertex depending on the orientation
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Algorithm 4 Spark Algorithm for Composite Edge Contraction
Input: Let overlapG be an overlap graph G(V, E).
Output: Let contractedG be a contracted graph G(V’, E’).
1: // Compute the in/out edge counts for each vertex.

2: inOutVtx = aggregateMessages(overlapG(V, E)) {
3: for v ∈ V do
4: ort ← getOrientation(v)
5: if ort == ←→ then
6: sendToSrc(1,0)
7: sendToDst(1,0)
8: end if
9: if ort == > −− < then
10: sendToSrc(0,1)
11: sendToDst(0,1)
12: end if
13: if ort == � or ort == � then
14: sendToSrc(0,1)
15: sendToDst(1,0)
16: end if
17: end for
18: }
19: // Join graph vertices with in/out edge counts.

20: joinedG = outerJoinVertices(overlapG(V, E), inOutVtx)
21: // Traverse each edge and mark true if edge is contractable.

22: markedG = mapTriplets(joinedG(V, E)) {
23: for e ∈ edges of adjacent vertices of a vertex in V do
24: if e.out == 1 and e.in == 1 then
25: e ← true

26: end if
27: end for
28: // Remove the edges marked true using subgraph.

29: contraG = subgraph(markedG(V, E))
30: // Calculate the connected components for each node.

31: conVtx = connectedComponents(contraG(V, E))
32: // Combine connected vertices with graph.

33: dupVtx = vertices.innerjoin(markedG(V, E), conVtx)
34: contraVtx = vertices.aggregateUsingIndex(markedG(V, E), dupVtx)
35: // Remove the edges marked false using subgraph.

36: remainedG = subgraph(markgedG(V, E))
37: contraEdges = outerJoinVertices(remainedG(V, E), conVtx)
38: // Generate a new graph using the modified edges and vertices.

39: contractedG = graph(contraVtx, contraEdges)

of the edge. The result of a processed set of vertices and edges is integrated with

the input reduced graph by using the operator outerJoinVertices. The operator

mapTriplets is parallelized to investigate the edges of each adjacent vertex to

determine whether the vertex only includes a pair of incoming and outgoing edges.

It then marks the edge TRUE if they can be contracted. The subgraph operator

returns a new graph with only the contractable edges.

The operator connectedComponent identifies the connection relationship among

contractible vertices and produces the vertex information with the vertex IDs for

the connected contractible subgraphs. Given the contractible vertex information, the

operator innerJoin performs an inner join between each contractible and internal

vertex to produce a set of the new vertex properties, which is used in the operator

aggregateUsingIndex to aggregate the contracted vertices ensuring consistency by

joining the IDs among vertices. Then, the operator subgraph filters out the edges

marked FALSE to remove the contractible edges from the original graph. Based on

the refined vertex set, the operator outerJoinVertices generates the contracted

edges, which parameterize the operator graph to construct a new reduced graph.
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Results

Figure 2 shows a practical pipeline of genome assembly using SORA. In our ex-

periments, we applied three overlap-graph reduction algorithms (Transitive Edge

Reduction, Dead-End Removal, and Composite Edge Contraction) in SORA to

three different types of benchmark datasets.

Three Data Sets

For the first experiment described in Section 0.1, we downloaded a metage-

nomics dataset from the Sequence Read Archive at the National Center for

Biotechnology Information (NCBI) [24]. The accession number is SRX200676.

The metagenomics dataset is considerably large containing mixed DNA from

64 diverse bacterial and archaeal microorganisms. The combined DNA was se-

quenced using Illumina HiSeq [26]. For the second experiment described in Sec-

tion 0.1, we obtained a single genome dataset of Conyza canadensis (also known

as horseweed) processed by the Illumina HiSeq sequencing system [27]. For the

third experiment described in Section 0.1, we downloaded a human genome

dataset provided by the 1000 Genome Project data portal (ISGR: The Interna-

tional Genome Sample Resource http://www.internationalgenome.org/). Sample ID

is NA12878 (http://www.internationalgenome.org/data-portal/sample/NA12878)

and we downloaded 3 files of whole genome sequencing (WGS) from the Euro-

pean Bioinformatics Institute (EBI) (ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/-

SRR622461/SRR622461 1.fastq.gz, ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/-

SRR622461 2.fastq.gz, ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR622/SRR622461/SRR622461.-

fastq.gz).

0.1 Metagenomics Dataset Analysis

We evaluated the scalability of SORA by applying the overlap-graph reduction

algorithms to the metagenomics dataset that is extremely large to check the perfor-

mance capability of SORA. In the experiment, we observed that SORA significantly

reduced the number of reads in the metagenomics datasets, which consequently al-

lows binning of the contigs to reconstruct genomic bins more quickly and efficiently.

The benchmark has been performed on Amazon Web Service (AWS) Elastic Com-

puting Cloud (EC2) with 15 virtual instances whether each instance (m4.xlarge)

has 2.3 GHz Intel Xeon E5-2686 v4 (Broadwell) processors (4 vCPU) and 16 GB

memory.

Overlap Graph Construction

The sequence dataset obtained from NCBI contains 109 million paired-end

reads roughly and 0.4 million single-end reads with 100-bp read length. Se-

quence reads that are shorter than 60bp and containing multiple N char-

acter were removed using Sickle (https://github.com/najoshi/sickle). BBNorm

(https://sourceforge.net/projects/bbmap) was used for error correction with the

default settings. These are the same techniques used for the OMEGA analysis [24].

Transitive Edge Reduction

In the experiment with the metagenomics dataset, Transitive Edge Reduction

(TER) algorithm performed a drastic reduction on the number of edges in the
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graph. In Table 1, the reduction results of the TER algorithm were shown us-

ing three types of data size as quarter, half, and full data sets. Given the quarter

dataset that contains over 217 million edges, the TER algorithm produced the re-

duced graph comprising 12.5 million edges with 94.24% reduction; given the full

size dataset that initially contains 868 million edges, the TER algorithm made the

reduced graph comprising of 57.4 million edges with 93.39% reduction.

Figure 3 shows the powerful scalability of the TER algorithm where the compu-

tational time decreased as the number of cluster nodes increased. For example, the

TER algorithm completed the reduction of the graph module in 2.92 hours using 5

cluster nodes, while completed the same task in 1.37 hours with 15 cluster nodes.

Dead-End Removal and Composite Edge Contraction

The evaluation results of the two algorithms, Dead-End Removal (DER) and Com-

posite Edge Contraction (CEC), using the quarter, half, and full size datasets were

shown in Table 1. Given the quarter dataset that contains 12.5 million edges, the

combined DER-CEC modules created the reduced graph with 0.5 million edges

with 96% reduction. In addition, given the full dataset that contains 57.3 million

edges, the combined DER-CEC modules resulted in the reduced graph comprising

2.3 million edges with 95.97% reduction.

Figure 3 represents the capable scalability of the combined DER-CEC algorithms

by measuring each running time per different numbers of cluster nodes within the

same sized dataset. In the full dataset experiment, we directly compared the running

time between 5 and 15 cluster nodes. The DER-CEC algorithm completed the

reduction of the graph using 5 virtual instances in 1.35 hours, while fast and scalable

completing in 0.4 hours with 15 virtual instances.

Benchmark to Omega

To demonstrate the power of SORA’s distributed cloud computation, we bench-

marked two algorithms: Omega and SORA. Omega is an string overlap-graph based

metagenome assembler tool implemented in C++ [24]. We could choose another

baseline application such as Spaler [20], which is a Spark-based de novo genome as-

sembler using DBG approach, but Spaler is not publicly available for benchmarking.

In Figure 4, it shows that SORA’s computation time is only 1.77 hours running time

compared to Omega with 7.5 hours running time. In addition to efficient speedy

performance, SORA uses less amount of system memory compared to Omega since

it breaks down the graph computation tasks to process them in parallel, thereby

allowing more of the graph to be in memory and speeding up the analysis.

Horseweed Dataset Analysis

To show the flexibility and usability of SORA, we applied SORA to a single genome

dataset to generate a reduced graph. Total size of 72 FASTQ paired-end files is 108

GB. We used a local computational workstation that has 32 cores (Intel Xeon

Processor E5-2640 V3 2.6GHz) and 128 GB of memory (DDR4 2133MHz ECC).

Overlap Graph Construction

To demonstrate the power of SORA for genome assembly with multiple raw reads

dataset from a single genome, we implemented and incorporated multiple shell
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scripts into SORA to perform error correction on the genome dataset, find over-

laps of the corrected reads, and generate a large overlap graph as a batch process,

and thereafter executes SORA. The dataset that we tested was processed with nor-

malization and graph construction containing 8.3 million edges. Figure 5 represents

that the pipeline script including SORA completed the assembly in 9.75 hours where

SORA core modules (TER, DER, and CEC) only took less than 10 minutes.

Transitive Edge Reduction

Table 2 shows the assessment results using the TER algorithm with the single

genome dataset that contains 8.3 million edges. After the TER algorithm, SORA

produced the reduced graph that contains 5.4 million edges, which was lower re-

duction rate than the experiment using the metagenomic dataset since the single

genome dataset is constructed less redundancies and receives fewer transitive edges

potentially to be removed. Figure 5 shows that the TER algorithm completed with

the best speedy performance (1.02 minute execution time) with efficient memory

consumption that is not requiring above 22% of overall memory usage from 128 GB

total system memory.

Dead-End Removal and Composite Edge Contraction

Table 2 also shows the outcomes of overlap-graph reduction from the DER-CEC

algorithms with the dataset where the graph contains 5.4 million edges generated

from the TER algorithm. As we executed the algorithms DER and CEC subse-

quently, the DER algorithm produced the reduced graph with 4.2 million edges,

whose output was fed into the CEC algorithms that completed the final graph lead-

ing to the reduced 1 million-edge graph. During this overlap-graph reduction, the

DER-CEC algorithm completed the computation in 8.23 minutes with the maxi-

mum 37% consumption of the 128 GB total memory.

Human Genome Dataset Analysis

In this experiment, we applied SORA to a human genome dataset to generate a

reduced graph. Total size of 3 FASTQ paired-end files for one sample is 40 GB.

We used a local computational workstation that has 32 cores (Intel Xeon Processor

E5-2640 V3 2.6GHz) and 128 GB of memory (DDR4 2133MHz ECC) to show the

ability of the SORA for a human genome sample.

Overlap Graph Construction

We also used a script in SORA to run BBtools trimming, filtering, error correction,

merge, reformatting, merging, and finding overlaps. The duration time was approx-

imately 1 hour using 32 cores of the machine. Table 3 shows the number of edges

of the overlap graph from the human genome dataset.

TER, DER, and CEC

Table 3 also shows the results of overlap-graph reduction of the TER and combined

DER-CEC algorithms with the human genome dataset. The number of edges de-

creased to 24% of the original overlap graph. During this overlap-graph reduction,

the TER, DER-CEC algorithms completed the computation in 3 minutes with the

maximum 50% consumption of the 128 GB total memory.



Paul et al. Page 12 of 18

Discussion

The sequencing price continues to drop with increasing of emergence and fine tun-

ing of novel sequencing technologies that increase the amount of sequencing data

exponentially. Conventional algorithms can utilize the large influx of raw reads,

but most of those algorithms require a large and expensive computing system with

a large amount of computer memory. That requirement only limit to the few big

labs that can afford to purchase and maintain such a powerful computing machine.

SORA helps bridge this gap to small-size research labs by providing an efficient

method for generating reduced graphs using distributed computing in the cloud.

SORA also provides the ability to analyze any size of input data to generate novel

sequenced contigs in fast turn-around time using any size of system resources.

In reference free de novo assembly, overlap-layout-consensus approach is a well-

used method in low-throughput long-reads Sanger sequencing era, but can raise

a problem for massive amounts of short reads that can lead many false overlaps.

Therefore, it can increase the computational time and memory usage requiring for

storing and analyzing large-scale graphs spawned from the massive short reads.

SORA has been designed to work efficiently with these problems by using the

Apache Spark engine to manage the distributed computation in the cloud or lo-

cal cluster. SORA with Apache Spark efficiently uses in memory storage across

multiple instances to provide a better performance compared to traditional genome

assemblers.

Conclusions

As seen in the experimental results the nearly linear scalability of SORA allows al-

tering of the number of computational nodes as the overlap graph data size changes.

By using the intrinsic attributes of each node (alignment of reads) the redundant

edges in the graph can be removed using the Transitive Edge Reduction algorithm.

The long stretches of multiple single edges mapped head to tail can be reduced

to a single edge using the Composite Edge Contraction. Overall these algorithms

provide a reduced overlap graph which allows for better contigs to be generated for

de novo genome assembly.
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Figures

Tables

Table 1 The overlap-graph reduction results with the metagenomics dataset. #EDGE denotes the
number of edges of the graph and TIME the running time (hours) for the computation.

Algorithm Size #EDGE (before) #EDGE (after) TIME
TER Quarter 217,002,504 12,482,946 0.57

Half 434,005,009 23,818,401 0.80
Full 868,010,019 57,363,515 1.37

DER-CEC Quarter 12,482,946 469,130 0.13
Half 23,818,401 763,474 0.23
Full 57,363,515 2,341,610 0.40

Table 2 The SORA results with the horseweed dataset. #EDGE denotes the number of edges of the
graph and TIME denotes the running (wall-clock) time of the computation.

#EDGE (before) #EDGE (after) TIME (mins)
TER 8,259,543 5,386,287 1.02
DER-CEC 5,386,287 1,027,959 8.23

Table 3 The SORA results with the with the human genome dataset. #EDGE denotes the number of
edges of the graph and TIME denotes the running (wall-clock) time of the computation.

#EDGE (before) #EDGE (after) TIME (mins)
TER 18,942 10,017 1
DER-CEC 10,017 4,648 2
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Figure 1 The overlap-graph reduction algorithms. (a) Transitive Edge Reduction (TER), (b)
Dead-End Removal (DER), and (c) Composite Edge Contraction (CEC).
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Figure 3 Wall-clock time comparison. Wall-clock time for different number of nodes with the
different size of metagenomics datasets.
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Figure 4 Benchmark to Omega Shows how the analysis of the metagenomics dataset compares
with Omega.
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Figure 5 Shows the overall timing of each step from raw reads to reduced graph using SORA


