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Abstract
Graph sparsification has been used to improve the
computational cost of learning over graphs, e.g.,
Laplacian-regularized estimation, graph semi-
supervised learning (SSL) and spectral clustering
(SC). However, when graphs vary over time, re-
peated sparsification requires polynomial order
computational cost per update. We propose a new
type of graph sparsification namely fault-tolerant
(FT) sparsification to significantly reduce the cost
to only a constant. Then the computational cost
of subsequent graph learning tasks can be signif-
icantly improved with limited loss in their accu-
racy. In particular, we give theoretical analysis to
upper bound the loss in the accuracy of the sub-
sequent Laplacian-regularized estimation, graph
SSL and SC, due to the FT sparsification. In ad-
dition, FT spectral sparsification can be general-
ized to FT cut sparsification, for cut-based graph
learning. Extensive experiments have confirmed
the computational efficiencies and accuracies of
the proposed methods for learning on dynamic
graphs.

1. Introduction
For statistical estimation problems over graphs, an effec-
tive regularization term can be based on the underlying
graph structures, specifically, the graph Laplacian (Calan-
driello et al., 2018; Sadhanala et al., 2016). Consider a
graph G(V,E,W ) with n vertices and m edges, its Lapla-
cian matrix LG is DG − AG, where AG and DG are the
adjacency and degree matrices of G, respectively. 1 Sup-
pose y = (y1, · · · , yn) are observations over vertices in G.
They are independently drawed from a model parameter
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1AG andDG are defined as (AG)u,v =W (u, v) if (u, v) ∈ E
and (AG)u,v = 0 otherwise, (DG)u,v =

∑
w∈V W (u,w) if

u = v, and (DG)u,v = 0 otherwise, respectively.

β∗ = (β∗1 , · · · , β∗n) with Gaussian noises, i.e., for every
i ∈ [1, n], E(yi) = β∗i . Then Laplacian-regularized estima-
tion is to solve

min
β∈Rn

||y − β||2 + λβLGβ
T , (1)

where λ is a regularization parameter. Note that the regu-
larization term βLGβ

T =
∑

(i,j)∈EW (i, j)(βi − βj). So,

the intuition is to find a vector β̂ such that it will have
components that vary smoothly over adjacent vertices in G,
while λ controls the degree of smoothness. 2 Other spectral
methods (those with a loss function based on the Laplacian)
include graph Semi-Supervised Learning (SSL) (Zhu et al.,
2003), Logistic Smoothing (Sadhanala et al., 2016), graph-
regularized least squares (Belkin et al., 2005) and spectral
clustering (SC) (Ng et al., 2001). There also exists another
type of graph-based learning based on graph cuts and using
cut-based algorithms directly, instead of spectral methods,
for enhancement, e.g., Min-Cut for SSL (Blum & Chawla,
2001), Max-Cut for SSL (Wang et al., 2013), Sparsest-Cut
for hierarchical learning (Moses & Vaggos, 2017) and Max-
Flow for SSL (Rustamov & Klosowski, 2018).

However, all these methods suffer from the scalability
problem. E.g., Equation (1) has a closed-form solution
β̂ = (I + λLG)−1y. As the matrix I + λLG is Strongly
Diagonally Dominant (SDD), one can use an optimal solver
for SDD matrices, which requires Õ(m) time (the notation
Õ hides a polylogarithmic factor) (Spielman & Teng, 2004).
Nonetheless, even for mildly large, dense graphs with mil-
lions of edges, e.g., social networks, protein interaction
networks and communication networks, the above methods
are not feasible. Recently, (Calandriello et al., 2018; Sad-
hanala et al., 2016) proposed to preprocess G into a sparse
yet spectrally similar graph, called a sparsifier H of size
Õ(n) for subsequent graph learning. By using H instead of
G in the Laplacian-regularized term as below,

min
β∈Rn

||y − β||2 + λ′βLHβ
T , (2)

one can solve β̃ = (I + λ′LH)−1 in only Õ(n) time, and
it has been shown in the papers that the accuracy of the
estimation is not affected significantly by using H .

2Here we implicitly assume that the underlying signal β∗ is
smooth over G.
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Nonetheless, in practice graphs vary over time and can have
updates in terms of vertex/edge insertions/deletions. Re-
ducing the computational cost in learning on dynamically
changing graphs is more challenging. E.g., solving Equation
(1) at every time point is not feasible obviously, as recall
that the computational cost for a static graph at each time
point is already not practical. Then similar to the static case,
one may turn to incrementally maintain, at each time point
t, a sparse graph Ht spectrally similar to the current graph
Gt, and then efficiently solve Equation (2) with LHt

. To
achieve incremental maintenance of Ht over time, there ex-
ists dynamic or streaming spectral sparsification algorithms,
e.g., (Abraham et al., 2016; Kelner & Levin, 2013; Kapralov
et al., 2014). However, these methods have several major
problems: (1) the per update computational cost is poly-
logarithmic w.r.t. n, which could still be high especially
when the number of updates is large; (2) they are quite
complicated and purely theoretical with no experimental
studies, and thus may not be practical. Designing a simple
and practical solution for learning on dynamic graphs is of
great interest.

In this work, we propose a new type of graph sparsifica-
tion to resolve the problems above for learning on dynamic
graphs: the proposed fault-tolerant subgraphs have constant
per update computational cost, work for both vertex and
edge insertion/deletions, and will be shown to have both
theoretical and experimental guarantees for accuracy of sub-
sequent Laplacian-regularized estimation and graph SSL.

For notational convenience, it is assumed that we start from
a graph G = G0 such that for every time point t ≥ 1, the
vertex set Vt and edge set Et of Gt at the time point t are a
subset of V0 and E0, respectively. When otherwise, we can
add an additional graph G′ as the start graph, by including
into G′ all the vertices and edges in G0, G1, · · · , as long
as they are pre-defined or known in advance. This is not
uncommon in applications. E.g., in a topological network,
the vertices and edges, which represent peers and their com-
munication infrastructures resp., are pre-defined so that later
the actual communications between peers take place and
form communication networks over time. Moreover, the
original assumption has its root in fault-tolerant subgraph
studies (Chechik et al., 2010; Dinitz & Krauthgamer, 2011;
Bodwin et al., 2018) and thus has many applications. E.g.,
in a social network, users may prefer to temporarily unfriend
some friends (for a post) or even disable their own accounts
and then recover later. That is, these edges and vertices
are marked as “faulty” temporarily. In a communication
network, there are also frequent failed and later recovered
computing nodes or communication links.

Specifically, for the spectral methods, e.g. Laplacian-
regularized estimation and graph SSL (Zhu et al., 2003),
we propose fault-tolerant spectral sparsifiers, while for cut-

(a) G (b) H1 (c) H2

Figure 1: 1-FT cut sparsifiers of G: H1 and H2. (a) G with 36
edges and edge weight 1. (b) H1 with 18 edges and edge weight 2.
(c)H2 with 12 edges and edge weight 3. Without loss of generality
consider that v is faulty. The Min-Cut of G− {v} is 5, while the
Min-Cut ofH1−{v} andH2−{v} are 4 and 3, respectively. Then
H1 and H2 are 1-FT (1 ± 0.2)-cut sparsifier and (1 ± 0.4)-cut
sparsifier of G, respectively.
based methods, e.g. Min-Cut for SSL (Blum & Chawla,
2001) and Max-Cut for SSL (Wang et al., 2013), we propose
fault-tolerant cut sparsifiers. Given a graph G, a (possibly
re-weighted) subgraph H of G is called an f -vertex-fault-
tolerant (FT) spectral (cut) sparsifier, if for all possible
faulty vertex sets F of size |F | ≤ f , the subgraph H − F
is guaranteed to be a spectral (cut) sparsifer of G− F , i.e.,
the spectral Laplacian quadratic forms (all graph cuts) of
H−F and G−F are the same within a factor of 1± ε. The
definition can be naturally extended to the edge-FT setting.
We use Fig. 1 to illustrate the definitions, where two FT cut
sparsifiers H1 and H2 of G with different ε are shown. We
will discuss how the proposed FT sparsifiers can be used to
reduce the computational cost.

Our Contribution. The high computational cost of graph-
based learning, e.g., Laplacian-regularized estimation and
graph SSL, has been alleviated by graph sparsification. How-
ever, when graphs are changing over time, repeated sparsi-
fication requires polynomial order computational cost per
update. We design computation-efficient methods to sig-
nificantly reduce the cost to only a constant. To improve
the computational cost of spectral methods, we propose ef-
ficient algorithms for constructing FT spectral sparsifiers,
including a core algorithm, a parallel algorithm and a dis-
tributed algorithm. Furthermore, for cut-based methods, we
propose a new algorithm for constructing FT cut sparsifiers.
Then the computational cost of subsequent graph learning
tasks can be significantly improved with limited loss in
their accuracy. In particular, we give theoretical analysis
to upper bound the loss in the accuracy of the subsequent
Laplacian-regularized estimation, graph SSL and SC, due to
the FT sparsification. Finally, we have performed extensive
experiments to confirm the computational efficiencies and
accuracies of the proposed methods for learning on dynamic
graphs.

2. Background
Graph SSL. In this problem, we are only given observations
yS of the signal β∗ for a subset of vertices S ⊂ V in G and
the task is to predict the signals for the rest of vertices
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V − S. A typical formulation is the harmonic function
solution (HFS) (Zhu et al., 2003), which solves the following
optimization problem.

β̂HFS = arg min
β∈Rn

1

|S|
(β − y)T lS(β − y) + λβLGβ

T

= (λ|S|LG + IS)+yIS
(3)

IS is the identity matrix with zeros at vertices not in S.

Graph Sparsification. A re-weighted subgraph H of G
is called a cut sparsifier of G if for every vertex set S,
the weight of the cut between S and V − S in H is at
most 1± ε times of the weight of the cut in G (Benczur &
Karger, 1996). (Fung et al., 2011) proposed to construct
cut sparsifiers by sampling edges according to edge connec-
tivities. In a seminal work, Spielman and Teng (Spielman
& Teng, 2011) generalized cut sparsifiers to spectral sparsi-
fiers. (Spielman & Srivastava, 2011) proposed to construct
spectral sparsifiers by sampling edges with probability pro-
portional to their effective resistances. G can be considered
as an electrical resistive network, and the effective resistance
between any two vertices in G is defined as the potential
difference that has to be applied between them in order to
drive one unit of current through the network G.

A subgraph H of G(V,E) is called a k-spanner of G if
for every u, v ∈ V , the distance between u and v in H
is at most k times of their distance in G (Peleg & Schaf-
fer, 1989). (Kapralov & Panigrahy, 2012) showed that a
spectral sparsifier can be obtained by repeated constructions
of spanners. (Koutis & Xu, 2016) proposed an algorithm
framework based on spanners and sampling. (Lee & Sun,
2017) proposed the state-of-the-art algorithm for construct-
ing O(n) sized spectral sparsifiers in Õ(m) time. Graph
sparsification has been widely used in linear algebra and
algorithm design (Spielman & Teng, 2011), particularly in
improving the computational cost of learning over graphs
(Calandriello et al., 2018; Sadhanala et al., 2016).

Dynamic Graph Sparsification. There has been theoreti-
cal algorithms focusing on designing dynamic graph spar-
sificatiion. (Kelner & Levin, 2013; Cohen et al., 2016)
designed dynamic sparsifications for insertion-only streams,
which can support edge insertions. But their algorithms
cannot process edge deletions. (Ahn et al., 2012) proposed
a streaming algorithm for constructing cut sparsifiers. Later,
(Kapralov et al., 2014) proposed a single pass streaming al-
gorithm for constructing spectral sparsifiers based on the it-
erative sparsification (Li et al., 2013). (Abraham et al., 2016)
proposed a fully dynamic sparsification by thoroughly mod-
ifying (Koutis & Xu, 2016) to guaranteeing that updates do
not propagate in recursive spanner constructions. However,
all these algorithms require Ω(polylog(n)) computational
cost per update. We reduce the cost to a constant under the
assumption that the graph being maintained at every time

point differs from the original graph by a bounded amount.

Fault-Tolerant Subgraphs. This topic has been exten-
sively studied in the theorem community. For short, we
will use VFT and EFT to refer to Vertex-Fault-Tolerant
and Edge-Fault-Tolerant, respectively. f -VFT (f -EFT) k-
spanners are a subgraph such that for all vertex (edge) faults
of size at most f , the remaining part of the subgraph is
always an k-spanner of the remaining part of the original
graphs. They were firstly studied by (Levcopoulos et al.,
1998) in the context of geometric graphs. (Chechik et al.,
2010) generalized them to general graphs and proposed
algorithms for constructing both VFT and EFT spanners.
Recently, (Bodwin et al., 2018) proved that for a fixed k,
every n-vertex graph has an f -VFT (f -EFT) spanner of
stretch 2k − 1 and size Ok(f1−1/k · n1+1/k) (the Ok no-
tation suppresses a 2O(k) factor). Due to limit of space,
more FT studies on graphs are referred to the Appendix.
Unfortunately, the important topics of FT spectral sparsiers
and cut sparsifiers have been greatly ignored.

Notation and Definition. A weighted undirected graph
G(V,E,W ) consists of a vertex set V , an edge set E
and a weight function W which assigns a weight W (e)
to each edge e ∈ E. W can be omitted from the presen-
tation if it is clear from the context. A simple path, or
a path in short, P between u and v in G is a sequence
of edges (u = v1, v2), · · · , (vl, vl+1 = v). Its distance
is equal to

∑l
i=1W (vi, vi+1). Each edge e in G has re-

sistance R(e) = 1/W (e), and the effective resistance
between any two vertices u and v in G is denoted as
RG(u, v). Suppose that P is a path connecting the two
endpoints of an edge e, the stretch of e over P is equal to
αP (e) = W (e)

∑
e′∈P (1/W (e′)).

For an arbitrary vertex set VF , we use G− VF to denote the
remaining graph ofG after removing vertices in VF and their
edges. For an arbitrary edge set EF , G − EF denotes the
remaining graph of G after removing edges in EF . For an
arbitrary graphH , G−H denotes the remaining graph ofG
after removing edges in H . The notation LA � LB means
that for every vector x ∈ Rn, xTLAx ≤ xTLBx, while
LA �{0,1} LB means that for every vector x ∈ {0, 1}n,
xTLAx ≤ xTLBx. For an eventZ, we use Pr[Z] to denote
the probability of the event Z happens. We say an event Z
happens with high probability (w.h.p.) if, Pr[Z] ≥ 1−1/nc

for some constant c > 1. The Laplacian matrix LeG of an
edge e in G is the Laplacian matrix of the subgraph of G
containing only the edge e. It is zero elsewhere except a
2× 2 submatrix.

3. FT Spectral Sparsifiers
Before we provide algorithms for constructing FT spectral
sparsifiers, we formally define them as follows. We first



Improved Dynamic Graph Learning through Fault-Tolerant Sparsification

describe the core algorithm in Section 3.1, and then present
the parallel and distributed algorithms in Section 3.2.
Definition 1. For a graphG(V,E), a positive integer f and
parameter ε ∈ (0, 1), a re-weighted subgraph H(V,E′ ⊆
E) is an f -VFT (f -EFT) (1± ε)-spectral sparsifier, if for
all vertex (edge) sets F ⊆ V (F ⊆ E) of size |F | ≤ f ,
(1− ε)LG−F � LH−F � (1 + ε)LG−F holds.

3.1. Proposed Algorithms

In this section, we propose algorithms for constructing FT
spectral sparsifier of bounded size. The result are summa-
rized in the following theorem.
Theorem 1. For an n-vertex m-edge graph G, a positive
integer f , a parameter ε ∈ (0, 1) and ρ > 1, an f -VFT
(f -EFT) (1 ± ε)-spectral sparsifier for G of expected size
O(fn log ρ+n log2 n log3 ρ/ε2 +m/ρ) w.h.p. can be con-
structed.

We will use FT spanners formally defined as follows.
Definition 2. For positive integers f and α, a subgraph H
of a graph G is an f -VFT (f -EFT) α-spanner of G, if for
all vertex (edge) sets F of size |F | ≤ f , we have that for
every u, v ∈ V the distance between u and v in H − F is
at most α times of their distance in G− F .

Our algorithm is inspired by the sparsification algorithm
by (Koutis & Xu, 2016). However, we need to handle the
cases when there are some vertices or edges to become
faulty. The idea of the algorithm is to first construct an
(f + t)-VFT/EFT spanner for the input graph G by any
VFT/EFT graph spanners algorithms to determine a set of
edges with small effective resistances in G. The (f + t)-
VFT/EFT spanner guarantees that even in the presence of
at most f faults, each non-spanner edge (edge not in the
spanner) has t edge-disjoint paths between its endpoints in
the spanner (and thus in the input graph G), serving as a
certificate for an upper bounded effective resistance of the
edge. It then uniformly samples each non-spanner edge
with a fixed constant probability, and scales the edge weight
of each sampled edge proportionally to preserve the edge’s
expectation. This sampling step is inherently VFT/EFT be-
cause the sampling of each non-spanner edge is independent.
By the matrix concentration bounds, we can prove that the
spanner together with the sampled non-spanner edges are
a moderately sparse VFT/EFT spectral sparsifier, in which
the number of edges has been reduced by a constant factor.
The desirable VFT/EFT spectral sparsifier can be obtained
by repeating the process until we get a sufficient sparsity,
which happens after a logarithmic number of iterations.

This algorithm is simple, yet works for both VFT and EFT
settings. It is interesting to discover that FT spectral spar-
sifiers can be constructed via FT graph spanners, and thus
extending the connection between spectral sparsifiers and

Algorithm 1 Light-FTSS

Require: G(V,E), f > 0, ε ∈ (0, 1)
Ensure: H

Construct an (f + 24 log2 n/ε2)-FT (logn)-spanner J for G;
H ← J ;
for each edge e ∈ G− J do

With probability 0.25, add e to H with a new weight 4W (e);
end for

Algorithm 2 FTSS

Require: G(V,E), f > 0, ε ∈ (0, 1), ρ > 1
Ensure: H
G0 ← G;
for i ∈ [1, dlog ρe] do
Gi ← Light-FTSS(Gi−1, f, ε/dlog ρe);

end for
H ← Gdlog ρe;

spanners from a standard setting (Kapralov & Panigrahy,
2012) to the new FT setting.

Specifically, our algorithm is summarized in Algorithms
1 and 2. For a graph G, a positive integer f and an ε ∈
(0, 1), Algorithm 1 (Light-FTSS) first constructs an (f +
24 log2 n/ε2)-FT (log n)-spanner J for G and adds edges
in J to an edge set H . It then samples each edge e 6∈ J with
a fixed probability 0.25 and adds e to H with weight 4W (e)
if it is sampled. The probability 0.25 is chosen in order to
make the expected size bound hold w.h.p.. Finally, it returns
H as the moderately sparse FT spectral sparsifier. Given a
graph G, a positive integer f , an ε ∈ (0, 1) and ρ > 1, for
every i ∈ [1, dlog ρe] Algorithm 2 calls Light-FTSS with
parameters Gi−1, f and ε/dlog ρe, where G0 = G and Gj
is the output of Light-FTSS in the iteration when i = j.
After the iterations terminate, Gdlog ρe is returned as the
final FT spectral sparsifier.

We first prove the following key lemma.

Lemma 1. Let G be an n-vertex graph and J be an f -VFT
(f -EFT) (log n)-spanner of G. For every edge e ∈ G− J ,
and every vertex (edge) set F of size |F | ≤ f̂ such that
e ∈ G− F , we have that

W (e) ·RG−F (e) ≤ log n/(f − f̂),

which implies that

W (e) · LeG−F � log n/(f − f̂) · LG−F .

Proof. The VFT setting. We first show that for every
edge e ∈ G − J , there are at least f vertex-disjoint paths
P1, · · · , Pg between the two endpoints of e in J , such that
for every i ∈ [1, g], αPi

(e) ≤ log n. Suppose for contra-
diction that for an edge e ∈ G − J , there are g < f such
paths in J . Then by correctly setting a faulty vertex set
F , we can invalidate all these g paths in the graph J − F .
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Figure 2: A faulty vertex set F = {w1, · · · , wf̂} of size f̂ can
invalidate at most f̂ paths out of f vertex-disjoint paths between
endpoints u and v of an edge e(u, v). Here f = 5 and f̂ = 3.

Specifically, we select an arbitrary vertex, excluding the two
endpoints of e, from each of P1, · · · , Pg to formulate F .
By construction, |F | = g < f . For the edge e ∈ G − F ,
αJ−F (e) = ∞ because there is no path between its two
endpoints in J − F . This contradicts with the fact that J is
an f -VFT (log n)-spanner of G.

We then show that for every edge e ∈ G−J , and every fault
set F of size f̂ such that e ∈ G−F , there are at least f − f̂
vertex-disjoint paths P1, · · · , Ph (h ≥ f − f̂ ) between the
two endpoints of e in J − F , where for every i ∈ [1, h],
αPi

(e) ≤ log n. This is because a fault set F of size f̂ can
invalidate at most f̂ paths as in Fig. 2. By definition, for
every i ∈ [1, h], we have that

αPi(e) = W (e)
∑
e∈Pi

(1/W (e)) ≤ log n. (4)

According to the formula for resistors connected in series,
for every path Pi with i ∈ [1, h], the effective resistance
between the two endpoints of e in Pi is equal to

RPi
(e) =

∑
e∈Pi

R(e) =
∑
e∈Pi

(1/W (e)) (5)

Combining Equations (4) and (5), we have that for ev-
ery i ∈ [1, h], RPi

(e) ≤ log n/W (e). According to the
formula for resistors connected in parallel, for a set of
edge-disjoint (vertex-disjointness subsumes edge-jointness)
paths {P1, · · · , Ph} between e’s two endpoints, and let
P be the union of these paths P = ∪hi=1Pi, the effec-
tive resistance between e’s two endpoints in P is equal
to RP (e) = (

∑h
i=1(RPi

(e))−1)−1 ≤ log n/h ·W (e) ≤
log n/(f − f̂) ·W (e). According to the Rayleigh’s mono-
tonicity law (Doyle & Snell, 2000), for any subgraph H of
G and any edge e ∈ G, RG(e) ≤ RH(e) holds. Therefore,

RG−F (e) ≤ RP (e) ≤ log n/(f − f̂) ·W (e). (6)

By (Spielman & Srivastava, 2011), we have LeG �
RG(e)LG. Then applying it to the graph G− F , we have
that

LeG−F � RG−F (e)LG−F . (7)

By combining Equation (7) with Equation (6), we have that

W (e) · LeG−F � log n/(f − f̂) · LG−F .

The EFT setting. We show that for every edge e ∈ G− J ,
there are at least f edge-disjoint paths P1, · · · , Pg between
the endpoints of e in J such that for every i ∈ [1, g],
αPi(e) ≤ log n. Suppose for contradiction that for an edge
e ∈ G − J , there are g < f such paths. Then, we can
invalidate all g paths in J − F by selecting an arbitrary
edge from each of P1, · · · , Pg and adding them into F . We
have that the size of F is g < f . For the edge e ∈ G− F ,
αJ−F (e) =∞ because its endpoints are not connected in
J − F , and thus αJ−F (e) > log n. This contradicts with
the fact that J is an f -EFT (log n)-spanner of G. The rest
of the proof for the EFT setting is similar to that for the VFT
setting, and thus omitted here.

The proposed algorithm is an algorithm framework where
any VFT (EFT) graph spanner algorithms can be plugged
in, in Line 1 of Algorithm 1. We employ the state-of-the-art
algorithms for constructing optimal VFT and suboptimal
EFT spanners (for a fixed stretch) by (Bodwin et al., 2018),
in order to derive the size bound in Theorem 1. We can
use any other VFT (EFT) spanner algorithms here, but the
bounds obtained can be slightly worse. The algorithm is
a natural generalization of the greedy spanner algorithm
by (Althofer et al., 1993) to the FT setting. Given a graph
G(V,E), it examines the edges of E in non-decreasing
order of weight (ties are broken arbitrarily), and adds an
edge e into the current spanner H if and only if there exists
a fault set F such that αH−F (e) > α = log n, where the
stretch factor is a fixed integer α = log n. We will use the
following theorem.

Theorem 2. (Bodwin et al., 2018) Let G be an n-vertex
graph without negative weight cycle, and α be a fixed integer
log n. For any positive (possibly non-constant) integer f , G
has an f -VFT (f -EFT) α-spanner of size O(fn).

For the EFT setting, we can also use an alternative EFT
(log n)-spanner algorithm (Chechik et al., 2010) combined
with the greedy graph spanner algorithm by (Althofer et al.,
1993) to get EFT spectral sparsifiers with the same size
bound as in Theorem 1. For a graph G, the algorithm
(Chechik et al., 2010) constructs an f -EFT (log n)-spanner
(the same as the f -bundle spanner) as the union of a se-
quence of graphs H = ∪fi=1Hi, where for every i ∈ [1, f ],
Hi is a (log n)-spanner of the graphG−∪i−1j=1Hj . However,
it cannot be extended to the VFT setting.

We will also use the following variant (Harvey, 2012) of a
matrix concentration bound by Tropp (Tropp, 2012).

Theorem 3. (Harvey, 2012) Let Y1, · · · , Yk be indepen-
dent positive semi-definite matrices of size n × n. Let
Y =

∑k
i=1 Yi and Z = E[Y ]. Suppose for every i ∈ [1, k],
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Yi � SZ, where S is a scalar. Then for all ε ∈ [0, 1],
Pr[

∑k
i=1 Yi � (1 − ε)Z] ≤ n · exp(−ε2/2S), and

Pr[
∑k
i=1 Yi � (1 + ε)Z] ≤ n · exp(−ε2/3S).

We are now ready to prove the following theorem summa-
rizing properties of Algorithm 1 (Light-FTSS).

Theorem 4. Given an n-vertex m-edge graph G, a positive
integer f and ε ∈ (0, 1), Light-FTSS constructs an f -VFT
(f -EFT) (1 ± ε)-spectral sparsifier for G of expected size
O(fn+ n log2 n/ε2 +m/2), with probability at least 1−
1/n2.

Proof. We only consider the VFT setting as the proof for
the EFT setting follows similar principle. We first prove that
the output H by Light-FTSS is an f -VFT (1± ε)-spectral
sparsifier. Let F ⊆ V be any vertex fault set of size at most
f . For every edge e ∈ G−J , let Xe be the random variable
defined as

Xe =

{
4W (e)LeG−F , with probability 0.25

0, otherwise

For every i ∈ [1, (bε2/(6 logn)c)−1], let Ji =
bε2/(6 log n)c(J − F ), which implies that

LJi = bε2/(6 logn)cLJ−F .

We then apply Theorem 3 to the random matrix

Y =
∑

e∈G−J
Xe +

(bε2/(6 logn)c)−1∑
i=1

LJi

=
∑

e∈G−J
Xe + LJ−F .

Note that

E(Y ) = E(
∑

e∈G−J
Xe + LJ−F ) =

∑
e∈G−J

E(Xe) + LJ−F

=
∑

e∈G−J
LeG−F + LJ−F = LG−F .

By the definition ofX(e) and Lemma 1, for every e ∈ G−J
we have that

X(e) � 4W (e) · LeG−F � ε2/(6 logn) · LG−F .

Furthermore, by definition of Ji and the fact that LJ−F �
LG−F , we have for every i ∈ [1, (bε2/(6 logn)c)−1],

LJi = bε2/(6 logn)c · LJ−F � ε2/(6 logn) · LG−F .

Now the condition of Theorem 3 is satisfied with S =
ε2/(6 logn). Therefore, the inequality

(1− ε)LG−F � LH−F � (1 + ε)LG−F (8)

holds with probability at least 1− 1/2n · exp(−3 log n) =
1−1/2n−2. This completes the proof for the spectral bound.

We then prove the size bound. The number of edges in
J is O(fn + n log2 n/ε2), according to Theorem 2. By
construction, the expected number of edges inH−J ism/4.
Applying Chernoff’s inequality gives that with probability
at least 1− 1/2n−2 the expected number of edges in H −J
is at most m/2, which implies the total expected number of
edges is O(fn + n log2 n/ε2 + m/2). By a union bound,
the event that both the inequality (8) and the size bound hold
happens with probability at least 1− 1/n2.

Given Theorem 4, the proof of Theorem 1 is referred to
the Appendix, due to limit of space. Note that introducing
tolerance to f vertex or edge faults costs us an extra term
fn log ρ in the size of the spectral sparsifier, compared to the
size of a standard combinatorial spectral sparsifier (Koutis
& Xu, 2016). It is interesting to investigate how to further
reduce the extra term in the size for spectral sparsifers, as
(Bodwin et al., 2018) has shown that only a sub-linear term
(w.r.t. f ) is required when introducing the fault-tolerant
property into graph spanners.

3.2. Parallel and Distributed Algorithms

In this section, we present parallel and distributed EFT spec-
tral sparsification algorithms. The models of computation
used by our parallel algorithm and distributed algorithm are
the CRCW PRAM model (Reif, 1993) and the synchronized
distributed model (Coulouris & Dollimore, 1988), respec-
tively. The results are summarized in the following theo-
rems, and their proofs have been moved to the Appendix,
due to limit of space.

Theorem 5. For an n-vertex m-edge graph G, a posi-
tive integer f , a parameter ε ∈ (0, 1) and ρ > 1, an f -
EFT (1 ± ε)-spectral sparsifier of size O(fn log n log ρ +
n log3 n log3 ρ/ε2 +m/ρ) can be constructed in the CRCW
PRAM model usingO(fm log n log ρ+m log3 n log3 ρ/ε2)
work in Õ(f log n log ρ+ log3 n log3 ρ/ε2) time, w.h.p.

Theorem 6. For an n-vertex m-edge graph G, a
positive integer f , a parameter ε ∈ (0, 1) and
ρ > 1, an f -EFT (1 ± ε)-spectral sparsifier
of size O(fn log n log ρ + n log3 n log3 ρ/ε2 + m/ρ)
can be constructed in the synchronized distributed
model in O(f log n log ρ + log4 n log3 ρ/ε2) rounds with
O(fm log n log ρ + m log3 n log3 ρ/ε2) communication
complexity, using messages of O(log n) size.

3.3. Using the FT Spectral Sparsifiers in Subsequent
Graph Learning

The proposed FT sparsifiers have the following desirable
properties by definition. At a time point t > 0, for each
vertex v (edge e) insertion into Gt−1, if v (e) is in H , add
v and its associated edges in H (e itself) to Ht−1. For
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each vertex v (edge e) deletion from Gt−1, if v (e) is in
Ht−1, remove v and its associated edges (e) from Ht−1.
These only incur a constant computational cost per update.
More importantly, the resulting subgraph is guaranteed to
be a spectral sparsifier of the graph Gt at the time point t,
under the assumption that Gt differs from G0 by a bounded
amount. Then it can be used in subsequent graph learning
tasks without a significant loss in their accuracy.

4. FT Cut Sparsifiers
We first formally define FT cut sparsifiers, and then general-
ize the algorithm for FT spectral sparsifiers to an algorithm
for constructing FT cut sparsifiers.

Definition 3. For a graphG(V,E), a positive integer f and
parameter ε ∈ (0, 1), a re-weighted subgraph H(V,E′ ⊆
E) is an f -VFT (f -EFT) (1 ± ε)-cut sparsifier if, for all
vertex (edge) sets F ⊆ V (F ⊆ E) of size |F | ≤ f , (1 −
ε)LG−F �{0,1} LH−F �{0,1} (1 + ε)LG−F holds.

As an important building block, we define a variant of max-
imum spanning trees (MST, a spanning tree of a weighted
graph having maximum weight), namely FT α-MST.

Definition 4. For positive integers f and α, a subgraph H
of a graph G is an f -VFT (f -EFT) α-MST of G, if for all
vertex (edge) sets F of size |F | ≤ f , we have that for every
edge (u, v) inG−F , there is a path P from u to v inH−F
such that for every edge e′ on P , W (e) ≤ αW (e′).

Note that we relax the requirement that H is a tree. Any
subgraph with the property is qualified. We also relax the
requirement of an exact MST, which corresponds to the case
when α = 1. We will explain the reason shortly.

We observe that the algorithm framework for constructing
FT spectral sparsifiers in Section 3.1 can be generalized to
construct FT cut sparsifiers, if we replace FT spanners by
FT α-MST, and then thoroughly set the parameters. This is
inspired by sampling according to edge connectivities. FT
α-MST can guarantee that even in the presence of at most
f faults, each edge in the MST has a lower bound on the
edge connectivity. To preserve edge connectivities, there is
no requirement on the weight of edges in the cut defining
the edge connectivities. Therefore, we define and use an
approximate version of FT MST.

After replacing the first line in Algorithm 1 by construct-
ing an (f +Cεc logw log3 n/ε2)-FT (log n)-MST J for G,
where w is the maximum ratio of the weights of two edges
in G, Cε > 0 and c > 1 are two new parameters, and also
making according changes in Algorithm 2, we can get Al-
gorithms 3 and 4 for constructing FT cut sparsifiers. Due
to limit of space, we have moved the algorithms, and also
the following theorem summarizing main results for FT cut
sparsifiers, to the Appendix.

Theorem 7. For an n-vertex m-edge graph G, a positive
integer f , a parameter ε ∈ (0, 1), ρ > 1 a constant Cε >
0 and a parameter c > 1, Algorithm 4 constructs an f -
VFT (f -EFT) (1± ε)-cut sparsifier for G of expected size
O(fn log ρ+ n log2 n log3 ρ/ε2 +m/ρ), with probability
at least 1− n−c.

5. Stability Bounds for Subsequent Tasks
In this section, we give stability bounds to quantify the im-
pact of the FT sparsification on the accuracy of subsequent
graph learning tasks. The FT spectral sparsifiers have an
important property that, for every time point t, the resulting
subgraph Ht by applying all incoming updates at t on Ht−1
is a spectral sparsifier of the current graph Gt. We then
immediately obtain, for all time points, the upper bounds on
the loss of the accuracy of subsequent graph learning tasks
due to the FT sparsification, by applying existing results for
static graphs to every graph Gt and its spectral sparsifier Ht.
We describe the details as follows.

Laplacian-Regularized Estimation. Recall that β̂ and β̃
are the estimations obtained using the exact graph Gt and
the approximate subgraph Ht as in Equations 1 and 2, re-
spectively. The bound in the loss of accuracy is upper
bounded by ||β̃ − β̂||22 ≤ 2(1 + 2ε)λβ̂TLGβ̂, if λ′ = 2λ
(Sadhanala et al., 2016). A slightly better bound can be
obtained if λ′ = λ. As can be seen from the bound, we
can smoothly tradeoff accuracy and computational cost of
the estimation by setting the value of the parameter ε for
an FT spectral sparsifier. A small value of ε results in a
small accuracy loss but a large number of edges for the FT
sparsifier, which implies a high computational cost, while a
large value of ε results in a small sized FT sparsifier but a
large accuracy loss.

Graph SSL. Because the original HFS in Equation (3) is
not stable, we use a stable version, Stable-HFS for the-
oretical analysis.With an added regularization term µ =
(( γ
|S|LG+IS)+yIS)T1/( γ

|S|LG+1)+1, Stable-HFS has a

new solution β̂STA = ( γ
|S|LG + IS)+(yIS + µ1). Denote

R̂(β) = 1
|S|

∑|S|
i=1(β(xi) − y(xi))

2 as the empirical error
and R(β) = 1

n

∑n
i=1(β(xi) − y(xi))

2 as the generaliza-
tion error on all labeled and unlabeled vertices. It has been
proven that R(β̃) ≤ R̂(β̂) +β+ o(β), in Theorem 2 in (Ca-
landriello et al., 2018). The last term o(β) contains ε and
increasing ε results in a constant increase in the bound. Then
similar to Laplacian-regularized estimation, we can tradeoff
accuracy and computational cost by correctly setting the
value of ε.

There exists strong stability bounds for other spectral meth-
ods, e.g. Logistic Smoothing (Sadhanala et al., 2016), graph-
regularized least squares, Laplacian SVM (Belkin et al.,
2005) and SC (Ng et al., 2001). We do not review each of
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Figure 3: Accuracy of Laplacian-regularized estimation and graph SSL for signals with Gaussian noise of σ = 0.1 and 0.01

them here, but give more discussions in the Appendix.

6. Experiments
We empirically show that the computational cost for main-
taining spectral sparsifiers can be significantly improved
for dynamic graphs, while the accuracy of subsequent
Laplacian-regularized estimation and graph SSL are not
significantly affected.

Dataset. We used the Facebook social network data from
the SNAP 3. The numbers of vertices and edges in the ego-
combined graph are 4309 and 88234, respectively. A smooth
signal β∗ over the vertices was simulated following the ap-
proach in (Sadhanala et al., 2016). Then Gaussian noises
from N(0, σ) were added to form observations y. For every
time point in [1, 10], a random number of at most 200 inser-
tions/deletions of randomly selected edges were generated.
We can only simulate ten time points, because the baseline
SPA (to be defined) incurs a high computational cost.

Methods. We compared our algorithm FTSPA with a base-
line SPA, which constructs a spectral sparsifier from scratch
at every time point. We did not include the dynamic algo-
rithms (Kyng et al., 2017; Kapralov et al., 2014) because
none of these algorithms has been implemented before. The
performance measures include: (1) the update time repre-
senting the computational cost, and (2) the error ||β̃ − β̂||22
for Laplacian-regularized estimation, and the generalization
error R(β) for graph SSL. All the results were obtained by
taking the average values from five runs of sparsification.

Results. We tested the errors and update times for four
signals with different noises, σ ∈ {10−3, 10−2, 10−1, 100}.
For Laplacian-regularized estimation, the parameter λ ∈
{10−3, 10−2, 10−1, 100}, while for graph SSL, λ ∈
{10−6, 10−4, 10−2, 100}. We will only report the small-
est error achieved by different λ. In graph SSL, the labels
were the sign of the signal β∗, and the number of revealed
labeled vertices l = 1000 with 500 ones and 500 zeros,
following (Calandriello et al., 2018). For our algorithm,
the parameters were set to f ∈ {1, 3, 5, 7}, ε = 0.2 and

3https://snap.stanford.edu/data/ego-Facebook.html

Methods Update Time Speedup # Edges
SPA 34.2 s 1 12978 ± 30

FTSPA 0.3 ms > 105 16502 ± 41

Table 1: Update time and # edges of SPA and FTSPA

ρ = 20. Due to limit of space, we only report the results for
σ = {0.1, 0.01} and f = 1. The other results are similar
and can be found in the Appendix.

As shown in Figure 3, for both tasks on both signals, the
errors of SPA and FTSPA are not significantly affected by
the sparfication. They were compared with the exact method
EXACT, which computes the solution using the current
graph Gt at a time point t. However, the average update
time of FTSPA over all time points is only 0.3 miliseconds,
significantly smaller than that of SPA, 34.2 seconds. The
speedup is over 105. We observed that a small value of f ,
e.g. f = 1, is already enough to tolerant up to 200 edge
updates on over 105 edges.

Moreover, the number of edges in SPA and FTSPA are only
about 13K and 16.5K respectively, significantly smaller than
the number of edges in the original graph, about 88K, as
shown in Table 1. Then the computational cost of subse-
quent Laplacian-regularized estimation and graph SSL are
significantly improved.

7. Conclusion and Future Work
Graph sparsification has been widely used in large-scale
graph learning, e.g., Laplacian-regularized estimation, graph
SSL and SC. However, when graphs vary over time, existing
methods require polynomial order computational cost per
update. We reduce the cost to to only a constant by propos-
ing FT spectral sparsification and cut sparsification. We
then analyze the stability bounds for subsequent learning
tasks, e.g., Laplacian-regularized estimation and graph SSL.
Extensive experiments have validated the computational
efficiencies and accuracies of the proposed methods. As
the future work, we will study the existence of FT sparsi-
fiers for digraphs (Cohen et al., 2017; Zhu & Lam, 2017;
2018). Proving the size lower bounds for the FT spectral
sparsification and cut sparsification is also an interesting
direction.



Improved Dynamic Graph Learning through Fault-Tolerant Sparsification

Acknowledgements
We thank the four reviewers for their insightful com-
ments. This work was supported by NSF grants: DBI-
1356655, CCF-1514357 and IIS-1718738. Jinbo Bi was
also supported by NIH grants 5R01DA037349-04 and
5K02DA043063-03.

References
Abraham, I., Durfee, D., Koutis, I., Krinninger, S., and Peng,

R. On fully dynamic graph sparsifiers. In Proceedings of
IEEE FOCS Conference, pp. 335–344, 2016.

Ahn, K. J., Guha, S., and McGregor, A. Graph sketches:
sparsification, spanners, and subgraphs. In Proceedings
of PODS Conference, pp. 5–14, 2012.

Althofer, I., Das, G., Dobkin, D., Joseph, D., and Soares,
J. On sparse spanners of weighted graphs. Discrete
Computational Geometry, 9:81–100, 1993.

Belkin, M., Niyogi, P., and Sindhwani, V. On manifold
regularization. In Proceedings of AISTATS Conference,
pp. 1, 2005.

Benczur, A. and Karger, D. Approximating s-t minimum
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