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We calculate the four-loop massless QCD corrections with two closed quark lines to quark and gluon
form factors. The results for the gluon form factor and the singlet part of the quark form factor are given for
the first time. From our analytic expressions for the form factors, we determine the corresponding cusp
anomalous dimensions. The relevant Feynman integrals are obtained with novel integral reduction

techniques and direct integration methods.
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I. INTRODUCTION

In this paper, we continue our ongoing study of the
four-loop corrections in massless quantum chromody-
namics (QCD) to the basic quark and gluon form factors
for the photon-quark-antiquark vertex and the effective
Higgs-gluon-gluon vertex. Despite a significant amount
of recent attention, only partial results are available in
the literature so far. The N} contributions to the quark
and gluon form factors with three closed fermion lines
were calculated, respectively, in [1,2]. For the quark
form factor, the contributions of order N2 were com-

puted in [3] and the leading color limit was obtained in
[1,4]. Very recently, the quartic Casimir color structure
of the N, contributions to the quark form factor
was calculated in [5] and analytic results for the
corresponding contributions to the quark cusp anoma-
lous dimension were also derived in a complementary
approach in [6].

Quartic Casimir structures in the cusp anomalous
dimensions are of particular interest since they violate
the Casimir scaling principle proposed in Refs. [7,8]. The
existence of such Casimir scaling violations was demon-
strated by explicit numerical calculation in A" = 4 super
Yang-Mills theory [6,9,10] and in QCD [11,12]. We wish to
remark that, using approximation techniques [13-15],
Refs. [11,12] actually delivered complete numerical results
for both the quark and gluon cusp anomalous dimensions
and suggested a generalization of the Casimir scaling
principle.
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In this work, we substantially improve upon the
current state-of-the art by providing complete analytic
results for all contributions to the quark and gluon form
factors with two closed fermion lines. While the N2
contributions to the quark form factor were already
known, the singlet contributions to the quark form factor
of order N, N, where the photon couples to one of the
two closed fermion lines, are new. We furthermore
calculate the complete set of N2 contributions to the
gluon form factor for the flI‘St time, including a
determination of the N]% terms of the gluon cusp

anomalous dimension. Due to the complexity of the
relevant Feynman diagrams (see Fig. 1), it was neces-
sary to build upon specialized computational technology
studied by us in earlier works [16—18].

One of our main calculational challenges was the
reduction of four-loop, three-point Feynman integrals,
for which we employ finite field-based techniques
[16,19] implemented in the private program FINRED. To
evaluate the master integrals, we also make use of integrals
with a significant number of dots (higher powers of the
propagators). For their reduction, a newly developed
algorithm based on the Lee-Pomeransky parametric rep-
resentation [20] was used, building upon ideas discussed
in [21,22].

The finite integral method of Ref. [18] was applied
to calculate all of the 163 four-loop master integrals
which remain after integration by parts reduction
[16,23-25]. Nineteen of those which we computed for
the first time are of the more challenging nonplanar
type, free of massless one-loop bubble insertions. These
include in particular master integrals for the first three
top-level topologies shown in Fig. 1.

To carry out the calculation, we pass to a finite
integral basis and analytically integrate the e expansions
of the resulting integrals starting from their Feynman
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Nonplanar top-level topologies contributing to our form factors. All topologies in the above except the first four turn out to be

reducible. Of the four irreducible nonplanar topologies, the first three are treated by us for the first time in this work and the first two are
rendered linearly reducible only after a substitution of Feynman parameters. The Nj% contributions to the gluon form factor receives
contributions from all but the last three topologies, the latter are relevant to the N, N, contributions to the quark form factor only. The

N% contributions to the quark form factor do not involve nonplanar twelve-line topologies.

parametric representations. For this purpose, we employ
the program HYPERINT [26]. This direct integration in
terms of multiple polylogarithms requires the integrals
to be linearly reducible [27,28], a criterion which was
satisfied by most of our finite integrals. Although the
first two integral topologies of Fig. 1 were not linearly
reducible initially, we were able to make simple changes
of variables which rendered them so. As will be
discussed below, the integration is sometimes greatly
simplified by making a judicious choice of finite
integral basis.

II. SETUP AND INTEGRAL REDUCTION

We consider the perturbative amplitudes for the decays
of photons and Higgs bosons into massless partons,
v*(9) = a(p1)q(p>) and h(q) — g(p1)g(p). respectively,
with p? = p3 =0 and ¢* = (p; + p,)*. Interfering the
bare amplitude with the tree amplitude, summing
over polarizations and color, and normalizing to the
corresponding tree-level expressions, we obtain the form
factors

Tl g g e)

bare

) abare L 471'#2 Le _
B G L
> (%) (5 e, (1)

where we take the L-loop massless QCD corrections
into account. We work in conventional dimensional regu-
larization with the bare strong coupling constant a?™®, the ’t
Hooft scale p., Euler’s constant yz, and the parameter of
dimensional regularization € = (4 — d)/2. The amplitudes
are calculated using a general R; gauge for the internal
gluons, with up to one power of 1 —¢&, and arbitrary
reference vectors for the external gluons. We denote
the number of light quark flavors by N, and the
charge-weighted sum of the N, quark flavors normalized
to the charge of the external quark g by N, =
dogeqleq

We generate the four-loop diagrams with the program
QGRAF [29] and consider the gauge-invariant subset with
two closed fermion lines. We match the planar and
nonplanar diagrams to nine complete sets of eighteen
denominators (integral families) with REDUZE 2 [30-32],
where one such set of denominators may cover several
twelve-line top-level topologies and equivalent subtopol-
ogies are identified. In total, we encounter forty-six
twelve-line top-level topologies, out of which twenty-
two are non-planar, see Fig. 1. We evaluate the color
algebra for a general compact simple Lie group with
COLOR.H [33] and evaluate the Lorentz and Dirac algebra
with FOrRM 4 [34].

We employ the in-house program FINRED to reduce the
resulting Feynman integrals to master integrals. For the
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TABLE I. Complexity of various form factor contributions.
‘7_:Z|N§ j:Z|Nq,Nf j:zgt|1v§

# diagrams 71 226 2554

# planar twelve-line top. 0 4 21

# nonplanar twelve-line top. 0 3 19

# nonequivalent top. in red. 158 923 1781

# integrals in amp. (£ # 1) 010  0(10%)  O(107)

max. # inverse propagators 5 5 6

reduction of the amplitude, we employ conventional
momentum space integration-by-parts, Lorentz, and
sector symmetry identities. For the basis change to our
finite integrals, we employ first- and second-order
annihilators [21,22] in the Lee-Pomeransky representation.
Instead of resorting to an external computer algebra
system, we calculate the required syzygies using
linear algebra methods [35,36] with FINRED as a linear
solver.

Finite field sampling allows us to easily discard
redundant equations, which reduces the number of equa-
tions and speeds up the reduction process considerably.
Using different finite fields and different samples for d
allows us to solve linear systems with 64 bit integers as
coefficients and to reconstruct the rational functions from
these finite field solutions. Robust vetos of fake recon-
structions allow us to work without a priori assumptions
concerning the required number of samples. We typically
need O(10') finite fields and O(10%) values for d for a
successful reconstruction. We verify the reconstructed
solution using five independent samples with unrelated
values for d and the modulus. The reduction is run in a
distributed manner and our final integral tables amount to
several terabytes of compressed data.

Our unreduced amplitudes contain a total of 21286021
integrals with up to twelve propagators and six inverse
propagators (irreducible numerators), for which we recon-
structed a total of (O(10°) reduction identities in 1863
nonequivalent nonzero topologies, see Table 1 for more
statistical data. After insertion of the reduction identities in
the amplitudes, we find 163 irreducible master integrals and
observe a nontrivial cancellation of all gauge parameter-
dependent terms, something which constitutes an important
sanity check on our calculation.

III. MASTER INTEGRALS

To evaluate the master integrals using direct analytical
integration, we proceed as follows. We apply the algorithm
of Ref. [17] to generate a reasonably long (overcomplete)

list of finite integrals in higher dimensions for a given
sector. For each of these integrals, we evaluate the leading
term by direct integration of the Feynman parametric
representation using HYPERINT. To avoid the evaluation
of many terms in the e expansion, it is often desirable to
select a basis of finite integrals with high maximal
transcendental weights at leading order in €. Using dimen-
sional recurrence [37,38] and dedicated reduction iden-
tities, we express the conventional master integrals in
4 —2¢ dimensions in terms of the new finite master
integrals and their subsectors, which should be thought
of as being known in a bottom-up approach. In this way, we
obtain the reduced form factors directly in terms of finite
master integrals and subsequently insert the analytical
solution for their Taylor expansion at € = 0.

One advantage of this choice of basis is that the finite
integrals enter the ¢ expansion of amplitudes at higher
orders than their conventional counterparts. To illustrate
this effect, let us express explicit integration results using
different choices for the master integrals. For example,
for the first integral topology of Fig. 1, we find in the
conventional basis

T8\ 72 S\ 7272

1/ 191 17\ 1/ 2779,
Sl Bl e 2 |
t3 ( -G —C— ) + 3 ( 360 2 — 15

(4—2¢)

251

1 205
+3 Cz + ) = ( C5 — 5 2% 2765 + 5
451 1 /21269 , 140807 4
——Cz > t3 < = G- 1260 o2 19456

—222(2(3 + —Cz

1067 1399 580C 4459)
- —=

6
1 11417 9445 181147
- (* 7 G — C2Co (G +2871¢
34414 5 561 1720 17993 10505
s Gt Gty b S G TG
4361 31003 86152 47869
— G2+ 2 )* 5 ¢s5,3 + (3Cs
31999 33270103 134135
— 811
GG+ 51000 G+ ¢r — 8110¢2¢5
23202 948274 4 8717 43085
<2<3 315 Gy + 3 <3 T %
n 5230C G+ 117067<2 - 76915 28828
3 > 30 2 6 > 3 2
183475
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which contributes to all terms in the ¢ expansions of the
bare form factors through to O(e°). Note that, in Eq. (2)
and throughout this work, we adopt the conventions and
definitions of Ref. [18] for our Feynman integrals and
multiple zeta values.

Now, if one replaces the above master integral with a
suitable finite representative, one can make explicit that no
evaluation of the new, finite master is required to extract the
finite parts of the form factor contributions discussed in this
work. This is simply because the finite parts of the
contributions of order N]% and N, N, turn out to have a
maximal weight of six [see Egs. (6), (7), and (8) below], but
the leading term in the e expansion of the finite master
integral for this sector may be consistently chosen to have a
maximal weight of seven. This feature is particularly
compelling for the example considered, because its finite
integrals were only accessible to HYPERINT after we made a
change of variable of the form x; = x;x;x}/x, for one of the
Feynman parameters, x;.

Let us elaborate further on what we require from our
finite basis integrals. In most cases, it is very useful to
pick finite integrals which faithfully map the weights of
the underlying multiple zeta values when passing from
the preferred finite basis back to the conventional basis.
That is to say, we try whenever possible to ensure that a
maximal weight of w at leading order in € on the finite
integral side implies complete weight w information on the
conventional integral side. This is not automatic and is
closely related to the problem of finding an integral basis for
a given sector which is simultaneously finite and uniform
weight [39]. As a dramatic example, consider the conven-
tional master integrals

(4—2¢)

1/ 1( 1
=5 () v (=1¢)

1 [ 1819
wo (e) < a () -5 [
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2
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(4)

With the master integrals above, the reduced integrand
for the Nj% four-loop gluon form factor would actually
require the unknown O(e) terms of Egs. (3) and (4) to
extract final results through to O(€”). On the other hand, a
suitable finite integral basis including

(6-20
:_;g_§@+umﬁag@—é@
-6+ (-6 - a6+ T 6+ G
419<2 §11<5 <2g3._ __gg-_ 117g3>

1
<ﬂ<5 s+ ool — e - e
25 Pt 120142@, +22g+ B0
18437 581C2C3 569C _ 1542@) (63)
(5)
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offers the possibility to completely avoid evaluating
anything but the weight six, leading-order term of
Eq. (5). For the majority of the 151 irreducible
topologies relevant to the Nj% gluon form factor, we
were able to find finite basis integrals which allowed
us to avoid computing spurious orders of their €
expansions.

IV. RESULTS AND CROSS-CHECKS

With the techniques described above, we find for the
nonsinglet quark form factor

1 /41 1 /574\ 1 (73
73] s ZC%{ <162> tE (273) ta (8—1<2
835\ 1 ( 2620 3016, 176390
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44208841 . 5325319081
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for the singlet quark form factor
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and for the gluon form factor
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The color factors above are defined in Egs. (185)—(188) of
Ref. [33] for a SU(N,) gauge group (Tr = 1/2).

Our cross-checks were as follows. First of all, we
observed that the gauge-dependent parameters of our
calculation dropped out of our final results. Most of our
master integrals were computed twice using different
choices for the finite integrals and it was gratifying to
see that we could often produce uniform weight integrals
by mapping our finite integrals back to conventional ones
[see e.g., Eq. (3)]. Due to the simplicity of finite Feynman
integrals [40], we found that it was possible to check all our
nonplanar master integrals to a relative precision of 10~
numerically using FIESTA 4 [41]. We were also able to
successfully check some of our integrals analytically
against the results of [3,5]. Furthermore, we agreed with
the higher-order pole predictions of [42] and the known
result for the N% part of the bare quark form factor [3].

Finally, we extracted the cusp anomalous dimensions
from the 2 poles:

il = CACF[— %CS + %43 - 68i18<2 - 98113]
+C%{%C§ - %ﬂ@ * 22%]’
)
FZ|N,”Nf =0, (19)
I Nz ‘%‘{_%CSjL%CS_% 2+%~3]
+ C4Cr [%CS - %Q” + %]

(11)

As predicted by the Wilson loop picture, the color structure
C%N} in the gluon form factor enters the cusp with zero

coefficient, as does the quartic Casimir term. In fact, we
have confirmed by direct calculation that Casimir scaling

holds for the N} contributions. Equation (9) is in agreement
with the analytic result of Ref. [43] and Eq. (11) represents
the first direct extraction of I'}| N2

V. SUMMARY

In this paper, we calculated previously unknown contri-
butions to four-loop quark and gluon form factors with two
closed fermion loops. We also derived the corresponding
contributions to the cusp anomalous dimensions. The master
integrals were computed by direct integration of finite
integrals in the Feynman parametric representation. For
two integral topologies, we had to perform simple changes
of variables to render the representation linearly reducible and
thus accessible to an integration with HYPERINT.
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