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A B S T R A C T

Recent studies have begun to incorporate spatially variable plant traits into ecohydrological models, but tem-
poral trait variability remains under-studied. Because of its potential to influence ecosystem function, re-
presenting stress-induced temporal trait variability into models should be a research priority. We present a new
data-model integration approach to identify temporal variability in plant traits and generate stochastic-in-time
model parameterizations. The data-conditioned stochastic parameterization was developed within the CLM 4.5
model utilizing global trait data as prior information and tested for a desert shrubland site. A synthetic ex-
periment demonstrated that the framework successfully uncovered time-varying trait values. Using in-situ
ecohydrological observations, we found the specific leaf area (SLA) for a common broadleaf-evergreen-shrub to
be temporally dynamic and significantly correlated with seasonal water availability. We constructed a regression
model based on the data-conditioned SLA estimates and soil wetness and used it to generate stochastic SLA
parameters for a 40-year hindcast simulation. The stochastic-in-time SLA parameters resulted in greater pro-
ductivity and water use efficiency than a standard static parameter. Our stochastic-in-time method can help
evaluate stress-induced trait plasticity that extends our understanding beyond sparse spatial plant trait database
and improve our ability to simulate carbon and water fluxes under global change.

1. Introduction

Plant functional traits, including morphological, physiological, and
phenological attributes, are key characteristics for linking ecological
functions and providing a mechanistic understanding of species re-
sponse to environmental conditions (van Kleunen and Fischer, 2007).
Trait plasticity, which arises from genetic diversity and phenotypic
plasticity (Nicotra et al., 2010), can allow plants to modify their mor-
phological and/or physiological traits to increase environmental toler-
ance, making them capable of surviving over an extensive geographic
range. Recent studies indicate that phenotypic plasticity rather than
genetic diversity likely plays the crucial role in allowing plants to
persist in their environments in both the short- and long-term, as it is
the most rapid mechanism of response to environmental drivers
(Vitasse et al., 2010). Understanding plant plasticity is crucial for pre-
dicting changes in species distribution, community composition, and
plant productivity under global change.

Different environmental conditions may impose different selective
pressures on plants, driving traits to a certain degree of divergence. The
spatial variations in plant leaf traits are well-documented, and they

tend to relate to plant functional type and climate (Reich et al., 1997;
Wright et al., 2004). An “economic spectrum” has been used to describe
ecological trade-offs observed in a global data set of leaf measurements
spanning ecological and climatic gradients (Wright et al., 2004). On a
much smaller spatial scale, leaf traits can vary as much within a canopy
with the light environment as across individual plants (Serbin et al.,
2014).

Compared to the spatial variation of plant traits, fewer empirical
studies examine the temporal variability of traits, presumably due to
the challenges of labor-intensive and non-destructive repeat measure-
ments, and this hinders our understanding about the adaptive process of
trait plasticity. However, there is evidence for temporal trait variability
over seasonal to inter-annual time scales (Reich et al., 2018; Dawson
and Bliss, 1993; Damesin et al., 1998; Damesin and Lelarge, 2003).
Nouvellon et al. (2010) found that the stand-average specific leaf area
(SLA) (ratio of leaf area to dry mass) varied about 20% within one year
in a Eucalyptus plantation, with lower values occurring in the dry
season. Other studies found a decrease in SLA to be generally associated
with slower plant growth, which can enhance water use efficiency
during drought events (Villar et al., 2005; Poorter et al., 2009). In
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addition to external environmental forces, leaf development causes
traits to vary over time. Using leaf spectroscopy at temperate deciduous
forest sites, Yang et al. (2016) showed that leaf traits (leaf mass per area
– the inverse of SLA, leaf nitrogen per mass, chlorophyll levels, and
carotenoid concentrations) varied significantly through different
growth stages over a season. Also looking at seasonal changes, Muraoka
et al. (2010) found that the photosynthetic capacity (maximum rate of
carboxylation at 25 °C, Vcmax25) increased dramatically during leaf ex-
pansion in the spring, stabilized in mid-summer, and declined in au-
tumn in a temperate deciduous forest site. Plant traits may also evolve
over longer time periods of years to decades. Thermal adaptation occurs
when the sensitivity of plant respiration to temperature (Q10) decreases
over time (Atkin et al., 2000; Atkin and Tjoelker, 2003). Various Free
Air Carbon Dioxide Experiments (FACE) also demonstrated photo-
synthetic acclimation over multiple years, with maximum carboxyla-
tion rate of Rubisco (Vcmax) and maximum electron transport rate (Jmax)
altering due to nitrogen and water limitation (Ainsworth and Rogers,
2007) and CO2 fertilization (Leakey et al., 2009).

Despite observed trait variability over space and time, current
models generally use fixed plant functional types (PFTs) that are as-
signed static trait values. For example, the Community Land Model 4.5
(Oleson et al., 2013) implements constant leaf nitrogen per mass (Nm)
and SLA, which determine the Vcmax25 and plant phenology, without
considering possible changes induced by environmental stressors. Be-
cause plant functional traits directly control ecological function, failure
to capture their true variability will bias predictions of ecological fluxes
that play an essential role in global water and carbon cycles.

To start to address this fixed-PFT parameterization problem, some
studies explicitly incorporated trait variability at the individual plant
level, but these are limited to small regional or even site-level appli-
cations (Sato et al., 2007; Uriarte et al., 2009). More generally applic-
able, regression methods have provided spatial distributions of plant
parameters based on relationships found between plant traits and en-
vironmental conditions such as climate and soil (Verheijen et al., 2015;
Butler et al., 2017). Another regional to global strategy implemented
multiple plant trait combinations into dynamic vegetation models and
filtered for parameters that allow plant growth under the given en-
vironmental conditions (Fisher et al., 2015; Pavlick et al., 2012). Some
studies extended available trait observations by using them to derive
probabilistic trait ranges for ensemble simulations (Wang et al., 2012;
Pappas et al., 2016).

These studies present important advances in representing spatially
variable plant traits in models but still suffer from some limitations.
First are the uncertainties in the trait databases on which many of these
studies rely. The global TRY database (Kattge et al., 2011) brings to-
gether an unprecedented volume of ground measurements but is still
too sparse to fully cover the globe continuously over time, and the
correlations among functional traits and environmental variables are
generally too weak to make interpolations (Wright et al., 2005;
Ordoñez et al., 2009; Coyle et al., 2014). The second limitation relates
to how traits are selected for variable representation in the model. Ad
hoc selection of traits may neglect those that exhibit the strongest direct
physiological response to environmental conditions under study, and it
may fail to include traits that co-vary together with traits that are re-
presented (Kleyer and Minden, 2015). Finally, most trait-based mod-
eling studies capture spatial distributions but assume traits to be tem-
porally constant (Wang et al., 2012; Pavlick et al., 2012; Butler et al.,
2017). In the few attempts to represent time-dynamic traits, some have
assumed relationships in a global trait database to apply not only over
space but also over annual intervals (Verheijen, 2013; Verheijen et al.,
2015). Another global study applied an assumed trait relationship to
dynamic leaf area index (LAI) data from satellite imagery to generate
seasonally variable Vcmax25 model inputs (Ryu et al., 2011). In specia-
lized cases, intensive site-specific measurements allowed for detailed
trait dynamics models based on development stage and nutrient supply
(Sands and Landsberg, 2002; Almeida et al., 2004; Fontes et al., 2006;

Battaglia et al., 2004; Corbeels et al., 2005).
What is still missing is a generally applicable modeling framework

that can help identify under-observed temporal variability in plant
functional traits and quantify uncertainties in our growing under-
standing about trait plasticity and its impact on ecohydrological fluxes.
To fill this gap, we propose a data-conditioned stochastic para-
meterization that leverages global plant trait data and spatiotemporally
complete remote sensing imagery to estimate dynamic traits for use in
prognostic vegetation simulations. We develop the new stochastic-in-
time PFT parameterization within the Community Land Model 4.5
(CLM 4.5) and test the method for a desert shrubland site in the Mojave
Desert. With highly dynamic climatic conditions, desert shrublands
provide an apt test-bed for demonstrating how our approach can be
used to investigate trait plasticity in response to irregular water avail-
ability. Previous model implementation at the site by Ng et al. (2015)
used standard static parameters that successfully generated time-aver-
aged LAI observations but under-simulated sharp transitions and
minimum and maximum conditions, suggesting the possibility for dy-
namic leaf traits in that environment. The current work introduces a
new stochastic vegetation parameterization that we anticipate can serve
as a framework for assessing trait plasticity across ecosystems. Spatio-
temporally stochastic parameterizations have been previously applied
to represent uncertainties due to unknown and unresolved processes in
atmospheric (Palmer et al., 2009; Palmer, 2012; Christensen et al.,
2015), ocean (Kitsios, 2014), and sea-ice interaction (Juricke et al.,
2012) models. Hydrologic models have long employed spatially sto-
chastic hydraulic parameters to represent heterogeneous media (e.g.,
Dagan, 1986; Gelhar, 1986) and temporally stochastic rainfall forcing
to represent climatic dynamics (e.g., Eagleson, 1978; Rodriguez-Iturbe
et al., 2001).

This paper consists of two parts. First, we use a synthetic experiment
to present our proposed stochastic parameterization method and prove
its ability to uncover plant trait temporal variability. The second part
demonstrates the utility of the new method; we condition ensemble
model parameters and simulations on in-situ soil moisture and remotely
sensed vegetation data to test the hypothesis that seasonal to inter-
annual moisture conditions drive changes in leaf traits and impact
ecohydrological fluxes in desert shrublands.

2. Materials and method

2.1. Study site

Our study site “Kelmet” (elevation: 860m.a.s.l.) is located in Kelso
Valley in the Mojave National Preserve, southeastern California, USA
(Fig. 1). Earlier studies in Kelso Valley examined the surficial geology
(Miller et al., 2009), soil hydraulic properties (Nimmo et al., 2009;
Mirus et al., 2009), and distribution of shrubs (Bedford et al., 2009;
Schwinning et al., 2011). Ng et al. (2015) synthesized data from those
studies in a static-parameter ecohydrological model to evaluate the
relationship among precipitation events, soil moisture, and LAI at a low
elevation study area within the valley. The current modeling work uses
climate and soil data detailed in Ng et al. (2014, 2015). A brief sum-
mary of the site and data is provided here.

A 50-year meteorological time series (1961–2010) shows hot sum-
mers with mean July temperature above 35 °C and colder winters with
mean December temperature of 5 °C. Mean annual precipitation is
103mm, with winter rains providing most of the precipitation, and
summer convective storms occasionally supplying additional inputs.
The dominant vegetation type Larrea tridentata, a broadleaf evergreen
shrub, covers about 15% of the ground, and co-dominant Ambrosia
dumosa, a drought-deciduous shrub, covers about 5%; the remainder is
mostly bare ground. Larrea tridentata (creosote bush) is widely found
throughout the Mojave, Sonoran, and Chihuahuan Deserts (Chew and
Chew, 1965; Barbour, 1969; Rundel and Gibson, 2005). The site con-
sists of coarse early Holocene soils overlying a deep (≫100m) water
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table. Soil moisture at 15 and 35 cm soil depths was measured from 2
July 2007 to 31 December 2010. 1-km, 8-day resolution LAI data from
MODIS compiled over that period matched well with field-based vali-
dation measurements.

2.2. CLM 4.5

This study uses the Community Land Model version 4.5 (CLM4.5),
which is the land module of Community Earth System Model 1.2 de-
veloped by the National Center for Atmospheric Research (NCAR)
(Oleson et al., 2013). CLM4.5 encompasses a comprehensive suite of
land-surface processes, mostly using mechanistic parameterizations.
With its fully coupled carbon and nitrogen module, ecosystem pro-
ductivity drives prognostic leaf area and vegetation and soil carbon
pools, and nitrogen availability constrains carbon fluxes. The hydro-
logical processes include canopy interception, precipitation throughfall,
snow accumulation, sublimation and melt, surface runoff, evapo-
transpiration, water infiltration and redistribution in soil, and subsur-
face drainage.

Following Ng et al. (2014), we modified the plant maintenance re-
spiration scheme by applying a multiplicative factor, based on tem-
perature and plant water potential, to respiration using the formulation
by Shen et al. (2008) (details in the section S1 of Supplementary In-
formation). This better represents observed shrub respiration acclima-
tion behavior in deserts (Strain and Chase, 1966).

2.3. Data-conditioned stochastic parameterization

Motivated by observed plant trait plasticity, we present a stochastic
representation of vegetation parameters, which to our knowledge has
not been implemented before in process-based ecohydrological models.
Specifically, we apply stochastic perturbations to plant parameters in
order to represent unresolved trait dynamics, which are mostly un-
known due to a general lack of temporal trait observations. To then
address the large uncertainties, we assume that temporal observations
of related ecohydrological states are informative about traits and can be
used to constrain their dynamics. We thus utilize data-model integra-
tion, or data assimilation, to condition stochastically perturbed plant
parameters on observations of LAI and soil moisture. The results are
estimates of temporally variable plant traits that can be used to evaluate
the relationship between trait variability and environmental stressors.

Our data assimilation framework employs the ensemble Kalman
Filter (EnKF) (Evensen, 1994) with an augmented state formulation
that allows for model parameters to be estimated along with model
states (Evensen, 2009). The EnKF provides a Monte Carlo approxima-
tion to the traditional Kalman filter using multiple model simulations to
estimate an ensemble forecast of model vectors (Xtf ), of which the
ensemble covariance represents the forecast error covariance (Pf ).
Following this forecast step, an analysis (also called “update”) step
improves the forecast estimate by calculating an updated ensemble of
model vectors (Xta) based on observations (yt) at time step t, which are
assumed to have an observation covariance of R . Xtf and Xta are both
augmented model state vectors that comprise model states (S) and
parameters (p). One assimilation cycle is composed of one forecast step
and one analysis step. The analysis result at time t serves as the initial
condition for the forecast step of the subsequent assimilation cycle at
time t + 1; assimilation cycles repeat until the final time of the ob-
servational period (t = T).

Here we use the Ensemble Square Root Filter (EnSRF), an EnKF
variant proposed by Whitaker and Hamill (2002) that is less prone to
sampling errors than the original EnKF formulation. With EnSRF, the
ensemble model mean vector (denoted by an overbar) and the ensemble
model deviations from the mean (denoted with prime) are separately
updated using Eqs. (1) and (2), respectively:

= + −X X K y HX( )t
a

t
f

t t
f (1)

′ = ′ + − ′X X M HX( ),t
a

t
f f (2)

where H is the observation operator that converts model states to the
observation space, K is the Kalman gain, and M is a transformation
matrix. The Kalman gain is calculated by

= + −K P H HP H R( )t
f T

t
f T 1 (3)

for the ensemble mean update (Eq. (1)), and the transformation matrix
is calculated by

= + × + +− −M P H HP H R HP H R R[( ) ] [ ( ) ]t
f T

t
f T T

t
f T1 1 (4)

for the perturbation update (Eq. (2)). The final component of the update
step is to assemble the ensemble matrix of full model vectors from the
mean and perturbations:

= + ′X X X1t
a

t
a

t
a (5)

where 1 represents a 1xN vector of 1 values, with N as the ensemble
size.

Eight vegetation-related parameters in CLM 4.5 are selected for
estimation based on a sensitivity study with E3SM (Ricciuto et al.,
2017), a land-surface model based on CLM 4.5 (Table 1). Default CLM
4.5 PFT values were used for all remaining plant parameters. EnKF
requires parameter values and uncertainty distributions prior to the
first analysis step (for =Xt

f
0 and =Pt

f
0). For three of the trait parameters –

Fig. 1. Study area in the Mojave National Preserve (MNP) in southeastern
California, USA (adapted from Ng et al., 2014). The “Kelmet” study site pro-
vides the basis for the data assimilation formulation presented here.

Table 1
CLM 4.5 plant parameters included in estimation. “TRY” indicates that the prior
information was derived from the TRY database. For other parameters, prior
uniform distributions are used with the indicated limits taken from White et al.
(2000).

Parameter Description Prior

mp_pft Slope for stomatal conductance-to-photosynthesis in
Ball-Berry Model

(5, 12)

rootb_par Root distribution parameter TRY
leafcn The ratio of carbon to nitrogen in leaf TRY
slatop SLA at top of canopy TRY
frootcn The ratio of carbon to nitrogen in fine root (35,50)
froot_leaf Allocation of new fine root C per new leaf C (0.5,1.5)
flnr Fraction of leaf N that is in RuBisCO enzyme (0.01,0.07)
leaf_long Leaf longevity in years (0.6,1.5)
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SLA, the ratio of carbon to nitrogen in leaves (leafcn), and leaf longevity
– we use lognormal distributions based on the global TRY database
(Kattge et al., 2011) for the prior uncertainty. The other five parameters
do not correspond to commonly measured traits in TRY and are as-
signed uniform distributions over the range of parameter values re-
ported in White et al. (2000). The EnKF implementation then uses two
types of calibration data (y ) for the analysis step, MODIS (LAI) and in-
situ soil moisture at 15 cm and 35 cm depth. This implementation le-
verages global vegetation datasets; future work will evaluate the use of
satellite soil moisture products instead of in situ measurements.

In a typical EnKF implementation for static parameters, parameters
remain constant over the EnKF forecast step, while only model states
evolve through Monte Carlo simulations. During each analysis step,
parameter estimates in the augmented state do change; however, the
end time result usually serves as the final calibrated static model
parameter. Our formulation differs by building on the strategy by
Hansen and Penland (2007) to use the time series of EnKF analysis
results for estimating stochastic properties of parameters. First, we pose
a prior stochastic parameterization using a stationary Gaussian first-
order autoregressive (AR-1) model, which is incorporated into the EnKF
forecast step:

= ++p α p ε*t t1 (6)

∼ε N h V(0, )2 (7)

= −h a1 2 (8)

pt and +pt 1 are parameters representing plant traits at the beginning
and end of the forecast step, respectively, and α is the first-order au-
toregressive correlation coefficient (α is set as 0.999). The uncertainty
term ε has a variance determined by the smoothing factor (h) and
variance value (V ). The variance value (V ) is adjusted to give the as-
similation result with the most favorable statistics in the EnKF im-
plementation. Eqs. (6–8) do not attempt to represent actual mechanistic
processes, but they serve as an approximate Markov chain process for
generating plausible biophysical dynamics to be further conditioned
based on observations. Moradkhani et al. (2005) proposed an EnKF-
based parameter estimation approach that similarly evolves parameter
values over the forecast step, but that was included as artificial dy-
namics solely for EnKF performance purposes, while true dynamics
motivate our formulation.

We carry out EnKF, employing Eqs. (6–8) for the eight uncertain
plant parameters along with CLM 4.5 state simulations for the forecast,
such that the parameters now change over both the forecast and ana-
lysis steps. Note that in the model state forecast, we assume that the
parameters are the major source of uncertainty, and thus we do not
include additional model errors. Based on preliminary EnKF tests, an
ensemble size of 100 is chosen as a balance of performance and com-
putational feasibility. We found best results by implementing a two-
tiered iterative EnKF approach (Fig. 2). Previous studies have applied
different iterative extensions of the EnKF that cycle multiple times over
periods ranging from a single assimilation cycle to the entire assimila-
tion period in order to further reduce errors and address parameter and
state estimate incompatibilities (Moradkhani et al., 2005; Gu and
Oliver, 2007; Hendricks Franssen and Kinzelbach, 2008; Ng et al.,
2014). Here, we apply two passes of the EnKF over the entire assim-
ilation period, in which a standard static parameter EnKF is first im-
plemented for a first-order approximation of the parameter estimates.
The second pass then employs the stochastic formulation (including
Eqs. (6–8)) to further constrain temporal variations in the parameters.
In the second pass, additional iterations over each assimilation cycle,
with separate parameter and state update steps (Sakov et al., 2012),
were necessary to generate sufficiently dynamic plant parameters to
simulate observed LAI variability. More information about the im-
plementation of stochastic parameterization can be found in the Sup-
plementary Information (Section S2).

After the variance of the parameter estimate stabilizes in the second-
pass, the entire time series of ensemble parameter estimates is taken as
the final estimate in our formulation. Generating simulations outside
the assimilation time period requires identifying relationships in this
data-conditioned parameter time series. We identify trait plasticity
occurring in response to environmental drivers by searching for corre-
lations between the conditioned parameter time series and environ-
mental factors. These can lead to regression-based models of stochastic
plant trait response to stressors, which allows probabilistic predictions
of trait plasticity and resulting impacts on carbon and water balances.

2.4. Synthetic experiment setup

We first conduct a synthetic experiment to test if the proposed data-
conditioned stochastic parameterization method can constrain en-
vironmentally induced plant trait plasticity. Prompted by studies
identifying spatiotemporal variability in SLA related to environmental
conditions (Misson et al., 2006; Poorter et al., 2009; Nouvellon et al.,
2010), we design our experiment around the hypothesis that SLA
changes temporally with water stress in desert shrublands. A focus on
SLA is also motivated by its strong physiological control on leaf growth
(Villar et al., 2005; Wright et al., 2001), which in models is expressed in
part as dynamic LAI, the major scaling factor for determining grid cell-
level carbon and water fluxes (Olesen et al., 2013). Using the following
model, we construct a synthetic true SLA for the broadleaf-evergreen-
shrub PFT that is close to the CLM 4.5 default value (0.015m2 g−1 C)
but varies over time based on the soil wetness factor (β):

= +SLA β(t) 0.010 0.005* ¯. (9)

The wetness factor in CLM 4.5 ranges from one when the root zone
soil is wet to near zero when the root zone soil is dry, and it depends on
the root distribution and plant-dependent response properties to soil
water stress. The overbar signifies the 30-day average, which was
chosen to reflect conditions on a seasonal timescale. Leaf traits are
driven by internal constraints of the leaf and whole plant (Westoby
et al., 2002), which likely require longer monthly to seasonal time
scales to respond to climate fluctuations than photosynthetic capacity
traits, which can respond almost immediately to changes in tempera-
ture, light, water vapor deficit, and CO2.

Synthetic LAI and soil moisture observations were generated by
implementing the synthetic true SLA time series in CLM with the
Kelmet climate and soil inputs and adding random observational noise.
These synthetic observations were then used in the stochastic EnKF
parameterization formulation (including Eqs. (1–8)), as well as in a
standard EnKF implementation for static parameters (in which Eqs.
(6–8) are omitted, and the end-time estimate serves as the final cali-
bration result), in order to compare the utility of the new stochastic
formulation. To simplify the model implementation in the synthetic
experiment, we only include one PFT, broadleaf-evergreen-shrub, to
represent the dominant Larrea tridentata shrub and only estimate the
SLA parameter.

Results for the two synthetic EnKF implementations are evaluated
using a scaled mean square error (scMSE), similar to Ng et al. (2014).
MSE is determined by:

∑= −
=

MSE ξ ξ(t) 1
b

( ¯ (t) (t))tr
j 1

b
j j 2

(10)

where ξ t( )j represents the model parameter or state at time step t, the
overbar signifies the ensemble mean, tr signifies the synthetic true
value, and b denotes the numbers of parameters or states assessed. For
parameters, scMSE is calculated by first normalizing each parameter by
its prior distribution standard deviation; for model states, scMSE is
determined by first normalizing each state by the synthetic true mean
value over time:
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In addition, the ratio of MSE to variance is examined for EnKF diver-
gence (Sacher and Bartello, 2008), which occurs when the estimate fails
to capture the true model values:

=
∑ =

MSE variance MSE t
Var ξ

: ( )
( )j1

b j 1
b

(12)

This ratio is ideally about 1 if the estimate uncertainty (variance)
appropriately quantifies the estimate error (MSE). Consistently high
values indicate over-confidence about a wrong estimate that EnKF may
no longer be able to correct by assimilating observations, which can
lead to filter divergence (Ng et al., 2011). A ratio less than 1 will not
cause divergence, though it does convey more than necessary

uncertainty about the estimate. Treating a temporally varying para-
meter as a static parameter – for example, in the standard EnKF im-
plementation – could exacerbate problems of estimation divergence,
because the parameter is not allowed to adequately vary. EnKF fixes
such as variance inflation (Anderson and Anderson, 1999) and artificial
parameter noise (Moradkhani et al., 2005) provide ad hoc solutions to
divergence; a stochastic formulation could instead inject variability as a
mechanistically consistent solution.

2.5. Kelmet site setup

After the synthetic tests, the data-conditioned stochastic para-
meterization approach is applied with in-situ soil moisture and MODIS
LAI observations for Kelmet. As in the synthetic experiment, the input
data, including the meteorological forcing and initial conditions, is
from Kelmet. The main distinction from the synthetic experiment set-up
is the simulation of the drought-deciduous-shrub PFT in addition to
broadleaf-evergreen-shrub, in order to include co-dominant Ambrosia

Fig. 2. Schematic of the two-tiered iterative EnKF implementation with stochastic parameterization. The function “f” represents forecast simulations with CLM 4.5;
see text for other variable definitions. Note that for the static parameter comparison tests, a second pass is also implemented, but using the standard EnKF formulation
from the first pass (no parameter evolution and no iteration of each assimilation cycle).
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dumosa alongside dominant Larrea tridentata. Separate model columns
were implemented for the two plant types to represent complementary
root distributions observed for the Larrea tridentata-Ambrosia dumosa
shrub community (Wallace et al., 1980; Stevenson et al., 2009). The
stochastic and static EnKF parameterization used with the Kelmet data
is identical to the synthetic experiment. The results for the Kelmet site
are plant parameters estimated for both broadleaf-evergreen-shrub and
drought-deciduous-shrub types. The conditioned SLA time series is then
compared against soil wetness to propose a stochastic model for pre-
dicting SLA plasticity based on environmental stressors. Finally, the
ecohydrological implications of representing trait variability versus use
of standard static parameters are explored.

3. Results

3.1. Synthetic experiment results

Results in Fig. 3(a) show that the stochastic parameterization suc-
cessfully uncovers time-varying plant traits, with true time-varying SLA
falling within the 25th to 50th percentile of the conditioned ensemble
estimate. In comparison, the static parameterization converges to the
time-average true SLA but fails to capture temporal patterns induced by
water stress, with the ensemble estimate missing most of the high and
low values (Fig. 3(c)). ScMSE and coefficient of variation results
quantitatively confirm that the stochastic parameterization method out-
performs the standard static method in estimating SLA temporal

variation (Table 2). “Posterior simulations” in the stochastic case were
generated by implementing the time series of data-conditioned para-
meters back into CLM 4.5. “Posterior simulations” in the standard static
parameter case were generated using only the final time SLA estimate
as a constant input. The stochastic approach generates LAI results that
agree well with the synthetic true values (Fig. 3(b)). The static ap-
proach produces similar scMSE as the stochastic case, but the ensemble
LAI trajectory exhibits too little dynamic variability and ensemble
spread. In particular, for the static case, the truth often deviates outside
the 25th-50th percentile estimate (Fig. 3(d)), the coefficient of variation
of the estimate is lower than for the synthetic true case, and MSE:var
ratio is greater than 1 (Table 2).

3.2. Kelmet site results

3.2.1. Data-conditioned stochastic shrub parameters
With in-situ soil moisture and MODIS LAI observations at the study

site, the conditioned stochastic estimate of SLA shows clear temporal
dynamics for the broadleaf-evergreen-shrub Larrea tridentata in
Fig. 4(a) (coefficient of variation of 0.25). All trait estimates were
constrained by the data-conditioning (Fig. S2), but none of the others
showed discernible temporal variability (Fig. S3), including SLA for the
broadleaf-deciduous-shrub Ambrosia dumosa (coefficient of variation of
0.07, see Fig. S4). This difference in temporal SLA patterns between the
two shrub types would not have appeared with the standard static
parameter EnKF, which also produced SLA estimates with minimal

Fig. 3. Synthetic EnKF results using (a)-(b)
stochastic parameterization and (c)-(d) static
parameterization. Parameter estimates in (a)
and (c) are results from the second pass in the
two-tiered EnKF implementation. In the sto-
chastic case, the second pass includes para-
meter perturbations, and posterior ensemble
simulations of LAI in (b) use the full ensemble
time series of conditioned SLA estimates in (a).
In the static case, the second pass does not
include parameter perturbations, and posterior
ensemble simulations of LAI in (d) use the final
time ensemble conditioned SLA estimates in
(c).

Table 2
Summary of statistical results for SLA parameters and LAI using static and stochastic parameterizations. Reported errors for scMSE and MSE:variance are standard
deviations of these metrics over time.

scMSE MSE:variance Coefficient of Variation

Static Stochastic Static Stochastic Static Stochastic Truth
SLA 2.2 ± 0.79 0.63 ± 0.21 1.12 ± 0.48 0.68 ± 0.49 0.05 0.25 0.29
LAI 0.78 ± 0.34 0.73 ± 0.39 1.34 ± 0.41 0.80 ± 0.28 0.23 0.32 0.35
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variability for the broadleaf-evergreen-shrub PFT (Fig. 4(b)). For pos-
terior LAI simulations (Fig. 5), the 25th to 75th percentile for both the
static and stochastic case mostly correspond to MODIS values within
observational error of 0.1, but the stochastic parameterization simula-
tions track actual MODIS dynamics much more closely than the static
parameterization. Compared to the stochastic results, the 25th to 75th

percentile LAI results for the static case covers a narrower range that
fails to encapsulate the MODIS observation during most of the period
(Fig. 5(b)), demonstrating the importance of temporally variable SLA
for simulating observed LAI dynamics.

3.2.2. Hindcast with data-conditioned stochastic shrub parameters
The stochastic SLA estimate for the broadleaf-evergreen-shrub PFT

exhibits a statistically significant positive correlation with the 30-day
averaged soil wetness factor (Fig. 6). This relationship not only presents

water availability as a possible controlling factor on SLA trait varia-
bility, but it also enables stochastic trait predictions over time periods
outside the observational period. To assess the potential ecohy-
drological importance of water stress-driven SLA variability over
varying wet and dry periods, we statistically reconstructed monthly SLA
over a 40-year historical interval (1960–2000) using a linear regression
relationship based on the data-conditioned estimates. With two ex-
planatory variables, SLA at the previous 30-day time step ( −SLA t( 1))
and the soil wetness factor averaged over the preceding 30 days, the
regression model adequately reproduced the conditioned SLA over the
observational period with a coefficient of determination (R2) of 0.89
(Fig. S5).

Fig. 7a shows that ensemble hindcast simulations using the sto-
chastically reconstructed SLA generates similar time-average results as
simulations with static SLA, but the former generates monthly LAI with

Fig. 4. Estimates of Larrea tridentata SLA from the second pass of the two-tiered EnKF implementation using (a) stochastic and (b) static parameterization. The second
pass includes parameter perturbations for the stochastic case but not the static case.

Fig. 5. Posterior simulated LAI using data-conditioned (a) sto-
chastic and (b) static parameter estimates from Fig. 4. The MODIS
LAI observational error is 0.1. The stochastic case (a) uses the full
ensemble time series of conditioned SLA estimates from Fig. 4(a).
The static case (b) uses the final time ensemble conditioned SLA
estimates from Fig. 4(b).
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greater seasonal variability due to dynamic SLA response to drought
and wet events (Fig. S6). More variable LAI with stochastic SLA leads to
transpiration simulations that are at times lower and at times higher
than with static SLA (Fig. 7b), but importantly, stochastic SLA produces
31% greater cumulative gross primary productivity (GPP) (Fig. 7c) and
on average 22% higher water use efficiency (WUE, defined as the ratio
of GPP to transpiration) (Fig. 7d) over the 40-year period.

4. Discussion

4.1. Identifying SLA temporal variability

Here, we introduced a new data-model integration approach that
utilizes globally available data to identify under-studied temporal

variability of plant traits and generate stochastic-in-time model para-
meterizations. A synthetic test demonstrated that the new framework
can successfully and robustly constrain time-varying trait values.
Implementation with observations at the desert study site revealed
temporal dynamics in the SLA trait for the common broadleaf-ever-
green-shrub Larrea tridentata (Fig. 4). This includes variations of about
25% over the 3.5 years observational period, over values that are close
to previous field measurements (0.008m2 g−1C, Chew and Chew,
1965).

SLA temporal variability has not been previously examined in desert
shrubs to our knowledge, but observations on seasonal (Damesin et al.,
1998; Damesin and Lelarge, 2003; Reich et al., 1997; Wilson et al.,
2000; Xu and Baldocchi, 2003; Grassi et al., 2005; Misson et al., 2006;
Nouvellon et al., 2010) and interannual time scales (Dawson and Bliss,
1993; Abrams, 1994; Ma et al., 2011) in other ecosystems support the
possibility of temporal SLA variability found with our new stochastic
framework for Larrea tridentata. The few temporal SLA studies on
evergreen plants (not in deserts) show ranges of variability that are
similar to our results. For example, Nouvellon et al (2010) showed that
the stand-average SLA in a clonal Eucalyptus varied by about 20%
within one year, and Misson et al. (2006) reported a similar magnitude
change of 28% between seasons for Pinus ponderosa in the Sierra Ne-
vada mountains of California. Seasonal changes of SLA in deciduous
species are often thought to be larger than in evergreen species (Wilson
et al., 2000; Xu and Baldocchi, 2003; Grassi et al., 2005), which is
counter to the lack of temporal variability detected for the drought-
deciduous-shrub PFT in our study. It is possible that because co-domi-
nant Ambrosia dumosa covers only a third of the ground area as domi-
nant Larrea tridentata at the study site, 1-km MODIS LAI is too coarse to
detect its SLA variability and/or distinguish its effect from the drought-
deciduous phenology (see Oleson et al., (2013) for details on CLM 4.5′s
phenology scheme).

Fig. 6. Correlation between 30-day averaged soil wetness factor and data-
conditioned SLA using stochastic parameterization.

Fig. 7. Comparison of hindcast simulations of (a) LAI, (b) canopy transpiration, (c) cumulative GPP, and (d) water use efficiency (WUE) difference (defined as
stochastic minus static) for the stochastic and static parameterizations.
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4.2. Temporal variability of other traits

The lack of discernible temporal variability in traits other than SLA
was unexpected. Generally, change in one trait compensates changes in
other traits because of resource allocation among plant organs (Kleyer
and Minden, 2015); this serves as the underlying mechanism for the
economic spectrum of leaves. For example, species with a shorter leaf
lifespan usually have lower leaf nitrogen per area and higher SLA and
can exhibit greater net photosynthetic rates (Reich et al., 1997; Wright
et al., 2004; Kikuzawa and Lechowicz, 2006). Compared with well-
documented leaf traits, the connection between roots traits and whole-
plant structure and function is less well-understood (McCormack et al.,
2017) due to harder-to-observe links and a lack of standardized sam-
pling protocols for roots. Seasonality of fine-root traits has become in-
creasingly recognized (Zadworny et al., 2015; Pregitzer et al., 1998;
Volder et al., 2005), although how these correlate with other plant
traits remains uncertain.

Although other trait estimates have much lower temporal variability
(coefficients of variation of< 0.05) than SLA for Larrea tridentata
(coefficient of variation of 0.2), leaf longevity estimates do have ex-
pected negative ensemble correlations with SLA and positive correla-
tions with leaf nitrogen per area (Na) that are statistically significant
(p < 0.01) (Figure S7), but these correlations are weak. We do note
that leaf trait relationships derived from the TRY database show a si-
milar magnitude of correlation coefficient between SLA and leaf N per
area (absolute value of correlation coefficient= 0.39, left side of Fig.
S8) to that found between our estimated SLA and other parameters
(absolute values of correlation coefficients less than or approximately
0.3, Fig. S7). It is possible that our slightly weaker correlations could be
because the seasonal time scale over which SLA is found to vary is in-
sufficient for plants to fully adjust physiologically. Because trait cov-
ariation studies typically rely on spatial data (e.g. Reich et al., 2018),
the amount of time needed at a specific location for plant functional
trade-offs to develop is not well-explored. Another possibility for the
weak trait correlations is that LAI and soil moisture data may be in-
adequate for constraining other traits that may in fact co-vary strongly
with SLA over the observational period. Sensitivity tests with CLM show
that the variability of leafcn (the ratio of carbon to nitrogen in leaves),
for example, has negligible effect on LAI and soil moisture predictions
(Fig. S8). This indicates that other relevant observations – such as leaf
nitrogen, root chemistry, and/or longer-term records – could be ne-
cessary to reveal potential plasticity of other trait parameters in CLM
4.5, such as carbon to nitrogen ratios, root distribution, and leaf long-
evity.

4.3. Environmental stress-driven SLA plasticity

The statistically significant correlation found between the stochastic
SLA estimate for Larrea tridentata and seasonal water availability
(Fig. 6) presents the case for environmental stress-driven trait plasticity
in evergreen desert shrubs, which we represented with a temporally
stochastic regression model for SLA based on soil wetness. Corrobor-
ating our findings in a different but also moisture-limited ecosystem,
Gratani and Varone (2006) measured morphological and phenological
traits of multiple evergreen shrub types (Rosmarinus officinalis L, Erica
multiflora L, Erica arborea L) in a semi-arid Mediterranean region and
showed that interannually, SLA decreased in response to decreased
rainfall. A temporal relationship between SLA and water availability
has also been reported for evergreen species in other ecosystems, such
as E. tetrondonta (Prior et al., 2004), E. globulus (Faria et al., 2008),
Pinus ponderosa (Misson et al., 2006), and Eucalyptus (Warren et al.,
2006; Nouvellon et al., 2010).

In addition to leaf-level plasticity, water availability may also in-
directly affect plot-level SLA at our site by modifying leaf demo-
graphics, because SLA of older leaves is generally lower than SLA of
younger leaves (England and Attiwill, 2008; Laclau et al., 2009).

Adequate moisture conditions can influence the ratio of young to older
biomass by promoting leaf production and slowing leaf shedding (Pook,
1984). Leaf demography is not explicitly represented in CLM 4.5, al-
though there have been recent efforts to incorporate it (Fisher et al.,
2015).

Our results show how data-conditioned stochastic parameter esti-
mates can reveal possible trait plasticity in time that has not yet been
explored. Importantly, such model-based discoveries of potential plas-
ticity can motivate and direct more laborious and costly repeat field
campaigns to investigate actual physiological shifts and mechanisms.
We envision future iterations of our method will use such observations
to further condition stochastic parameterizations, as well as new hy-
perspectral and spectro-radiometric data types that are proving effec-
tive for tracking plant traits over time (Serbin et al., 2014; Yang et al.,
2016).

4.4. Ecohydrological implications of SLA plasticity

Our model results show temporally variable SLA to be necessary for
simulating observed LAI dynamics (Figs. 3 and 5). Because of LAI's role
in scaling leaf physiological functions such as transpiration and pho-
tosynthesis to the canopy level and beyond, we would then expect the
inferred SLA plasticity to strongly impact ecohydrological fluxes. The
40-year hindcast simulation using stochastic SLA – reconstructed with
the regression-based plasticity model – served to test this. Results in-
dicate that temporal SLA variability at the study site not only marks a
response to environmental conditions, but it also appears to act as an
adaptation that aids in ecological function – including GPP and WUE
(Fig. 7). SLA plasticity has been previously proposed as a way for plants
to increase the efficiency of light-harvesting and/or resource-use under
varying light, atmospheric deposition, nutrient status, and water
availability (Poorter et al., 2009). Specifically with water limitation,
plant growth slows and can exhibit lower SLA with tighter-packed
photosynthetically active tissue, which allows for more efficient water-
use through a relatively smaller surface. Our work provides the first
ecohydrological modeling effort to our knowledge to incorporate
moisture stress-driven SLA plasticity, for which detailed physiological
regulation remains unclear (Poorter et al., 2009). Previous modeling
studies for forest management have attempted to empirically describe
SLA as dependent on nitrogen supply (Battaglia et al., 2004; Corbeels
et al., 2005) and stand age (Sands and Landsberg, 2002; Almeida et al.,
2004; Fontes et al., 2006) but do not readily extend to other ecosystems
under different environmental controls.

Temporal SLA trait variability has not been previously studied in
desert shrubs to our knowledge, but our model-based results suggest
that environmental stress-driven plasticity – on an individual leaf,
plant, or plot-level – could play a key role in maintaining favorable
productivity and resource efficiency through highly variable and un-
reliable moisture conditions. Our work highlights the need for in-
corporating SLA and other trait plasticity into models. We showed that
the standard static parameter approach failed to capture plant re-
sponses to environmental change, and that its narrower representation
of uncertainty (compared to the stochastic approach) can lead to biased
predictions that diverge from actual dynamic conditions. We anticipate
that implementing our stochastic-in-time approach across ecosystems
can extend our understanding about trait variability beyond sparse
plant trait databases (e.g., TRY) and improve our ability to simulate
carbon and water fluxes in response to global change.

Author contributions

SL, GCN designed and performed the research; SL and GCN wrote
the paper.

S. Liu and G.-H.C. Ng Agricultural and Forest Meteorology 274 (2019) 184–194

192



Acknowledgement

This study was supported by funding from NSF (NSF-1724781).
Supercomputing resources were provided by the Minnesota
Supercomputing Institute (MSI) at University of Minnesota-Twin Cities
and the Cheyenne cluster at NCAR. The authors thank Peter Reich
(University of Minnesota) for valuable conversations about the TRY
database and trait variability at the inception of the project; Ethan
Butler (University of Minnesota) also provided insightful suggestions
about model interpretations. Two anonymous reviewers contributed
comments that helped with the clarity of this paper. This study utilized
data from the TRY initiative on plant traits (http://www.try-db.org).
The TRY initiative and database is hosted, developed and maintained
by J. Kattge and G. Bönisch (Max Planck Institute for Biogeochemistry,
Jena, Germany).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the
online version, at doi:https://doi.org/10.1016/j.agrformet.2019.05.
005.

References

Abrams, M.D., 1994. Genotypic and phenotypic variation as stress adaptations in tem-
perate tree species: a review of several case studies. Tree Physiol. 14, 833–842.

Ainsworth, E.A., Rogers, A., 2007. The response of photosynthesis and stomatal con-
ductance to rising CO2: mechanisms and environmental interactions. Plant Cell
Environ. 30, 258–270.

Almeida, A.C., Landsberg, J.J., Sands, P.J., 2004. Parameterisation of 3-PG model for fast-
growing Eucalyptus grandis plantations. For. Ecol. Manage. 193, 179–195.

Anderson, J.L., Anderson, S.L., 1999. A monte carlo implementation of the nonlinear
filtering problem to produce ensemble assimilations and forecasts. Mon. Weather.
Rev. 127, 2741–2758.

Atkin, O.K., Tjoelker, M.G., 2003. Thermal acclimation and the dynamic response of plant
respiration to temperature. Trends Plant Sci. 8, 343–351.

Atkin, O.K., Edwards, E.J., Loveys, B.R., 2000. Response of root respiration to changes in
temperature and its relevance to global warming. New Phytol. 147, 141–154.

Barbour, M.G., 1969. Age and space distribution of the desert shrub Larrea div aricata.
Ecology 50, 679–685.

Battaglia, M., Sands, P., White, D., Mummery, D., 2004. CABALA: a linked carbon, water
and nitrogen model of forest growth for silvicultural decision support. For. Ecol.
Manage. 193, 251–282.

Bedford, D.R., Miller, D.M., Schmidt, K.M., Phelps, G.A., et al., 2009. Landscape-scale
relationships between surficial geology, soil texture, topography, and creosote bush
size and density in the Eastern Mojave Desert of California. In: Webb, R.H. (Ed.), The
Mojave Desert: Ecosystem Processes and Sustainability. Univ. of Nevada Press, Reno,
pp. 252–277.

Butler, E.E., Datta, A., Flores-Moreno, H., et al., 2017. Mapping local and global varia-
bility in plant trait distributions. Proceedings of the National Academy of Sciences.

Chew, R.M., Chew, A.E., 1965. The primary productivity of a desert-shrub (Larrea tri-
dentata) community. Ecol. Monogr. 35, 355–375.

Christensen, H.M., Moroz, I.M., Palmer, T.N., 2015. Stochastic and perturbed parameter
representations of model uncertainty in convection parameterization. J. Atmos. Sci.
72, 2525–2544.

Corbeels, M., McMurtrie, R.E., Pepper, D.A., Mendham, D.S., Grove, T.S., O’Connell, A.M.,
2005. Long-term changes in productivity of Eucalypt plantations under different
harvest residue and nitrogen management practices: a modelling analysis. For. Ecol.
Manage. 217, 1–18.

Coyle, J.R., Halliday, F.W., Lopez, B.E., Palmquist, K.A., Wilfahrt, P.A., Hurlbert, A.H.,
2014. Using trait and phylogenetic diversity to evaluate the generality of the stress-
dominance hypothesis in eastern North American tree communities. Ecography 37,
814–826.

Dagan, G., 1986. Statistical theory of groundwater flow and transport: pore to laboratory,
laboratory to formation, and formation to regional scale. Water Resour. Res. 22,
120S–134S.

Damesin, C., Lelarge, C., 2003. Carbon isotope composition of current-year shoots from
Fagus sylvatica in relation to growth, respiration and use of reserves. Plant Cell
Environ. 26, 207–219.

Damesin, C., Rambal, S., Joffre, R., 1998. Co-occurrence of trees with different leaf habit:
a functional approach on Mediterranean oaks. Acta Oecologica 19, 195–204.

Dawson, T.E., Bliss, L.C., 1993. Plants as mosaics: leaf-, ramet-, and gender-level variation
in the physiology of the dwarf willow, Salix arctica. Funct. Ecol. 7, 293–304.

Eagleson, P.S., 1978. Climate, soil, and vegetation: 1. Introduction to water balance dy-
namics. Water Resour. Res. 14, 705–712.

England, J.R., Attiwill, P.M., 2008. Patterns of growth and nutrient accumulation in ex-
panding leaves of Eucalyptus regnans (Myrtaceae). Aust. J. Bot. 56, 44–50.

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model

using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Oceans 99,
10143–10162.

Evensen, G., 2009. The ensemble Kalman filter for combined state and parameter esti-
mation. Ieee Control. Syst. Mag. 29, 83–104.

Faria, T., Silvério, D., Breia, E., et al., 2008. Differences in the response of carbon as-
similation to summer stress (water deficits, high light and temperature) in four
Mediterranean tree species. Physiol. Plant. 102, 419–428.

Fisher, R.A., Muszala, S., Verteinstein, M., et al., 2015. Taking off the training wheels: the
properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED).
Geosci. Model. Dev. 8, 3593–3619.

Fontes, L., Landsberg, J., Tomé, J., Tomé, M., Pacheco, C.A., Soares, P., Araujo, C., 2006.
Calibration and testing of a generalized process-based model for use in Portuguese
Eucalyptus plantations. Can. J. For. Res. 36, 3209–3221.

Gelhar, L.W., 1986. Stochastic subsurface hydrology from theory to applications. Water
Resour. Res. 22, 135S–145S.

Grassi, G., Vicinelli, E., Ponti, F., Cantoni, L., Magnani, F., 2005. Seasonal and interannual
variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest
plantation in northern Italy. Tree Physiol. 25, 349–360.

Gratani, L., Varone, L., 2006. Long-time variations in leaf mass and area of Mediterranean
evergreen broad-leaf and narrow-leaf maquis species. Photosynthetica 44, 161–168.

Gu, Y., Oliver, D.S., 2007. An iterative ensemble kalman filter for multiphase fluid flow
data assimilation. Spe J. 12, 438–446.

Hansen, J.A., Penland, C., 2007. On stochastic parameter estimation using data assim-
ilation. Physica D 230, 88–98.

Hendricks Franssen, H.J., Kinzelbach, W., 2008. Real-time groundwater flow modeling
with the Ensemble Kalman Filter: joint estimation of states and parameters and the
filter inbreeding problem. Water Resour. Res. 44, 1–21.

Juricke, S., Lemke, P., Timmermann, R., Rackow, T., 2012. Effects of stochastic ice
strength perturbation on Arctic finite element sea ice modeling. J. Clim. 26,
3785–3802.

Kattge, J., Díaz, S., Lavorel, S., et al., 2011. TRY - a global database of plant traits. Glob.
Chang. Biol. 17, 2905–2935.

Kikuzawa, K., Lechowicz, M.J., 2006. Toward synthesis of relationships among leaf
longevity, instantaneous photosynthetic rate, lifetime leaf carbon gain, and the gross
primary production of forests. Am. Nat. 168, 373–383.

Kitsios, V., Frederiksen, J.S., Zidikheri, M.J., 2014. Scaling laws for parametrizations of
subgrid interactions in simulations of oceanic circulations. Philosophical
Transactions of the Royal Society A: mathematical. Phys. Eng. Sci. 372.

Kleyer, M., Minden, V., 2015. Why functional ecology should consider all plant organs:
An allocation-based perspective. Basic Appl. Ecol. 16, 1–9.

Laclau, J.-P., Almeida, J.C.R., Gonçalves, J.L.M., et al., 2009. ) Influence of nitrogen and
potassium fertilization on leaf lifespan and allocation of above-ground growth in
Eucalyptus plantations. Tree Physiol. 29, 111–124.

Leakey, A.D.B., Ainsworth, E.A., Bernacchi, C.J., Rogers, A., Long, S.P., Ort, D.R., 2009.
Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important
lessons from FACE. J. Exp. Bot. 60, 2859–2876.

Ma, S., Baldocchi, D.D., Mambelli, S., Dawson, T.E., 2011. Are temporal variations of leaf
traits responsible for seasonal and inter-annual variability in ecosystem CO2 ex-
change? Funct. Ecol. 25, 258–270.

Mccormack, M.L., Guo, D., Iversen, C.M., et al., 2017. Building a better foundation: im-
proving root-trait measurements to understand and model plant and ecosystem
processes. New Phytol. 27–37.

Miller, D.M., Bedford, D.R., Hughson, D.L., McDonald, E.V., Robinson, S.E., Schmidt,
K.M., et al., 2009. Mapping mojave desert ecosystem properties with surficial
geology. In: Webb, R.H. (Ed.), The Mojave Desert: Ecosystem Processes and
Sustainability. Univ. of Nevada Press, Reno, pp. 225–251.

Mirus, B.B., Perkins, K.S., Nimmo, J.R., Singha, K., 2009. Hydrologic Characterization of
Desert Soils with Varying Degrees of Pedogenesis: 2. Inverse Modeling for Effective
Properties. Vadose Zone J. 8, 496–509.

Misson, L., Tu, K.P., Boniello, R.A., Goldstein, A.H., 2006. Seasonality of photosynthetic
parameters in a multi-specific and vertically complex forest ecosystem in the Sierra
Nevada of California. Tree Physiol. 26, 729–741.

Moradkhani, H., Sorooshian, S., Gupta, H.V., Houser, P.R., 2005. Dual state-parameter
estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour.
28, 135–147.

Muraoka, H., Saigusa, N., Nasahara, K.N., et al., 2010. Effects of seasonal and interannual
variations in leaf photosynthesis and canopy leaf area index on gross primary pro-
duction of a cool-temperate deciduous broadleaf forest in Takayama. Japan. J. Plant
Res. 123, 563–576.

Ng, G.H.C., Mclaughlin, D., Entekhabi, D., Ahanin, A., 2011. The role of model dynamics
in ensemble Kalman filter performance for chaotic systems. Tellus A 63, 958–977.

Ng, G.H.C., Bedford, D., Miller, D., 2014. A mechanistic modeling and data assimilation
framework for Mojave Desert ecohydrology. Water Resour. Res. 4662–4685.

Ng, G.H.C., Bedford, D.R., Miller, D.M., 2015. Identifying multiple time scale rainfall
controls on Mojave Desert ecohydrology using an integrated data and modeling ap-
proach for Larrea tridentata. Water Resour. Res. 51, 3884–3899.

Nicotra, A.B., Atkin, O.K., Bonser, S.P., et al., 2010. Plant phenotypic plasticity in a
changing climate. Trends Plant Sci. 15, 684–692.

Nimmo, J.R., Perkins, K.S., Schmidt, K.M., Miller, D.M., Stock, J.D., Singha, K., 2009.
Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1.
field experiments evaluating plant-relevant soil water behavior. Vadose Zone J. 8,
480–495.

Nouvellon, Y., Laclau, J.P., Epron, D., et al., 2010. Within-stand and seasonal variations of
specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo. For. Ecol.
Manage. 259, 1796–1807.

Oleson, K.W., Lawrence, D.M., B G, et al., 2013. Technical Description of Version 4.5 of

S. Liu and G.-H.C. Ng Agricultural and Forest Meteorology 274 (2019) 184–194

193

http://www.try-db.org
https://doi.org/10.1016/j.agrformet.2019.05.005
https://doi.org/10.1016/j.agrformet.2019.05.005
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0005
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0005
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0010
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0015
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0020
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0025
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0030
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0030
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0035
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0035
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0040
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0045
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0050
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0055
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0055
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0060
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0065
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0070
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0075
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0080
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0080
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0080
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0085
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0085
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0090
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0090
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0095
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0095
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0100
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0105
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0110
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0115
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0115
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0115
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0120
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0120
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0120
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0125
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0130
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0130
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0135
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0140
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0140
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0145
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0145
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0150
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0150
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0155
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0160
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0165
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0165
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0170
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0175
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0180
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0180
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0185
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0190
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0195
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0200
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0205
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0210
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0215
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0220
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0225
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0230
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0235
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0235
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0240
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0245
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0250
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0255
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0260


the Community Land Model (CLM).
Ordoñez, J.C., Van Bodegom, P.M., J-PM, Witte, Wright, I.J., Reich, P.B., Aerts, R., 2009.

A global study of relationships between leaf traits, climate and soil measures of nu-
trient fertility. Glob. Ecol. Biogeogr. 18, 137–149.

Palmer, T.N., 2012. Towards the probabilistic Earth-system simulator: a vision for the
future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138, 841–861.

Palmer, T.N., Buizza, R., Doblas-Reyes, F., et al., 2009. Stochastic parametrization and
model uncertainty. ECMWF Technical Memorandum 598.

Pappas, C., Fatichi, S., Burlando, P., 2016. Modeling terrestrial carbon and water dy-
namics across climatic gradients: does plant trait diversity matter? New Phytol. 209,
137–151.

Pavlick, R., Drewry, D.T., Bohn, K., Reu, B., Kleidon, A., 2012. The jena diversity-dynamic
global vegetation model (JeDi-DGVM): a diverse approach to representing terrestrial
biogeography and biogeochemistry based on plant functional trade-offs.
Biogeosciences Discuss. 9, 4627–4726.

Pook, E.W., 1984. Canopy dynamics of Eucalyptus maculata hook. I. Distribution and
dynamics of leaf populations. Aust. J. Bot. 32, 387–403.

Poorter, H., Niinemets, Ü, Poorter, L., et al., 2009. Causes and consequences of variation
in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588.

Pregitzer, K.S., Laskowski, M.J., Burton, A.J., Lessard, V.C., Zak, D.R., 1998. Variation in
sugar maple root respiration with root diameter and soil depth. Tree Physiol. 18,
665–670.

Prior, L.D., DMJS, Bowman, Eamus, D., 2004. Seasonal differences in leaf attributes in
Australian tropical tree species: family and habitat comparisons. Funct. Ecol. 18,
707–718.

Reich, P.B., Walters, M.B., Ellsworth, D.S., 1997. From tropics to tundra: global con-
vergence in plant functioning. Proceedings of the National Academy of Sciences. 94,
13730 LP-13734.

Reich, P.B., Walters, M.B., Ellsworth, D.S., 2018. Leaf age and season influence the re-
lationships between leaf nitrogen, leaf mass per area and photosynthesis in maple and
oak trees. Plant Cell Environ. 14, 251–259.

Ricciuto, D., Sargsyan, K., Thornton, P., 2017. The Impact of Parametric Uncertainties on
Biogeochemistry in the E3SM Land Model. J. Adv. Model. Earth Syst. 10, 297–319.

Rodriguez-Iturbe, I., Porporato, A., Laio, F., Ridolfi, L., 2001. Plants in water-controlled
ecosystems: active role in hydrologic processes and response to water stress: I. Scope
and general outline. Adv. Water Resour. 24, 695–705.

Rundel, P.W., Gibson, A.C., 2005. Ecological Communities and Processes in a Mojave
Desert Ecosystem. Cambridge Univ. Press, N. Y.

Ryu, Y., Baldocchi, D.D., Kobayashi, H., et al., 2011. Integration of MODIS land and
atmosphere products with a coupled-process model to estimate gross primary pro-
ductivity and evapotranspiration from 1 km to global scales. Global Biogeochem.
Cycles 25 n/a-n/a.

Sacher, W., Bartello, P., 2008. Sampling Errors in Ensemble Kalman Filtering. Part I:
Theory. Mon. Weather. Rev. 136, 3035–3049.

Sakov, P., Oliver, D.S., Bertino, L., 2012. An Iterative EnKF for Strongly Nonlinear
Systems. Mon. Weather. Rev. 140, 1988–2004.

Sands, P.J., Landsberg, J.J., 2002. Parameterisation of 3-PG for plantation grown
Eucalyptus globulus. For. Ecol. Manage. 163, 273–292.

Sato, H., Itoh, A., Kohyama, T., 2007. SEIB–DGVM: a new dynamic global vegetation
Model using a spatially explicit individual-based approach. Ecol. Modell. 200,
279–307.

Schwinning, S., Sandquist, D.R., Miller, D.M., Bedford, D.R., Phillips, S.L., Belnap, J.,
2011. The influence of stream channels on distributions of Larrea tridentata and
Ambrosia dumosa in the Mojave Desert, CA, USA: patterns, mechanisms and effects of
stream redistribution. Ecohydrology 4, 12–25.

Serbin, S.P., Singh, A., McNeil, B.E., Kingdon, C.C., Townsend, P.A., 2014. Spectroscopic
determination of leaf morphological and biochemical traits for northern temperate
and boreal tree species. Ecol. Appl. 24, 1651–1669.

Shen, W., Jenerette, G.D., Hui, D., Phillips, R.P., Ren, H., 2008. Effects of changing
precipitation regimes on dryland soil respiration and C pool dynamics at rainfall
event, seasonal and interannual scales. J. Geophys. Res. Biogeosci. 113.

Stevenson, B.A., McDonald, E.V., Caldwell, T.G., et al., 2009. Root patterns for larrea
tridentata in relation to soil morphology in mojave desert soils of different ages

geology. In: Webb, R.H. (Ed.), The Mojave Desert: Ecosystem Processes and
Sustainability. Univ. of Nevada Press, Reno, pp. 312–338.

Strain, B.R., Chase, V.C., 1966. Effect of past and prevailing temperatures on the carbon
dioxide exchange capacities of some woody desert perennials. Ecology 47,
1043–1045.

Uriarte, M., Canham, C.D., Thompson, J., et al., 2009. Natural disturbance and human
land use as determinants of tropical forest dynamics: results from a forest simulator.
Ecol. Monogr. 79, 423–443.

Van Kleunen, M., Fischer, M., 2007. Progress in the detection of costs of phenotypic
plasticity in plants. New Phytol. 176, 727–730.

Verheijen, L.M., Brovkin, V., Aerts, R., et al., 2013. Impacts of trait variation through
observed trait–climate relationships on performance of an Earth system model: a
conceptual analysis. Biogeosciences 10, 5497–5515.

Verheijen, L.M., Aerts, R., Brovkin, V., Cavender-Bares, J., Cornelissen, J.H.C., Kattge, J.,
van Bodegom, P.M., 2015. Inclusion of ecologically based trait variation in plant
functional types reduces the projected land carbon sink in an earth system model.
Glob. Chang. Biol. 21, 3074–3086.

Villar, R., Marañón, T., Quero, J.L., Panadero, P., Arenas, F., Lambers, H., 2005. Variation
in relative growth rate of 20 Aegilops species (Poaceae) in the field: the importance of
net assimilation rate or specific leaf area depends on the time scale. Plant Soil 272,
11–27.

Vitasse, Y., Bresson, C.C., Kremer, A., Michalet, R., Delzon, S., 2010. Quantifying phe-
nological plasticity to temperature in two temperate tree species. Funct. Ecol. 24,
1211–1218.

Volder, A., Smart, D.R., Bloom, A.J., Eissenstat, D.M., 2005. Rapid decline in nitrate
uptake and respiration with age in fine lateral roots of grape: implications for root
efficiency and competitive effectiveness. New Phytol. 165, 493–502.

Wallace, A., Romney, E.M., Cha, J.W., 1980. Depth distribution of roots of some perennial
plants in the nevada test site area of the northern Mojave Desert. Gt. Basin Nat. Mem.
201–207.

Wang, Y.P., Lu, X.J., Wright, I.J., Dai, Y.J., Rayner, P.J., Reich, P.B., 2012. Correlations
among leaf traits provide a significant constraint on the estimate of global gross
primary production. Geophys. Res. Lett. 39, 1–7.

Warren, C.R., Dreyer, E., Tausz, M., Adams, M.A., 2006. Ecotype adaptation and accli-
mation of leaf traits to rainfall in 29 species of 16-year-old Eucalyptus at two common
gardens. Funct. Ecol. 20, 929–940.

Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A., Wright, I.J., 2002. Plant ecological
strategies: some leading dimensions of variation between species. Annu. Rev. Ecol.
Syst. 33, 125–159.

Whitaker, J.S., Hamill, T.M., 2002. Ensemble data assimilation without perturbed ob-
servations. Mon. Weather. Rev. 130, 1913–1924.

White, M.A., Thornton, P.E., Running, S.W., Nemani, R.R., 2000. Parameterization and
sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary
production controls. Earth Interact. 4, 1–85.

Wilson, K.B., Baldocchi, D.D., Hanson, P.J., 2000. Spatial and seasonal variability of
photosynthetic parameters and their relationship to leaf nitrogen in a deciduous
forest. Tree Physiol. 20, 565–578.

Wright, I.J., Reich, P.B., Westoby, M., 2001. Strategy shifts in leaf physiology, structure
and nutrient content between species of high- and low-rainfall and high- and low-
nutrient habitats. Funct. Ecol. 15, 423–434.

Wright, I.J., Reich, P.B., Westoby, M., et al., 2004. The worldwide leaf economics spec-
trum. Nature 428, 821.

Wright, I.J., Reich, P.B., Cornelissen, J.H.C., et al., 2005. Modulation of leaf economic
traits and trait relationships by climate. Glob. Ecol. Biogeogr. 14, 411–421.

Xu, L., Baldocchi, D.D., 2003. Seasonal trends in photosynthetic parameters and stomatal
conductance of blue oak (Quercus douglasii) under prolonged summer drought and
high temperature. Tree Physiol. 23, 865–877.

Yang, X., Tang, J., Mustard, J.F., Wu, J., Zhao, K., Serbin, S., Lee, J.E., 2016. Seasonal
variability of multiple leaf traits captured by leaf spectroscopy at two temperate
deciduous forests. Remote Sens. Environ. 179, 1–12.

Zadworny, M., McCormack, M.L., Rawlik, K., Jagodziński, A.M., 2015. Seasonal variation
in chemistry, but not morphology, in roots of Quercus robur growing in different soil
types. Tree Physiol. 35, 644–652.

S. Liu and G.-H.C. Ng Agricultural and Forest Meteorology 274 (2019) 184–194

194

http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0260
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0265
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0270
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0270
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0275
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0275
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0280
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0285
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0290
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0290
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0295
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0295
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0300
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0300
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0300
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0305
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0305
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0305
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0310
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0310
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0310
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0315
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0315
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0315
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0320
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0320
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0325
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0325
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0325
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0330
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0330
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0335
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0335
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0335
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0335
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0340
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0340
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0345
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0345
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0350
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0350
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0355
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0355
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0355
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0360
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0360
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0360
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0360
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0365
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0365
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0365
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0370
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0370
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0370
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0375
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0375
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0375
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0375
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0380
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0380
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0380
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0385
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0385
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0385
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0390
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0390
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0395
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0395
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0395
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0400
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0400
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0400
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0400
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0405
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0405
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0405
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0405
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0410
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0410
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0410
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0415
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0415
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0415
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0420
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0420
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0420
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0425
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0425
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0425
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0430
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0430
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0430
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0435
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0435
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0435
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0440
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0440
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0445
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0445
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0445
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0450
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0450
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0450
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0455
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0455
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0455
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0460
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0460
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0465
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0465
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0470
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0470
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0470
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0475
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0475
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0475
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0480
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0480
http://refhub.elsevier.com/S0168-1923(19)30176-5/sbref0480

	A data-conditioned stochastic parameterization of temporal plant trait variability in an ecohydrological model and the potential for plasticity
	Introduction
	Materials and method
	Study site
	CLM 4.5
	Data-conditioned stochastic parameterization
	Synthetic experiment setup
	Kelmet site setup

	Results
	Synthetic experiment results
	Kelmet site results
	Data-conditioned stochastic shrub parameters
	Hindcast with data-conditioned stochastic shrub parameters


	Discussion
	Identifying SLA temporal variability
	Temporal variability of other traits
	Environmental stress-driven SLA plasticity
	Ecohydrological implications of SLA plasticity

	Author contributions
	Acknowledgement
	Supplementary data
	References




