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Abstract 

Ferritins are an important category of proteins that control the iron storage and release in humans and animals. It is well accepted 
that various diseases can be traced to ferritin protein abnormalities. In addition, these proteins can revolutionize the field of 
materials synthesis since they provide an excellent template to grow various nanomaterials with near perfect size and control 
on chemistry. The ferritin proteins regulate iron ions by biomineralizing or demineralizing various forms of iron oxides. The 
inner architecture and the microenvironment of ferritin proteins facilitate iron oxide nucleation, enabling the formation of labile 
ferrihydrite in place of more common iron oxides such as hematite, magnetite, and goethite. The complexity of iron oxide 
structures and their various stable phases require advanced characterization techniques such as transmission electron 
microscopy (TEM). This review article summarizes the previous discoveries made by conventional TEM imaging and 
analytical spectroscopy methods such as electron energy loss spectroscopy and X-ray energy dispersive spectroscopy. With 
recent innovations in aberration-corrected TEMs, monochromators of electron beams, ultrafast imaging and spectroscopy 
detectors, integration of Raman within TEM, and 3D tomography techniques, it is now feasible to explore biomineralization 
within ferritin proteins with an outlook to fully elucidate the signature of diseases that control the nucleation, growth, and 
stability of iron oxide cores within ferritin proteins. 
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1. Introduction 

Ferritins are a family of iron storage proteins that play a 
significant role in the iron regulation mechanism. The ability 
of the protein to encapsulate and sequester iron ions highlights 
its significant contribution towards iron homeostasis in all the 
living organisms from the lowest to the highest order[1–3]. In 
the absence of ferritin, low soluble iron in the cells can trigger 
reactive oxygen species through Fenton’s reaction [4]. A 
typical ferritin protein consists of an outer hollow protein 
shell, that can accommodate up to 4500 iron atoms within 
them to form the inner iron core[5]. In humans, the protein 
shell is made of 24 subunits of light (L-) and heavy (H-) 
subunit chain amino acids, while prokaryotes such as bacteria 
and archaea consist of 12 amino acids chain subunits[6]. 
While H subunits are responsible for iron oxidation, L-
subunits are responsible for iron nucleation within ferritin. 
Despite the differences in the regulation mechanism of 
prokaryotic and eukaryotic ferritins, the functionality of H- 
and L- subunits remains the same in all the organisms[1].  

The complex architecture as well as the function of the 
proteins enables synthesis and storage of different materials, 
highlighting its potential in different applications. 
Interestingly, the size and crystallographic order of the ferritin 
core can be related to its the magnetic properties[7]. Yet, the 
process of iron nucleation is not well understood. Recently, it 
has been reported that, there is a correlation between the iron 
misregulation in the brain and neurological disorders[8].While 
the complex proteins can be utilized to store iron oxides as 
well as different materials, there is still a lack of knowledge 
on the causes for iron agglomeration in the brain[7,8].Several 
light and electron-based microscopy and spectroscopy 
techniques have been employed to study the structure as well 
as function of ferritin.  

While the light-based characterization techniques can 
help provide a lot of information about ferritin, it should be 
noted that these techniques suffer from a diffraction limit of 
200 nm[10].As a result, it is challenging to obtain spatial 
resolution of samples which are less than 200 nm in size. On 
the other hand, electron-based microscopy and spectroscopy 
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techniques can provide qualitative information of individual 
ferritins which are less than 20 nm in size[10]. 

The shorter wavelength of electrons due to high 
acceleration voltage and the development of aberration-
corrected of the electromagnetic lenses[11], made electron 
microscopes advantageous to resolve ferritin structure of sub-
angstrom resolution[10].Despite this fact, electron 
microscopes were not made complete use of to study proteins. 
The need to keep the samples dry before the electrons could 
transmit through the protein, made the electron microscope’s 
application limited to studying the structure of iron core with 
severe artifacts[12]. 

 
The invention of cryo-electron microscopes (Cryo-EM) 

requiring the freezing of hydrated protein samples made it 
convenient to study the structure without drying or causing 
physical damage to them. However, a low signal to noise ratio 
was obtained due to vitrified water posed limitations while 
trying to enhance the contrast of the image without adding 
negative stain[13]. Also, in order to study the ferritin proteins 
in dynamic mode, liquid cell based TEM techniques were 
utilized. Silicon nitride (Si3N4) based liquid cells were 
introduced with an intent to study the structure and function 
of the proteins in its native state[14].The use of graphene 
liquid cells electron microscopy (GLC-TEM) improved the 
spatial resolution[15,16],while maintaining ferritin in its 
native hydrated state[17]. Further, with a modern aberration 
corrected TEMs, it is also possible to obtain better spectral 
information[18,19] that can help tap the chemistry of 
individual iron atoms within the ferritin proteins[20].   

           
This review article encompasses all the electron-

microscopy based studies on ferritin as well as suggests the 
opportunities that can be utilized to understand the missing 
knowledge. Since the discovery of ferritin in 1937 [21], there 
have been several advancements in understanding ferritin 
proteins. The accomplishments in the field resulted in several 
review papers with a focus on different aspects of ferritin. The 
reviews published thus far mainly focused on the structural 
aspects[22],types of ferritin [23,24],biochemistry 
aspects[1,25],iron regulation mechanism[26–28], and its 
implication on human health[28–30], application of ferritin in 
bionanochemistry[5], and its role as a clinical tool to study the 
pathological and physiological processes[21].However, until 
now, there has not been a comprehensive summary on the 
benefit of utilizing TEM to study the structure and function of 
ferritins. This review paper aims at addressing this 
shortcoming and suggests a broader utilization of new 
advancements in the field of TEM to study ferritin proteins. 
This paper is designed to provide a basic overview of the 
structure and function of ferritins. Further, the focus is stirred 
towards TEM and the description of different techniques 
involved during the sample preparation for TEM studies. The 
critical review of the current findings indicates the knowledge 
related to chemistry, structure, and stable phases of iron oxide 
core in ferritins. Future studies utilizing techniques such as 
GLC-TEM, 4D STEM, 3D-electron tomography and 

integrated Raman system can provide more qualitative 
information about the iron oxide chemistry in ferritins that 
should enable a better understanding of ferritin function: the 
biomineralization and demineralization processes in real-time.  
 
1.1 Structure of Ferritins 

The prevalence of ferritin in different life forms prompted 
researchers to study and identify the structure of ferritin. The 
existence of complexity in the protein structure emphasizes 
the need to store and regulate the iron ions, which could 
otherwise be pernicious to the cytoplasm in the cells. The 
protein without iron is termed as apoferritin[31].With the total 
molecular weight of approximately 44 kDa[32], the 24 
subunits in apoferritin are assembled by 163 amino acids 
forming a spherical cavity with outer diameter of 12nm and 
inner diameter of 7nm[31]. The amino acids predominantly 
form H- and L- subunits with molecular weight of 21 and 19 
kDa. Surprisingly, there is only 55% identity in the two 
subunit types, resulting in different functions[31]. The 
ferroxidase (Fe2+ binding) sites in H- subunits which facilitate 
iron oxidation, is absent in L- subunits. As a result, there are 
differences in the kinetics of iron uptake and release 
process[4]. The significance of these individual functions of 
the amino acid subunits is evident, when present in varying 
ratios in different organs. Vital organs such as the brain and 
heart consist of ferritins with higher ratios of H- subunits, 
indicating the need to oxidize the iron ions. On the other hand, 
organs such as liver and spleen whose primary function is to 
store iron has ferritins with higher ratios of L- subunits. The 
ratios of the H- and L- subunits also impact the size of the core 
as well as kinetics of iron core formation[4]. H- subunits 
exhibit relatively smaller core and higher rates of iron 
oxidation as compared to the L- subunits[4].Due to the lack of 
ferroxidase sites, L subunits take longer time to oxidize iron, 
yet they can hold more iron ions resulting in a bigger 
core[4].Recent studies established a relationship between L- 
and H subunits. It was suggested that L-subunits help enhance 
the activity of H-subunits, thus favoring the entry of higher 
number of iron ions in ferritin[33].  

While disparity exists in the function of the H- and L- 
subunits, it should be noted that both H- and L- subunits 
combine to form a near spherical geometry with a four-fold, 
three-fold and two-fold axis symmetry, connecting the inner 
cavity with the outer cytosolic environment (Figure 1(a)) [31]. 
The amino-acids adjoining the three-fold axis symmetry 
channel are hydrophilic in nature, comprising of histamine, 
aspartic and glutamic acid residue[34]. On the other hand, the 
terminal of four-fold symmetry channels are hydrophobic in 
nature, with the presence of amino acid residues such as 
leucine, and glutamine[34].The charges present in the amino 
acid residues help establish an electrostatic gradient that 
facilities the entry of iron at the three-fold symmetry channel, 
as well as exit of iron from the protein via the four-fold 
channels[35]. Additionally, there are divalent cation binding 
sites present at the three-fold symmetry which help attach the 
incoming iron ions to the proteins[34]. However, 
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unlike three-fold symmetry channels, there are no binding 
sites at the four-fold symmetry channels[34]. The intricacy in 
the structure of the protein not only contributes to the function, 
but also maintains stability of the protein at extreme physical 

and chemical conditions such as temperature, pH, and other 
chemicals[5].This flexibility in the protein structure helped 
understand the biomineralization and demineralization 
pathways through several chemistry-based experiments.  

 
1.1  Biomineralization in ferritin 

Biomineralization in mammalian ferritin happens through 
a series of steps led by H- and L- subunits in the protein. The 
ferroxidase center in the H- subunits consists of four helical 
bundles of amino acids[31] which initiate the first stage of 
biomineralization by converting the incoming Fe2+ ions to Fe3+ 
form (Figure 1b-i). The conversion of ferrous form to ferric 
form of iron is facilitated by the oxygen and H2O2 present in 
the buffer solution within the protein[36]. The oxidation of 
iron can be identified by observing the blue peroxide 
complexes (λ max ~ 650nm) through UV-Visible spectroscopy 
measurements[26].The formation of complex reactions can 
also be verified by Raman spectroscopy, stopped-flow 
kinetics, Mossbauer spectroscopy, and extended X-ray 
absorption fine structures (EXAFS)[26].The peroxide 

complexes are formed as a result of conversion from first 
formed intermediates to more stable µ-1,2 diferric-peroxo 
complex (Figure 1b-ii) or differic-oxo/hydro-mineral 
precursors[36,37]. H2O2 is conserved during this reaction, in 
order to be used for the next set of redox reactions[36].The 
thus formed diferric-oxo/hydro-mineral precursors (Figure 
1b-iii) move towards the interior of the protein, where the 
nucleation is facilitated by the L- subunits (Figure 1b-
iv)[26].At the onset of iron nucleation, the catalytic reactions 
are translocated to the surface of the already formed iron 
core[38].This is also supported by the recently published 
article which suggests that hydrogen peroxide induced 
oxidation occurs at the beginning of biomineralization, where 
there are fewer than 500 iron ions in each apoferritin[39]. 
However, with increase in the iron concentration, the iron ions 

Figure 1: A representation of protein structure and the iron regulation mechanism in ferritin. (a)  Schematic of ferritin protein 
with the three-fold and four-fold channels allowing the entry and exit of iron ions in the proteins (Adapted from Ref.[29]).(b)  
Biomineralization process in ferritin occurs through a series of steps as shown in (i) Iron oxidation which facilitates the 
conversion of Fe3+ iron species to Fe2+ form. An intermediate called µ 1,2 peroxodiferric complex(2Fe2+ + O2 → Fe3+-O-O-
Fe3+ )[134] is formed during this process. (ii) Water reacts with µ 1,2 peroxodiferric complex to recycle hydrogen peroxide: 
(Fe3+-O-O-Fe3++H2O → H2O2+Fe3+-O-Fe3+)[134] for the next series of reaction. The (iii) ferrihydrite pre-nucleation clusters 
formed move towards nucleation site for minerization to form fully grown (iv) ferrrihydrite like crystal. (c) Schematic showing 
the degradation of the protein shell by lysosome which can trigger the iron release.(d)Schematic showing the differences in the 
concentration of iron within and outside the protein which can trigger iron release.(e) Mechanism of iron removal by direct 
chelation where iron is released in the form of Fe3+ ions which was proved via in vitro biochemical experiments.(f) Schematic 
showing the possible mechanism of iron release by indirect chelation where the reduction of Fe3+ to Fe2+ ion species is facilitated 
before iron chelation. 
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deposit directly on the surface of the core where oxidation is 
favored[39].  

The presence of phosphate in the core also dictates the 
iron binding and accelerates the oxidation processes[40]. 
Although it was suggested that phosphate bridges the iron core 
with the apoferritin[41], it was also shown that the absence of 
phosphate does not prevent the formation of iron core in 
reconstituted ferritin[42].Meanwhile the source of phosphate 
was questioned. Experimental evidences showed that 
inorganic phosphate was adsorbed by the ferritin after the core 
formation[42].  

There was a substantial interest in identifying the iron 
oxides formed during the initial stages of biomineralization. 
The results from the electron paramagnetic resonance (EPR) 
suggested the formation of mononuclear Fe(III) species[43] at 
the beginning of biomineralization. On the other hand, 
electron nuclear double resonance (ENDOR) measurements 
indicated mixed valence species[44] which was also supported 
by Mossbauer spectroscopy[45,46]and EXAFS[46] results. 
While the stages of iron nucleation mechanism are still not 
understood, it should be noted that there are several sites 
within the protein cavity available for iron binding[43]. 
Despite this fact, the iron ions selectively bind to the 
thermodynamically favorable sites which can enable iron core 
formation[47].  

1.2 Demineralization in ferritin   

Unlike biomineralization, demineralization in ferritin is 
sparsely explored. The iron removal process is extremely slow 
unlike the case in biomineralization. It takes about a year to 
equilibrate the iron in the human body[36]. With ferritins 
holding up to 14% of iron in the form of minerals, it might be 
difficult to remove iron within the timeframe set for the 
laboratory experiments. In fact, traditional chelators such as 
deferoxamine, deferiprone, and deferasirox that are used to 
treat iron overload conditions[48], remove iron at 15 times 
higher rate as compared to the physiological process[49]. 
However, the kinetics of iron release can be different when 
there is immediate need for iron in the body. The pathway for 
demineralization could be dependent on cellular environment. 
Due to this fact, understanding the mechanism of iron release 
in in vivo condition has been notoriously difficult.   

In a physiological condition, iron release is facilitated 
when there is low concentration of iron in the cytoplasm. 
Based on the in vitro experiments, it is suggested that the 
ferroxidase sites in the H- subunit chains do not participate in 
demineralization process, yet there is a unique way by which 
iron is released[50].While the iron release mechanism is still 
questioned, there are four main biochemical models that have 
been proposed to explain the mechanism of demineralization. 
The models are:  

(a.) Degradation of the protein by lysosome can cause iron 
release (Figure 1c) [51] 

(b.) Diffusion-based iron release triggered when there is 
concentration gradient between the inner core of proteins 
and outer cytoplasm(Figure 1d) [52] 

(c.) Direct chelation of Fe3+ ions from ferritin (Figure 1e) 
[53].  

(d.) Indirect chelation facilitated by the reduction of Fe3+ to 
Fe2+ form and chelation of Fe2+ ions (Figure 1(f)) [54].  

Of all the proposed models, iron removal by indirect 
chelation is the most accepted model. This route of iron 
removal is supported by the presence of naturally available 
reducing agents such as ascorbic acids, glutathione, and 
riboflavins[55]. It is also backed up by the findings of the iron 
chaperone protein, human poly(rC)-binding protein 1(PCB1) 
expressed in yeast cells[56]. PCB1, an RNA binding protein 
in cytosol and nucleus, is present abundantly in mammalian 
cells. In vivo experiments suggested that PCB1 binds directly 
to the iron core of the protein to facilitate release[56].While 
this theory is convincing in terms of the ability of PCB1 to 
prevent free radicals, one should also consider the effects of 
PCB1 at varied iron concentrations in the cytosol.  

Several other theories such as subunit displacement[22], 
diffusion through gated pores[57], reduction potential that 
facilitates iron release from the protein shells[58], and 
diffusion of ions through the channels[59] have been proposed 
to understand the iron release process. While these theories 
allow the possibility to explore different pathways, the 
presence of many different biological cues involved, makes it 
challenging to understand the process. Advancements in the 
characterization techniques and ability to detect multiple 
biological events simultaneously at nanoscale resolution 
would perhaps help better understand the processes. 

2. Ferritin Sample Preparation Techniques for TEM 
Studies  

Like any other biological material, ferritin protein 
contains water molecule surrounding them. To be able to study 
the ultrastructure and chemistry via electron microscopy, there 
is a need to remove the surrounding water, so that electron 
interaction with the sample can be facilitated[60]. Likewise, 
biological materials exhibit very poor contrast due to the 
presence of lighter elements. Despite the fact, it should be 
noted that the dense iron oxide core in ferritin proteins is 
visible without staining[22].   
 
2.1. Fix and staining method: The C-TEM sample preparation 
is designed such that, all the specimen related challenges are 
taken into consideration. The preparation techniques involve 
tedious processes that includes chemical fixation with 
glutaraldehyde (GA) and osmium tetroxide, dehydration, 
staining, and freeze-drying (as shown in Figure 2(a))[22].The 
chemical fixation is carried out to preserve the protein 
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structure, while the other steps are incorporated to make thin 
sections, increase the contrast, and improve the stability of the 
proteins[22]. Even though these processes can help image 
ferritins successfully via TEM as well as scanning electron 
microscopy (SEM), the observed structures can also produce 
several visual artifacts. This was evident especially during the 
heavy metal staining processes which include the usage of 
uranyl and lead salts[61]. The granular deposits produced by 

these salts, and also the ability of the salts to penetrate the 
protein shells defined the morphology of ferritin[22]. On the 
other hand, the freeze-dried ferritin proteins produced phase 
granularity as a result of cracks in the metal coating[62]. Not 
to mention, the thin sectioning of the sample or negative 
staining also produced artifacts which made it difficult to 
analyze the iron core of ferritin[22].  

2.2. Cryo-EM method: The evolution of Cryo-EM reformed 

the previous techniques that were used to prepare hydrated 
biological sample[63].Cryo-EM based sample preparation 
eliminated the conventional sample preparation steps, while 
also providing hydration necessary to keep the biological 
samples wet[63,64]. Typically, Cryo-EM samples are 
prepared by rapid freezing, such that the surrounding water 
converts into vitreous ice (Figure 2(b)). It should be noted that 
the freezing rate of ~106 °C/s enables vitreous ice formation 
instead of crystalline ice[65], thus preventing the occurrence 
of phase granularity[22].Although it is challenging to observe 
the protein shell without staining, it is plausible to extract 

better quality structural information from frozen sample 

[64,66–68].  
Even though Cryo-EM provides opportunities to 

study the structure of ferritins at high resolutions, there are still 
challenges, while using this technique: (1) specific 
instrumentation needs during sample preparation and 
imaging[13]; (2) the sample preparation techniques and 
cooling rates play an important role to preserve the sample 
from crystalline ice formation. Several experiments and 
extensive training are required to obtain impeccable 
results[65]; and (3) studying the dynamics of the protein in 
real-time is challenging considering the short reaction time of 
different experiments. It should also be considered that 

Figure 2: Various TEM sample preparation techniques adapted to study the structure and chemistry of ferritin proteins. (a) 
Conventional TEM based sample preparation technique which involves series of chemical treatment to fix and stain the ferritin 
sample. (b) Stages involved during the CryoEM sample preparation (Adapted from Ref.[135]) (c) (i) A schematic that depicts the 
Si3N4 based liquid cell setup with inlet and outlet fluid lines that can enable dynamic as well as static imaging (ii) Visualization 
of ferritin proteins in liquid state encapsulated within two layers of silicon nitride membrane either found as free floating protein 
or bound to one of the layers of Si3N4 membrane (Adapted from Ref.[14]). (d) Schematic showing the step-wise procedure to 
synthesize GLCs that can be used to study ferritins in its native liquid state (Adapted from Ref.[17]). 
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proteins endure in the human body at 37°C, in contrary to 
Cryo-EM based techniques which require the sample to be 
maintained at temperatures below -135°C.  While the ability 
of Cryo-EM to retain the native ferritin structure is still 
debatable, X ray cryo-crystallography results indicated the 
need for hydration forces to keep the protein stable[69]. In the 
same work, it was reported that, frozen vitreous ice being inert 
not only affects the stability, but also interferes with the 
structural ordering of the proteins[69]. The intercalation of the 
water molecules with the protein’s inner cavity can alter the 
protein chemistry while increasing the density[70].  
2.3. Liquid-cell TEM methods: A growing interest and a need 
to study the dynamics of biological specimens in real-time 
enabled the invention of liquid cells-based technique[71].At 
first, commercially available Si3N4 was used to develop 
spacers and chips which can be placed on top of each other 
with a minimum distance of 50nm. The biological liquid 
samples were placed in between the Si3N4 membrane[72]. 
These chips can be accommodated in a specialized fluid cell 
holder which can also flow liquid through the sample (as 
shown in Figure(2c-i). This technology helped visualize the 
dynamics of ferritin molecules for the first time Figure(2c-ii), 
while maintaining the native surrounding liquid[14,73]. 
Despite a huge success while imaging biological specimens in 
liquid, one should also consider the signal-to-noise (SNR) 
ratio. The ~150-200 nm thick Si3N4 liquid cells might 
compromise the resolution while imaging the ferritin core of 
diameter ~5-6 nm. In the GLC technique, the Van der Waals 
interaction between two graphene layers facilitates the 
wrapping of the biological specimen with surrounding liquid 
tightly[17]. The thus formed liquid cells help retain the native 
structure of the ferritin while offering superior spatial 
resolution[17]. The ease in the sample preparation (Figure 
2(d)), and the flexibility offered in imaging the liquid samples 
with any inexpensive TEM makes it feasible for any kind of 
experimentation needs. There are different methods adapted 
in the literature[19], by which GLC samples can be 
prepared[74]. Direct graphene transfers on the grid[17,18,75] 
or grid-on-grid sandwich techniques[15,16,76,77] are the 
most applied techniques to handle biological samples. 
Nevertheless, considering the size of ferritin protein, using 
GLC-TEM technique to study protein’s structure and function 
is advantageous over other techniques to obtain qualitative 
information. With several opportunities and challenges that 
exist in the sample preparation methods, the nature of the 
experiment will determine the kind of techniques.   
3. Morphological Studies of the Iron Oxide Core in 
Ferritins  
The irregularity in the arrangement of iron oxide crystals 
during iron nucleation, as well as the number of iron atoms in 
a given ferritin can influence the formation of core with 
different crystal structures. Understanding structure of ferritin 

core could provide insights on the biomineralization process, 
as well as serve as a biomarker to draw a comparison between 
physiological and dysfunctional ferritins.   
 The structure of the iron core was first considered to 
be made up of spherical micelles arranged in four different 
quarters with each micelles measuring about 
27Å[78,79].Similar substructures were also observed in 
ferritins present within the thin ultramicrotomy cell 
sections[80].Based on the observation of the substructures in 
the bright field TEM image, and the possibility of random 
orientation of the core on the carbon film, the core was 
considered to have fixed number of micelles placed in 
geometric positions forming a defined pattern[81].Models 
were constructed based on the substructure of the iron core 
and it was proposed that there were six micelles arranged 
sequentially in octahedron shapes[79,82,83].However, these 
models were not convincing as some of the core structure did 
not have regular substructures (Figure 3(a))[83] while some of 
the cores showed more than 6 sub-structural 
micelles[84].While none of the models could account for the 
entirety of ferritin core structures, Haydon considered the core 
substructures to be an effect of artifact produced during the 
phase contrast and diffraction contrast of the bright field 
imaging[85].Hayden’s experiment was initially 
questioned[86,87], but later accepted when it was imaged 
using special support films with low phase 
granularity[88,89].From the results, it was concluded that 
ferritin’s core is a dense material without any substructures 
until the evolution of dark field imaging of ferritin core[90].  
        The dark field imaging mode helped to resolve the 
structure of the core[91].At electron acceleration voltage of 3 
million volts, the granularity of the core began to appear in the 
images. From those images, it was understood that ferritin 
mineral core is subdivided into several discrete granular 
crystal structures[83]. Then the voltage of the microscope was 
fixed to 50-100kV to avoid the interference of several Bragg’s 
reflection that would appear due to the crystal orientation[22]. 
The outcome of this work suggested that some of the cores 
exhibited several small crystallites formed as a result of 
nucleation of small groups of iron atoms[83].In recent times, 
STEM imaging offers superior contrast and resolution in the 
HAADF imaging mode due to the sensitivity to the atomic 
number (Z-contrast) of the element and the thickness of the 
sample. The image intensity in HAADF is proportional to the 
atomic number following: 𝐼 𝛼 𝑡𝑍2  where I is the intensity 
from the STEM-HAADF image, t is the thickness of the 
sample, and Z is the atomic number of the sample[92]. The 
contrast of the iron oxide core could be improved significantly 
by imaging human liver ferritins via STEM-HAADF detector 
through which diffraction contrast could be eliminated[93]. 

Although numerous experiments led to the identification of 
crystallinity of the core (discussed in Section 4), there were 
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still interests in understanding the reason for several small 
clusters within the protein.      

Several possibilities were considered to elucidate the 
occurrence of substructures in ferritin: (a) The protein shell 
with specific inner architecture provides explicit nucleation 
sites for the mineral growth. The minerals occupy these sites 
randomly and grow in any direction[94]. (b) The number of 
nucleation sites and the positioning of the eight hydrophilic 
three fold channels (channels for the iron entry) determine the 
morphology[93] while the periodic arrangement of crystals 
and stacking order can be attributed to the cubic symmetry of 
the structure[1,95]. This was also supported by 24-n 
nucleation model, proposed by Lopez-Castro et al.[96], which 
suggests that human spleen ferritin (HSF) encompasses 
different morphologies because of the higher ratios of L/H 
subunits, which correspond to the number of nucleation sites 
in L subunits. On the other hand, with higher ratios of H/L 
subunits in human heart ferritin (HHF), there are reduced 
numbers of nucleation sites (n). With 24 subunits that exist in 
the protein structure, the morphology of the iron core is 
determined by 24-n subunits available for nucleation of iron 
(Figure 3(b)). (c) The stages of biomineralization and the 
number of iron atoms present at each stage could contribute to 
different substructures. This theory was also supported by 
counting the number of iron atoms present in the iron core via 
the STEM-HAADF image intensity measurement (Figure 
3(c))[97,98]and EELS quantification (discussed in Section 

5)[20,93,97].The integrated signal intensity from the HAADF 
detector is directly proportional to the intensity of the particle 
given by the equation 𝑁𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐾. 𝑆𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ,where N 
denotes to the number of iron atoms and S denotes to the 
integrated intensity[99]. It should be noted that the 
assumptions made in these studies consider that the iron oxide 
core is made of a single crystalline phase ferrihydrite.  

The STEM-HAADF could help model (Figure 3(d-
i,ii,iii) the mechanism of iron biomineralization based on the 
morphological evolution of the iron core (Figure 3(d-iv))[93]. 
It was suggested that iron ions enter the protein through three-
fold channels and oxidize at specific sites forming the mineral 
core. Thus, the formed mineral core is closer to the exit 
channels. With the protein’s capability to absorb more iron 
ions during biomineralization, the newly entered Fe2+ ions 
oxidize on the surface of the previously formed mineral core. 
This results in the formation of the iron nucleus prematurely 
at different nucleation sites. The low thermodynamic stability 
of the iron nucleus results in very low energy. Consequently, 
when the protein continues to absorb more Fe2+ ions, the 
previously formed iron nucleus competes for the incoming 
Fe2+ ions, leaving the center of the core hollow. While the 
proposed mechanism, explains the formation of a morphology 
observed via the TEM, it does not account for all the 
morphologies that exist in the protein core. Recently, our 
group studied the morphologies of HSF and HHF and it was 
observed that both, HSF and HHF exhibit different 

Figure 3: TEM and STEM studies showing different morphologies of iron oxide core in ferritin.(a) Dark-field TEM image of 
ferritin showing the irregularities that exist in the core structure (Scale:100nm) (Adapted from Ref.[83]) (b) STEM-HAADF 
image showing the occurrence of different morphologies such as doughnut, spherical and c-shaped substructures(Scale:5nm) 
(Adapted from Ref.[96]). (c) The different morphologies of the iron core and the corresponding number of iron atoms in each 
of the morphologies of ferritin via the aberration corrected S/TEM (Adapted from Ref.[98] ).(d) A model(figures (i),(ii),and 
(iii)) explaining the formation of iron core inside the protein shell based on the morphology exhibited in the STEM-HAADF 
image in figure (iv)(Adapted from Ref.[93]).  
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morphologies [134]. While the 24-n model seems logical, it 
does not help provide detailed explanation for the observed 
morphologies in HHF. The development in the in-situ 
microscopy and spectroscopy techniques can help explain the 
occurrence of different morphologies in the future.    
 
4. Crystal Structure/Phase Determination of Ferritin’s 
Iron Core:  
Several analyses and models were proposed to understand the 
structure of the thus formed ferrihydrite core[100–102]. 
Characterization techniques such as high resolution-TEM 
(HR-TEM) imaging, microdiffraction[103],and electron 
diffraction (ED)[104] were employed to validate these models. 
Of all the models that were proposed in 1960s, Towe and 
Bradley’s work[82], was widely accepted. This model 
elucidated the structure in terms of lattice constants, iron 

coordination number, and position of the atoms. From the 
electron diffraction analysis, it was suggested that the mineral 
core in ferritin resembles natural mineral ferrihydrite (5 
Fe2O3.9H2O)[82] with a =5.08Å, and c =9.4 Å. Further, the 
4.1 Å and 2.7 Å lattice spacing in the HR-TEM image of 
human ferritin iron cores (Figure 4(a)) corresponded to (100) 
and (110) plan of ferrihydrite[105].Although it was proposed 
that the structure of ferrihydrite resembles hematite (α-
Fe2O3)[106], it should be noted that hematite exhibited 
additional diffraction lines at 3.67Å and 2.69Å due to the 
rhombohedral arrangement of Fe3+ ions[107].Moreover, in 
ferrihydrite structure, Fe3+ are in octahedral coordination, 
placed between 4 oxygen layers spaced 2.35 Å apart[107].  
 Further, through the d-spacings, and lattice 
orientation obtained from electron microdiffraction 
studies[108,109],and 

HR-TEM studies[110] , it was substantiated that the iron oxide 
core resembled ferrihydrite. However, the HR-STEM image 

reflected different structures [83,91] unlike all the proposed 
models[107,111,112].Meanwhile, dark field image also 

 
Figure 4: TEM studies to determine the crystallographic information of the iron oxide core in ferritin. (a) HR-TEM image of 
heat-treated human ferritin with lattice spacings of 4.1 Å and 2.7 Å indicating (100) and (110) planes of ferrihydrite. The arrow 
in the figure indicates the discontinuity in the lattice plane(Scale:1nm) (Adapted from Ref.[105]). (b) Dark field TEM image of 
horse spleen ferritin with the arrows indicating the stacking fault in the crystal core structure (Scale:5nm) (Adapted from 
Ref.[83]). (c) Ferritins extracted from the human brain of the patients who suffered from progressive supranuclear palsy (PSP) 
and Alzheimer’s disease (AD) show (i) the HR-TEM image of the iron core in ferritin, (ii) Fast Fourier transform (FFT) of the 
core which depicts the crystalline ferrihydrite structure, (iii – vi) Electron nanodiffraction studies of the ferritin extracted from 
the pathological conditions which indicates (iii) [100] orientation, and (iv) the [112] orientation of magnetite phase. The defects 
in the crystal structure in (111) planes with a = 4.3 Å are depicted in (v) and (vi) as continuous lines are observed in (v) [100] 
orientation and (vi) [110] orientation of the face-centered cubic (fcc) plane (Adapted from Ref.[116]). (d) Schematic of the iron 
core exhibiting the polyphasic nature with different phases of iron oxide in the core (Adapted from Ref.[20]).(e) HR-TEM image 
and the corresponding FFT of human heart ferritins indicating the presence of (115) and (114) plane of ferrihydrite (Scale: 2nm)  
(unpublished work). 
 

(115)

(114)
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showed stacking faults (Figure 4(b)) in the crystal structure 
due to the irregular occupancy of the crystals in certain lattice 
planes[83]. This observation was also supported by the diffuse 
diffraction rings[83].It was later observed that the lattice 
defects in the crystal behave like an interstitial site to deposit 
phosphate. It should be noted that the iron oxide in ferritin is 
not completely crystalline. Phosphate dictates the crystallinity 
of the core[110].With higher ratios of phosphate present in 
certain invertebrates[110], the iron core exhibits no signs of 
crystallinity. However, mammalian ferritins have lower 
percentage of phosphate, which results in crystalline 
core[110]. 

The work discussed thus far reported ferritin 
structure, however the structural-functional relationship was 
missing. For instance, Towe and Bradley’s model[107] 
suggested that one of the lattice planes represent irregular 
occupancy of iron. Although this model was widely accepted, 
one can question the iron uptake and release mechanism with 
such irregularities in the core structure. Also, one of the 
biochemical experiments[113] showed biphasic kinetics 
during the release of iron from ferritin, which supported the 
Towe and Bradley’s model. However, in another study, it was 
proved that it is possible to reduce Fe3+ form of iron to Fe2+ 

form in ex-situ condition using a protein called as 
dihydroflavodoxin[114]. There were questions raised by the 
scientific community about the composition of the iron core in 
ferritin, as ferrihydrite belongs to a labile form of iron oxide 
mineral and a precursor of hematite. The iron core was studied 
carefully to learn the relationship between Fe2+ and Fe3+ form. 
It was then detected that Fe2+ and Fe3+ iron ions coexist during 
the iron uptake by ferritins[43,45]. While the significance of 
studying the function came to light, one of the major turning 
points was the findings by Quintana and her 
coworkers[115,116]. They reported that physiological ferritin 
is composed of different iron oxide phases such as ferrihydrite, 
hematite, and cubic phases of magnetite 
(Fe3O4)/maghemite(ɣ-Fe2O3) along with stacking faults in the 
crystal structure (Figure 4(c)). Through HR-TEM and ED, the 
compositional difference between physiological and 
pathological ferritin was studied[116].Further through 
analytical electron microscopy and secondary ion mass 
spectroscopy (SIMS), the same group reconfirmed the 
presence of different phases of iron oxides in pathological 
ferritins[117]. The existence of polyphasic iron oxides (Figure 
4(d)) in the core was also supported by Galvez and his 
coworkers who reported the alterations in the percentage of 
iron oxide phases during the removal of iron[20]. The 
presence of different phases of iron oxide was also supported 
by the HR-TEM and the corresponding FFT, which indicated 
the presence of magnetite and maghemite[99]. 

On the other hand, Michel and his coworkers 
observed a smooth transition from 2-line ferrihydrite to 6-line 
ferrihydrite during the iron loading process of ferritin from 
500 iron atoms to 3000 iron atoms[102]. Based on this total 
scattering data, they also suggested structural models for the 
ferrihydrite in ferritin[102]. This study supported the 
existence of single phase crystalline ferrihydrite form of iron 
oxide in ferritin. The HRTEM image and the corresponding 

FFT obtained from the iron core structure of human heart 
ferritin also exhibited ferrihydrite structure (Figure 4(e)). 
Since, it is challenging to obtain all the crystallographic planes 
through HR-S/TEM images, the information obtained through 
this study was not reliable.  
5. Chemical Characterization of Iron Oxide Core in 
Ferritin 
In spite of recent progress in the use of structural 
characterization techniques such as Mossbauer spectroscopy, 
EXAFS spectroscopy, and X-ray absorption near edge 
structure spectroscopy (XANES)[30], these characterization 
techniques have some limitations to fully resolve the iron 
oxide core of ferritins. Due to the nanoscale size of iron oxide 
core, there is need for chemical analysis with high analytical 
precision and high spatial resolution. Better detectors for X-
ray dispersive spectroscopy (EDS) and spectrometers for 
electron energy loss spectroscopy (EELS) have enabled us to 
study the chemical signatures at atomic scales[17,75].  

Even though both EDS and EELS can be used to study 
the chemical composition of an element, EELS have an ability 
to provide fingerprint of the different states of the same 
element. Further, the benefit of using EDS and EELS 
compared to other techniques, is their capability to probe 
individual proteins as against providing a quantitative 
information[20].While EDS was utilized to identify the 
presence of iron in the core[117,118], EELS was first used to 
study the distinction between the iron cores extracted from a 
healthy brain and the brains affected by progressive 
supranuclear palpsy (PSP), and Alzheimer’s disease[115]. It 
was found that the iron core of dysfunctional ferritin had 
higher ratios of Fe2+/Fe3+ as compared to physiological 
ferritin[115]. This study facilitated an understanding of 
dysfunctional ferritins and its contribution towards 
neurodegeneration[115].  

Further, several groups were inspired to study the 
energy loss near edge structure (ELNES) of the iron 
core[93,119]. With the ELNES, one could determine the local 
structure and the bonding environment within the vicinity of 
the iron ions. A comparison of ferritin obtained from liver 
biopsy samples with the synthetic 6-line ferrihydrite(6LFh), 
elucidated the differences that exist in the chemical 
composition of both the structures (Figure 5(a))[120]. It was 
shown that the iron core in ferritin has significantly higher 
ratios of Fe2+ /Fe3+, as compared to synthetic 
ferrihydrite[120].This study instigated the need to study the 
redox reactions within the ferritin proteins during mineral 
formation and disassembly.  

Galvez et al.[20] were the pioneers to study the 
chemical compositional changes in ferritin during the process 
of demineralization by utilizing EELS spectroscopy 
technique. In this study, they removed the iron from ferritin 
gradually. The iron oxide phases of ferritin during each stage 
of demineralization was speculated[20]. It was observed that 
ferritin with 500 iron atoms had higher ratios of Fe2+ /Fe3+ , 
while the fully grown ferritins showed higher ratios of Fe3+ 

/Fe2+ [20] . They also showed the differences in the oxidation 
state in the core and the surface of ferritin (Figure 5(b))[20]. 

There have been some efforts as well to quantify the 
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iron oxides in ferritin via the EELS technique (Figure 
5(c))[93,97,99]. By using the spectrum imaging technique, the 
areal density of the atoms (N atoms nm-2) was calculated using 

the equation: 𝑁 =  
𝐼𝐹𝑒𝐿23

 (𝛽,𝛥)

𝐼1(𝛽,𝛥)𝜎𝐹𝑒𝐿23
(𝛽,𝛥)

   where, 𝐼𝐹𝑒𝐿23
 is the 

integral counts  under the Fe L23 ionization edge, I1 is the total 

integral counts of the spectrum in the zero loss and low loss 
region, 𝜎𝐹𝑒𝐿23

 is the partial ionization cross section of Fe L23 
edge obtained after Hartree Slater analysis,  𝛽 is the collection 
angle, and 𝛥 is the energy integration window. The addition 
of the number of iron atoms under each pixel (Figure 5c-
ii,iii,iv) helped determine the total number of iron atoms 
(Figure 5c-v). From this technique, it was suggested that most 
of the ferritins with fully grown iron core house 2100 + 400 
iron atoms, while the partially biomineralized ferritin 

accommodates 320 + 60 iron atoms. 
6. The Effect of Electron Beam  
With a possibility of iron transformations that can happen with 
intense electron dose, one should always consider the 
prospects of artifacts that can be produced while 
characterizing the ferritin’s iron core crystal structure. Pan et 

al demonstrated the effect of electron dose in ferritin in three 
independent studies[93,119,121] which suspected that the 
earlier data presented by Quintana and Cowley[116], and 
Galvez et al.[20], could be an effect of artifacts. The results of 
Pan and his coworkers suggested that the presence of 
magnetite and maghemite phases in the core could be a 
consequence of electron beam facilitated iron transformation 
which went unnoticed in the former studies. 

 
In the first study [121], human liver ferritin (HLF) was 

compared with 6-line ferrihydrite. It was shown that the 
electron dose required to reduce iron oxide in ferritin is 100 
times lower than electron dose required to reduce the synthetic 
ferrihydrite[121]. In the same work, they also showed the 
conversion of substantial amount of octahedral coordinated 
iron to tetrahedral coordination during excess of electron dose 
as shown in Figure 6(a).  With an accumulated electron dose 
of 106 electrons/nm2, the reduction of Fe3+ to Fe2+ ions were 
observed (Figure 6(b))[121].   

In the subsequent studies, through ELNES studies, the 
same group demonstrated that the influence of electron dose 

results in consistent loss of iron coordinating ligands. In this 
study, they considered Iron phosphate dihydrate 
(FePO4.2H2O) and 6LFh as a reference material. Similar to the 
earlier studies, they showed that the valance state of iron 
transformed from Fe3+ to Fe2+ form with increase in electron 
dose of 3 X 106 electrons/Å2 [119]. They could observe the 
behavior of electron induced beam transformation processes 
which consisted of two pathways: (1) The direct reduction of 
octahedrally coordinated Fe3+ ions to Fe2+ ions; and (2) The 
conversion of octahedral Fe3+ to tetrahedral Fe3+ at electron  

 
Figure 5: Advancement in EELS spectroscopy to characterize ferritin (a) Comparison of ELNES of ferritin obtained from liver 
with 6LFh indicated the difference that exist in the iron core structure of ferritin (Adapted from Ref. [120]). (b) EELS spectroscopy 
acquired from a single ferritin protein indicates the change in the oxidation state while measuring it on the surface and the inner 
core of the protein (Adapted from Ref.[20]). (c) EELS spectrum mapping (ii) acquired from a human liver ferritin (i) shows the 
low loss(iii) and the high loss spectrum(iv), and the corresponding signals. This study enables the quantification of iron oxide in 
ferritin (Adapted from Ref. [97]).  
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dose of about 106 electrons/nm2 followed by the change in the 
valence state of iron with accumulating higher electron doses. 
However, it was interesting to note that the ratio of Fe3+ / Fe2+ 

remained unaltered even with differences in the electron 

fluence (Figure 6(c))[93,121]. It should also be noted that the 
current density did not have any contribution in the iron 
transformations of the core[119].  

While the effect of electron dose can play a role, the 
sample preparation techniques are also important. With a 
protective layer such as GLCs sandwiching the proteins, it is 
expected that the effect of electron beam induced radiation is 
mitigated[76]. However, it is still desirable to maintain low 
electron fluence to prevent the liquid in the GLCs from drying.  
 
7. Future Directions 
The progress in microscopy and microanalysis techniques has 
helped better understand the structure and the function of 
ferritin. With technical advancements and futuristic work, the 
possibility of using electron microscopy in a clinical set-up 
can become reasonable. The section below suggests some of 
the techniques that can be utilized for better understanding of 
ferritin proteins.  
7.1. Studies of Ferritins in Hydrated State: The conventional 
TEM based sample preparation techniques involved drying 
and dehydration of the protein sample, which might introduce 
artifacts and thus alter the structure. The need to maintain the 
protein in hydrated state necessitated techniques such as Cryo-
electron microscopy (Cryo-EM) and liquid cells. One should 
note that introducing thick liquid samples in the S/TEM might 
affect the spatial, and the spectral resolution while imaging the 
iron core which is less than 10nm in size. This is evident in 
Cryo-EM[22] as well as Si3N4 based liquid cells[14,73]. In two 
independent studies, James Evans and his coworkers imaged 
ferritins via in-situ liquid cell electron microscopy[14]and 
dynamic liquid cell TEM[73]. While the spatial resolution 

reported was not enough to observe the lattice spacings of the 
iron oxides in ferritin, it should also be noted that there are no 
studies thus far that report the EELS based chemical analysis 
of ferritin in Cryo-EM or Si3N4 based liquid cells.  
 The invent of graphene liquid cells (GLCs) (Figure 
7(a)-i) revolutionized the technique of studying the chemistry 
of ferritin with utmost resolution (Figure 7(a)-ii) while 
maintaining the native liquid state[17]. GLCs were developed 
to address the challenges faced by the community while 
studying biological specimens via the Si3N4 based liquid 
cells[122]. Unlike Si3N4 based chips, the GLCs are composed 
of few layers of graphene with the total thickness of ~1nm, 
making it more electron transparent[122]. Further, the ability 
of graphene to conduct and scavenge the incoming electrons 
plays a prominent role in controlling the electron beam 
induced damage[76]. Despite the fact, there are several 
shortcomings with GLC-TEM technology: (1) The inherent 
nature of graphene to hermetically seal the liquid pockets 
without controlling the liquid thickness makes it challenging 
to transfer the technical advancements achieved while 
fabricating Si3N4 liquid cells[76]; and (2) The success in liquid 
encapsulation depends on the techniques adapted to prepare 
GLCs[74], as well as the specimens involved in the 
preparation[76].   
 The GLC-TEM helped protect the integrity of the 
protein samples while imaging, and spectral acquisition as 
shown  
 

     
 
Figure 6: The electron beam induced changes in the iron oxide core of ferritin. (a). Change in the octahedral coordination of 
Fe3+ ions in human liver ferritin due to the increase in the electron dose (Adapted from Ref.[121]). (b) The direct conversion 
of iron oxides from Fe3+ to Fe2+ form as a result of increase in the electron dose (Adapted from Ref.[121]).(c) The ratio of 
integrated areas under L3 and L2 edge of iron core of ferritin remains unchanged with the increase in the electron fluence 
(Adapted from Ref.[119]).  
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in Figure 7(a-iii,iv)[17].  (Figure 7a- iii) represents the EELS-
mapping of ferritin acquired via conventional S/TEM while 
(Figure 7a-iv) represents the ferritin imaging via GLC-S/TEM 
technique. From the nitrogen maps, it can be observed that the 
structure of the protein is retained when imaged in liquid. 
Further, in the same work, the structural changes in iron oxide 
core while measuring it in liquid versus dry state was 
reported[17].Recently, our group studied the chemical 
compositional changes in the H and L rich ferritin via the 
GLC-TEM [136]. The future is promising with the ability to 
study the time-course assembly and disassembly of iron core 
in ferritin via the GLC-TEM and monitoring the chemical 
compositional changes via techniques such as EELS and EDS 
that can provide qualitative information.   
 
7.2. Studies of 4D-STEM on Ferritins: Phase contrast imaging 
such as STEM is a powerful technique to study the weak 
phases in any biological material such as ferritin. The ability 

to control the electron radiation, while being able to record 
incoherent signals[123] has been a great advantage to study 
the morphology as well as the crystal structure in ferritin. 
Despite the advancements, there is still ambiguity while 
identifying the crystallinity of the iron core in ferritin. The 
complexity and chemistry that are confined to the local 
biological environment play an important role in determining 
the iron oxides. Advancements in STEM imaging techniques 
such as 4D STEM can possibly identify the localized chemical 
information by integrating with convergent electron beam 
diffraction patterns (CBED) that are available during 
scattering events (Figure 7b-i)[124][125].  

The data acquired via the traditional STEM imaging 
is confined to 2-D datasets with spatial information, while the 
structural and chemical spectroscopy techniques such as 
electron diffraction, EDS, and EELS contribute to the 3-D 
datasets[126]. The ability to combine spatial resolution along 
with spectral or diffraction information during each STEM 

 
Figure 7: Future TEM directions for the studies of ferritins: (a) Liquid cell-TEM imaging and spectroscopy studies of 
ferritins: (i) schematic showing ferritins encapsulated in GLCs; (ii) atomic resolution image of the iron core in ferritin via 
GLC-TEM (Adapted from Ref.[17]); (iii) EELS mapping of ferritin in (ii) dry and (iv) liquid state showing the integrity of 
proteins in GLCs (Adapted from Ref.[17]).(b) Schematic showing 4D-STEM setup with the CBED image that can be 
recorded to obtain 4D STEM image; (ii) indicates the capability to determine the atomic composition of the MoS2 and WS2 
material (Adapted from Ref[125] ); (c) Schematic showing (i) 3D electron tomography technique which can be utilized to 
study crystal defects such as grain boundaries, dislocations and point defect at atomic resolution; (ii) HAADF-STEM image 
of SiO2-ZrO2 oxide nanoparticles extracted from tilt series that were used to 3D reconstruction of the image; (iii) Cross 
section through the Z-sensitive volumes can help determine the atomic composition of the material(Adapted from 
Ref.[128]); (d) Integrated Raman spectroscopy and electron microscopy setup which can be utilized to study the 
biomineralization in ferritin and protein’s conformational changes (Adapted from Ref.[133]).  
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acquisition can improve the Z-contrast imaging along with the 
analytical signals (Figure 7b-ii). Further, aberration corrected 
S/TEM can be made use of, to focus the probe below Å 
scale[126]. Although,4D STEM has the above-mentioned 
advantages, there is still a need to improve the raster scanning 
rates and frameworks to store large datasets[126]. Above all, 
there is a need for faster cameras to record the biological 
events that occur within few seconds[123].With the progress 
and developments in this field, it should be realistic to identify 
the local atomic configuration of ferritin’s iron core via the 4D 
STEM.   

 
7.3. 3D Atomic-Resolution Electron Tomography of Ferritin: 
Studying the atomic structure and morphology of the iron core 
in ferritin could reveal many details such as atomic 
composition, bonding properties of the material, stacking 
faults, and iron nucleation mechanism in ferritin. Although the 
knowledge one could gain from atomic structural studies is 
alluring, the information gained from traditional aberration 
corrected S/TEM is limited to observing 2-D structures[127]. 
Single-particle CryoEM was developed with an intent to study 
the 3-D structure of biological materials, however this 
technique can only be applied to study materials with similar 
atomic configuration[127]. This is a major setback while 
studying the iron cores of different ferritins which can have 
random morphologies and atomic configurations.   

With STEM-based tomography, it is plausible to 
study the 3-D structure of ferritin’s iron core, while evading 
the diffraction and the phase contrast produced by any 
biological sample. The rotation of the sample along the tilt 
axis helps produce a 2D image at different tilt angles, which 
is further processed to produce a 3-D image (Figure 7(c-i)). 
Further, with 3D reconstruction of the HAADF-STEM image 
( Figure 7 (c-ii)), it is possible to determine the atomic 
composition based on the Z contrast (Figure 7(c-iii))[128]. It 
should be noted that, the morphology of the sample plays an 
important role to provide qualitative information during this 
procedure[127]. While most of the samples can be tilted only 
up to + 79°, one can tilt the sample with 360° of rotation with 
needle shaped specimens[129].  

Along with the features that 3-D electron 
tomography offers, one should also consider the sample 
preparation techniques. An intense electron beam can cause 
structural changes in the protein shell as well as iron 
transformations in the core of the ferritin. A combination of 
low voltage techniques and encapsulation of the ferritin 
proteins in GLCs could help mitigate the radiation damage, 
while building the 3-D atomic structures[130].  
 
7.4. Studies of Simultaneous in-situ Raman and TEM on 
Ferritins: The process of biomineralization and 
demineralization in ferritin is more than a series of chemical 
reactions. The unique phases of iron oxide crystal core formed 
in ferritin, as well as protein’s role in the mechanism of iron 
nucleation remains unfolded. It is interesting to observe that 
the protein shell not only behaves as an iron reservoir but also 
dictates the type of iron oxide minerals formed[131].In the 
absence of protein, the iron transformations are meant to occur 

in a different way. The formation of goethite (FeOOH) phase 
is more pronounced as compared to the ferrihydrite and 
hematite phase[131]. 

While the variation in the mineral phases exists in 
different organ ferritin, it would be interesting to study the 
protein structural changes and its contribution towards 
biomineralization. Also, some of bacterial ferritins are known 
to exhibit conformational changes during the 
biomineralization and demineralization process[132].A 
combination of light-based Raman spectroscopy and in situ 
electron microscopy (Figure 7(d))[133] can help observe the 
conformational changes in the protein structure while also 
probing individual proteins to study the chemistry. The 
correlative technique can improve the quality of information 
one can obtain through liquid microscopy studies as it can help 
better understand the structural-functional relationship. 
Further implementing a less expensive light-based 
spectroscopy device along with aberration corrected electron 
microscopy can help identify biomarkers during pathological 
conditions. With machine learning, one can train the 
inexpensive device to be able to recognize the biomarkers in a 
clinical set-up.     
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