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Abstract

Ferritins are an important category of proteins that control the iron storage and release in humans and animals. It is well accepted
that various diseases can be traced to ferritin protein abnormalities. In addition, these’ proteins can revolutionize the field of
materials synthesis since they provide an excellent template to grow various nanomaterials with near perfect size and control
on chemistry. The ferritin proteins regulate iron ions by biomineralizing or demineralizing various forms of iron oxides. The
inner architecture and the microenvironment of ferritin proteins facilitate iron,oxide nucleation, enabling the formation of labile
ferrihydrite in place of more common iron oxides such as/hematite, magnetite, and goethite. The complexity of iron oxide
structures and their various stable phases require advancedhcharacterization techniques such as transmission electron
microscopy (TEM). This review article summarizes the previous)discoveries made by conventional TEM imaging and
analytical spectroscopy methods such as electron energy loss spectroscopy and X-ray energy dispersive spectroscopy. With
recent innovations in aberration-corrected TEMs, /monochromators of electron beams, ultrafast imaging and spectroscopy
detectors, integration of Raman within TEM, and’3D temography techniques, it is now feasible to explore biomineralization
within ferritin proteins with an outlook to fully elucidatethe signature of diseases that control the nucleation, growth, and
stability of iron oxide cores within ferritin proteins.
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1. Introduction The complex architecture as well as the function of the

- ) ) . proteins enables synthesis and storage of different materials,
_ Ferritins are a family of iron storage proteins that play a  highlighting its potential in different applications.
significant role in the iron regulation mechanism. The ability  yp(erestingly, the size and crystallographic order of the ferritin
of the protein to encapsulate and sequester ironions highlights  core can be related to its the magnetic properties[7]. Yet, the
its 051gn1ﬁcar}t contribution towards iron hpmeostas1s in all the process of iron nucleation is not well understood. Recently, it
living organisms from the lowestto the highest order[1-3]. In - 155 been reported that, there is a correlation between the iron
the absence of ferrltm,.low soluble iromin t,he cells Cantrigger  migregylation in the brain and neurological disorders[8]. While
reactive oxygen species through Fenfon’s reaction [4]. A he complex proteins can be utilized to store iron oxides as
typical ferritin protein consists of an outer hollow protein ]| a5 different materials, there is still a lack of knowledge
shell, that can accommiodate up to 4500 iron atoms within o, the causes for iron agglomeration in the brain[7,8].Several
them FO form the inner iron core[SJ. In humans, the protein light and electron-based microscopy and spectroscopy
shell is made of 24, subunits'of light (L-) and heavy (H-) (echniques have been employed to study the structure as well
subunit chain amino acids, while prokaryotes such as bacteria 44 finction of ferritin.
and archaea consist of 12 amino acids chain subunits[6]. While the light-based characterization techniques can
While H subunits-arestesponsible for iron oxidation, L-  pelp provide a lot of information about ferritin, it should be
subunits are responsible for iron nucleation within ferritin. | teq that these techniques suffer from a diffraction limit of
Despite the, differences in the regulation mechanism of = 500 nm[10].As a result, it is challenging to obtain spatial
prokaryotic andyeukaryotic ferritins, the functionality of H- regoJution of samples which are less than 200 nm in size. On
and L- subunits remains the same in all the organisms[1]. the other hand, electron-based microscopy and spectroscopy
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techniques can provide qualitative information of individual
ferritins which are less than 20 nm in size[10].

The shorter wavelength of electrons due to high
acceleration voltage and the development of aberration-
corrected of the electromagnetic lenses[11], made electron
microscopes advantageous to resolve ferritin structure of sub-
angstrom  resolution[10].Despite  this  fact, electron
microscopes were not made complete use of to study proteins.
The need to keep the samples dry before the electrons could
transmit through the protein, made the electron microscope’s
application limited to studying the structure of iron core with
severe artifacts[12].

The invention of cryo-electron microscopes (Cryo-EM)
requiring the freezing of hydrated protein samples made it
convenient to study the structure without drying or causing
physical damage to them. However, a low signal to noise ratio
was obtained due to vitrified water posed limitations while
trying to enhance the contrast of the image without adding
negative stain[13]. Also, in order to study the ferritin proteins
in dynamic mode, liquid cell based TEM techniques were
utilized. Silicon nitride (SizNs) based liquid cells were
introduced with an intent to study the structure and function
of the proteins in its native state[14].The use of graphene
liquid cells electron microscopy (GLC-TEM) improved the
spatial resolution[15,16],while maintaining ferritin in its
native hydrated state[17]. Further, with a modern aberration
corrected TEMs, it is also possible to obtain better spectral
information[18,19] that can help tap the chemistry of
individual iron atoms within the ferritin proteins[20].

This review article encompasses all the electron-
microscopy based studies on ferritin as well as suggestssthe
opportunities that can be utilized to understand the missing
knowledge. Since the discovery of ferritin in 1937 [21], there
have been several advancements in understanding ferritin
proteins. The accomplishments in the field resulted in several
review papers with a focus on different aspects of ferritin. The
reviews published thus far mainly focused on the structural
aspects[22],types of ferritin [23,24];biochemistry
aspects[1,25],iron regulation mechanism[26—28], and its
implication on human health[28-30], application\of ferritin in
bionanochemistry[5], and its role as a.clinical tool to study the
pathological and physiological processes[21].However, until
now, there has not been a comprehensive summary on the
benefit of utilizing TEM to study'the structure and function of
ferritins. This review paper aims), at addressing this
shortcoming and suggests/ abroader utilization of new
advancements in the field.of TEMite/study ferritin proteins.
This paper is designed to provide a basic overview of the
structure and function of ferritins. Further, the focus is stirred
towards TEM and.the description of different techniques
involved during the sample preparation for TEM studies. The
critical review ofthe current findings indicates the knowledge
related to chemistry, structure, and stable phases of iron oxide
core in ferritins. Future studies utilizing techniques such as
GLC-TEM;\ 4D STEM, 3D-electron tomography and

integrated Raman system can provide more qualitative
information about the iron oxide chemistry in ferritins that
should enable a better understanding of ferritin function: the
biomineralization and demineralization processes in real-time.

1.1 Structure of Ferritins

The prevalence of ferritin in different life forms prompted
researchers to study and identify the structure of fertitin. The
existence of complexity in the protein structure emphasizes
the need to store and regulate the iron ions, which could
otherwise be pernicious to the cytoplasm,in the cells: The
protein without iron is termed as apoferritin[31]zWith the total
molecular weight of approximately 44 kDa[32], the 24
subunits in apoferritin are assembled by ,163 amino acids
forming a spherical cavity with outer diameter of 12nm and
inner diameter of 7nm[31]. The amino acids predominantly
form H- and L- subunits with melecular weight of 21 and 19
kDa. Surprisingly, there is_only 55% identity in the two
subunit types, resultingin different functions[31]. The
ferroxidase (Fe?' binding) sites.in H- subunits which facilitate
iron oxidation, is absentiin L- subunits. As a result, there are
differences in/the kinetics of iron uptake and release
process[4]. The significance of these individual functions of
the amino acid subunits is evident, when present in varying
ratios in different organs. Vital organs such as the brain and
heart consistrof ferritins with higher ratios of H- subunits,
indicating the need to oxidize the iron ions. On the other hand,
organs suchias liver and spleen whose primary function is to
store iron has ferritins with higher ratios of L- subunits. The
ratios of'the H- and L- subunits also impact the size of the core
as well as kinetics of iron core formation[4]. H- subunits
exhibit relatively smaller core and higher rates of iron
oxidation as compared to the L- subunits[4].Due to the lack of
ferroxidase sites, L subunits take longer time to oxidize iron,
yet they can hold more iron ions resulting in a bigger
core[4].Recent studies established a relationship between L-
and H subunits. It was suggested that L-subunits help enhance
the activity of H-subunits, thus favoring the entry of higher
number of iron ions in ferritin[33].

While disparity exists in the function of the H- and L-
subunits, it should be noted that both H- and L- subunits
combine to form a near spherical geometry with a four-fold,
three-fold and two-fold axis symmetry, connecting the inner
cavity with the outer cytosolic environment (Figure 1(a)) [31].
The amino-acids adjoining the three-fold axis symmetry
channel are hydrophilic in nature, comprising of histamine,
aspartic and glutamic acid residue[34]. On the other hand, the
terminal of four-fold symmetry channels are hydrophobic in
nature, with the presence of amino acid residues such as
leucine, and glutamine[34].The charges present in the amino
acid residues help establish an electrostatic gradient that
facilities the entry of iron at the three-fold symmetry channel,
as well as exit of iron from the protein via the four-fold
channels[35]. Additionally, there are divalent cation binding
sites present at the three-fold symmetry which help attach the
incoming iron ions to the proteins[34]. However,
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Figure 1: A representation of protein structure and the iron regulation mechanism in ferritin. (a) Schematic of ferritin protein
with the three-fold and four-fold channels allowing the entry and exit ofiron ions inythe proteins (Adapted from Ref.[29]).(b)
Biomineralization process in ferritin occurs through a series of steps ‘as shown in (i) Iron oxidation which facilitates the
conversion of Fe** iron species to Fe?* form. An intermediate calledsm. 1,2 peroxodiferric complex(2Fe* + O, 2 Fe**-0-0O-
Fe’")[134] is formed during this process. (ii) Water reacts with /1,2 peroxodiferric complex to recycle hydrogen peroxide:
(Fe**-0-0O-Fe’*'+H,0 > H,0x+Fe’-0-Fe’")[134] for the next series of reaction. The (iii) ferrihydrite pre-nucleation clusters
formed move towards nucleation site for minerization to form fully grown:(iv) ferrrihydrite like crystal. (c) Schematic showing
the degradation of the protein shell by lysosome which can trigger the iron release.(d)Schematic showing the differences in the
concentration of iron within and outside the protein which can trigger iron release.(¢) Mechanism of iron removal by direct
chelation where iron is released in the form of Fe*'/ionsswhich was proved via in vitro biochemical experiments.(f) Schematic
showing the possible mechanism of iron release by indirect chelation where the reduction of Fe** to Fe?* ion species is facilitated

before iron chelation.
unlike three-fold symmetry channels, there are no binding
sites at the four-fold symmetry channels[34]. The,intricacy in
the structure of the protein not only contributes 0 the function,
but also maintains stability of the protein at extreme physical

1.1 Biomineralization in ferritin

Biomineralization in mammalian fertitin happens through
a series of steps led by H- and L- subunits in the protein. The
ferroxidase center in the H- subunits consists of four helical
bundles of amino acids[31] which initiate the first stage of
biomineralization by converting the incoming Fe?* ions to Fe**
form (Figure 1b-i). The conversion of ferrous form to ferric
form of iron is facilitated by the oxygen and H,O; present in
the buffer solution within/the protein[36]. The oxidation of
iron can be identified by.observing the blue peroxide
complexes (A max # 650nm) through UV-Visible spectroscopy
measurements[26].The formation of complex reactions can
also be verified “bymwRaman spectroscopy, stopped-flow
kinetics, Mossbauer spectroscopy, and extended X-ray
absorption | \fine structures (EXAFS)[26].The peroxide

and chemical conditions such as temperature, pH, and other
chemicals[5].This flexibility in the protein structure helped
understand the biomineralization and demineralization
pathways through several chemistry-based experiments.

complexes are formed as a result of conversion from first
formed intermediates to more stable p-1,2 diferric-peroxo
complex (Figure 1b-ii)) or differic-oxo/hydro-mineral
precursors[36,37]. H>O, is conserved during this reaction, in
order to be used for the next set of redox reactions[36].The
thus formed diferric-oxo/hydro-mineral precursors (Figure
1b-iii) move towards the interior of the protein, where the
nucleation is facilitated by the L- subunits (Figure 1b-
iv)[26].At the onset of iron nucleation, the catalytic reactions
are translocated to the surface of the already formed iron
core[38].This is also supported by the recently published
article which suggests that hydrogen peroxide induced
oxidation occurs at the beginning of biomineralization, where
there are fewer than 500 iron ions in each apoferritin[39].
However, with increase in the iron concentration, the iron ions
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deposit directly on the surface of the core where oxidation is
favored[39].

The presence of phosphate in the core also dictates the
iron binding and accelerates the oxidation processes[40].
Although it was suggested that phosphate bridges the iron core
with the apoferritin[41], it was also shown that the absence of
phosphate does not prevent the formation of iron core in
reconstituted ferritin[42].Meanwhile the source of phosphate
was questioned. Experimental evidences showed that
inorganic phosphate was adsorbed by the ferritin after the core
formation[42].

There was a substantial interest in identifying the iron
oxides formed during the initial stages of biomineralization.
The results from the electron paramagnetic resonance (EPR)
suggested the formation of mononuclear Fe(III) species[43] at
the beginning of biomineralization. On the other hand,
electron nuclear double resonance (ENDOR) measurements
indicated mixed valence species[44] which was also supported
by Mossbauer spectroscopy[45,46]and EXAFS[46] results.
While the stages of iron nucleation mechanism are still not
understood, it should be noted that there are several sites
within the protein cavity available for iron binding[43].
Despite this fact, the iron ions selectively bind to the
thermodynamically favorable sites which can enable iron core
formation[47].

1.2 Demineralization in ferritin

Unlike biomineralization, demineralization in ferritin is
sparsely explored. The iron removal process is extremely:slow
unlike the case in biomineralization. It takes about a year to
equilibrate the iron in the human body[36]. With ferritins
holding up to 14% of iron in the form of minerals, it might be
difficult to remove iron within the timeframe,set for the
laboratory experiments. In fact, traditional chelatorsisuch as
deferoxamine, deferiprone, and deferasirox that are used to
treat iron overload conditions[48], remove iron at 15 times
higher rate as compared to the physiological \process[49].
However, the kinetics of iron release can/be different when
there is immediate need for iron imthe body: The pathway for
demineralization could be dependent on.cellular environment.
Due to this fact, understanding thesmechanism of iron release
in in vivo condition has been notoriously difficult.

In a physiological conditiony,iron release is facilitated
when there is low concentration of iron, in the cytoplasm.
Based on the in vitro \experiments, it is suggested that the
ferroxidase sites in_the H-subunit chains do not participate in
demineralization process,\yet there is a unique way by which
iron is released[50]. While the iron release mechanism is still
questioned, there are four main biochemical models that have
been proposed to explain the mechanism of demineralization.
The models are:

(a.) Degradation of the protein by lysosome can cause iron
release (Figure 1¢) [51]

(b.) Diffusion-based iron release triggered when there is
concentration gradient between the inner core of proteins
and outer cytoplasm(Figure 1d) [52]

(c.) Direct chelation of Fe’*" ions from ferritin (Figure le)
[53].

(d.) Indirect chelation facilitated by the reduction of Fe*' to
Fe** form and chelation of Fé** ions (Figure 1(£)) [54].

Of all the proposed models, iron removal by indirect
chelation is the most accepted model. This route/of iron
removal is supported by the presence,of naturally available
reducing agents such as ascorbic acids; glutathione, and
riboflavins[55]. It is also backed up byithe findings of the iron
chaperone protein, human poly(xC)-binding protein 1(PCB1)
expressed in yeast cells[56]. PCB1, an RNA binding protein
in cytosol and nucleus,jis‘present abundantly in mammalian
cells. In vivo experiiments suggested that PCB1 binds directly
to the iron core of the protein to facilitate release[56]. While
this theory is gonvincing in terms of the ability of PCB1 to
prevent free radicals, oné should also consider the effects of
PCBI1 at varied iton concentrations in the cytosol.

Several other theories such as subunit displacement[22],
diffusion, through gated pores[57], reduction potential that
facilitates “iron release from the protein shells[58], and
diffusion of ions through the channels[59] have been proposed
toounderstand the iron release process. While these theories
allownthe possibility to explore different pathways, the
presence of many different biological cues involved, makes it
challenging to understand the process. Advancements in the
characterization techniques and ability to detect multiple
biological events simultaneously at nanoscale resolution
would perhaps help better understand the processes.

2. Ferritin Sample Preparation Techniques for TEM
Studies

Like any other biological material, ferritin protein
contains water molecule surrounding them. To be able to study
the ultrastructure and chemistry via electron microscopy, there
is a need to remove the surrounding water, so that electron
interaction with the sample can be facilitated[60]. Likewise,
biological materials exhibit very poor contrast due to the
presence of lighter elements. Despite the fact, it should be
noted that the dense iron oxide core in ferritin proteins is
visible without staining[22].

2.1. Fix and staining method: The C-TEM sample preparation
is designed such that, all the specimen related challenges are
taken into consideration. The preparation techniques involve
tedious processes that includes chemical fixation with
glutaraldehyde (GA) and osmium tetroxide, dehydration,
staining, and freeze-drying (as shown in Figure 2(a))[22].The
chemical fixation is carried out to preserve the protein
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structure, while the other steps are incorporated to make thin
sections, increase the contrast, and improve the stability of the
proteins[22]. Even though these processes can help image
ferritins successfully via TEM as well as scanning electron
microscopy (SEM), the observed structures can also produce
several visual artifacts. This was evident especially during the
heavy metal staining processes which include the usage of
uranyl and lead salts[61]. The granular deposits produced by
2.2. Cryo-EM method: The evolution of Cryo-EM reformed
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these salts, and also the ability of the salts to penetrate the
protein shells defined the morphology of ferritin[22]. On the
other hand, the freeze-dried ferritin proteins produced phase
granularity as a result of cracks in the metal coating[62]. Not
to mention, the thin sectioning of the sample or negative
staining also produced artifacts which made it difficult to
analyze the iron core of ferritin[22].

better quality structural information from  frozen' sample
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Figure 2: Various TEM sample preparation techniques adapted to study the structure and chemistry of ferritin proteins. (a)
Conventional TEM based sample preparation technique which involves series of chemical treatment to fix and stain the ferritin
sample. (b) Stages involved during the CryoEM sample preparation (Adapted from Ref.[135]) (c) (i) A schematic that depicts the
Si3N4 based liquid cell setup with inlet and outlet fluid lines that can enable dynamic as well as static imaging (ii) Visualization
of ferritin proteins in liquid state encapsulated within two layers of silicon nitride membrane either found as free floating protein
or bound to one of the layers of Si3Na membrane (Adapted from Ref.[14]). (d) Schematic showing the step-wise procedure to
synthesize GLCs that can be used to studyferritins in its native liquid state (Adapted from Ref.[17]).

the previous techniques that were used to prepare hydrated
biological sample[63].Cryo-EM. based sample preparation
eliminated the conventional,samplespreparation steps, while
also providing hydration necessary tonkeep the biological
samples wet[63,64]. Typically, Cryo-EM samples are
prepared by rapid freezing, such that the surrounding water
converts into vitreous ice (Figure 2(b)). It should be noted that
the freezing rate of ~10° %C/s enables vitreous ice formation
instead of crystalline ice[65], thus preventing the occurrence
of phase granularity[22].Although it is challenging to observe
the protein'shell without staining, it is plausible to extract

[64,66—68].

Even though Cryo-EM provides opportunities to
study the structure of ferritins at high resolutions, there are still
challenges, while using this technique: (1) specific
instrumentation needs during sample preparation and
imaging[13]; (2) the sample preparation techniques and
cooling rates play an important role to preserve the sample
from crystalline ice formation. Several experiments and
extensive training are required to obtain impeccable
results[65]; and (3) studying the dynamics of the protein in
real-time is challenging considering the short reaction time of
different experiments. It should also be considered that
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proteins endure in the human body at 37°C, in contrary to
Cryo-EM based techniques which require the sample to be
maintained at temperatures below -135°C. While the ability
of Cryo-EM to retain the native ferritin structure is still
debatable, X ray cryo-crystallography results indicated the
need for hydration forces to keep the protein stable[69]. In the
same work, it was reported that, frozen vitreous ice being inert
not only affects the stability, but also interferes with the
structural ordering of the proteins[69]. The intercalation of the
water molecules with the protein’s inner cavity can alter the
protein chemistry while increasing the density[70].

2.3. Liquid-cell TEM methods: A growing interest and a need
to study the dynamics of biological specimens in real-time
enabled the invention of liquid cells-based technique[71].At
first, commercially available Si3Ns was used to develop
spacers and chips which can be placed on top of each other
with a minimum distance of 50nm. The biological liquid
samples were placed in between the SisNs membrane[72].
These chips can be accommodated in a specialized fluid cell
holder which can also flow liquid through the sample (as
shown in Figure(2c-i). This technology helped visualize the
dynamics of ferritin molecules for the first time Figure(2c-ii),
while maintaining the native surrounding liquid[14,73].
Despite a huge success while imaging biological specimens in
liquid, one should also consider the signal-to-noise (SNR)
ratio. The ~150-200 nm thick SizN4 liquid cells might
compromise the resolution while imaging the ferritin core of
diameter ~5-6 nm. In the GLC technique, the Van der Waals
interaction between two graphene layers facilitates the
wrapping of the biological specimen with surrounding liquid
tightly[17]. The thus formed liquid cells help retain the native
structure of the ferritin while offering superior spatial
resolution[17]. The ease in the sample preparation (Figure
2(d)), and the flexibility offered in imaging the liquid samples
with any inexpensive TEM makes it feasible for any kind“ef
experimentation needs. There are different methods adapted
in the literature[19], by which GLC samples can be
prepared[74]. Direct graphene transfers on the grid[17,18,75]
or grid-on-grid sandwich techniques[15,16,76,77] “are( the
most applied techniques to handle biological samples.
Nevertheless, considering the size of ferritin protein, using
GLC-TEM technique to study protein’s structure'and function
is advantageous over other techniques 'to obtain qualitative
information. With several opportunities and challenges that
exist in the sample preparation methods, the nature of the
experiment will determine the kindvof techniques.

3. Morphological Studies (of the Iron Oxide Core in
Ferritins

The irregularity in the arrangement-<of iron oxide crystals
during iron nucleation, as well as the number of iron atoms in
a given ferritin can influence /the formation of core with
different crystal struetures. Understanding structure of ferritin
Although numerous experiments led to the identification of
crystallinity of the core (discussed in Section 4), there were

core could provide insights on the biomineralization process,
as well as serve as a biomarker to draw a comparison between
physiological and dysfunctional ferritins.

The structure of the iron core was first considered to
be made up of spherical micelles arranged in four different
quarters ~ with each  micelles  measuring ». about
27A[78,79].Similar substructures were alsomobserved in
ferritins present within the thin ultramicrotomy cell
sections[80].Based on the observation of the substructures in
the bright field TEM image, and the possibility. of random
orientation of the core on the carbon film, the core was
considered to have fixed numbetr of micellés placed in
geometric positions forming a defined pattern[81].Models
were constructed based on the substructure of the iron core
and it was proposed that there were six micelles arranged
sequentially in octahedron shapes[79,82,83].However, these
models were not convincing as seme of the core structure did
not have regular substructures (Figure 3(a))[83] while some of
the cores showedysmore B than 6  sub-structural
micelles[84].Whilemone of the.models could account for the
entirety of ferritin core structures, Haydon considered the core
substructures to'be an effect of artifact produced during the
phase contrast and diffraction contrast of the bright field
imaging[85].Hayden’s experiment was initially
questioned[86,87], but later accepted when it was imaged
using ’special support films with low  phase
granularity[88,89] . From the results, it was concluded that
ferritin’s core Jis a dense material without any substructures
until'the evolution of dark field imaging of ferritin core[90].

Thedark field imaging mode helped to resolve the
structure of the core[91].At electron acceleration voltage of 3
million volts, the granularity of the core began to appear in the
images. From those images, it was understood that ferritin
mineral core is subdivided into several discrete granular
crystal structures[83]. Then the voltage of the microscope was
fixed to 50-100kV to avoid the interference of several Bragg’s
reflection that would appear due to the crystal orientation[22].
The outcome of this work suggested that some of the cores
exhibited several small crystallites formed as a result of
nucleation of small groups of iron atoms[83].In recent times,
STEM imaging offers superior contrast and resolution in the
HAADF imaging mode due to the sensitivity to the atomic
number (Z-contrast) of the element and the thickness of the
sample. The image intensity in HAADF is proportional to the
atomic number following: I @ tZ? where I is the intensity
from the STEM-HAADF image, ¢ is the thickness of the
sample, and Z is the atomic number of the sample[92]. The
contrast of the iron oxide core could be improved significantly
by imaging human liver ferritins via STEM-HAADF detector
through which diffraction contrast could be eliminated[93].
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Figure 3: TEM and STEM studies showing different morphologies of iron gxidecore in ferritin.(a) Dark-field TEM image of
ferritin showing the irregularities that exist in the core structure (Scale:100nm) (Adapted from Ref.[83]) (b) STEM-HAADF
image showing the occurrence of different morphologies such as doughnut, spherical and c-shaped substructures(Scale:5nm)
(Adapted from Ref.[96]). (c) The different morphologies of the iron core,and the ¢orresponding number of iron atoms in each
of the morphologies of ferritin via the aberration corrected S/TEM (Adapted. from Ref.[98]).(d) A model(figures (i),(ii),and
(iii)) explaining the formation of iron core inside the protein shell based on the morphology exhibited in the STEM-HAADF

image in figure (iv)(Adapted from Ref.[93]).

still interests in understanding the reason for several small
clusters within the protein.

Several possibilities were considered to elucidate the
occurrence of substructures in ferritin: (a) The protein shell
with specific inner architecture provides explicit nucleation
sites for the mineral growth. The minerals gceupy these sites
randomly and grow in any direction[94]. (b) The:number of
nucleation sites and the positioning of the eight hydrophilic
three fold channels (channels for the iron entry) determine the
morphology[93] while the periodic arrangement ofcrystals
and stacking order can be attributed to the cubic.symmetry of
the structure[1,95]. This was also supported by 24-n
nucleation model, proposed by Lopez-Castroetal.[96], which
suggests that human spleen ferritin, (HSF) encompasses
different morphologies because.of the higher ratios of L/H
subunits, which correspond to/the number of nucleation sites
in L subunits. On the other/hand, with higher ratios of H/L
subunits in human heart ferritinny(HHF), there are reduced
numbers of nucleation sites (n). With 24 subunits that exist in
the protein structure, the/ morphology of the iron core is
determined by 24-n subunits.available for nucleation of iron
(Figure 3(b)). (c) The stages of biomineralization and the
number of iron atoms present at each stage could contribute to
different substructures. This theory was also supported by
counting the'number of iron atoms present in the iron core via
the STEM-HAADEF image intensity measurement (Figure
3(c))[97,98]and. EELS quantification (discussed in Section

5)[20,93797].The integrated signal intensity from the HAADF
detector is directly proportional to the intensity of the particle
given by the equation Nieensity = K. Sintensity-where N
denotes to the number of iron atoms and S denotes to the
mtegrated intensity[99]. It should be noted that the
assumptions made in these studies consider that the iron oxide
core is made of a single crystalline phase ferrihydrite.

The STEM-HAADF could help model (Figure 3(d-
1,i1,ii1) the mechanism of iron biomineralization based on the
morphological evolution of the iron core (Figure 3(d-iv))[93].
It was suggested that iron ions enter the protein through three-
fold channels and oxidize at specific sites forming the mineral
core. Thus, the formed mineral core is closer to the exit
channels. With the protein’s capability to absorb more iron
ions during biomineralization, the newly entered Fe' ions
oxidize on the surface of the previously formed mineral core.
This results in the formation of the iron nucleus prematurely
at different nucleation sites. The low thermodynamic stability
of the iron nucleus results in very low energy. Consequently,
when the protein continues to absorb more Fe?' ions, the
previously formed iron nucleus competes for the incoming
Fe?" ions, leaving the center of the core hollow. While the
proposed mechanism, explains the formation of a morphology
observed via the TEM, it does not account for all the
morphologies that exist in the protein core. Recently, our
group studied the morphologies of HSF and HHF and it was
observed that both, HSF and HHF exhibit different
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morphologies [134]. While the 24-n model seems logical, it
does not help provide detailed explanation for the observed
morphologies in HHF. The development in the in-situ
microscopy and spectroscopy techniques can help explain the
occurrence of different morphologies in the future.

4. Crystal Structure/Phase Determination of Ferritin’s
Iron Core:

Several analyses and models were proposed to understand the
structure of the thus formed ferrihydrite core[100-102].
Characterization techniques such as high resolution-TEM
(HR-TEM) imaging, microdiffraction[103],and electron
diffraction (ED)[104] were employed to validate these models.
Of all the models that were proposed in 1960s, Towe and
Bradley’s work[82], was widely accepted. This model
elucidated the structure in terms of lattice constants, iron

coordination number, and position of the atoms. From the
electron diffraction analysis, it was suggested that the mineral
core in ferritin resembles natural mineral ferrihydrite (5
Fe,03;.9H,0)[82] with a =5.08A, and ¢ =9.4 A. Further, the
4.1 A and 2.7 A lattice spacing in the HR-TBM image of
human ferritin iron cores (Figure 4(a)) correspondedito (100)
and (110) plan of ferrihydrite[105].Although.it-was proposed
that the structure of ferrihydrite resembles hematite (a-
Fe,03)[106], it should be noted, that hematite exhibited
additional diffraction lines at 3.67A and 2.69A. due to the
rhombohedral arrangement of Fe' ions[107].Moreover, in
ferrihydrite structure, Fe’* are in(octahedralyCoordination,
placed between 4 oxygen layers spaced 2.35 A apart[107].

Further, through the d-spacings, and lattice
orientation obtained from electron microdiffraction
studies[108,109],and

d
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Figure 4: TEM studies to determine the (crystallographic information of the iron oxide core in ferritin. (a) HR-TEM image of
heat-treated human ferritin with lattice spacings of 4.1 A and 2.7 A indicating (100) and (110) planes of ferrihydrite. The arrow
in the figure indicates the discontinuity in the lattice plane(Scale: 1nm) (Adapted from Ref.[105]). (b) Dark field TEM image of
horse spleen ferritin with the arrows indicating the stacking fault in the crystal core structure (Scale:5nm) (Adapted from
Ref.[83]). (c) Ferritins extracted from. the human brain of the patients who suffered from progressive supranuclear palsy (PSP)
and Alzheimer’s disease (AD) show (1) the HR-TEM image of the iron core in ferritin, (ii) Fast Fourier transform (FFT) of the
core which depicts the crystalline ferrihydrite structure, (iii — vi) Electron nanodiffraction studies of the ferritin extracted from
the pathological conditions which indicates (iii) [100] orientation, and (iv) the [112] orientation of magnetite phase. The defects
in the crystal structure in(111) planes with/a = 4.3 A are depicted in (v) and (vi) as continuous lines are observed in (v) [100]
orientation and (vi) [110] orientation of the face-centered cubic (fce) plane (Adapted from Ref.[116]). (d) Schematic of the iron
core exhibiting the polyphasiemature with different phases of iron oxide in the core (Adapted from Ref.[20]).(e) HR-TEM image
and the corresponding FFT+of human heart ferritins indicating the presence of (115) and (114) plane of ferrihydrite (Scale: 2nm)
(unpublished work).

HR-TEM studies[110], it was substantiated that the iron oxide
core resembled. ferrihydrite. However, the HR-STEM image

reflected different structures [83,91] unlike all the proposed
models[107,111,112].Meanwhile, dark field image also



Page 9 of 18

oNOYTULT D WN =

Journal XX (XXXX) XXXXXX

AUTHOR SUBMITTED MANUSCRIPT - JPhysD-120382.R2

Narayanan et al

showed stacking faults (Figure 4(b)) in the crystal structure
due to the irregular occupancy of the crystals in certain lattice
planes[83]. This observation was also supported by the diffuse
diffraction rings[83].It was later observed that the lattice
defects in the crystal behave like an interstitial site to deposit
phosphate. It should be noted that the iron oxide in ferritin is
not completely crystalline. Phosphate dictates the crystallinity
of the core[110].With higher ratios of phosphate present in
certain invertebrates[110], the iron core exhibits no signs of
crystallinity. However, mammalian ferritins have lower
percentage of phosphate, which results in crystalline
core[110].

The work discussed thus far reported ferritin
structure, however the structural-functional relationship was
missing. For instance, Towe and Bradley’s model[107]
suggested that one of the lattice planes represent irregular
occupancy of iron. Although this model was widely accepted,
one can question the iron uptake and release mechanism with
such irregularities in the core structure. Also, one of the
biochemical experiments[113] showed biphasic kinetics
during the release of iron from ferritin, which supported the
Towe and Bradley’s model. However, in another study, it was
proved that it is possible to reduce Fe*" form of iron to Fe?"
form in ex-situ condition using a protein called as
dihydroflavodoxin[114]. There were questions raised by the
scientific community about the composition of the iron core in
ferritin, as ferrihydrite belongs to a labile form of iron oxide
mineral and a precursor of hematite. The iron core was studied
carefully to learn the relationship between Fe?" and Fe** form.
It was then detected that Fe?* and Fe*" iron ions coexist during
the iron uptake by ferritins[43,45]. While the significance of
studying the function came to light, one of the major turning
points was the findings by Quintana andwsher
coworkers[115,116]. They reported that physiological ferritin
is composed of different iron oxide phases such as ferrihydrite,
hematite, and cubic phases of magnetite
(Fe304)/maghemite(y-Fe,03) along with stacking faults in the
crystal structure (Figure 4(c)). Through HR-TEM and ED, the
compositional  difference between physiological »w/and
pathological ferritin was studied[116].Further through
analytical electron microscopy and secondary ion mass
spectroscopy (SIMS), the same group sreconfirmed the
presence of different phases of iron oxides in/pathological
ferritins[117]. The existence of polyphasic iron oxides (Figure
4(d)) in the core was also supported, by)Galvez and his
coworkers who reported the altetations in the percentage of
iron oxide phases during the removal of iron[20]. The
presence of different phases/of iron oxide was also supported
by the HR-TEM and the corresponding FFT, which indicated
the presence of magnetite and maghemite[99].

On the other, hand, Michel) and his coworkers
observed a smooth transitionfrom 2-line ferrihydrite to 6-line
ferrihydrite during the iren loading process of ferritin from
500 iron atoms t0,3000 iron atoms[102]. Based on this total
scattering datas they also suggested structural models for the
ferrihydrite/ in ferritin[102]. This study supported the
existence of single phase crystalline ferrihydrite form of iron
oxide in ferritine:The HRTEM image and the corresponding

FFT obtained from the iron core structure of human heart
ferritin also exhibited ferrihydrite structure (Figure 4(e)).
Since, it is challenging to obtain all the crystallographic planes
through HR-S/TEM images, the information obtained through
this study was not reliable.

5. Chemical Characterization of Iron Oxide Core in
Ferritin

In spite of recent progress in the use of  structural
characterization techniques such as,Mossbauer spectroscopy,
EXAFS spectroscopy, and X-ray absorption, néar edge
structure spectroscopy (XANES)[30], these characterization
techniques have some limitations to fully resolve the iron
oxide core of ferritins. Due to the nanoscale size of iron oxide
core, there is need for chemical analysis,with high analytical
precision and high spatial resolution. Better detectors for X-
ray dispersive spectroscopy. (EDS) Jand spectrometers for
electron energy loss spectroscopy,(EELS) have enabled us to
study the chemical signatures at atomic scales[17,75].

Even though both'EDS and EELS can be used to study
the chemical composition of an element, EELS have an ability
to provide fingerprint of the different states of the same
element. Further;, the benefit of using EDS and EELS
compared to other techniques, is their capability to probe
individual /proteins as against providing a quantitative
information[20].While¢ EDS was utilized to identify the
presence of'iren in the core[117,118], EELS was first used to
studysthe distinetion between the iron cores extracted from a
healthy | brain) ‘and the brains affected by progressive
supranuclear palpsy (PSP), and Alzheimer’s disease[115]. It
was found that the iron core of dysfunctional ferritin had
higher ratios of Fe*Fe3* as compared to physiological
ferritin[115]. This study facilitated an understanding of
dysfunctional ferritins and its contribution towards
neurodegeneration[115].

Further, several groups were inspired to study the
energy loss near edge structure (ELNES) of the iron
core[93,119]. With the ELNES, one could determine the local
structure and the bonding environment within the vicinity of
the iron ions. A comparison of ferritin obtained from liver
biopsy samples with the synthetic 6-line ferrihydrite(6LFh),
elucidated the differences that exist in the chemical
composition of both the structures (Figure 5(a))[120]. It was
shown that the iron core in ferritin has significantly higher
ratios of Fe?* /Fe**, as compared to synthetic
ferrihydrite[ 120].This study instigated the need to study the
redox reactions within the ferritin proteins during mineral
formation and disassembly.

Galvez et al.[20] were the pioneers to study the
chemical compositional changes in ferritin during the process
of demineralization by utilizing EELS spectroscopy
technique. In this study, they removed the iron from ferritin
gradually. The iron oxide phases of ferritin during each stage
of demineralization was speculated[20]. It was observed that
ferritin with 500 iron atoms had higher ratios of Fe?* /Fe’*,
while the fully grown ferritins showed higher ratios of Fe**
/Fe*" [20] . They also showed the differences in the oxidation
state in the core and the surface of ferritin (Figure 5(b))[20].

There have been some efforts as well to quantify the
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iron oxides in ferritin via the EELS technique (Figure
5(¢))[93,97,99]. By using the spectrum imaging technique, the
areal density of the atoms (N atoms nm2) was calculated using
I Fey,s (B.4)
Il(BrA)‘TFeL23 (B.4)
integral counts under the Fe L3 ionization edge, /; is the total

the equation: N = where, IFeL23 is the

a b

accommodates 320 + 60 iron atoms.

6. The Effect of Electron Beam

With a possibility of iron transformations that can happen with
intense electron dose, one should always_consider the
prospects of artifacts that can be produced while
characterizing the ferritin’s iron core crystal structure. Pan et
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Figure 5: Advancement in EELS spectroscopy to characterize, ferritin (a) Comparison of ELNES of ferritin obtained from liver
with 6LFh indicated the difference that exist in the iron core structure of ferritin (Adapted from Ref. [120]). (b) EELS spectroscopy
acquired from a single ferritin protein indicates the change in the oxidation state while measuring it on the surface and the inner
core of the protein (Adapted from Ref.[20]). (c) EELS spectrum mapping (ii) acquired from a human liver ferritin (i) shows the
low loss(iii) and the high loss spectrum(iv), and the corresponding signals. This study enables the quantification of iron oxide in
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ferritin (Adapted from Ref. [97]).

integral counts of the spectrum in the zero loss and low loss
region, OFey,, is the partial ionization cross section of Fe L3

edge obtained after Hartree Slater analysis, [ is'the collection
angle, and 4 is the energy integration window. The addition
of the number of iron atoms under each pixel, (Figure Sc-
ii,ii1,iv) helped determine the total number” of iron atoms
(Figure 5c-v). From this technique, it was suggested that most
of the ferritins with fully grown dron,core house 2100 + 400
iron atoms, while the partially \biomineralized ferritin

In the first study [121],human liver ferritin (HLF) was
compared with 6-line ferrihydrite. Tt \ was shown that the
electron dose required to reduce.iron oxide in ferritin is 100
times lower than electron.dose required to reduce the synthetic
ferrihydrite[121]. In the same ‘work, they also showed the
conversion of substantial amount of octahedral coordinated
iron to tetrahedral coordination during excess of electron dose
as shown in Figure 6(a). ‘With an accumulated electron dose
of 10 electrons/nm?, the reduction of Fe3* to Fe?* ions were
observed (Figure 6(b))[121].

In the subsequent studies, through ELNES studies, the
same group demonstrated that the influence of electron dose

10

al demonstrated the effect of electron dose in ferritin in three
independent studies[93,119,121] which suspected that the
earlier data presented by Quintana and Cowley[116], and
Galvez et al.[20], could be an effect of artifacts. The results of
Pan and his coworkers suggested that the presence of
magnetite and maghemite phases in the core could be a
consequence of electron beam facilitated iron transformation
which went unnoticed in the former studies.

results in consistent loss of iron coordinating ligands. In this
study, they considered Iron phosphate dihydrate
(FePO4.2H,0) and 6LFh as a reference material. Similar to the
earlier studies, they showed that the valance state of iron
transformed from Fe’" to Fe?* form with increase in electron
dose of 3 X 10° electrons/A? [119]. They could observe the
behavior of electron induced beam transformation processes
which consisted of two pathways: (1) The direct reduction of
octahedrally coordinated Fe* ions to Fe?" ions; and (2) The
conversion of octahedral Fe** to tetrahedral Fe** at electron
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dose of about 10° electrons/nm? followed by the change in the
valence state of iron with accumulating higher electron doses.
However, it was interesting to note that the ratio of Fe3*/ Fe?*
remained unaltered even with differences in the electron

a q b

fluence (Figure 6(c))[93,121]. It should also be noted that the
current density did not have any contribution in the iron
transformations of the core[119].
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Figure 6: The electron beam induced changes in the iron oxide core of ferritin. (a). Change in the octahedral coordination of
Fe*"ions in human liver ferritin due to the increase in the electron dose (Adapted fiom Ref.[121]). (b) The direct conversion
of iron oxides from Fe' to Fe?* form as a result of increase in the electron dose (Adapted from Ref.[121]).(c) The ratio of
integrated areas under L; and L, edge of iron core of ferritin remains unchanged with the increase in the electron fluence

(Adapted from Ref.[119]).

While the effect of electron dose can play a role, the
sample preparation techniques are also important. With a
protective layer such as GLCs sandwiching the proteins, itds
expected that the effect of electron beam induced radiation is
mitigated[76]. However, it is still desirable to maintain low
electron fluence to prevent the liquid in the GLCs from drying.

7. Future Directions

The progress in microscopy and microanalysis techniques has
helped better understand the structure and, the function of
ferritin. With technical advancements and futuristic work, the
possibility of using electron microscopy in a elinical set-up
can become reasonable. The section below suggests some of
the techniques that can be utilized for better understanding of
ferritin proteins.

7.1. Studies of Ferritins in Hydrated State:/The conventional
TEM based sample preparation techniques involved drying
and dehydration of the protein sample, which might introduce
artifacts and thus alter the structure. The.need to maintain the
protein in hydrated state necessitated.techniques such as Cryo-
electron microscopy (Cryo-EM) and liquid cells. One should
note that introducing thick liquid samples in the S/TEM might
affect the spatial, and the spectral réselttion while imaging the
iron core which is less/than 10nm in size: This is evident in
Cryo-EM[22] as well as Si3N4 based liquid cells[14,73]. In two
independent studies; James Evans and his coworkers imaged
ferritins via in-situ liquid cell electron microscopy[l14]and
dynamic liquid cell TEM[73]. While the spatial resolution
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reported.was not enough to observe the lattice spacings of the
iron oxides'in ferritin, it should also be noted that there are no
studies thus far that report the EELS based chemical analysis
of ferritiniin Cryo-EM or Si3N4 based liquid cells.

The invent of graphene liquid cells (GLCs) (Figure
7(a)-1) revolutionized the technique of studying the chemistry
of ferritin with utmost resolution (Figure 7(a)-ii) while
maintaining the native liquid state[17]. GLCs were developed
to address the challenges faced by the community while
studying biological specimens via the SizsNs based liquid
cells[122]. Unlike SizN4based chips, the GLCs are composed
of few layers of graphene with the total thickness of ~1nm,
making it more electron transparent[122]. Further, the ability
of graphene to conduct and scavenge the incoming electrons
plays a prominent role in controlling the electron beam
induced damage[76]. Despite the fact, there are several
shortcomings with GLC-TEM technology: (1) The inherent
nature of graphene to hermetically seal the liquid pockets
without controlling the liquid thickness makes it challenging
to transfer the technical advancements achieved while
fabricating SizN4liquid cells[76]; and (2) The success in liquid
encapsulation depends on the techniques adapted to prepare
GLCs[74], as well as the specimens involved in the
preparation[76].

The GLC-TEM helped protect the integrity of the
protein samples while imaging, and spectral acquisition as
shown
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Figure 7: Future TEM directions for the studies of ferritins: (a) Liquid cell-TEM imaging and spectroscopy studies of
ferritins: (i) schematic showing ferritins encapsulated in GL{Cs; (ii) atomic resolution image of the iron core in ferritin via
GLC-TEM (Adapted from Ref.[17]); (iii) EELS mapping of ferritin in (it)idry and (iv) liquid state showing the integrity of
proteins in GLCs (Adapted from Ref.[17]).(b) Schematic showing:4D-STEM setup with the CBED image that can be
recorded to obtain 4D STEM image; (i) indicates the capabilityto determine the atomic composition of the MoS, and WS,
material (Adapted from Ref[125] ); (c) Schematic showing,(i) 3D\ electron tomography technique which can be utilized to
study crystal defects such as grain boundaries, dislocations and point defect at atomic resolution; (ii)) HAADF-STEM image
of Si02-ZrO2 oxide nanoparticles extracted from tilt series,that were used to 3D reconstruction of the image; (iii) Cross
section through the Z-sensitive volumes can help determine’the atomic composition of the material(Adapted from
Ref.[128]); (d) Integrated Raman spectroscopy and electron microscopy setup which can be utilized to study the
biomineralization in ferritin and protein’s conformational changes (Adapted from Ref.[133]).

in Figure 7(a-iii,iv)[17]. (Figure 7a- iii) represents,the EELS-
mapping of ferritin acquired via conventional S/TEM while
(Figure 7a-iv) represents the ferritin imaging via GLC-S/TEM
technique. From the nitrogen maps, it'can be.observed that the
structure of the protein is retained when imaged in liquid.
Further, in the same work, the structural ¢hanges in iron oxide
core while measuring it in /liquidy versus dry state was
reported[17].Recently, ourpgroup studied the chemical
compositional changes in the Hiand L rich ferritin via the
GLC-TEM [136]. The future is promising with the ability to
study the time-course assembly and disassembly of iron core
in ferritin via the GLC-TEM and monitoring the chemical
compositional changes via techniques such as EELS and EDS
that can provide qualitative information.

7.2. Studies of 4D-STEM on Ferritins: Phase contrast imaging
such as STEM is a powerful technique to study the weak
phases in any.biological material such as ferritin. The ability

to control the electron radiation, while being able to record
incoherent signals[123] has been a great advantage to study
the morphology as well as the crystal structure in ferritin.
Despite the advancements, there is still ambiguity while
identifying the crystallinity of the iron core in ferritin. The
complexity and chemistry that are confined to the local
biological environment play an important role in determining
the iron oxides. Advancements in STEM imaging techniques
such as 4D STEM can possibly identify the localized chemical
information by integrating with convergent electron beam
diffraction patterns (CBED) that are available during
scattering events (Figure 7b-i)[124][125].

The data acquired via the traditional STEM imaging
is confined to 2-D datasets with spatial information, while the
structural and chemical spectroscopy techniques such as
electron diffraction, EDS, and EELS contribute to the 3-D
datasets[126]. The ability to combine spatial resolution along
with spectral or diffraction information during each STEM
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acquisition can improve the Z-contrast imaging along with the
analytical signals (Figure 7b-ii). Further, aberration corrected
S/TEM can be made use of, to focus the probe below A
scale[126]. Although, 4D STEM has the above-mentioned
advantages, there is still a need to improve the raster scanning
rates and frameworks to store large datasets[126]. Above all,
there is a need for faster cameras to record the biological
events that occur within few seconds[123].With the progress
and developments in this field, it should be realistic to identify
the local atomic configuration of ferritin’s iron core via the 4D
STEM.

7.3. 3D Atomic-Resolution Electron Tomography of Ferritin:
Studying the atomic structure and morphology of the iron core
in ferritin could reveal many details such as atomic
composition, bonding properties of the material, stacking
faults, and iron nucleation mechanism in ferritin. Although the
knowledge one could gain from atomic structural studies is
alluring, the information gained from traditional aberration
corrected S/TEM is limited to observing 2-D structures[127].
Single-particle CryoEM was developed with an intent to study
the 3-D structure of biological materials, however this
technique can only be applied to study materials with similar
atomic configuration[127]. This is a major setback while
studying the iron cores of different ferritins which can have
random morphologies and atomic configurations.

With STEM-based tomography, it is plausible to
study the 3-D structure of ferritin’s iron core, while evading
the diffraction and the phase contrast produced by any
biological sample. The rotation of the sample along the tilt
axis helps produce a 2D image at different tilt angles, which
is further processed to produce a 3-D image (Figure 7(c-i)).
Further, with 3D reconstruction of the HAADF-STEM image
( Figure 7 (c-ii)), it is possible to determine ‘the “atomic
composition based on the Z contrast (Figure 7(c-iii))[ 128]alt
should be noted that, the morphology of the,sample plays an
important role to provide qualitative information during this
procedure[127]. While most of the samples cansbe tilted only
up to + 79°, one can tilt the sample with 360° of rotatiom:with
needle shaped specimens[129].

Along with the features thaty 3-D  electron
tomography offers, one should also [consider\the sample
preparation techniques. An intense electron beam can cause
structural changes in the protein” shell “as well as iron
transformations in the core of the'ferritin. A combination of
low voltage techniques and encapsulation of the ferritin
proteins in GLCs could help mitigate the radiation damage,
while building the 3-D atomie structures[130].

7.4. Studies of Simultaneous in-situ Raman and TEM on
Ferritins: The process of biomineralization and
demineralization in.ferritintissmore than a series of chemical
reactions. The unique phases of iron oxide crystal core formed
in ferritin, as well\as protein’s role in the mechanism of iron
nucleation remains unfolded. It is interesting to observe that
the protein ghell notionly behaves as an iron reservoir but also
dictates the type of iron oxide minerals formed[131].In the
absence of protein; the iron transformations are meant to occur
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in a different way. The formation of goethite (FeOOH) phase
is more pronounced as compared to the ferrihydrite and
hematite phase[131].

While the variation in the mineral phases exists in
different organ ferritin, it would be interesting to study the
protein structural changes and its contribution ‘towards
biomineralization. Also, some of bacterial ferritins are known
to  exhibit conformational changes. during the
biomineralization and demineralization . process[132].A
combination of light-based Raman spectroscopy.and in situ
electron microscopy (Figure 7(d))[133] can help observe the
conformational changes in the protein structure while also
probing individual proteins to study the chemistry. The
correlative technique can improye the quality of information
one can obtain through liquid microscopy studies as it can help
better understand the structural-functional relationship.
Further implementing , a “less.<expensive light-based
spectroscopy device along with aberration corrected electron
microscopy can help identify biomarkers during pathological
conditions. With /machine_learning, one can train the
inexpensive device to beiable to recognize the biomarkers in a
clinical set-up.
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