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In this work we consider a new class of oscillatory instabilities that pertain to
thermocapillary destabilization of a liquid film heated by a solid substrate. We
assume the substrate thickness and substrate–film thermal conductivity ratio are
large so that the effect of substrate thermal diffusion is retained at leading order in
the long-wave approximation. As a result, the system dynamics is described by a
nonlinear partial differential equation for the film thickness that is non-locally coupled
to the full substrate heat equation. Perturbing about a steady quiescent state, we find
that its stability is described by a non-self-adjoint eigenvalue problem. We show
that, under appropriate model parameters, the linearized eigenvalue problem admits
complex eigenvalues that physically correspond to oscillatory (in time) instabilities
of the thin-film height. As the principal results of our work, we provide a complete
picture of the susceptibility to oscillatory instabilities for different model parameters.
Using this description, we conclude that oscillatory instabilities are more relevant
experimentally for films heated by insulating substrates. Furthermore, we show
that oscillatory instability where the fastest-growing (most unstable) wavenumber is
complex, arises only for systems with sufficiently large substrate thicknesses. Finally,
we discuss adaptation of our model to a practical setting and make predictions of
conditions at which the reported instabilities can be observed.

Key words: lubrication theory, Marangoni convection, thin films

1. Introduction
The tendency of thin liquid films to destabilize and form wavy patterns is an

important area of research for a wide range of applications. For some applications,
such as coatings and glass manufacturing, one may wish to operate under conditions
that avoid these instabilities. In others, such as multiphase heat/mass transfer
technology and nanoscale patterning of liquid metals/polymers, precise control of the
emerging wave pattern is of utmost concern. In either case, the parametric conditions
of interest can be determined, most simply, by applying the long-wave approximation
to the governing nonlinear equations, see Oron, Davis & Bankoff (1997) and Craster
& Matar (2009). In the long-wave approach, physical effects such as gravity, mean

† Email address for correspondence: wbatson@gmail.com

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

ew
 Je

rs
ey

 In
st

itu
te

 o
f T

ec
hn

ol
og

y,
 o

n 
30

 Ju
l 2

01
9 

at
 1

4:
36

:4
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://orcid.org/0000-0002-2156-0272
https://orcid.org/0000-0002-7783-2126
https://orcid.org/0000-0001-6966-9851
mailto:wbatson@gmail.com
https://doi.org/10.1017/jfm.2019.417
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Liquid films non-locally heated from below 929

surface tension, thermocapillarity, solutocapillarity and electromagnetism can be easily
be accounted for, and one typically obtains a single nonlinear partial differential
equation (PDE) for the spatio-temporal evolution of the local film thickness. This
method assumes the film dynamics is non-inertial and governed by a (first order in
time) nonlinear PDE.

The principal phenomenon that a single-equation long-wave model cannot describe
is the emergence of instabilities that are oscillatory in time, i.e. overstability (see
Nepomnyashchy, Velarde & Colinet (2001), chapter 5). Whereas single-equation film
models predict monotonic perturbations that grow or decay exponentially in time,
oscillatory instabilities can only be observed in systems that describe the interaction
between processes that occur on distinct time scales. Thus, oscillatory instabilities are
commonly obtained from Orr–Sommerfeld type analyses of governing equations of
motion that retain inertial effects and diffusive time scales. Wide-ranging examples
that highlight the emergence of oscillatory instabilities in fluid layers include work
by Sternling & Scriven (1959), Takashima (1981), Anderson & Worster (1996) and
Rednikov et al. (1998). A common theme to these works is the level of analytical
difficulty; each obtains a linear dispersion relation (describing system stability) that
is transcendental and implicit in the perturbation growth rates. Combined with large
parametric spaces and the fact that oscillatory perturbations necessarily reside in the
complex plane, concise description of the emergence of oscillatory instability can be
a challenging task. Alternatively, the long-wave approximation offers a convenient
means to couple free surface deformation to other time-dependent physical processes
of interest.

Several authors have investigated oscillatory instabilities of thin liquid films in
the context of the long-wave approximation. In many cases, e.g. Podolny, Oron &
Nepomnyashchy (2005) and Bestehorn & Borcia (2010), such instabilities originate
from the coupling between the local thickness and bulk concentration of a film
composed of a binary mixture. In addition to the bulk concentration dynamics,
Morozov, Oron & Nepomnyashchy (2014) investigated oscillatory instability with
the added effect of absorption/desorption kinetics between interfacial and bulk film
surfactant concentration. In other cases, oscillatory instabilities have been uncovered
in multiple stacked layers of films, as described theoretically by coupled sets
of film thickness evolution equations (Beerman & Brush 2007; Nepomnyashchy
& Simanovskii 2007). Multi-layer film configurations do not, however, guarantee
oscillatory modes: for example, such instabilities were not obtained by Pototsky et al.
(2005) who investigated the dewetting dynamics of isothermal, ultra-thin bilayers. Of
particular interest to the present work are oscillatory instabilities reported by Shklyaev,
Alabuzhev & Khenner (2012) in a model of thin-film thermocapillary destabilization
from below. While there are similarities between that work and the present, we point
out one important difference: in Shklyaev et al. (2012), the instability is driven by
imposing a heat flux at the film–substrate interface; instead, in the present work we
obtain oscillatory instabilities by coupling film dynamics to a thermally diffusive,
two-dimensional substrate. We also note that each of these works on oscillatory
instabilities of thin liquid films obtains low-order polynomial equations for the
perturbation growth rates (in contrast to the transcendental, implicit dispersion we
obtain in the present work).

The problem we investigate in this work is the deformational thermocapillary
instability. This classic long-wavelength instability was first introduced by Scriven &
Sternling (1964) and later verified experimentally by VanHook et al. (1997). In short,
thermocapillary stresses that destabilize the free surface are generated by heating
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a film from below (normal heating). For sufficiently thin layers, these stresses can
surpass capillary stabilization and deform an initially flat film. Recently, Dietzel
& Troian (2009) connected this mechanism with the formation of nanopillars
(∼10 µm spacing) on ultrathin (∼100 nm) polymer films. Continuing work on
thermocapillary patterning in (ultra)thin polymer films has been reviewed by Singer
(2017). A patterning application that directly motivates our study is pulsed-laser
dewetting of nanometric liquid metal films. Experiments by Trice et al. (2007)
demonstrated dewetting pattern wavelengths that were commensurate with the
predictions of long-wavelength thermocapillary modes. Driven by such results, several
workers have developed and investigated theoretical models for the pulsed-laser
process. Atena & Khenner (2009) augmented a long-wave theory with pulsed laser
irradiation to describe the thermocapillary dewetting of liquid cobalt on silicon oxide
substrates. Notably, they assumed that the substrate was thin, thereby ensuring the
model dynamics could be described by a (first order in time) single nonlinear PDE
for the film thickness. As a result, oscillatory instabilities do not arise in their model.

Recently, oscillatory modes for pulsed-laser thermocapillary dewetting of liquid
metal films were uncovered by Dong & Kondic (2016) and Seric, Afkhami & Kondic
(2018). These authors made observations primarily via nonlinear simulations of a
model that couples the film PDE to the full heat equation for the substrate. These
works have not precisely characterized the emergence of oscillatory instabilities,
in particular, because the task is further complicated by the parameter space that
arises for laser heating. Thus, in the present work, we investigate the emergence of
oscillatory instability for the simpler problem: a film heated by a thick solid substrate.
To do so, we initially follow the work by Saeki, Fukui & Matsuoka (2011, 2013)
that considered the linear analysis of a coupled film–substrate model, which induces
thermocapillary film deformation driven by laser heating. In the present work we
follow their asymptotic assumptions so that the full heat equation of the substrate
is retained at leading order in the long-wave expansion of the governing equations.
Effectively, we assume that the substrate–film thermal conductivity and thickness
ratios are large. Although we obtain a dispersion relation that is similar to that of
Saeki et al. (2013), it is important to note that they did not observe oscillatory
modes. This may be due to a limited examination of model parameter values in their
investigation.

The manuscript proceeds as follows: in § 2 we present the dimensional equations
of motion and boundary conditions for a deformable liquid layer heated by a thick
substrate. In § 3 we introduce a long-wave asymptotic expansion and derive an
evolution equation for the film thickness that is non-locally coupled to the diffusive
(time-dependent) heat conduction problem in the substrate. In this section we also
introduce a unique non-dimensionalization that casts the non-local model in terms of
four dimensionless parameters: (i) B, characterizing the mean thermal thickness of the
film; (ii) S , characterizing the thermal thickness of the substrate; (iii) C, characterizing
the imposed temperature difference; (iv) Q, depending only on material properties.
In the following section, § 4, we perform a linear analysis of the non-local model
and demonstrate that its stability is governed by a generalized two-point boundary
value problem that is not self-adjoint. Solution of this problem yields the (implicit)
dispersion relation that sets the course of investigation for the remainder of the paper.
In § 5 we characterize the root structure of the dispersion relation and introduce
the numerical continuation methods we use to track its roots as functions of the
perturbation wavenumbers. Then, in § 6 we classify the two characteristic pathways
by which oscillatory instability manifests itself. In § 7 we provide a complete picture
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FIGURE 1. (Colour online) Geometric sketch of the problem.

of the emergence of oscillatory instabilities within the considered parameter space.
Finally, in § 8 we discuss application of our model to practical settings and offer
suggestions for future work.

2. Dimensional equations
Here we introduce equations that describe the fluid and temperature dynamics of

the laterally infinite, two-dimensional film–substrate system depicted schematically in
figure 1. The film is composed of a Newtonian, incompressible liquid with average
thickness h, density ρ, dynamic viscosity µ, kinematic viscosity ν = µ/ρ, thermal
conductivity κf and thermal diffusivity χf . Neglecting gravity, we have

ρ (∂tv + v · ∇v)= −∇p +µ∇
2v, (2.1)

∇ · v = 0, (2.2)
∂tθ + v · ∇θ = χf ∇

2θ, (2.3)

where v ≡ {u(x, ỹ, t),w(x, ỹ, t)}, p(x, ỹ, t) and θ(x, ỹ, t) are the film velocity, pressure
and temperature fields, respectively. With ∇ = {∂x, ∂ỹ}, equations (2.1)–(2.3) govern
the evolution of these fields in time t on the horizontal range x ∈ (−∞,∞) and the
vertical range ỹ ∈ [0, h] where h = h(x, t) is the local, instantaneous film thickness.

The dynamics of this system is decoupled from that of the gas phase by assuming
that the ratios between the liquid and gas phase densities, viscosities and thermal
diffusivities are large. Accordingly, at the free surface, we have the kinematic
condition

∂th + v · ∇h = w at ỹ = h, (2.4)

which states that the speed of the free surface is equal to the velocity of the fluid.
Using

θh = θh(x, t)≡ θ(x, h, t), (2.5)

to denote the free surface temperature, the normal and tangential stress balances that
hold at the free surface are

pg − p + T · n · n = −2Hσ(θh) at ỹ = h, (2.6)
T · n · t =∇σ(θh) · t at ỹ = h, (2.7)
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932 W. Batson, L. Cummings, D. Shirokoff and L. Kondic

respectively, with gas pressure pg, rate of deformation tensor T = µ[∇v + (∇v)|] in
the liquid phase, surface normal and tangent unit vectors,

n =
k − ∂xhi

√
1 + (∂xh)2

t =
i + ∂xhk

√
1 + (∂xh)2

, (2.8a,b)

and twice mean curvature 2H = −∇ · n. We consider fluids whose surface tension
decreases linearly with temperature according to σ(θh)= σ0 − γ (θh − θ0) where γ =

−dσ/dθh is positive and θ0 is a reference temperature.
Variations in θh leading to thermocapillary destabilization are driven by the heat

exchanged with the bounding gas phase. This process is modelled using Newton’s law
of cooling, viz.,

κf∇θ · n + q θh − θg = 0 at ỹ = h, (2.9)

where θg is the uniform gas temperature and q is the empirical rate of heat transfer
between the surface and the gas.

The film temperature evolves according to (2.3), and, at y = 0, the film is in thermal
contact with a rigid substrate of temperature ψ , thermal conductivity κs and diffusivity
χs. No slip and no penetration enforce v = 0, and, continuity of temperature and heat
flux requires

θ =ψ at ỹ = y = 0, (2.10)
∂ỹθ = κ ∂yψ at ỹ = y = 0, (2.11)

where

κ = κs/κf (2.12)

is the conductivity ratio. Here, the vertical domain of ψ is assigned to a second
vertical coordinate z ∈ [−d, 0] in anticipation that two vertical length scales will be
introduced in the asymptotic analysis of the thick substrate case. The evolution of ψ
throughout the substrate is governed by

∂tψ = χs∇
2
sψ, (2.13)

where ∇s ={∂x, ∂y} is defined with respect to z and χs = κs(csρs)
−1 is substrate thermal

diffusivity.
Opposite the film, we assume the substrate is in perfect thermal contact with a

blackbody of uniform temperature ψb and impose a Dirichlet condition,

ψ =ψb at y = −d, (2.14)

and define the temperature difference ∆ ≡ ψb − θg. At the cost of introducing a
second heat transfer coefficient, a mixed boundary condition accounting for interfacial
resistances to heat transfer could also be imposed at y = −d. By assuming instead
that the blackbody transfers heat efficiently to the substrate, the parametric burden of
the model is lessened.

3. Dimensionless asymptotic model
In this section we perform a formal asymptotic expansion of the model in § 2 that

describes the evolution of long-wavelength disturbances driven by thermally diffusive
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Liquid films non-locally heated from below 933

substrates. The asymptotic model will be written to depend on four dimensionless
quantities,

B =
q h
κf
, S =

q d
κs
, C =

γ ∆

σ0

κ2
s

κ2
f
, Q=

qµχs

σ0

κ2
s

κ3
f
, (3.1a−d)

where the Biot numbers B and S measure the thermal thickness of the film and
substrate, respectively, C measures the imposed temperature difference and Q
measures the combined effects of the film viscosity and substrate thermal diffusivity.
These groups arise in the dimensionless asymptotic model if we choose the
characteristic scales

x0
= d, y0

= d, ỹ0
=
κf

q
, t0 =

d2

χs
, h0

=
κf

q
,

u0
=

x0

t0
=
χs

d
, w0

=
y0

t0
=
χsκf

d2q
, p0

=
q2 µχs

κ2
f

, θ 0
=∆, ψ 0

=∆.

 (3.2)

The scales for the film vertical coordinate and its thickness, ỹ0
= h0

= κf /q, are chosen
to ensure that B arises as the mean value of the local dimensionless film thickness.
A different vertical scale, y0

= d, is the natural choice for the substrate, so that the
parameter S will enter into the non-dimensional version of the heat flux condition
(2.11). Taking x0

= d and t0 = d2/χs as the lateral length and time scales of the
substrate, the lateral film velocity and pressure scales that follow from these choices
are as given in (3.2), which leads to the emergence of the quantities (S2Q)−1 and
C Q−1 in the dimensionless normal and tangential stress balances, respectively. Lastly,
the film transverse velocity scaling w0 is different than u0 as a result of the different
scaling choices for x0 and ỹ0, and the (subsequent) non-dimensionalization of the
incompressibility condition (2.2).

To perform the asymptotic expansion, we first define the aspect ratio parameter
ε ≡ ỹ0/x0

= (Sκ)−1 and require that ε 1. Having set y0
= x0, satisfying ε 1

ensures we consider systems with mean film thicknesses that are small compared
to both its lateral variations and the substrate thickness. This definition of ε (i.e.
with respect to two system dimensions) contrasts conventional long-wavelength
analyses that define ε as the ratio of the film thickness to a characteristic horizontal
wavelength. As a result, in the current problem, ε arises naturally in the model
following non-dimensionalization with (3.2). The formal expansions of the dependent
variables take the form

u = u0(U0 + εU1 + · · · + εn Un)

w = w0(W0 + εW1 + · · · + εn Wn)

p = p0(P0 + ε P1 + · · · + εn Pn)+ pg

h = h0(H0 + εH1 + · · · + εn Hn)

θ = θ 0(Θ0 + ε Θ1 + · · · + εnΘn)+ θg

ψ =ψ 0(Ψ0 + ε Ψ1 + · · · + εn Ψn)+ θg,


(3.3)

where the variables subscripted with n = 0, 1, . . . are dimensionless and assumed to
be O(1) in magnitude. Dimensionless independent variables are denoted with capital
letters and defined according to {X, Ỹ,Y,T}= {x/x0, ỹ/ỹ0, y/y, t/t0}. Also note that both
θ and ψ are defined with baseline values of θg. The model will be valid provided the
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dimensionless variables satisfy the asymptotic requirement: (Sκ)−1 1 (which comes
directly from ε 1); with the parameters Q, C,B, S being O(1).

Substituting (3.3) into the governing equations (2.1)–(2.14), we retain the leading-
order terms, drop the 0 subscripts on the dependent variables and obtain dimensionless
long-wavelength, thick substrate equations and boundary conditions. Attending first to
the film equations of motion, we have, from (2.1),

∂2
ỸU − ∂XP = 0 for Ỹ ∈ [0,H], (3.4)

∂ỸP = 0 for Ỹ ∈ [0,H]. (3.5)

Equations (3.4)–(3.5) for U and P are accompanied by the interface condition U = 0
at Ỹ = 0, and, from (2.6) and (2.7),

P = −(S2Q)−1 ∂2
XH at Ỹ = H, (3.6)

∂ỸU = −CQ−1 ∂XΘH at Ỹ = H, (3.7)

at the free surface. Here ΘH(X, T)=Θ(X,H(X, T), T) is the temperature at the free
surface.

Equations (3.4)–(3.7) describe viscous, locally parallel flows that may be driven
by capillary normal stresses or thermocapillary tangential stresses at the free surface.
Because the leading-order vertical pressure gradient is equal to zero via (3.5), the
horizontal pressure gradient appearing in (3.4) is independent of Ỹ and is evaluated
using the interfacial value specified by (3.6). Solving the boundary value problem for
the horizontal velocity U(Ỹ) in terms of ΘH(X, T) yields

U = (QS2)−1H ∂3
XH ỸH −

1
2 Ỹ2

− C Q−1 Ỹ ∂XΘH. (3.8)

From (2.2), we use the dimensionless equation for continuity to rewrite the kinematic
condition as

0 = ∂TH + ∂X

Z H

0
U dỸ. (3.9)

Evaluating the integral (3.9) using (3.8), we obtain a nonlinear partial differential
equation for the spatio-temporal evolution of H(X, T),

∂TH + (QS2)−1∂X
1
3 H3∂3

XH −
1
2(CS

2)H2∂XΘH = 0. (3.10)

This equation represents a standard model for the dynamics of a liquid film subject
to capillary stabilization and thermocapillary destabilization. Via the free surface
temperature ΘH(X, T), equation (3.10) is coupled to the long-wave counterparts to
(2.9)–(2.14), viz.,

∂2
ỸΘ = 0 for Ỹ ∈ [0,H], (3.11)

∂TΨ − ∂2
XΨ − ∂2

YΨ = 0 for Y ∈ [−1, 0], (3.12)

which are subject to

∂ỸΘ +Θ = 0 at Ỹ = H, (3.13)
Θ −Ψ = 0 at Ỹ = Y = 0, (3.14)

S ∂ỸΘ − ∂YΨ = 0 at Ỹ = Y = 0, (3.15)
Ψ = 1 at Y = −1. (3.16)
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Liquid films non-locally heated from below 935

The variable B does not appear directly in (3.10)–(3.16), however it enters into the
model through the constraint that the height H has average B.

To summarize, equations (3.10)–(3.16) represent an asymptotic model that couples,
via ΘH(X,T), a nonlinear partial differential equation for the film thickness H(X,T) to
a thermal boundary value problem for temperature profiles Θ(X, Ỹ,T) and Ψ (X,Y,T)
in the film and substrate, respectively. The model can be recast without Θ(X, Ỹ, T),
given that (3.11) prescribes profiles Θ(X, Ỹ, T) that are linear in Ỹ . However,
we find it easier to present the linear analysis that follows by first perturbing the
system as written in (3.10)–(3.16). We also note that the model can be recast to
include conventional capillary and Marangoni numbers if (3.10)–(3.16) are instead
non-dimensionalized with respect to the viscous scales of the film. However, we
find the parameter set (C,Q, B, S) is most conducive to a complete presentation of
oscillatory instabilities.

4. Linear analysis

In this section we present a linear stability analysis of small perturbations to a
steady state solution of (3.10)–(3.16). The steady state solution, which we will also
refer to as the basic state, consists of a horizontally uniform (i) flat film of constant
height, and (ii) temperature profile that depends linearly on the vertical Ỹ and
Y-coordinates. Notably, we demonstrate that the resulting linear equations can be cast
as a generalized eigenvalue problem that is not self-adjoint (in the standard L2 inner
product). The key result of the linear analysis is the determination of the dispersion
relation that characterizes the perturbation growth rate Ω implicitly in terms of
the wavenumber β. Approximate and numerical assessment of system stability as
governed by the dispersion relation then sets the course of investigation for the
remainder of the paper.

To proceed with the linear analysis we introduce a normal-mode perturbation to a
steady state solution of (3.10)–(3.16),

H(X, T)=B + δ Ĥ cos (βX) exp(ΩT)+ O(δ2)

ΘH(X, T)= Θ̄H + δ Θ̂H cos (βX) exp(ΩT)+ O(δ2)

Θ(X, Ỹ, T)= Θ̄(Ỹ)+ δ Θ̂(Ỹ) cos (βX) exp(ΩT)+ O(δ2)

Ψ (X, Y, T)= Ψ̄ (Y)+ δ Ψ̂ (Y) cos (βX) exp(ΩT)+ O(δ2).

 (4.1)

Here δ 1 is the real amplitude of a horizontally periodic perturbation of real
wavenumber β and complex growth rate Ω; while we choose the functions
(B, Θ̄H, Θ̄(Ỹ), Ψ̄ (Y)) to be a steady solution of (3.10)–(3.16). To determine the
steady solutions first note that the functions H(X, T) = B and ΘH(X, T) = Θ̄H are
both constants. The remaining equations (3.11)–(3.16) then govern the basic state
temperature profiles for Θ̄(Ỹ) and Ψ̄ (Y),

Θ̄ 00
= 0 for Ỹ ∈ (0,B), (4.2)

Ψ̄ 00
= 0 for Y ∈ (−1, 0), (4.3)

subject to the interface and boundary conditions

Θ̄ 0
+ Θ̄ = 0 at Ỹ =B, (4.4)
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936 W. Batson, L. Cummings, D. Shirokoff and L. Kondic

Θ̄ − Ψ̄ = 0 at Ỹ = Y = 0, (4.5)
S Θ̄ 0

− Ψ̄ 0
= 0 at Ỹ = Y = 0, (4.6)

Ψ̄ = 1 at Y = −1. (4.7)

Solving the linear equations (4.2)–(4.7) yields the complete steady solution

H =B, Θ̄H = (1 +B + S)−1, Θ̄(Ỹ)=
1 +B − Ỹ
1 +B + S

, Ψ̄ (Y)=
1 +B − S Y
1 +B + S

.

(4.8a−d)

Note that the value of Θ̄H in (4.8) is determined from Θ̄(Ỹ) via Θ̄H = Θ̄(B), since
Θ̄H is defined as the temperature profile Θ̄(H) at Ỹ = H = B. Together equations
(4.8) define the film and substrate temperatures of a horizontally uniform basic state
as linear functions of their respective vertical coordinates.

We now move to compute the O(δ) perturbation about the basic state. First note
that the dependent variable ΘH(X, T) is just the value of Θ(X, Y, T) evaluated at
the surface Y = H, i.e. ΘH(X, T)=Θ(X,H, T). Hence, the perturbation variables Θ̄H

and Θ̂(Ỹ) for ΘH(X, T) and Θ(X, Y, T) are coupled. To them we (i) Taylor expand
Θ(X,H, T) about the base state value H =B in powers of δ, and (ii) equate the O(δ)
terms in Θ(X,H, T) with those of ΘH(X, T). We then obtain the relation,

Θ̂H = Θ̂(B)+ Θ̄ 0(B)Ĥ,
= Θ̂(B)− Θ̄HĤ, (4.9)

where we have used the fact (from (4.8)) that Θ̄ 0(B)= −Θ̄H . Equation (4.9) will be
used to eliminate the variable Θ̂H from the linear stability analysis.

To obtain the linearized equations about the basic state, we substitute the ansatz
(4.1) into the long-wavelength model given by (3.10)–(3.16). Collecting the O(δ)
terms, and using (4.9) to eliminate Θ̂H , gives rise to equations for Ĥ, Θ̂(Ỹ) and
Ψ̂ (Y)

Θ̂ 00
= 0 for Ỹ ∈ [0,B], (4.10)

Ψ̂ 00
− λ2 Ψ̂ = 0 for Y ∈ [−1, 0]. (4.11)

In (4.11) we have introduced

λ2
=Ω + β2, (4.12)

which plays the role of a (complex-valued) wavenumber in the Y-direction for
perturbations confined to the substrate domain. Note that the sign convention assumed
in (4.12) is intentional for the subsequent stability analysis. Equations (4.10)–(4.11)
are also subject to the film dispersion relation

G1 Ĥ + G2 Θ̂(B)= 0 at Ỹ =B, (4.13)

where

G1 =QS2(λ2
− β2)+ 1

3B
3β4

−
1
2CS

2B2 Θ̄Hβ
2, G2 =

1
2CS

2B2β2, (4.14a,b)
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Liquid films non-locally heated from below 937

and the boundary conditions are

Θ̂ 0
+ Θ̂(B)− Θ̄HĤ = 0 at Ỹ =B, (4.15)
Θ̂ − Ψ̂ = 0 at Ỹ = Y = 0, (4.16)

S Θ̂ 0
− Ψ̂ 0

= 0 at Ỹ = Y = 0, (4.17)
Ψ̂ = 0 at Y = −1. (4.18)

To obtain non-zero solutions to (4.10)–(4.18), we first recast the system as an
eigenvalue problem for Ψ̂ (Y) by eliminating the variables Ĥ and Θ̂(Ỹ). To first
eliminate Θ̂(Ỹ), we solve (4.10), writing Θ̂(Ỹ) = Θ̂ 0 Ỹ+Θ̂(0) for constants Θ̂ 0 and
Θ̂(0). Inserting the solution for Θ̂(Ỹ) into the two boundary conditions (4.13)–(4.15)
allows one to solve for the constants Θ̂ 0 and Θ̂(0) in terms of Ĥ only. Writing Θ̂(Ỹ)
in terms of Ĥ, the interface conditions (4.16)–(4.17) then take the form

(1 +B) Ψ̂ 0
+ S Ψ̂ − S Θ̄HĤ = 0 at Y = 0, (4.19)

G1 Ĥ + G2 (B S−1Ψ̂ 0
+ Ψ̂ )= 0 at Y = 0. (4.20)

The variable Ĥ can be eliminated in the interface equations (4.19)–(4.20), yielding
a boundary condition for Ψ̂ (Y) at Y = 0. The resulting boundary condition at Y = 0,
together with the ordinary differential equation (4.11), and boundary condition (4.18)
at Y = −1, gives rise to the following problem for eigenvalues λ2 and eigenfunctions
Ψ̂ (Y):

Ψ̂ 00
− λ2 Ψ̂ = 0 for Y ∈ (−1, 0)

a1Ψ̂ + a2Ψ̂
0
+ λ2(b1Ψ̂ + b2Ψ̂

0)= 0 at Y = 0
Ψ̂ = 0 at Y = −1,

 (4.21)

with real constants

a1 = S( 1
3 B

3β4
−QS2β2), b1 =QS3,

a2 = (1 +B)( 1
3 B

3β4
−QS2 β2)− 1

2CS
2B2 Θ̄Hβ

2, b2 =QS2(1 +B).

)
(4.22)

Note that (4.12) has been used to replace Ω in terms of λ in (4.21). The problem
(4.21) is irregular in the sense that the eigenvalue λ2 appears in both the boundary
condition as well as the domain equation. To solve for the eigenvalues, we write
the general solution for Ψ̂ (Y) as Ψ̂ (Y)= c1λ

−1 sinh (λY)+ c2 cosh (λY), and require
that it satisfies the two boundary conditions in (4.21). We include the extra factor
of λ−1 in the ansatz so that limλ→0+ Ψ̂ (Y)= c1Y + c2 solves (4.21) when λ= 0 (this
will then allow for the simultaneous treatment of λ= 0 and λ 6= 0 in the subsequent
calculations). Substitution then requires that the following determinant vanish, viz.,

(a2 + λ2 b2) a1 + λ2 b1

−λ−1 tanh(λ) 1 = 0. (4.23)

In (4.23), the λ−1 tanh λ term has a removable singularity at λ = 0 (with the limit
value of 1 when λ → 0). Equation (4.23) may then be compactly written as an
implicit function relating λ and β:

f (λ, β)= 0, (4.24)
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938 W. Batson, L. Cummings, D. Shirokoff and L. Kondic

where
f (λ, β)≡ (a2 + λ2b2)+ (a1 + λ2b1)

tanh λ
λ

. (4.25)

Any solution (λ, β) to (4.23), or equivalently (4.24), then determines Ω via (4.12).
As a result, equation (4.24) defines an (implicit) dispersion relation since it describes
the values of λ (and hence Ω), in terms of β, for which non-zero solutions Ψ̂ (Y)
exist. We will therefore refer to f (λ, β)= 0 as the dispersion relation. For values of
λ 6= 0 and a1 + λ2b1 6= 0, the dispersion relation f (λ, β)= 0 can be recast into a form
that is more commonly encountered in linear stability analyses of thin film models,

QS2Ω +
1
3
B3β4

−

1
2C S

2B2 Θ̄H β
2
p
Ω + β2

S tanh
p
Ω + β2 + (1 +B)

p
Ω + β2

= 0. (4.26)

In appendix A, this form is used to readily obtain a dispersion relation for thin
substrates. The third term in (4.26) describes thermocapillarity and we note that it
vanishes in situations that render the free surface isothermal (this occurs if C = 0).

To conclude the solution of the linearized system, we solve for the substrate
temperature eigenfunction Ψ̂ (Y), and the film temperature eigenfunction Θ̂(Ỹ) in
terms of the film perturbation amplitude Ĥ. For a fixed β, take λ as a root of the
dispersion relation (4.25) and fix Ω via (4.12). Then the ansatz (4.1) solves the
linearized equations, with eigenfunction profiles given by

Θ̂H = −
Θ̄H λ

S tanh λ+ (1 +B) λ
Ĥ, (4.27)

Θ̂(Ỹ)=
Θ̄H S tanh λ+ λ Ỹ
S tanh (λ)+ (1 +B) λ

Ĥ, (4.28)

Ψ̂ (Y)=
S Θ̄H [sinh (λY)+ tanh (λ) cosh (λY)]

S tanh (λ)+ (1 +B) λ
Ĥ. (4.29)

5. Root structure of the dispersion relation

In this section, we compute the growth factors Ω(β)= λ(β)2 − β2 by solving the
dispersion relation f (λ, β)= 0 for λ in terms of β, and applying (4.12). The growth
factors Ω(β) are important as they dictate the stability of the basic steady state
solution, and can be used to investigate the physical regimes having (qualitatively)
different linear instabilities.

Closed form solutions for the implicit functions λ(β) (and hence Ω(β)) satisfying
the dispersion relation f (λ, β) = 0 cannot be determined and must instead be
investigated numerically. Thus, in the work that follows, we adopt a continuation
method (see Boyd 2014) and use β ∈ [0,∞) as the continuation parameter. Starting
with the value β = 0 and λ(0), we will track the implicit solutions λ(β) to the
dispersion relation (note that there are infinitely many) as continuous functions of β.
For notational purposes we will refer to the solutions λ(β) as roots to the dispersion
relation. In addition, we will compute the asymptotic behaviour of the functions
λ(β) for both small and large β. Together, the asymptotic calculations and numerical
continuation will provide a comprehensive picture of the values Ω(β), for any given
set of physical parameters (B, S, Q, C). This will then enable an investigation into
the different physical behaviours captured by the model.
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Liquid films non-locally heated from below 939

5.1. The continuation method
We first remark on the symmetries of the dispersion relation, which will help to
simplify the computation of the implicit functions λ(β). Note that for any fixed β,
the dispersion relation satisfies

(Even symmetry) f (λ, β)= f (−λ, β),
(Conjugation symmetry) f (λ, β)= f (λ, β). (5.1)

With the above symmetries in mind, the continuation method may be restricted to the
first quadrant of the λ-complex plane (equivalently, to the upper half of the Ω-complex
plane). Solutions λ(β) may then be extended to the remaining three quadrants by
symmetry.

We initialize the continuation method at β = 0, for which the roots λ(0) satisfy

f (λ(0), 0)= 0 H⇒ λ(0) (tanh λ(0)+R λ(0))= 0, (5.2)

and R=S−1(1 +B) is a positive constant. The initialization value β = 0 is useful as
we may enumerate exactly all of the roots to (5.2) as follows.

First, observe that all non-zero roots to (5.2) are purely imaginary. To show this, it
is sufficient to write λ(0) = ξ + iζ for real values ξ, ζ and verify that there are no
solutions to (5.2) for values ξ > 0 and ζ > 0 (by symmetry we may restrict to the
first quadrant). Equating the real and imaginary parts of (5.2), the values (ξ , ζ ) must
satisfy the simultaneous equations

(sinh ξ + S ξ cosh ξ) cos ζ = −R ζ sinh ξ sin ζ , (5.3)
(cosh ξ + S ξ sinh ξ) sin ζ = −R ζ cosh ξ cos ζ . (5.4)

Note that, since sinh ξ + S ξ cosh ξ > 0 (similarly cosh ξ + S ξ sinh ξ > 0) equations
(5.3)–(5.4) imply that if sin ζ = 0 then cos ζ = 0 (or if cos ζ = 0 then sin ζ = 0) –
which is not possible. Hence, ζ cannot satisfy sin ζ = 0, or cos ζ = 0, and we are free
to divide (5.3) by (5.4) to obtain the following (necessary) equation for a root

(1 + ξ Rcoth ξ)(1 + ξ R tanh ξ)= −R2ζ 2. (5.5)

Equation (5.5), however, has no solutions for ξ > 0 since the left-hand side is (strictly)
positive and the right-hand side is non-positive. Hence, ξ = 0, which shows that the
roots to (5.2) must have the form λ(0)= iζ .

We can now enumerate the roots of (5.2) as λ±n(0)=±iζn, where 0 = ζ0<ζ1< . . . ,
and the values of ζn are the non-negative solutions to the equation

g(ζn)= 0, where g(ζ )≡ tan ζ +R ζ and R= (1 +B)/S. (5.6a,b)

Note that in (5.2), the value λ±0(0) = 0 is a double root, and can be understood
by considering λ+0(0) and λ−0(0) as two distinct roots. With this convention, writing
λ±n(0)= ±iζn then captures all roots of (5.2), including multiplicity.

The roots ζn are presented graphically in figure 2 as the intersections of the
functions g1(ζ )= tan ζ and g2(ζ )= −R ζ . In the limit of small R 1 (respectively
large R 1), the roots ζn asymptotically approach the zeros of cos ζn (respectively
sin ζn). In the asymptotic limit n → ∞, the roots ζn → nπ − π/2.

We now restrict attention to the roots λ+n(0), n > 0, initialized to the upper half-
plane (and for brevity drop the + in the subscript of λ+n(β)), since the remaining
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0 π/2 π 3π/2 2π

Ω
5π/2 3π 7π/2

-50

-25

0

g 1
(Ω

), 
g 2

(Ω
) 25

50

FIGURE 2. Graphical depiction of the intersections (circles) of g1(ζ )= tan ζ and g2(ζ )=
−R ζ (where g(ζ ) is defined in (5.6)) corresponding to the first three substrate (n = 1,2,3)
roots λ= iζn (circles) that satisfy g(ζn)= 0 for R= {0, 2, 5, 10}. The line R= 0 is shown
for reference, however physically R> 0, with R= 0 corresponding to S →∞ (approached
when S B).

roots are negatives by symmetry of (5.1). With the roots λ(β) of (4.25) initialized to
λn(0)= iζn, we continuously vary β ∈ [0,∞) and track the roots λn(β) as functions
of β. In our subsequent linear stability analysis, the λ0(β) root (initialized to λ0(0)=0)
will play a particularly important role. As a result, we will refer to λ0(β) as the film
root, and (from now on) write λf (β). The phrase ‘film root’ is motivated by the fact
that the corresponding complex frequency Ωf (β) = λf (β)

2
− β2 is analogous to the

frequencies Ω(β) given by a free thin-film equation (see for instance appendix A).
The remaining roots are initialized to λn(0)= iζn for n = 1, 2, . . ..

As a technical point, we stress that the roots λf (β) or λn(β) are only (uniquely)
identifiable by their initial values iζn within an interval 0 6 β 6 βcoll for which no
collision has occurred. Once a collision occurs, i.e. two (or more) roots merge at a
value β = βcoll, it is generally not possible to identify uniquely two (or more) post-
collision roots λ(β) at values β > βcoll with their initial values iζn.

As a final remark on the numerical computations, we follow a standard continuation
approach: at each step, using the value λ(β) as an initial guess, we use Newton’s
method to compute λ(β + 1β), where 1β is the increment (chosen adaptively to
ensure convergence at each step). As a practical detail, to enable the method to find
complex-valued solutions, we initialize the Newton algorithm with a value that does
not lie strictly on either the real or complex axis by perturbing the initial guess via
λ(β) + ε(1 + i), for ε 1. This is to avoid having Newton iterates become trapped
to the (invariant) real or complex axis.

5.2. Asymptotic behaviour of the roots for small β
The previous section demonstrates that the values λn(0) = iζn are purely imaginary.
Hence, at β = 0, the growth rates Ω lie along the negative real axis: Ωf (0) = 0
(corresponding to the film root λf (0)= 0), and Ωn(0)=−ζ 2

n < 0 (for the roots λn(0)=
iζn, n 6= 0); see (4.12). The purpose of this section is to examine how the values Ωn(β)
and Ωf (β) change for small values of 0 6 β 1.

We first compute the small β behaviour of the film root λf (β) and corresponding
growth rate Ωf (β). This can be done by expanding (4.25) in powers of λ (about
λf (0)= 0) to obtain

f (λ, β)= (a1 + a2)+ (b1 + b2 −
1
3 a1)λ

2
+ O(λ4), (5.7)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

41
7

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

ew
 Je

rs
ey

 In
st

itu
te

 o
f T

ec
hn

ol
og

y,
 o

n 
30

 Ju
l 2

01
9 

at
 1

4:
36

:4
4,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.417
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Liquid films non-locally heated from below 941

where, recall, a1, a2, b1, b2 depend on β via (4.22). Truncating the expansion (5.7) at
O(λ4), and setting f (λ, β) to zero, yields an approximate solution for λf (β), valid at
small β

λf (β)≈ ±

s
a1 + a2

b1 + b2 −
1
3 a1

= η1β − η3β
3
+ · · · . (5.8)

Here, the Taylor coefficients η1 and η3 are

η1 =

s
1 +

C B2 Θ̄2
H

2Q
, and η3 =

1
6

SΘ̄Hη1 +
B3

QS2 η1
, (5.9a,b)

respectively, where η3 has been written compactly using the definition of η1. The
above calculation shows that the double root at λf (0)= 0 splits immediately into two
real non-zero roots given (approximately) by (5.8). As a convention, we use λf (β) to
denote the positive branch in (5.8). Via (4.12) we then have the small-wavenumber
expansion of the corresponding growth rate Ωf (β), viz.,

Ωf (β) = (η2
1 − 1) β2

− 2 η1 η3 β
4
+ O(β6)

≈
C B2 Θ̄2

H

2Q
β2

−
B3

3S2 Q
+ S Θ̄H

1
3

+
C B2 Θ̄2

H

6Q
β4. (5.10)

Here, the first term inside the square brackets describes capillary stabilization, and the
other terms including Θ̄H pertain to thermocapillary effects. Notably, this expression
predicts that thermocapillarity acts both to destabilize small wavenumbers and stabilize
large ones, in contrast to the strict thermocapillary destabilization observed for thin
substrates (see appendix A). In particular, equation (5.10) shows that the relative
importance of thermocapillary stabilization will increase for large S (substrate
thickness), large C (imposed temperature difference), or small Q (diffusive effects).

In figure 3, the small-β approximation (5.10) for Ωf (β) is compared to exact root
branches calculated via numerical continuation. In each panel, one comparison is made
to demonstrate a parameter set for which the agreement is qualitatively good; both the
maximum growth rates and the cutoff wavenumbers are adequately predicted by (5.10).
The surprisingly good prediction for the cutoff wavenumber is due to the original
expansion in (5.7) being based on small λ: since λ2

=Ω +β2, we expect the resulting
approximation (5.10) to be good near the origin β =Ω = 0 and at the cutoff where
β2 1 still and Ω = 0. In the region between β = 0 and the O(1) cutoff values of
the growth rate Ω , the small-λ assumption made to obtain (5.7) is certainly violated.
This is reflected in the poor agreement observed in this region between the asymptotic
approximation (5.10) and the numerically calculated curves in figure 3.

Each branch in figure 3 is presented from β = 0 to a critical value of βcoll, beyond
which the real film root ceases to exist (βcoll will be defined more precisely below).
Before focusing on these critical points in the next section, we note that several key
physical behaviours can be inferred from figure 3. First, we see in panel (a) that
larger imposed temperature differences (larger C) increase both the unstable band of
wavenumbers and their associated growth rates. Panel (b) then shows that diffusive
effects, as measured by Q, suppress the growth rates of instability without significantly
changing the bandwidth of unstable wavenumbers. The loss of agreement in panel (c)
occurs because, thinner films, via small values of B, promote the relative importance
of the substrate thermal process.
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FIGURE 3. (Colour online) Comparison between the numerically calculated (solid lines,
equation (4.25)) and approximated (dashed lines, equation (5.10)) film root growth rates
Ωf (β) for varying (a) C, (b) Q, (c) B and (d) S.

Panel (d) shows the dependence on Ωf (β) on the parameter S . We note that the
increase in the growth rates with S shown in panel (d) results from having scaled
time with respect to d2, see (3.2). The (approximately linear) increase of Ωf with S
shown here in fact corresponds to a linear decrease in the dimensional growth rates –
due primarily to the increased thermal resistance of thicker substrates.

5.3. The roots for n 6= 0
To examine the roots λn(β) and Ωn(β) with n 6= 0 in the small-β limit, we substitute
the power series,

λn(β)= i(ζn − β2σn)+ O(β4), (5.11)
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Liquid films non-locally heated from below 943

ı = 0 

ı ∊ [0, ıim]

ı ∊ [0, ıcoll] Øf,max

Øf

Øcoll

Ø2Ø3Ø4

Ø1

Im[Ø] (a) (b)

(c) (d)Im[Ø] 

Re[Ø] Re[Ø] 

Re[Ø] Re[Ø] 

Im[Ø] 

Im[Ø] 

FIGURE 4. (Colour online) Shows the motion of the roots for a Type I oscillatory
instability at increasing values of β: β = 0 (a), β = βcoll (b), β = βim (c) and β > βim (d).
The arrows denote the instantaneous location and direction of motion of the roots; the
dark curves trace out the motion of the roots (with the white inset dashed line showing
the motion after collisions); the red curve traces out the motion of the film root Ωf prior
to collision.

into the dispersion relation with ζn as given by (5.6) (see also figure 2) and unknown
coefficients σn (which will turn out to be real). Such an expansion in even powers of
β is justified by the symmetry relations (5.1) and by the fact that the values λn(β) are
simple near β = 0. Note that this is in contrast to the roots ±λf (β) that emerge from
the double root λf (0), which does not have an even power series at β = 0 (double
roots generally split via a square root dependence on the continuation parameter).

Expanding f (λn(β), β)= 0 (see (4.25)) for small β, and setting the O(β2) term to
zero yields

σn =
C B S Θ̄2

H

2Q ζn (S + (1 +B)2Θ̄H ζ 2
n )
. (5.12)

In this expression, tan ζn has been replaced with −R ζn per (5.6) (recall that R =

S−1(1 +B)). Substituting the expressions (5.11)–(5.12) into (4.12) yields

Ωn(β)= −ζ 2
n + β2(2 ζn σn − 1)+ O(β4). (5.13)

At zero wavenumber, all these roots are real and negative: Ωn(0) = −ζ 2
n . As β

increases from zero, if 2 ζn σn > 1, then the roots (initially) move along the negative
real axis in the complex plane towards the right-half plane (RHP; we will also use
LHP to denote the left-half plane). Alternatively if 2 ζn σn < 1, then the roots move
to the left along the negative real axis (see figure 4).
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944 W. Batson, L. Cummings, D. Shirokoff and L. Kondic

We now remark that the product ζn σn > 0 is (i) always positive, (ii) monotonically
decreases with increasing values of n (due to the fact that the values ζn monotonically
increase with n), and (iii) limn→∞ ζn σn → 0. As a result, only a finite number of the
values Ωn(β) (closest to the origin) can have a positive O(β2) coefficient, and hence
initially move towards the unstable RHP. All other roots move (at small β) farther into
the LHP. Figure 4 demonstrates, via the continuation method, the motion of the roots
{Ωf (β),Ωn(β)}, with varying β. The plot shows the film root (Ωf (0)=0) and Ωn(0)=
−ζ 2

n roots at β = 0. The arrows for the markers denote the numerically computed
directions in which the roots move as β > 0 increases. The arrows also coincide with
the small-β approximations (5.10) and (5.13). Note that the figure also demonstrates
that the roots become complex only after a collision, and generally move to the left
(becoming more stable) with increasing β.

6. Oscillatory instability classification
In this section, we investigate how the frequencies Ωf (β) and Ωn(β) move in the

complex plane (as functions of the continuation parameter β), and lead to oscillating
in time solutions of the linearized equations (4.13)–(4.18) with exponentially growing
amplitudes. A value Ω (that satisfies the dispersion relation) is oscillatory unstable if
Ω lies in the strict RHP, and does not lie along the real axis. That is, Ω satisfies

(i) Re(Ω) > 0, (ii) Im(Ω) 6= 0. (6.1a,b)

Combined with the symmetry observations from the previous section (§ 5), conditions
(6.1a,b) place restrictions on how exactly a root Ω(β) can become oscillatory unstable
as the wavenumber β increases from 0.

First, condition (ii) in (6.1a,b) requires that (as β varies) two frequencies Ω(β)
must collide at some value of β – that is, there is a value of β for which two of
the frequencies {Ωf (β), Ωn(β)} are equal. This is because the complex frequencies
{Ωf (0), Ωn(0)} are simple (at β = 0), move continuously with β and cannot leave
the real axis as long as they remain simple (due to conjugate symmetry of Ω(β),
see (5.1)). Hence, a necessary condition for (ii) is a collision (double frequency) at
some β.

Second, the results from § 5 show that the frequencies {Ωf (0), Ωn(0)} are on the
non-positive real axis, and only a finite number of the largest roots initially move
towards the RHP (as β increases). Hence, the two largest roots Ωf (β) (film root) and
Ω1(β) are the most likely candidates to collide and satisfy (6.1a,b). In other words,
oscillatory instabilities most likely arise from the motion and collisions of Ωf (β) and
Ω1(β).

Treating the continuation parameter β as a bifurcation parameter (holding the
parameters (C, Q, B, S) fixed), we now classify how exactly Ωf (β) and Ω1(β)
collide (bifurcate) and satisfy (6.1a,b) (lead to oscillatory instabilities). We define the
(first) collision of {Ωf (β), Ω1(β)} to occur at the value βcoll, and denote

Ωcoll ≡ lim
β→β−

coll

Ωf (β)= lim
β→β−

coll

Ω1(β). (6.2)

Note that the values (βcoll, Ωcoll) are readily identifiable: in addition to the dispersion
relation Ωcoll = λ2

coll − β2
coll, with f (λcoll, βcoll) = 0, the values (βcoll, Ωcoll) satisfy the

condition of a double root required by the implicit function theorem, ∂λf (λcoll, βcoll)=
0. For values of β ∈ [0, βcoll], the frequencies Ωf (β),Ω1(β)∈R; however, for β >βcoll
(after the collision), the roots appear as complex conjugate pairs that we denote
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FIGURE 5. Type I oscillatory instabilities. Top-left panel (boxed region in figure 4 shows
the motion of Ω1(β), Ωf (β) and Ωf ,1(β) (in bold) as β > 0 varies to satisfy conditions
(6.1a,b). Subfigures (a–g) Are the linear phase plane for the time evolution of a perturbed
solution from (4.1), made to the film height. Perturbations are excited at frequencies
Ω1(β), Ωf (β) or Ωf ,1(β) that coincide with locations (a–g) for different β values in the
top-left panel.

as Ωf ,1(β)=Ωr(β)+ iΩi(β) and Ω∗

f ,1(β), with Ωr(β), Ωi(β) ∈ R. We further denote
βim > βcoll (if it exists) as the first value at which the frequency Ωf ,1(β) crosses the
imaginary axis, i.e. Ωr(βim)= 0. Summarizing the notation, we have

(Pre-collision) 0 6 β < βcoll H⇒ Ω1(β) <Ωf (β), and Ωf (β), Ω1(β) ∈R,
(At collision) β = βcoll H⇒ Ωcoll ≡Ωcoll(β)=Ωf (β), and Ωcoll ∈R,
(Post-collision) β > βcoll H⇒ Ωf ,1(β)=Ωr(β)+ iΩi(β), and Ω∗

f ,1(β),

(Imag. axis) β = βim H⇒ Ωr(βim)= 0, (βim > βcoll may not exist).

 (6.3)

We now identify two characteristic ways for the roots Ωf (β), Ω1(β) to satisfy
conditions (6.1a,b) and give rise to oscillatory instabilities.

Type I: Ωcoll > 0. The top-left panel of figures 5 highlights how the frequencies
Ωf (β), Ω1(β) move from locations a–c at wavenumbers β < βcoll; collide at location
d (β = βcoll with Ωcoll > 0); are unstable and satisfy (6.1a,b) at any point e between
d and f ; cross over into the LHP at f ; and are stable at points g in the LHP. The
behaviour of the perturbations (4.1) qualitatively changes at different wavenumbers β
through a series of bifurcations. To provide a visual characterization of the linearized
dynamics of the perturbations (4.1) at different points a–g, we plot the phase plane
trajectories in the eigenmodes with frequencies Ωf (β), Ω1(β) (when 0 6 β 6 βcoll) or
frequencies Ωf ,1(β), Ω

∗

f ,1(β) (for β >βcoll). For wavenumbers β 6 βcoll, a perturbation
in H(X, T) with amplitude δĤf in frequency Ωf (β), and amplitude δĤ1 in frequency
Ω1(β), evolves as

H(X, T)=B + δ cos (βX)

Ĥf exp (Ωf (β)T)| {z }
hf (T)

+ Ĥ1 exp (Ω1(β)T)| {z }
h1(T)

+ O(δ2). (6.4)
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Y = -1

0.16

Im[Ĥ-1Á̂ (Y )]

FIGURE 6. The temperature eigenfunction profiles defined by (4.28)–(4.29) at two values
of β for a Type I oscillatory instability. (a) β < βcoll prior to collision. For this value
of β = 0.39 both eigenfunctions are real and unstable. (b) β = 0.42 and βcoll < 0.42 <
βim; one complex eigenfunction is oscillatory instability. The eigenfunctions are plotted
for parameter values (Q, C, B, S)= (1 × 10−4, 1, 2, 2).

Figure 5(a–d) plots the phase plane dynamics in the h1(T)–hf (T) plane. For
wavenumbers β > βcoll, the frequencies are complex Ωf ,1(β), Ωf ,1(β)

∗ and we write
the perturbation as

H(X, T) = B + δ cos (βX)

ĤRRe[exp (Ωf ,1(β)T)]| {z }
h(T)

+ ĤIRe[Ωf ,1(β) exp (Ωf ,1(β)T)]| {z }
dh(T)


+ O(δ2), (6.5)

where ĤR and ĤI are the two amplitudes of the perturbation. The panels e–g in
figure 5 plot the phase plane trajectories in the h(T)–dh(T) plane. Here we use the
short-form notation dh(T) for the second linearly independent term in (6.5) since
it is proportional to dh/dt. The panels show the qualitatively different phase plane
behaviour, and emergence of oscillatory instabilities, as the bifurcation parameter β
varies. The boundary in the parameter space (C, Q, B, S), for Type I behaviour to
occur, must satisfy (as a necessary condition) Ωcoll = 0.

Figure 6 plots the spatial profiles for the temperature eigenfunctions {Θ̂(Ỹ), Ψ̂ (Y)}
defined by (4.28)–(4.29) for two values of β in a Type I oscillatory instability. The
figure highlights that for β = 0.39< βim, the values of λf (β) and λ1(β) (which play
the role of wavenumbers) are both real, yielding two real eigenfunctions (left panel).
For βcoll < 0.42< βim, the continuation of the values of λf (β) and λ1(β) collide and
become complex, giving rise to one complex eigenfunction (right panel). The real and
imaginary parts of the complex eigenfunction may oscillate in space, and correspond
to the temperature profile of an oscillatory instability.

Type II: Ωcoll 6 0 and Ωr(β)> 0 for some β >βcoll. Figure 7 highlights (via arrows)
the motion of the roots Ωf (β) (red), Ω1(β) (black) and post collision roots Ωf ,1(β)
(black with white dashed line) with varying β. The top-left panel in figure 8 shows
again the motion of the frequencies Ωf (β), Ω1(β), and Ωf ,1(β). The frequencies
Ωf (β), Ω1(β) move from locations a–c and collide at d with Ωcoll 6 0. The values
Ωf ,1(β) are complex at location e, and then move into the right-half plane Ωr(β)> 0
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Im[Ø] (a) (b) Im[Ø] 
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Re[Ø] 

ı ∊ [0, ıcoll]

FIGURE 7. (Colour online) The motion of the roots for a Type II oscillatory instability
at increasing values of β: β = βim (a), β > βim (b). The arrows denote the instantaneous
location and direction of motion of the roots; the dark curves trace out the motion of the
roots (with the white inset dashed line showing the motion after collisions); the red curve
traces out the motion of the film root Ωf prior to collision. The collision occurs on the
negative real axis (Ωcoll < 0) and before entering into the RHP.
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FIGURE 8. Type II oscillatory instabilities. Top-left panel (boxed region in left panel
of figure 7) shows the motion of Ω1(β), Ωf (β) and Ωf ,1(β) (in bold) as β > 0 varies
to satisfy conditions (6.1a,b). Subfigures (a–g) Are the linear phase plane portraits for
the time evolution of a perturbation made to the film height excited at frequencies
Ω1(β), Ωf (β) or Ωf ,1(β) and different β values.

at f –g; thereby satisfying conditions (6.1a,b). The figures also show the phase plane
trajectories for perturbations to the film height (in a fashion completely analogous to
figure 5) given by (6.4)–(6.5). The boundary in the parameter space (C,Q,B,S), for
Type II behaviour, requires (as a necessary condition) that maxβ>βcoll Ωr(β)= 0.

Having criteria for the boundaries in the parameter space (C,Q,B,S) of Types I or
II oscillatory instabilities will become useful in the following section. Specifically, we
will use these conditions to help plot phase diagrams and identify model parameters
and experimental conditions that may yield oscillatory instabilities.
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948 W. Batson, L. Cummings, D. Shirokoff and L. Kondic

The underlying distinction between Types I and II instabilities occurs from viewing
β as a bifurcation parameter. Each root Ω for any value of β is associated with a
linear dynamical system for the variables in (4.1). Type I oscillatory instabilities occur
from one bifurcation when the roots collide at β=βcoll. Meanwhile, Type II oscillatory
instabilities occur through two bifurcations: the first at β=βcoll when the roots collide,
and the second at the value β = βim, when the roots enter into the RHP (e.g. see
Strogatz (2015), chapter 8). Categorizing oscillatory instabilities as Type I or Type II
through different bifurcations provides criteria that we will use in § 7 to systematically
determine which parameter values (C, Q, B, S) give rise to oscillatory instabilities.
Type I and Type II instabilities are physically distinguishable through their bands of
unstable wavenumbers: Type I does not contain a band of wavenumbers with values
β < βcoll where Ωf (β) is stable (figure 5 at points (a–d) are unstable); in contrast,
Type II does contain an interval of wavenumbers with values β < βcoll where Ωf (β)
is stable (figure 8 at points c and d are stable).

In addition to classifying Types I and II oscillatory instabilities, we further
distinguish whether a set of parameters (C, Q, B, S) gives rise to dominant
oscillatory instabilities. A set of parameters (C, Q, B, S) is said to be dominant
oscillatory unstable if there is a βc,max and Ωc,max = Ω(βc,max) satisfying the
dispersion relation (4.24) that is oscillatory unstable, and has the largest growth
rate Re(Ωc,max)>Re(Ω(β)) for all β, Ω(β) (satisfying the dispersion relation (4.24)).
Dominant oscillatory unstable parameter values are physically significant because
they represent experimental situations where the most unstable perturbation to the
linearized system (4.1) is oscillatory unstable (and hence the most likely to be
observed).

In the numerical continuation of the roots {Ωf (β),Ωn(β)}, we have always observed
that oscillatory instabilities arise as Type I or Type II, as described in this section. It
may be possible that oscillatory instabilities occur from the collision of other roots
(for instance, a collision including Ω2(β)); however, we did not observe this in any
of our investigations. If the only possible mechanism to obtain oscillatory instabilities
is through Type I or Type II, and the largest growth rate Ωc,max occurs at a value
Ωf (β) (which we also numerically observe to be the case in our studies), then we may
simplify the condition for dominant oscillatory instabilities to growth rates computed
in terms of Ωf (β) and Ωf ,1(β) by defining

Ωf ,max ≡ max
06β6βcoll

Ωf (β), Ωr,max ≡ max
β>βcoll

Ωr(β). (6.6a,b)

The condition for dominant oscillatory instabilities is then

(Dominant oscillatory instabilities) Ωf ,max 6Ωr,max. (6.7)

To characterize oscillatory instabilities, we will also make use of the most unstable
wavenumber, βmax defined as

Ωr,max =Ωr(βmax), (6.8)

or alternatively written as the argument of the maximum βmax = argmaxβ>βcoll
Ωr(β).

We will also denote the imaginary frequency of the most unstable wavenumber as
Ωi,max =Ωi(βmax).

In practice, the maximization maxβ>βcoll Ωr(β) in condition (6.7) implies that
we maximize the real value of the root Ωf ,1(β) over a suitably large range of β
values (by taking β large enough Ωr(β) will eventually become negative). Replacing
the inequality (6) in (6.7) with an equality (=) then provides a condition for the
boundary of the dominant oscillatory instability region.
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Liquid films non-locally heated from below 949

7. Emergence of oscillatory instabilities
The purpose of this section is to explore the model parameter space (C,Q, B, S)

and characterize which parameter regions give rise to oscillatory instabilities. This will
provide a guide for experimental scenarios in which one may likely see oscillatory
instabilities. To compute these regions we use the formulas for the boundaries of the
parameter regions, satisfied by Type I and Type II instabilities, developed in § 6. As
a general guide, we also introduce a heuristic value

∂βΩcoll ≡ lim
β→β+

coll

d
dβ
Ωr(β), (7.1)

as the rate of change of the real value of the roots Ωf ,1(β) = Ωr(β) + iΩi(β)
immediately after the collision β → β+

coll. A positive value ∂βΩr > 0 (respectively <)
implies the roots Ωf ,1(β) move towards the right (respectively left) in the complex
plane as β increases past βcoll. Knowing whether the roots Ωf ,1(β) move towards
the left (more stable, viz. figures 4 and 5) or right (more unstable, viz. figures 7
and 8) in the complex plane after the collision is a useful heuristic when identifying
regions of dominant oscillatory instabilities. Specifically, numerical evidence shows
that parameter values (C, Q, B, S) that have ∂βΩr < 0 (solutions initially become
more stable after collisions) do not exhibit dominant oscillatory instabilities.

This section is organized as follows: in § 7.1 we plot and detail the behaviour of the
phase diagram for oscillatory instabilities, with a focus on the parameters (C, B, S).
In § 7.2 we examine the effect of the parameter Q (material property dependent) on
the behaviour of the phase diagram. The results from § 7.2 will help guide realistic
choices of material properties and experimental conditions for observing oscillatory
instabilities. Guided by the results in §§ 7.1 and 7.2, in § 7.3 we discuss materials that
give rise to reasonable model parameter values for observing oscillatory instabilities.

7.1. Material phase diagrams and oscillatory instabilities
In this section we plot phase diagrams that show for which model parameters
oscillatory instabilities occur. Our approach for plotting the diagrams is motivated
by experimental considerations. The parameter Q depends on the material properties,
and is the most difficult to change in experiments (it requires changing the substrate
or fluid materials in the experiment). The values of B,S can by varied by modifying
the thickness of the film (B) and substrate (S), while C may be varied easily by
modifying the temperature difference across the film and substrate. Since we have
four parameters (C, Q, B, S) we adopt the following approach to visualize the
phase diagrams: we fix a value of Q, and then plot the phase diagram in the B–S
plane for different values of C. This is equivalent to plotting cross-sections of the
three dimensional phase diagram (C, B, S) (holding Q constant). For the purpose of
developing better intuition, one may think of B and S being the thicknesses of the
film and substrate (respectively) and C the imposed temperature difference.

Figure 9 plots the B–S phase diagram for values of 0.425 6 C 6 0.57, holding
Q= 5.114 × 10−4 fixed. The panels in 9 reveal an onset parameter value Co = 0.5 such
that for C < Co there is no region of oscillatory instability in the B–S phase diagram;
while values C > Co give one connected region (shown in colour) of oscillatory
instability (Q is chosen to three decimals so that Co is a single decimal). At C = 0.5,
the region of oscillatory instability emerges from a single point (Bo,So)= (1.12, 3.21)
(labelled D in the figure). The different shadings in figure 9 provide details on how
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FIGURE 9. (Colour online) Phase diagrams for (B, S), at different C, showing oscillatory
instabilities (shaded regions) with Type II instabilities (dark purple, region K) and Type I
instabilities (lighter shades of purple, regions E and J). Oscillatory instabilities grow from
point D, (Bo, So) = (1.12, 3.21), as C increases. Stability types A–K, corresponding to
regions/lines/points, are labelled as they appear in (a–e) and depicted characteristically
in figure 10; they are distinguished by the signs of Ωcoll and the heuristic ∂βΩcoll (the
heuristic zero level set is given by the dashed contour).
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FIGURE 10. (Colour online) Plots of the real Re[Ω(β)] (black lines), and imaginary
Im[Ω(β)] (red) parts of the frequencies Ωf (β), Ω1(β) and Ωf ,1(β) for varying β. The
frequencies Ωf (β) and Ω1(β) collide at (βcoll, Ωcoll) (shown in green). All diagrams are
for values C<Cd that do not support dominant oscillatory instabilities (i.e. Ωr,max<Ωf ,max),
and characteristically depict the stability types the regions/lines/points (labels A–K) in
figure 9 are subject to. See table 2 for values of parameters used to calculate the panels
in addition to axes scales that are measured from the origin to the tick mark.

the roots Ωf (β), Ω1(β) become unstable (i.e. Type I or II), as well as the sign of
the heuristic quantity ∂βΩcoll. The region inside the dashed curves indicates where
∂βΩcoll> 0. When investigating the four dimensional parameter space (C,Q,B,S), the
heuristic ∂βΩcoll > 0 is helpful in identifying regions that have dominant oscillatory
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FIGURE 11. (Colour online) Phase diagrams for (B,S), at different C, showing oscillatory
instabilities (shaded regions) with Type II instabilities (dark purple) and Type I instabilities
(two light shades of purple/blue bounded by the solid line). Dominant oscillatory
instabilities (pink which are Type II and red which are Type I) grow from the point L,
(Bo, So)= (3.766, 46.991), as C increases. The heuristic contour ∂βΩcoll = 0 (dashed line)
is plotted as a numerical guide to bound the red/pink region.

instabilities, as they numerically appear inside the heuristic, see e.g. figure 11
(note that figure 9 shows no regions of dominant oscillatory instability). The boundary
of the heuristic is easy to compute and can then be used to restrict the region where
a refined search for dominant oscillatory instabilities can be done. In addition to
Co, we introduce Cd as the critical parameter value for which dominant oscillatory
instabilities occur, i.e. dominant oscillatory instabilities occur when C > Cd, while
for values of C < Cd all oscillatory instabilities are non-dominant (such as those in
figure 9). A key observation from the figure is that oscillatory instabilities do not
occur at low temperatures (C < Co).

The qualitative differences in how the roots become unstable (as β varies) are
shown in figure 10. Each part of figure 10 plots Ωf (β), Ω1(β), and the real and
imaginary values of Ωf ,1(β) (defined in (6.3)) for parameter values that capture
the behaviour at locations A–K in figure 9. Specifically, in figure 10, panels A–C
first show the change in sign of the heuristic quantity ∂βΩcoll; panels E, G and J
correspond to Type I instabilities; panels H and K to Type II instabilities. Meanwhile,
panels D, F, H and I provide a comprehensive survey of parameter values that lie
on the boundaries of Type I or II instabilities. Type I oscillatory instabilities have
one continuous band of unstable wavenumbers 0 6 β < βim, of which [0, βcoll] is
monotonically unstable and (βcoll, βim) is oscillatory unstable. Type II oscillatory
instabilities have two continuous bands of unstable wavenumbers, separated by a gap
of stable wavenumbers that includes the interval (βcoll, βim]. Together, the panels in
figure 10 characterize all the different possibilities for (possibly oscillatory) instability
development. Note that figure 10 does not admit dominant oscillatory instabilities: all
the panels are plotted for values of C < Cd, where Cd is the critical parameter such
that dominant oscillatory instability can only occur for C > Cd (oscillatory instabilities
for C < Cd are non-dominant).

Figure 11 continues the phase diagrams in figure 9 to the values 1.5635 6 C 6 5
(again with Q= 5.114 × 10−4). The value of Cd = 1.5635 in the first panel of figure 11
is significant: it is the onset value for dominant oscillatory instabilities, which emerge
at the point labelled L. For C > Cd, there are regions of parameter values (B, S)
(red shading, figure 11) that are dominant oscillatory unstable. The value C = 5 in
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FIGURE 12. (Colour online) Plots of the real Re[Ω(β)] (black lines), and imaginary
Im[Ω(β)] (red) parts of the frequencies Ωf (β), Ω1(β) and Ωf ,1(β) for varying β. The
frequencies Ωf (β) and Ω1(β) collide at (βcoll, Ωcoll) (shown in green). In contrast to
figure 10, the plots are for values C > Cd at which dominant oscillatory instabilities may
occur. Panels M, P and Q show that the maximum growth rate (Ωr,max) for the real
frequency Ωf (β) is smaller than the maximum real growth rate (Ωf ,max) for frequencies
Ωf ,1(β) with a non-zero imaginary part. The panels characteristically describe stability of
the points/lines/regions with labels L–Q in figure 11; calculation parameters and scales are
given in table 2.

figure 11 highlights that dominant oscillatory unstable modes can be either Type I or
Type II. Figure 12 plots the roots Ωf (β), Ω1(β) and Ωf ,1(β) for behaviour indicative
of parameter values L–Q in figure 11. Figure 12 L, N and O correspond to parameter
values on the boundary of the dominant oscillatory instability region (L being Type I,
O being Type II and N being on the boundary of Type I). The remaining panels M,
P and Q show points for parameter values in the interior of the dominant oscillatory
instability region.

Lastly, we characterize the phase diagrams as C (which one may think of as the
temperature difference) becomes large. Figure 13 fixes Q= 0.006 and plots contours
(corresponding to the curve Ωcoll = 0) in panels (a,d) that enclose Type I instabilities;
contours in panels (b,e) that define the heuristic (corresponding to the curve
∂βΩcoll = 0); and contours in panels (c, f ) that enclose regions of dominant oscillatory
instabilities (corresponding to the curve Ωf ,max = Ωr,max). In the panels the contours
are enumerated 1–8 for convenience, and correspond to increasing values of C, with
the smallest value of C labelled 1 and the largest labelled 8 (the numerical values
of C are stated in the caption). We define Cs to be the (smallest) onset value of C
for which the zero contour of the heuristic ∂βΩcoll emerges in the B–S plane; and
(Bs, Ss) as the point at which the heuristic ∂βΩcoll = 0 first emerges. The bottom
panels (d–f ) of figure 13 show the onset coordinate values (Bo, So) for oscillatory
instabilities (panel (d)); (Bo, So) for the heuristic (panel (e)); and (Bd, Sd) for
dominant oscillatory instabilities (panel ( f )).

Panels (a,d) show that the contours 1–8 are nested: given two contours 16 j, k 6 8
with Cj > Ck, then contour Cj encloses contour Ck. This fact implies that the regions
of oscillatory instability in the phase diagrams B–S become large as C increases.
The regions of dominant oscillatory instabilities in (c), ( f ) are not nested, but still
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FIGURE 13. (Colour online) (a,d) Show the contours (given by Ωcoll = 0) that enclose
regions of Type I oscillatory instabilities. The contours (enumerated 1–8) correspond to
values C = (1.84, 1.86, 1.88, 1.90, 4, 6, 8, 10). (b,e) Show the contours for the heuristic
(∂βΩcoll = 0) used to help identify regions of dominant oscillatory instabilities. The curves
(enumerated 1–8) are for C= (1.95,2.05,2.15,2.25,4,6,8,10). (c, f ) Contours (enumerated
1–8) enclose regions of dominant oscillatory instabilities (given by Ωf ,max =Ωr,max) and are
for values C = (11.6, 12, 12.4, 12.8, 15, 20, 25, 30). All plots are for Q= 0.006.

grow in size as C increases. How the oscillatory unstable regions change as C varies
is significant. Generally speaking, contours 5–8 (a) show that these contours expand
in all directions with increasing C, and eventually cover the entire B–S plane. This
suggests that (for this value of Q), any pair (B,S) will lead to oscillatory instabilities
for a sufficiently large C (temperature difference) value. In contrast, the existence of
dominant oscillatory unstable regions (c, f )) in the B–S plane depends on C:

(i) There are values of (B, S) (for instance, if the ratio S/B is sufficiently small)
that will not be dominant oscillatory unstable for any value of C.

(ii) An arbitrary set of parameters (B, S) (material thicknesses) will only be subject
to a dominant oscillatory instability for a range of C (temperature differences)
values (between a minimum value Cd and some maximum value).

Similar conclusions can be drawn that describe the change in the zero contours of
the heuristic ∂βΩcoll with C (panels (b,e)). These observations provide a valuable guide
for choosing materials that yield realistic experimental setups for observing Type II
and dominant oscillatory instabilities.

7.2. The effect of Q on the behaviour of the phase diagrams
As previously stated, the value of Q depends on the material properties in the
experiment and cannot be modified by the experimental setup (i.e. experimental
geometry or temperature). Therefore, identifying values of Q that give rise to
oscillatory instabilities (and in particular, dominant oscillatory instabilities) will
guide the choice of experimental materials.
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FIGURE 14. (a) Plots the onset values for which oscillatory instabilities occur (Co); the
heuristic changes sign (Cs); and dominant oscillatory instabilities occur (Cd). The (b,c) plot
the same three onset values for B and S, respectively. Note that all onset values are a
function of Q only – once a value of Q is fixed, the onset values are uniquely determined.
The insets depict the behaviour in the vicinity of Q = 0 and the circles correspond to
values at Q= 5.114 × 10−4 used in figures 9 and 11; the circles in the primary panels are
for Q= 0.006 used in figure 13.

Numerical computations show that modifying the value of Q does not change the
qualitative behaviour of the phase diagrams in § 7.1. Changes in the value of Q can,
however, result in a (potentially significant) quantitative change in the onset values Co,
Cd (temperature difference), as well as the locations in the B–S plane (i.e. thicknesses
of the film and substrate) for which the regions of oscillatory and dominant oscillatory
instabilities emerge: (Bo, So) and (Bd, Sd).

Figure 14 plots the onset values Co,Bo,So (solid line) for oscillatory instabilities, as
well as the onset values Cd,Bd, Sd (dashed line) for dominant oscillatory instabilities,
as functions of Q. Onset values Cs, Bs, Ss of the emergence of the zero of the
heuristic (dotted lines) are also given. Figure 14 restricts the range of 0 6 Q 6 0.1
to an experimentally feasible range. The plots are significant since Co and Cd are the
minimum values for which oscillatory and dominant oscillatory instabilities occur. In
addition, the values of Bd and Sd provide information on choosing B and S . Guided
by the qualitative behaviour in figure 9, the diagrams show that choosing (B, S)
close to (Bd,Sd) will likely yield dominant oscillatory instabilities for some range of
C > Cd.

As a computational remark, the values Cd and Co are calculated by minimizing
the value of C in the region of (C, B, S) parameter space that satisfies the Type I
instability criterion (i.e. satisfy the condition Ωcoll = 0) or the dominant oscillatory
instability criterion (condition (6.7)).

7.3. Experimental considerations for oscillatory instabilities
In this section, we discuss oscillatory instabilities in the context of an experimental
setting. This will shed light on the physical mechanism for oscillatory instabilities.
In particular, we will contrast two cases: a substrate that is a conductor (having
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Silicone oil Copper PMMA

µ (kg m−1 s) 4.94 × 10−4 κs (W m−1 K) 400 0.19
κf (W m−1 K) 0.1 χs (m2 s−1) 1.16 × 10−4 1.15 × 10−7

σ0 (kg s−2) 1.59 × 10−2

γ (kg s−2 K) 6.4 × 10−5 q (W (m−2 K)−1) 5 5
θ0 (K) 293 Q (dimensionless) 2.88 × 103 6.45 × 10−7

TABLE 1. Physical properties for silicone oil, copper and PMMA. All values, except q,
are obtained from Araki, Makino & Mihara (1992), Hintz, Schwabe & Wilke (2001) and
Assael et al. (2005). The value of q is estimated from table 1–3 from Holman (2010). The
two values of Q are obtained by pairing each substrate with the silicone oil and estimating
the heat transfer coefficient.

a large thermal conductivity); and a substrate that is an insulator (having a small
thermal conductivity). We conclude that oscillatory instabilities are far more likely to
be observed for films heated by substrates that are insulators.

To draw this conclusion, we estimate the rate of heat transfer between the surface
and the gas q = 5 W (m2 K)−1 (see table 1) and consider low-viscosity silicone oil
films for all the cases presented in this section. Physical properties of the silicone
oil, copper (a conductor) and PMMA (poly(methyl methacrylate), an insulator) are
given in table 1. We first consider films of silicone oil heated by copper substrates.
The results from the previous section will demonstrate that oscillatory instabilities for
silicone oil–copper systems are not likely in experimentally feasible conditions.

Together, the silicone oil–copper system yields a parameter value Q = 2.88 × 103,
which is four orders of magnitude larger than the range plotted in figure 14. The
magnitude of Q is large primarily because the thermal conductivity ratio κs/κf is large.
This value of Q yields onset parameters: (Co,Bo,So)= (1.187×105,1.03×104,8.65×

103). Using these onset values as a rough guide to estimate experimental conditions
yields the parameter values: (∆, h̄, d) = (1.85 K, 2.05 × 102 m, 6.90 × 105 m).
Although the temperature difference (∆) is feasible, the thicknesses are clearly not.

We now shift our focus to a substrate material that does lead to oscillatory
instabilities under experimentally feasible experimental conditions. PMMA is a
readily available insulating material with low thermal conductivity and diffusivity.
Again using the properties from table 1, the silicone oil–PMMA system has a value
of Q = 6.45 × 10−7. Substituting this value of Q into figure 14 yields the onset
parameter values, which can then be used to estimate experimental conditions

(Co,Bo, So)= (0.0173, 1.004, 3.008) H⇒ (∆, h̄, d)= (1.19 K, 0.020 m, 0.114 m),
(Cd,Bd, Sd)= (0.0359, 1.072, 14.910) H⇒ (∆, h̄, d)= (2.47 K, 0.0214 m, 0.5 m).

(7.2)

The above dimensional variables (temperature and thicknesses) provide a guide
for predicting the range of experimental values for which oscillatory instabilities
occur. Figure 15 presents results for the silicone oil–PMMA system with different
experimental parameters ∆, h̄, d. The figure varies the parameter 0 6 C 6 0.3 which
corresponds to a dimensional temperature (difference) range 0 6 ∆ 6 26.5 K. In
particular, the top row of figure 15 plots the real values of several important unstable
frequencies versus C at different B, S values: Ωf ,max (maximum real growth rate),
Ωc,max (maximum real growth rate of oscillatory instabilities) and Ωcoll. Note that these
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FIGURE 15. (Colour online) The unstable frequencies Ω (with real parts in (a) and (d),
and imaginary parts in (b,e)) and wavenumbers β (c, f )) versus C for two different sets of
S, B values holding Q= 6.449 × 10−7 fixed. The shaded regions in grey show values of Ω
and β that are unstable but not oscillatory unstable; while pink regions contain oscillatory
instabilities (and may also contain non-oscillatory instabilities as well). The solid black
lines denote the frequencies and wavenumbers for dominant oscillatory instabilities with
the largest growth rate (see (6.6)). This figure demonstrates that dominant oscillatory
instabilities may occur only in an interval range of C values; and that increasing the
temperature difference (proportional to C) between the film and substrate promotes the
range of frequency and wavenumber values for which oscillatory instabilities may occur.

values are defined in § 6. The middle row in figure 15 plots the range of imaginary
values Ωi that are oscillatory unstable. Having information on the possible imaginary
values of the complex frequencies that are oscillatory unstable is useful, since these
frequencies may be excited via parametric resonance by external forcing. Lastly, the
bottom row plots the band of wavenumbers that are unstable, and oscillatory unstable.
Plotting the unstable wavenumbers provides information on the length scales (thereby
influencing which experimental domain sizes one can utilize) that lead to instability.
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Liquid films non-locally heated from below 957

Figure 15 demonstrates the effect of temperature difference (C) on oscillatory
instabilities. Specifically, the figure plots frequency values Ω (real parts are in (a,d))
and imaginary parts in (b,e)) and wavenumbers β versus C (in (c, f )). The grey regions
correspond to values for which only monotonic (non-oscillatory) instabilities occur,
while the pink regions correspond to values at which oscillatory instabilities may
occur. Note that since there are an infinite number of roots Ωn(β), the pink regions –
which always have oscillatory instabilities – may also contain monotonic instabilities
as well as oscillatory instabilities. Figure 15 contrasts the stability behaviour of Ω
and β versus C for two different sets of B and S values. Here the values of B =Bo
and S =So were chosen to ensure oscillatory instabilities in (a–c), while B =Bd and
S =Sd were chosen to ensure that dominant oscillatory instabilities occur for a range
of C values in (d–f ). The dashed lines in the panels correspond to βcoll (in (a,d))
and Ωcoll (in (c, f )) and are defined in (6.3). The solid lines plot the most unstable
wavenumber and frequencies for which dominant oscillatory instabilities occur; and
correspond to the variables βmax, Ωr,max and Ωi,max as defined in (6.6). Figure 15
shows that the range of unstable wavenumbers and frequencies increase with C, and
that in general, large C values tend to drive oscillatory instabilities.

7.4. Summary
We now recapitulate the most important results of this section. First, this section
classifies oscillatory instabilities, for any (Q, C, B, S), as Type I, Type II, and
subsequently determines whether they are dominant oscillatory unstable. Several
important conclusions can be reached:

(i) The choice of materials (i.e. the fluid and the substrate) dictate the parameter
Q. The value of Q then guides which experimental conditions, such as the film
and substrate thicknesses, as well as temperature difference, lead to oscillatory
instability. Generally speaking, the onset values Sd and Bd provide guides (i.e.
order-of-magnitude estimates) that can be used as minimum material thicknesses.

(ii) Temperature drives instability. It is well known that temperature gradients can
drive instabilities in fluids (i.e. Rayleigh–Benard convection). This result is also
true in the current setting: oscillatory instabilities are more likely when there is
a larger temperature difference across the film and substrate. Crucially, we find
that oscillatory instabilities, or dominant oscillatory instabilities arise for C values
(i.e. temperature values) that exceed predefined thresholds C > Co, or C > Cd,
respectively.

(iii) Insulating substrates are more likely to give rise to oscillatory instabilities than
conducting substrates. The physical reason is that substrates that are thermally
conducting transfer heat, and consequently equilibrate their temperatures, over
time scales much faster than the characteristic time scales in the thin film.
Oscillatory instabilities require thermal coupling between the substrate and the
film, and can occur when the natural time scales of the film are of the same
order as the time scale governing thermal diffusion in the substrate.

8. Discussion and conclusion
In this work we derived a nonlinear model that couples the thermocapillary

dynamics of a liquid film heated by a thermally conductive and diffusive substrate.
This was effectively done by assuming a large substrate–film thermal conductivity
ratio and a substrate thickness that is of the same order as the characteristic lateral
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disturbance but asymptotically larger than the mean film thickness. In order to
highlight parameter regimes that are subject to oscillatory instabilities, a scaling was
incorporated that grouped the effects of the substrate thermal diffusivity, the imposed
temperature difference, the film thickness and the substrate thickness via four separate
dimensionless parameters: (Q, C,B, S).

For any set of model parameters, linear stability of the model can be described
by the wavenumber-dependent interaction between a perturbation associated with the
governing film evolution equation and an infinite number of perturbations associated
with the substrate heat equation. Each perturbation is characterized by the growth rates
that satisfy the dispersion relation, equation (4.23), and we refer to these solutions as
‘roots’ of the dispersion relation. The film root Ωf (β) coalesces with the root Ω1(β)
at certain wavenumbers; at this point they bifurcate into the complex plane and give
rise to oscillatory instabilities. ‘Film root’ refers to a root of the dispersion relation
that can be connected with the film thickness evolution equation (§ 5.2), and the
roots {Ω1,Ω2, . . .} arise from coupling the film to the diffusive substrate. Throughout
our work we found (without proof) that only coalescence of Ωf and Ω1 give rise to
oscillatory instabilities. We note however that, for increasing β, an infinite number
of stable oscillatory modes are generated from collisions between the film and the
higher-order substrate roots.

Of great interest are the parameter sets we presented in § 7 that are subject
to dominant oscillatory instabilities. Following discussion from Nepomnyashchy
et al. (2001), we point out that oscillatory instabilities arise in situations where
effects that normally diminish system disturbances actually lead to an ‘overshoot’
of the equilibrium. In our model, we imagine that oscillatory flows set in due to a
synchronization of the time scales for lateral heat diffusion and evolution of the film
thickness. Unfortunately we have not been able to pinpoint the physical mechanism
that drives oscillatory flows unstable. Nevertheless, our computational results have
broadly characterized the emergence of oscillatory instabilities within the parameter
space and are apt to guide experimental investigations.

To the best of our knowledge, oscillatory modes as described by our model have not
yet been observed experimentally. To build towards conditions we believe will lead to
the observation of such modes, we first discuss aspects of the work by VanHook et al.
(1997) that first compared theory and experiment for monotonically growing, long-
wavelength thermocapillary modes. A key distinction between the work of VanHook
et al. and ours is that they constrain the gas layer sitting above the film with an
isothermal cooled surface. This way, they control the amount of heat transferred across
the film and into the gas by adjusting the film thickness h and the gas layer thickness
dg. They describe heat transfer for this set-up with a Biot number Bi = (κg h)/(κf dg)
where κg and κf are the gas and film conductivities, respectively. To drive discussion,
we estimate q by setting Bi =B (i.e. q = κg/dg) as a means to adapt our model to the
case of constrained film–gas bilayers heated by thick solid substrates. Setting Bi=B, it
becomes obvious that values of B> 5 are exceptionally rare after considering realistic
values of h/dg and κg/κf . Helium conducts heat better (κg ≈ 0.150 W (m K)−1) than
most gases and, paired with silicone oil (κf = 0.1 W (m K)−1, table 1) we have Bi =
1.5 h/dg and Bi < 3 for (practical) values h/dg < 2. Thus, even smaller values of B
are associated with the vast majority of film–gas combinations. We also note that q =

κg/dg can be made arbitrarily large for a specified value of κg/κf only by decreasing
h̄ and dg in tandem while holding their ratio fixed.

We now seek to predict conditions at which oscillatory instabilities could
be observed for silicone oil films (h = 0.1 mm) heated by a PMMA substrate
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(d = 0.5 mm) and losing heat to an air layer (κg = 0.025 W (m K)−1, dg = 0.05 mm).
Equating B = Bi = 0.5, we have q = 500 W (m K)−1 and (Q, B, S) = (6.45 ×

10−5, 0.5, 1.3). The effect of increasing temperature difference is seen for these
values by varying C and assessing stability with diagrams such as figure 15. We find
these conditions give behaviour qualitatively similar to panels (a)–(c) of figure 14; no
dominant oscillatory modes are encountered as the imposed temperature difference
increases. Type I oscillatory instabilities set in for (C, ∆) > (0.205, 14.2 K) with a
collision wavenumber of βcoll ≈ 0.368, which, using the scale x0

= d = 0.5 mm, gives
the dimensional wavenumber k = 736 m−1 and wavelength 2π/k = 0.85 cm. For a
larger imposed temperature difference of (C, ∆)= (6.39, 44 K), the system is subject
to oscillatory instabilities within the wavenumber range β ∈ (0.998, 1.059), and, in
dimensional wavelengths, 2π/k ∈ (0.30, 0.31) cm. We expect these wavelengths can
be targeted experimentally by constraining films to laterally small cells that allow
destabilization of a single wavelengths (cf. VanHook et al. (1997)).

Our model also predicts dominant oscillatory modes for the air system with
B = 0.5 and much thicker substrates (S 1.3). However, larger thicknesses h and
dg are necessary to decrease q (and Q) because the onset conditions for dominant
modes require impractically large values of C and S for the h = 0.1 mm case
discussed above. For silicone oil–air systems with (h, dg) = (1, 0.5) mm, Bi = B
gives q = 50 W(m2 K)−1 and (Q, B) = (6.45 × 10−6, 0.5). While increasing S ,
we find that a dominant oscillatory instability sets in first with (S, d, C, ∆) =

(13, 4.9 mm, 0.14, 9.6 K). For a larger substrate thickness and temperature difference,
(S, d, C, ∆) = (39, 15 mm, 0.34, 23.4 K), a wide band of dominant oscillatory
wavenumbers is encountered for β ∈ [1.25, 2.641] (2π/k ∈ [3.57, 7.54] cm). With
ε(S = 13)= 0.041 and ε(S = 39)= 0.014, we expect our model to be valid and that
only oscillatory instabilities will be observed in experiments that can access these
wavenumbers (i.e. the lateral extent of the film is large enough to contain several
unstable wavelengths and select the fastest-growing mode).

We conclude by noticing several effects that we neglected, and which may influence
quantitative comparison between long-wavelength models and experiments. For thicker
films, gravitational stabilization and competition with short-wavelength thermocapillary
instabilities must be accounted for. Alternatively, destabilization of ultra-thin films
with exceptionally large thermal gradients must account for several new processes
such as van der Waals forces, new mechanisms of heat transfer, and temperature
variation of physical properties. In addition to including these effects, other future
work of interest includes development of coupled film–substrate models that drive
instability with temporally periodic excitation. Results of Batson, Agnon & Oron
(2015) and Batson, Agnon & Oron (2017) showed that modulations of the heat
transferred (as modelled by Newton’s law of cooling) across a film–gas interface did
not parametrically pump energy into the system (and drive resonant instabilities) as
is seen for processes subject to multiple, coupled time scales. We believe our efforts
in the present work set an interesting foundation upon which parametric excitations
of films coupled to two-dimensional diffusive processes can be studied.
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Appendix A. Thin substrate limit
For sufficiently thin substrates, lateral heat conduction and the thermal diffusivity

can be neglected and a single nonlinear PDE can be derived for the evolution of the
local film thickness. Instead of re-deriving the long-wave model starting with these
assumptions, we equivalently obtain its dispersion relation by taking the limit of (4.26)
as

p
Ω + β2 → 0, viz.,

QS2Ω +
1
3 B β

4
−

1
2 C B S2 Θ̄2

H β
2
= 0. (A 1)

Effectively we have restricted consideration to film and substrate temperature profiles
depending only on the vertical coordinate, as described by the basic state solutions
(4.8). In doing so, the full dispersion relation reduces to an explicit expression for
strictly real values of Ω in terms of the model parameters.

The dimensional equivalent to (A 1) is obtained by making substitutions (3.1a–d)
and (3.2) and solving for the dimensional growth rate ω as a function of the
wavenumber k, viz.,

µω= −
σ0 h

3
k4

3
+
γ ∆ h k2

2
q h
κf

1 +
q h
κf

+
q d
κs

−2

. (A 2)

Aside from χs (negligible for thin substrates), this expression for ω(k) describes
the influence of material properties and dimensions on film stability. It is clear that
viscosity modifies only the growth rate. Solving for the cutoff wavenumber kc at
which ω= 0 we obtain

k2
c =

3 γ ∆

2 σ0 h
2

q h
κf

1 +
q h
κf

+
q d
κs

−2

. (A 3)

This wavenumber divides the continuous bands of unstable (0 < k < kc) and stable
(k > kc) wavenumbers for a given set of system parameters. Instability described by
(A 3) is clearly driven by increasing values of the coefficient γ ∆/σ0 and decreasing
film thickness h.

It is also evident that limq→0 kc = limq→∞ kc = 0. For q → 0, the resistance to
heat transfer at the film–gas interface becomes infinite and, as a result, the perturbed
free surface is uniformly equal to the blackbody temperature ψb. In the absence
of variations in the free surface temperature, no thermocapillary stresses arise and
perturbations of all wavelengths are stable. Likewise, all values of k are stabilized
in the limit q → ∞, which uniformly sets the free surface temperature to the gas
temperature θg. For finite values of q, interfacial resistance to heat transfer introduces
variations in the free surface temperature that depend locally on the perturbed film
thickness. Specifically, with the rate at which heat is removed from the film fixed
by q, local hot and cold spots form at troughs and crests, respectively, due to their
relative proximities to the heating source.

Finally, inspecting the limits

lim
d→0

k2
c = lim

κs→∞

k2
c =

3 γ ∆

2 σ0 h
2

q h
κf

1 +
q h
κf

−2

, (A 4)

we see that kc is maximized for situations that effectively transfer the isothermal
blackbody temperature directly to the film–substrate interface (S → 0). We conclude
by stating that placing a substrate between a film and the blackbody necessarily
stabilizes films for finite values of d and κs relative to the case of heating a film
directly without a substrate.
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Appendix B. Parameter values used in figures 10 and 12

Panel B S x-scale y-scale βcoll Ωcoll

A 600 550 0.08 2 0.0546 −0.849
B 200 2274.470 0.4 2 0.224 −2.96
C 200 1500 0.3 1 0.183 −1.68
D 200 100.941 0.08 4 0.0648 0.000
E 200 250 0.15 7 0.113 −2.38
F 418.508 676.570 0.12 3 0.0827 0.000
G 200 416.044 0.2 8 0.140 3.01
H 200 981.934 0.25 2 0.161 −0.507
I 200 1099.534 0.25 2 0.165 −0.507
J 200 700 0.25 4 0.156 1.65
K 200 1050 0.25 2 0.163 −0.306
L 72.900 550 0.6 8 0.318 4.17
M 50 550 0.8 6 0.377 2.24
N 65.858 723.071 0.6 3 0.314 0.000
O 27.429 550 1 2 0.520 −0.617
P 32.259 550 1 3 0.470 0.000
Q 30 550 1 3 0.491 −0.286

TABLE 2. Parameters and scales for panels A–Q in figures 10 and 12. All cases
considered are calculated with (C,Q)= (5, 5.114 × 10−4).
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