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This paper focuses on the question of how unconditional stability can be achieved via 
multistep ImEx schemes, in practice problems where both the implicit and explicit terms 
are allowed to be stiff. For a class of new ImEx multistep schemes that involve a 
free parameter, strategies are presented on how to choose the ImEx splitting and the 
time stepping parameter, so that unconditional stability is achieved under the smallest 
approximation errors. These strategies are based on recently developed stability concepts, 
which also provide novel insights into the limitations of existing semi-implicit backward 
differentiation formulas (SBDF). For instance, the new strategies enable higher order 
time stepping that is not otherwise possible with SBDF. With specific applications in 
nonlinear diffusion problems and incompressible channel flows, it is demonstrated how 
the unconditional stability property can be leveraged to efficiently solve stiff nonlinear or 
nonlocal problems without the need to solve nonlinear or nonlocal problems implicitly.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

This paper builds on the theoretical work [1] on the unconditional stability of linear multistep methods (LMMs). 
While [1] introduced a new unconditional stability theory for implicit–explicit (ImEx) methods, and presented a novel 
class of ImEx LMMs that involve a stability parameter, this paper develops strategies on how to select the time stepping 
parameter and the ImEx splitting in an optimal fashion. The key focus is on problems for which an ImEx splitting is war-
ranted in which both the implicit and the explicit terms are stiff, for example because the stiff terms are difficult to treat 
implicitly.

Conventional ImEx splittings often treat all stiff terms implicitly to ensure that one does not encounter a stiff time step 
restriction (one usually accepts a time step restriction from the non-stiff explicit part). However, as demonstrated in [1], this 
is not always required: one may treat stiff terms explicitly and nevertheless avoid a stiff time step restriction, provided the 
implicit term and the scheme are properly chosen. This paper provides strategies on how to make these choices (splitting 
and scheme) in practical problems. We do so through the use of the unconditional stability theory from [1], which is based 
on geometric diagrams that play a role analogous to the absolute stability diagram in conventional ordinary differential 
equation (ODE) stability theory. Specifically, we present strategies on how to achieve unconditional stability via (i) choosing 
the splitting for a given scheme; (ii) modifying a time-stepping scheme for a given splitting; and (iii) designing the splitting 
and the scheme in a coupled fashion. In addition, we employ the stability theory to provide new insights on the limitations 
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of popular semi-implicit backward differentiation formulas (SBDF). In fact, we show that the new ImEx LMMs generalize 
SBDF methods, in a way that they overcome some of their fundamental stability limitations.

1.1. Problem setting

We are concerned with the time-evolution of linear ODEs of the form

ut = Lu + f , u(0) = u0. (1.1)

Here u(t) ∈ R
N , L ∈ R

N×N , and f (t) ∈ R
N is an external forcing. We assume that L gives rise to asymptotically stable solu-

tions — i.e. solutions to the homogeneous ODE ut = Lu decay in time (the eigenvalues of L are in the strict left-half-plane). 
This assumption can be relaxed; however then additional caveats are required (see §6 for when L has a zero eigenvalue, or 
§8 for when L has purely imaginary eigenvalues).

For the right hand side L, an ImEx splitting (A, B) is conducted [2–5], i.e. L is split into two parts, L = A + B , where A
is treated implicitly (Im) and B is treated explicitly (Ex). Clearly, the splitting (A, B) is non-unique, and in fact, any matrix 
A defines a splitting by choosing B := L − A. For this ImEx splitting, we now require the time-stepping scheme to be 
unconditionally stable. This is a stringent, but very practical property (especially when L is stiff) as it allows one to choose 
a time step as large as accuracy requirements permit.

Note that the theory in this paper is developed for linear ODEs, as this assumption allows for a rigorous geometric 
stability theory involving unconditional stability diagrams. However, we then extend the results, in an ad-hoc but rather 
natural fashion, to nonlinear problems as well.

1.2. Examples from partial differential equations

A crucial source of stiff problems is the method-of-lines (MOL) semi-discretization of a partial differential equation 
(PDE). In that situation, rather than having one single right hand side L , one faces a family Lh (with h the mesh size) that 
approximates a spatial differential operator L. A key property of the time-stepping strategies studied here is that for many 
PDE problems, the choice of ImEx splitting and scheme can in fact be conduced on the level of differential operators, or 
equivalently, to hold for the family Lh , uniformly in h (see Sections 6 and 7).

An important PDE situation in which unconditional stability is important is the MOL discretization of diffusion. A fully 
explicit treatment of diffusion gives rise to a stiff time step restriction k ≤ Ch2. Hence, for problems in which diffusion 
represents the highest spatial derivative, a common approach is to include all of the discretization of ∂2

∂x2 into the implicit 
part Ah , and leave Bh as the remaining non-stiff terms. Such an approach will then avoid a stiff time step restriction. 
However, treating all stiff terms of L implicitly may in general be costly (see §6); and in fact it is not always necessary. 
Having new approaches that allow one to treat (some of the) stiff terms explicitly, without incurring a stiff time step 
restriction, can be a significant practical benefit. In problems where L is stiff and costly to treat fully implicitly, this opens 
the door for designing a well-chosen ImEx splitting where A contains only part of the stiff components of L , and is much 
more efficient to treat implicitly.

1.3. Background and relation to other works

ImEx unconditional stability has been studied in numerous theoretical and practical works. On the theoretical side, gen-
eral abstract sufficient conditions for unconditional stability and arbitrary multistep schemes are stated in [6–9]. Although 
these conditions have the advantage of incorporating nonlinear terms (i.e. B is allowed to be a nonlinear operator), they 
have the drawback that they require the implicit matrix A be larger (in the sense of an appropriate norm) than B , and are 
overly restrictive for the problems we consider (e.g. they do not apply to Example 2).

Generally speaking, in the context of multistep methods, proofs for unconditional stability are commonplace for first and 
second order methods. Meanwhile, for higher order schemes, unconditional stability is usually only studied numerically, and 
in limited settings. This gap is likely due to the limitations that existing high-order methods encounter (see §5). Important 
works in which unconditional stability is proved for first or second order methods, or numerically observed in higher order 
schemes, are the following papers (and references therein). Some of the first applications involving unconditional stability 
originated in the 1970s, with alternating direction implicit (ADI) methods [10]. Others include magneto-hydrodynamics [11]; 
unconditional stability (also referred to as unconditionally energy stable, or as convex-concave splitting methods) for phase-
field models [12–19,14,20]; applications to fluid-interface problems [21]; incompressible Navier–Stokes equations [22–27]; 
Stokes–Darcy systems [28], compressible Navier–Stokes equations [29,30], and PDEs with the explicit treatment of non-local 
terms [31,32]. One disadvantage of low (i.e. first or second) order methods is that they can also have large error constants 
for dissipative PDEs [33] and dispersive PDEs [34], thus further reducing their applicability for the long-time numerical 
simulations. We differ from these previous works in several ways:

1. We include higher order schemes as part of the study.
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2. Whereas many existing works use von-Neumann analysis or energy estimates that are tailored to a specific problem, 
we make use of recently introduced unconditional stability diagrams [1]. The diagram approach simplifies the design of 
high-order unconditionally stable schemes and is applicable to a wider range of applications.

3. We include variable ImEx time stepping coefficients. It may be surprising that stability considerations for ImEx schemes 
do not require all stiff terms to be included in A. In fact, ImEx schemes can even go far beyond such a restriction: 
not only can B be stiff, it can (in some sense) even be larger than A, while still retaining unconditional stability. The 
underlying mechanism is that A is chosen in a way that stabilizes the numerical instabilities created by the explicit 
treatment of B with a suitable (simultaneous) choice of a splitting and time stepping scheme.

It should also be stressed that there are numerous time stepping approaches (not strictly multistep methods) for specific ap-
plication areas that possess good stability properties. Recently, high order unconditional stable methods for ADI applications 
have been obtained by combining second order multistep schemes with Richardson extrapolation [35–37]. For PDE systems 
that have a gradient flow structure, new conditions [38] allow for the design of third order, unconditionally energy-stable 
Runge–Kutta (RK) methods. Other techniques include: semi-implicit deferred correction methods [39]; semi-implicit matrix 
exponential schemes where the linear terms are treated with an integrating factor [40–42]; and explicit RK schemes with 
very large stability regions for parabolic problems [43].

1.4. Outline of this paper

This paper is organized as follows. After introducing the key notation and definitions (§2), a self-contained review of the 
employed unconditional stability theory is provided that takes a different viewpoint than [1] by placing a practical emphasis 
on the eigenvalues of A, B . Section 4 and onward (including Appendix A) contain new results. Section 4 provides recipes 
for designing (optimal) unconditionally stable ImEx schemes that minimize the numerical error. Section 5 characterizes the 
limitations of the well-known SBDF methods. Section 6 uses insight from §5 to overcome the limitations of SBDF and de-
vise optimal high order (i.e. beyond 2nd order) unconditionally stable schemes for the variable-coefficient and non-linear 
diffusion problems. This section includes new formulas for ImEx splittings and schemes (accompanied by rigorous proofs 
in Appendix A); as well as computational examples. Section 7 studies an application example that is motivated by incom-
pressible Navier–Stokes flow in a channel and provides general insight into stability issues in computational fluid dynamics. 
Section 8 provides an outlook and conclusions, and Appendix B lists the specific ImEx coefficients to be used in practice.

2. Introduction to the ImEx schemes and unconditional stability property

This section introduces the assumptions, notations, and ImEx schemes used throughout the paper. As discussed above, 
we are interested in unconditional stability for ImEx splittings L = A + B of equation (1.1) where in general both the implicit 
matrix A, and the explicit matrix B are allowed to be stiff.

We restrict to splittings in which A is Hermitian (symmetric in the real case) negative definite, i.e. A has strictly negative 
eigenvalues:

A† = A, and hu, Aui < 0, for all u 6= 0, u ∈C
N . (2.1)

Here we have adopted the standard notation on vectors x, y ∈ C
N (or RN ):

hx, yi =
NX

j=1

x j y j, kxk2 = hx, xi, A† = A
T
, x = ¡

x1, x2, · · · , xN
¢T

.

Note that L itself is not assumed symmetric/Hermitian or negative definite. Furthermore, assumption (2.1) on A is not 
overly restrictive, because for any given L one can choose A symmetric negative definite, and then set B = L − A. Note 
that spectral methods (for the spatial discretization of PDEs) may give rise to a complex matrix A , which is why we do not 
restrict A to be real. It is also worth noting that much of the theory we present still persists even when A is not Hermitian 
and negative definite (see Section 8).

Finally, we remark that the implicit treatment of a matrix A in multistep methods (or even Runge–Kutta methods), 
requires one to solve linear systems with coefficient matrices of the form (I − γ kA), where γ > 0 is a constant and k > 0
is the time step. For A symmetric negative definite, those system matrices are positive definite and thus favorable for fast 
solvers (chapter IV, lecture 38, [44]).

We will generally assume that the problem gives rise to a preferred/natural matrix structure A0 (symmetric, negative 
definite) that one wishes to treat implicitly; however, its overall magnitude is up to choice. In other words, the user fixes 
A0 and would accept any implicit matrix of the form A = σ A0 (with the splitting parameter σ > 0), provided that such an A
yields unconditional stability. This is in a spirit similar to [10]. For example, in spatial discretizations of a variable coefficient 
diffusion PDE where Lu ≈ (d(x)ux)x , the user may prefer an implicit treatment of the constant coefficient Laplacian A0u ≈
uxx , however, would accept any constant multiple as well, i.e. Au ≈ σ uxx . Writing A = σ A0 where A0 is fixed, introduces 
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the scalar σ as a key parameter. This paper shows how to choose σ in a systematic fashion to obtain unconditionally 
stability.

We restrict our attention to ImEx versions of linear multistep methods (LMMs) [2,3]; however it is worth noting that 
some of the concepts developed here may extend to other time stepping schemes as well, such as Runge–Kutta (multi-stage) 
ImEx schemes. The general form of an r-step LMM applied to the ODE (1.1) with a splitting (A, B) is:

1

k

rX
j=0

a j un+ j =
rX

j=0

³
c j Aun+ j + b j Bun+ j + b j f n+ j

´
. (2.2)

Here k > 0 is the time step, the variable br = 0 (so that B is explicit in (2.2)), un = u(nk) is the numerical solution u(t)
(with a slight abuse of notation) evaluated at the n-th time step, and f n = f (nk). We refer to the values (a j, b j, c j), with 
0 ≤ j ≤ r as the ImEx (time stepping) coefficients. The LMMs of the form (2.2) require r initial conditions u0, u1, . . . , ur−1. 
The computation of these initial conditions to sufficient accuracy is a separate problem (chapter 5.9.3, [45]), and is not 
considered here. When discussing stability it will be useful to define the polynomials a(z), b(z), c(z), using the ImEx 
coefficients in (2.2):

a(z) =
rX

j=0

a j z
j, b(z) =

r−1X
j=0

b j z
j, c(z) =

rX
j=0

c j z
j. (2.3)

Given the ImEx coefficients, one may write down the polynomials a(z), b(z), c(z), or alternatively, given polynomials a(z), 
b(z), c(z), one may read off the different coefficients in front of z j to obtain the time stepping coefficients (a j, b j, c j).

In this work we utilize a one-parameter family of ImEx coefficients, introduced in [1], that have desirable unconditional 
stability properties. The new ImEx coefficients are characterized by a parameter 0 < δ ≤ 1, i.e. they are functions of a single 
ImEx parameter δ, and are defined for orders r = 1 through r = 5. Formulas for the new coefficients (a j, b j, c j), in terms 
of δ, may be found in Table B.4; and substituting different values of 0 < δ ≤ 1 into these formulas yields different ImEx 
schemes. For example, the new one-parameter ImEx schemes for first (r = 1) and second order (r = 2) take the form:

1st order:
1

k

¡
δ un+1 − δ un

¢ = Aun+1 + (δ − 1)Aun + δ Bun, (2.4)

2nd order:
1

k

³¡
2δ − 1

2
δ2¢un+2 + ¡ − 4δ + 2δ2¢un+1 + ¡

2δ − 3

2
δ2¢un

´
= (2.5)

Aun+2 + 2
¡
δ − 1)Aun+1 + ¡

δ − 1)2 Aun + 2δ Bun+1 + ¡
(δ − 1)2 − 1

¢
Bun.

For brevity we have set f = 0 in the formulas (2.4)–(2.5), however one may include it in the explicit term Bu (or even 
the implicit term) as in equation (2.2). Although the formulas for the coefficients might appear unruly, they have simple 
polynomial expressions.

Remark 1. (ImEx coefficients from Table B.4 written in polynomial form) For orders 1 ≤ r ≤ 5, and 0 < δ ≤ 1, the ImEx 
coefficients (a j, b j, c j), for 0 ≤ j ≤ r from Table B.4 correspond to the following polynomials:

a(z) =
rX

j=1

f ( j)(1)

j! (z − 1) j, where f (z) = (ln z)(z − 1 + δ)r, (2.6)

b(z) = (z − 1 + δ)r − (z − 1)r, c(z) = (z − 1 + δ)r . (2.7)

The relationships between the polynomials, i.e. b(z) = c(z) − (z − 1)r , and a(z) as the r-th order Taylor polynomial of 
ln(z)c(z) ensure that the ImEx coefficients satisfy the order conditions required to define an r-th order scheme.

Note that in the Remark 1, the polynomial c(z) has roots that approach 1 as δ → 0. This is not an accident, and it is this 
property that will eventually lead to good unconditional stability properties for the new schemes.

Equations (2.4)–(2.5), as well as the 3rd, 4th, 5th order schemes in Table B.4, define families of time-stepping schemes. 
When the value δ = 1 is substituted into the coefficient formulas in equations (2.4)–(2.5), one obtains the well-known back-
ward differentiation formulas for the coefficients of A , also referred to as semi-implicit backward differentiation formulas 
(SBDFr, where r denotes the order of the scheme):

SBDF1 (δ = 1) : 1

k

¡
un+1 − un

¢ = Aun+1 + Bun,

SBDF2 (δ = 1) : 1

k

³3

2
un+2 − 2un+1 + 1

2
un

´
= Aun+2 + 2Bun+1 − Bun.



B. Seibold et al. / Journal of Computational Physics 376 (2019) 295–321 299

Choosing values δ 6= 1 yields different (new) schemes. We have only displayed orders r = 1, 2 in the above expressions, 
however coefficients are also given for orders r = 3, 4, 5 in Table B.4. Lastly we note that the new ImEx schemes are 
zero-stable for any value 0 < δ ≤ 1, and the coefficients satisfy the order conditions [1] to guarantee that they define an 
r-th order scheme (i.e. solving (2.2) using the coefficients approximates the solution to (1.1) with an error that scales like 
O(kr) as k → 0).

Each fixed set of ImEx coefficients, such as SBDF (δ = 1), or ImEx versions of Crank–Nicolson, or even schemes not 
considered in this paper, provide unconditional stability for only a certain set of matrix splittings (A, B) — and these may 
not include a practitioner’s desired splitting for a given problem. Introducing the one-parameter family of ImEx schemes 
(parameterized by δ) provides the flexibility needed to attain unconditional stability for new classes of matrices (A, B)

beyond the capabilities of what is possible using a fixed set of coefficients. This point becomes particularly apparent in §5, 
in the discussion of the limitations of SBDF methods. This gain in unconditional stability offered by the parameter δ may 
come with a trade-off of increasing the numerical approximation error constants. Thus, an important discussion (see §4) is 
how to choose an ImEx scheme (i.e. how to choose δ) for a given problem splitting (i.e. (A, B)) to balance the trade off 
of gaining unconditional stability while minimizing the numerical error. Or, even better, how to choose the splitting and 
scheme in a coupled fashion.

Our goal is to avoid unnecessarily small time step restrictions in the numerical scheme (2.2). To do this we examine 
when (2.2) is unconditionally stable — i.e. the numerical scheme (2.2) with f = 0 remains stable regardless of how large one 
chooses the time step k > 0. Formally, we adopt the following definition:

Definition 2.1. (Unconditional stability) A scheme (2.2) is unconditionally stable if: when f = 0, there exists a constant C
such that

kunk ≤ C max
0≤ j≤r−1

ku jk, for all n ≥ r, k > 0 and u j ∈R
N , where 0 ≤ j ≤ r − 1.

Note that C may depend on the matrices A , B , and the coefficients (a j, b j, c j), but is independent of the time step k, the 
time index n, and the initial vectors u j , 0 ≤ j ≤ r − 1.

It is important to note that unconditional stability of an ImEx LMM like (2.2) can be difficult to determine in practice, 
as this question depends simultaneously on the choice of coefficients (a j, b j, c j) and the splitting (A, B). The purpose 
of introducing a new stability theory in [1] was to remedy this difficulty and formulate unconditional stability (or failure 
thereof) in terms of two separate computable quantities: one quantity that depends only on the coefficients (a j , b j, c j), and 
one that depends only on the splitting (A, B). The theory then allows for a variety of possibilities:

(i) Given a fixed splitting (A, B), design coefficients (a j, b j, c j) (by choosing 0 < δ ≤ 1) that achieve unconditional stability 
— see §4, Recipe 1.

(ii) Given a fixed set of coefficients (a j, b j, c j) (such as SBDF when δ = 1), determine how to choose a splitting (σ A0, B)

(i.e. choose σ > 0) that guarantees unconditional stability — see §4, Recipe 2.
(iii) Offer the most flexibility by simultaneously choosing both the coefficients (a j, b j, c j) and the splitting (σ A0, B) to 

achieve unconditional stability. This will involve the simultaneous choice of (σ , δ) and is discussed in §4, Recipe 3.

3. The unconditional stability theory

In this section we review the unconditional stability theory from [1] — which imposes conditions on (A, B) and the 
time-stepping coefficients (a j, b j, c j) that (when satisfied) ensure the unconditional stability of (2.2). The stability theory 
will then provide a guide for choosing the ImEx coefficients (a j , b j, c j) and/or splitting (A, B) that guarantee unconditional 
stability for a given problem (i.e. L). The unconditional stability theory is somewhat analogous to the classical absolute 
stability theory (chapter 7, [45]), as it relies on a stability diagram — and we highlight the parallels with an example here:

Example 1. (Absolute stability theory) Given an ODE of the form ut = Au, the absolute stability diagram A is defined as

ar un+r + . . . + a0un = k (cr Aun+r + . . . + c0 Aun), (3.1)

A = ©
μ ∈C : a(z) = μc(z), has stable solutions z

ª
.

The scheme (3.1) is stable with time step k, if and only if every eigenvalue λ of A (i.e. Av = λv) satisfies kλ ∈ A (with the 
possible exception of repeated eigenvalues λ, and time steps k that lie on the boundary kλ ∈ ∂A).

A key feature of the absolute stability theory is that it decouples the stability criteria into (i) a property of the matrix A
only (i.e. the eigenvalues), in relation to (ii) a property of the time stepping scheme only (i.e. A). Decoupling the stability 
theory is extremely useful; for instance, it allows one to determine which matrices A can be solved using a given time 
stepping scheme. The unconditional stability theory in this section will parallel that of the absolute stability theory, and:
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• Introduce the unconditional stability diagram (defined solely by (a j, b j, c j)); and provide formulas for the diagrams to 
the schemes corresponding to Table B.4.

• Provide computable quantities in terms of (A, B) that are analogous to the eigenvalues of A in Example 1. Unconditional 
stability will then be framed in terms of the computable quantities lying inside the unconditional stability region.

3.1. The unconditional stability diagram D

The absolute stability theory in Example 1 was obtained by replacing the matrix A with one of its eigenvalues λ — 
resulting in a (simpler) stability analysis of a scalar ODE. In a similar spirit, if (A, B) can be simultaneously diagonalized 
(for instance when they are commuting and diagonalizable matrices), then (A, B) may be replaced by their eigenvalues — 
resulting likewise in a scalar ODE. The unconditional stability diagram can then be derived from this scalar ODE. We stress 
that although the diagram is derived here assuming (A, B) are simultaneously diagonalizable, the diagram is also applicable 
to general matrices (A, B) (i.e. that do not commute), as outlined below. Suppose v is a simultaneous eigenvector to A and 
B and satisfies

−Av = λv, B v = γ v, −μAv = B v, where μ = γ

λ
. (3.2)

Here λ > 0 (and real) since A is symmetric/Hermitian and positive definite. Substituting u(t) = v(t) v into the ODE (1.1)
yields the scalar equation

vt = −λv + γ v. (3.3)

One can then examine stability for the ImEx scheme (2.2), applied to equation (3.3) (with the λ term treated implicitly and 
the γ term explicitly), in the usual way: set vn = zn v0, to obtain a polynomial equation for the growth factors z

k−1a(z) = −λc(z) + γ b(z). (3.4)

Here a(z), b(z), c(z) are the polynomials defined in (2.3). Note that the polynomial equation (3.4) was used in [2] for the 
purpose of determining CFL-type time step stability restrictions for advection–diffusion problems; and also in [46] in the 
context of computing absolute stability-type diagrams for ImEx schemes (see also [47] for a treatment of delay differential 
equations). In both cases, the matrices (A, B) were assumed to be simultaneously diagonalizable, and neither study was 
focused on unconditional stability. Equation (3.4) is also sometimes used as a (non-rigorous) model for stability in the 
case when (A, B) are not simultaneously diagonalizable. The study of unconditional stability digresses from prior work by 
re-parameterizing equation (3.4) with the substitution y = −kλ and μ = γ λ−1:

a(z) = y
³

c(z) − μb(z)
´
. (3.5)

Note that y takes on all values y < 0 as k varies between 0 and +∞; and that μ ∈ C. For a fixed mode, i.e. fixed λ and γ , 
unconditional stability demands that the growth factors z solving equation (3.4) are stable for all k > 0. Viewed in the 
context of (3.5), this requirement leads to the definition of the unconditional stability diagram D: the values μ ∈ C for 
which the growth factors z to (3.5) are stable for all y < 0 (including y → −∞)

D :=
n
μ ∈C : Solutions z to (3.5) are stable for all y < 0

o
.

Here we say that z is stable if |z| < 1; and for technical convenience we exclude (non-repeated) values of |z| = 1. Thus far, 
the definition for D is very general and may be computed for any set of ImEx LMM coefficients (a j, b j, c j). It is also crucial 
to note that D is defined only in terms of the ImEx scheme coefficients.

It was proved (Thm. 8, Prop. 9 [1]) that for the schemes in Table B.4, the value of y → −∞ (i.e. requiring stability for 
large time steps, k → ∞) imposes the most severe restriction on the growth factors in equation (3.5). This theoretical result 
has the consequence that the set D is completely determined by setting y → −∞ in (3.5), leading to the simplification

D =
n
μ ∈C : c(z) − μb(z) has stable roots

o
(For schemes in Table B.4) (3.6)

We stress that (3.6) is not necessarily a general property of ImEx LMM — but it holds for the schemes in Table B.4. Equa-
tion (3.6) is useful as it allows one to compute D (Thm. 8 [1]) in terms of a boundary locus formulation (chapter 7.6, [45]) 
with the polynomials b(z) and c(z) introduced in Remark 1:

(B1) The set D (for orders 1 ≤ r ≤ 5) includes the origin (i.e. 0 ∈D) and has the boundary

∂D =
n (z − 1 + δ)r

(z − 1 + δ)r − (z − 1)r
: |z| = 1, arg z0 ≤ arg z ≤ 2π − arg z0

o
, (3.7)

with: z0 = 1, for r = 1, and z0 = 2 − δ − 2(1 − δ) cos(π/r)eıπ/r

2 − δ − 2 cos(π/r)eıπ/r
, for 2 ≤ r ≤ 5.
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Fig. 1. The sets D for orders (left to right) r ∈ {2, 3, 4}. The set D for δ = 1 (SBDF) (dark blue) is much smaller than D for δ = 0.25 (light blue). The 
asymptotic circle C in formula (B3) for δ = 0.25 is shown in dots (◦). The stability regions also decrease in size with increasing r. The orders r = 1, 5 (not 
plotted) exhibit a similar behavior. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

(B2) The right-most point mr and left-most point ml of ∂D are on the real axis with:

ml =
³

1 − (1 − δ/2)−r
´−1

, mr =
(

1, r = 1,³
1 + ¡

(1 − δ/2) sec(π/r)
¢−r

´−1
, 2 ≤ r ≤ 5.

(B3) In the asymptotic limit δ ¿ 1, the set D approaches the circle C , where

C =
n

z ∈ C :
¯̄̄
z + 1

rδ
− r + 1

2r

¯̄̄
≤ 1

rδ

o
.

Note that C has a center at ∼ − 1
rδ and radius ∼ 1

rδ ; and hence becomes arbitrarily large as δ → 0. Therefore, D
becomes large as δ → 0.

Fig. 1 plots the stability diagrams D for different orders and δ values — and also shows that D asymptotically approaches 
(as δ → 0) the large circle C . Having formulas for the shape and size of D as functions of δ will be important for designing 
unconditionally stable schemes (2.2), and for characterizing the limitations of well-known schemes such as SBDF. Lastly, 
we note that the ImEx schemes parameterized by δ bare some similarity to the non-ImEx schemes with large regions of 
absolute stability originally examined in [48,49]. However, we will eventually choose the parameter value δ to be as large as 
possible (to minimize the error), while maintaining unconditional stability. This is of a fundamentally different nature than 
the non-ImEx study carried out in [48,49].

We now come to our first condition for unconditional stability — which is stated in terms of the generalized eigenvalues

3(A, B) := ©
μ ∈C : −μAv = B v, v 6= 0

ª
. (3.8)

Note that a negative sign was added, for convenience, in the definition of 3(A, B) to make (−A) positive definite; and that 
3(A, B) is equivalent to the eigenvalues of (−A)−1 B .

Condition 1. (Unconditional stability when (A, B) are simultaneously diagonalizable) Given time stepping coefficients (a j, b j, c j)

with diagram D, and simultaneously diagonalizable matrices (A, B) with generalized eigenvalues 3(A, B), we have the following. . .

(SC) Sufficient conditions: The scheme (2.2) is unconditionally stable if every generalized eigenvalue μ ∈ 3(A, B) lies in D, i.e. μ ∈D.
(NC) Necessary conditions: If a generalized eigenvalue μ ∈ 3(A, B) is not in D, i.e. μ /∈D, then the scheme (2.2) is not uncondition-

ally stable.1

In Condition 1, the (NC) and (SC) are essentially identical and give a sharp characterization of unconditional stability. 
Although Condition 1 is useful when (A, B) are simultaneously diagonalizable, we also wish to consider matrices A and B
that do not commute. The results in [1] generalize the (SC) in Condition 1 to arbitrary matrices (A, B) (A still symmetric 
positive definite) by replacing the set 3(A, B) with a (somewhat larger) set defined in terms of a numerical range (also 
known as the field of values). Specifically, let p ∈ R be any real number (different values of p will eventually be useful for 
different problem matrices L), and introduce the following sets:

W p(A, B) :=
n
hv, (−A)p−1 B vi : hv, (−A)p vi = 1, v ∈C

N
o
. (3.9)

1 Strictly speaking, the precise theorem (Proposition 10, [1]) is that if μ /∈ D, or μ /∈ Γ where Γ = {c(z)/b(z) : |z| = 1} is the boundary locus of D, then 
the scheme is not unconditionally stable. However, for practical purposes, the boundary locus can be ignored since it is a curve.
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The set W p(A, B) can also be written, using a change of variables v = (−A)
p
2 x, as:

W p(A, B) = W
³
(−A)

p
2 −1 B (−A)−

p
2

´
, where (3.10)

W (X) := ©hx, Xxi : kxk = 1, x ∈C
Nª

. (3.11)

Here W (X) is the definition of the numerical range of a matrix; and is a well-known set (chapter 1, [50]) that may be 
computed using a sequence of eigenvalue computations [51]. Note that W p(A, B) depends only on the matrix splitting 
(A, B) and is independent of the time stepping coefficients. Condition 1 may then be modified as follows.

Condition 2. ((Theorem 5, [1]) Unconditional stability for a general splitting (A, B))

(SC) Sufficient conditions: The scheme (2.2) is unconditionally stable if there is a value of p ∈ R for which the set W p(A, B) is 
contained in D, i.e. W p(A, B) ⊆D.

(NC) Necessary conditions: If a generalized eigenvalue μ ∈ 3(A, B) is not in D, i.e. μ /∈D, then the scheme (2.2) is not uncondition-
ally stable.

Note that in Condition 2 the (NC) are the same as in Condition 1, however the (SC) are no long the same — due to 
the non-commuting matrices. In Conditions 1–2 the (SC) provide a target criterion that will ensure unconditional stability; 
while the (NC) will provide insight into when a scheme may fail to be unconditionally stable.

We provide a brief explanation here for why one should replace 3(A, B) with the sets W p(A, B) in Condition 2. If one 
seeks an eigenvector solution to (2.2) of the form un = zn v; and then multiplies equation (2.2) from the left by (−A)p−1 v , 
then one obtains equation (3.5), with the modification that the value μ is no longer a generalized eigenvalue, but is given 
by a general Rayleigh quotient:

μ = hv, (−A)p−1 B vi
hv, (−A)p vi ⊆ W p(A, B).

Hence, ensuring W p(A, B) ⊆D guarantees that the value of μ in (3.5) lies within the unconditional stability region.

Remark 2. (Properties of the numerical range and W p(A, B)) Since the sets W p(A, B) can be written in terms of a nu-
merical range, they exhibit all the well-known properties of a numerical range. The numerical range W (X) for a matrix X
is convex (Hausdorf–Toeplitz theorem), bounded, and always contains the eigenvalues μ of X , i.e. μ ∈ W (X). In the case 
when X is a normal matrix, W (X) is the convex hull of the eigenvalues. Hence, the convex hull of 3(A, B) is contained in 
W p(A, B) (for all p ∈ R).

Remark 3. Different values of p may modify the size of W p(A, B) in the complex plane. Condition 2 only requires one value 
of p to satisfy W p(A, B) ⊆D (even if other values of p violate W p(A, B) ⊆D).

4. How to choose the ImEx parameter δ and splitting (A, B)

In this section we provide general recipes for choosing the ImEx parameter δ and the matrix splitting (σ A0, B) for a 
problem matrix L. The recipes are based on minimizing a proxy for the numerical error while ensuring that the sufficient 
conditions (SC) are satisfied.

Solely based on the formulas for D, one could think that one should use ImEx coefficients with very large unconditional 
stability region D, by taking δ ¿ 1. After all, such a choice would increase the chance of unconditional stability by ensuring 
that W p(A, B) fits inside D thereby satisfying the (SC) in Conditions 1–2.

However, choosing δ small without any regard for the error is not a good strategy. Specifically, there is a trade-off be-
tween schemes with good unconditional stability properties (i.e. small δ and large D) and the resulting numerical accuracy. 
Ideally, one would choose δ so that the scheme’s numerical approximation error is minimized, while still guaranteeing un-
conditional stability. However, because the true error is generally not accessible, we use δ as a proxy for the approximation 
quality, which is justified by the following remark.

Remark 4. (Dependence of the global truncation error constant on δ) The global truncation error (GTE) at time tn = nk is 
defined by max1≤ j≤N |un − u∗(nk)| j . Because the ImEx schemes in Remark 1 are formally of r-th order, for any fixed 0 <
δ ≤ 1, the GTE scales (for k small) like Crkr . The error constant Cr depends on A, B , f , and the time stepping coefficients. 
Formulas for the behavior of the GTE error constants in a LMM may be computed in terms of the polynomials (see equation 
(2.3), p. 373, in [52]) b(z) and c(z). In particular, one may compute two separate error constants. One error constant is 
obtained when the ImEx scheme is applied as a fully implicit scheme (i.e. A = L, B = 0) as Cr ∝ 1/c(1) = δ−r . A second 
error constant may be computed when the ImEx scheme is applied to a fully explicit splitting (i.e. B = L, A = 0), where 
Cr ∝ 1/b(1) = δ−1. In general, for a fixed splitting (A, B), one then has a GTE that scales like
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GTE ∼ O(δ−rkr). (4.1)

A more detailed description, along with numerical error tests verifying the asymptotic formula (4.1) may be found in [1].

Remark 4 indicates that for a fixed splitting (A, B), the GTE error is (asymptotically) minimized by taking a maximum 
value of δ. Moreover, as a secondary trend, if a family of ImEx splittings (σ A0, B) is considered, then it is generally observed 
that smaller values of σ yield a smaller GTE. Hence, one should generally choose δ as large as possible and σ small, while 
still satisfying the (SC) constraint in Conditions 1–2.

We now provide recipes for three different scenarios that may arise in practice. Recipe 1 specifies how to choose the 
ImEx parameter δ to achieve unconditional stability when a fixed matrix splitting (A, B) is specified (i.e. this a special case 
where σ = 1 and A = A0).

Unconditional Stability Recipe 1. How to choose the ImEx parameter δ for a fixed matrix splitting (A, B).

0. Choose an order 1 ≤ r ≤ 5; and retrieve the formulas for D in equation (3.7).
1. Compute/plot the generalized eigenvalues 3(A, B) and the sets D for different δ. Then check whether (A, B) can satisfy the (NC), 

either graphically or via the formulas in (3.7): is there an admissible range of δ values that guarantees 3(A, B) ⊆D? (If not, then 
unconditional stability is not possible for (A, B).)

2. Now use the sufficient conditions (SC) to determine δ.
• Choose a p ∈ R, (try first p = 1). Compute W p(A, B) from equation (3.10), for instance, using a software such as Chebfun 

[53].
• By varying 0 < δ ≤ 1, find the largest δ that ensures W p(A, B) ⊆D, and guarantees unconditional stability (D becomes larger 

as δ decreases). Call this parameter δ∗.
3. If no value 0 < δ ≤ 1 can be found in Step 2, or δ∗ is prohibitively small (leading to a large error constant), try and repeat Step 2 

with a different p.
4. Choose a δ < δ∗ (e.g. δ = 0.95 δ∗ , with 0.95 for robustness), and substitute it into Table B.4 to obtain the ImEx coefficients for the 

ODE solver.

Example 2. (Simple example using the Recipe 1) Consider the ODE ut = −10u, with implicit part Au = −u and explicit part 
Bu = −9u (this ODE splitting was also examined in [1]), for which we wish to devise a 3rd order (r = 3) unconditionally 
stable scheme. For this splitting, the matrices A and B are (trivially) simultaneously diagonalized with 3(A, B) = {−9}. 
Condition 1 then requires {−9} ∈ D for both the (NC) and (SC). For a 3rd order scheme, r = 3, we use the formulas for mr

and ml in (B2) so that the constraint reads:

ml < −9 < mr =⇒ − (2 − δ)3

8 − (2 − δ)3
< −9 <

(2 − δ)3

(2 − δ)3 + 1
. (4.2)

The largest δ value that satisfies the inequality (4.2) (with < replaced by ≤) is: δ∗ = 2 − (7.2)1/3. Any value 0 < δ < δ∗ will 
guarantee unconditional stability — i.e. one could take a fraction δ = 0.95 δ∗ so that δ ≈ 0.0656. Substituting this value into 
the formulas in Table B.4 yields the ImEx coefficients.

In situations where one is using a pre-programmed ODE or black-box solver, it may not be possible to modify the time 
stepping coefficients (a j, b j, c j). Instead, one may have the ability to modify the matrix splitting (σ A0, B) by varying the 
parameter σ . Recipe 2 outlines how one may choose the parameter σ when the scheme and the matrix A0 are fixed. The 
recipe uses the sets 3(σ A0, B) and W p(σ A0, B), whose dependence on σ is characterized by the following remark.

Remark 5. (Dependence of W p(σ A0, B) and 3(σ A0, B) on σ ) The sets W p(σ A0, B) and 3(σ A0, B) are simple transfor-
mations of the σ -independent sets W p(A0, L) and 3(A0, L):

3(σ A0, B) = 1 + σ−13(A0, L), W p(σ A0, B) = 1 + σ−1W p(A0, L). (4.3)

Here the identities (4.3) follow from a direct calculation using B = L − σ A0:

(−σ A0)
−1 B = I + σ−1(−A0)

−1 L. (4.4)

(−σ A0)
p
2 −1 B(−σ A0)

− p
2 = I + σ−1(−A0)

p
2 −1 L(−A0)

− p
2 . (4.5)

Due to properties (4.3), one can, for fixed A0 and L, pre-compute the sets 3(A0, L) and W p(A0, L). The range W p(σ A0, B)

and generalized eigenvalues 3(σ A0, B) are then simply rescaled versions (w.r.t. the point 1 in the complex plane) of the 
corresponding range and eigenvalues using A0 and L, where σ yields the scaling parameter. This becomes important in §5
when we examine and overcome the fundamental limitations of SBDF.
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Unconditional Stability Recipe 2. Given a fixed ImEx scheme and matrix A0 , how to choose the splitting parameter σ for the 
splitting (σ A0, B).

0. Choose an order 1 ≤ r ≤ 5; and retrieve the formulas for D in equation (3.7). If the time stepping scheme being used is not 
included as one from Table B.4, then an unconditional stability diagram D will need to be computed.

1. Compute/plot the generalized eigenvalues 3(σ A0, B) for different σ (see Remark 5). Then check the (NC), either graphically or 
via the formulas in (3.7): is there an admissible range of σ that guarantees 3(σ A0, B) ⊆D? (If not, then unconditional stability 
is not possible, and a different ImEx scheme or matrix A0 must be used.)

2. Now use the sufficient conditions (SC) to determine σ .
• Choose a p ∈R (try first p = 1) and compute W p(σ A0, B) (see Remark 5).
• Vary σ to find the smallest σ > 0 that ensures W p(σ A0, B) ⊆ D and guarantees unconditional stability. (W p(σ A0, B)

becomes larger as σ decreases).
3. If no value of σ > 0 can be found in Step 2, repeat Step 2 with a different p.

Section 5 provides examples that illustrate Recipe 2. Recipes 1 and 2 are in line with a common perspective on ImEx 
schemes. Either, one has to determine the ImEx parameter δ when the matrix splitting is fixed; or choose the splitting 
parameter σ when the scheme is fixed. In practice, there may be cases in which neither of these two approaches is able to 
achieve unconditionally stability.

We therefore advocate, whenever possible, to allow to simultaneously vary the ImEx parameter δ and the splitting 
parameter σ . It turns out that this yields an enormous amount of flexibility when designing unconditionally stable schemes. 
Many splittings of the form (σ A0, B), where A0 and L are chosen and predetermined from the problem (see Sections 6–7
for specific PDE applications), can be stabilized this way.

Unconditional Stability Recipe 3. Given a matrix A0 , how to simultaneously choose both the ImEx and splitting parameters (δ, σ)

(with 0 < δ ≤ 1, σ > 0).

1. Repeat Steps 0–1 in Recipes 1–2 to ensure that there is a range of values (δ, σ) that satisfy the necessary conditions (NC) 
3(σ A0, B) ⊆D. Note: 3(σ A0, B) depends solely on σ , while D depends solely on δ.

2. Use the sufficient conditions (SC) to determine (δ, σ).
• Choose a p ∈R (try first p = 1) and compute W p(σ A0, B) (see Remark 5).
• The sufficient condition W p(σ A0, B) ⊆D provides a constraint on the parameters (δ, σ) that achieve unconditional stability. 

Within this constrained set, determine the points (δ∗, σ ∗) that maximize δ∗. If there is more than one solution, choose σ ∗ small.
3. If no value of (δ, σ) can be found in Step 2, repeat Step 2 with a different p.

Sections 6–7 provide specific applications of Recipe 3 in PDE problems.

4.1. Additional details for PDEs: choosing A0

When Lh arises as the spatial discretization of a PDE with meshsize h, one does not have a fixed matrix splitting (A, B), 
or (σ A0, B), but rather a family of splittings parameterized by h: (Ah, Bh), or (σ A0,h, Bh). In this situation, it is crucial 
to be able to choose the parameters (δ, σ) independent of the meshsize h — i.e. to have one and the same ImEx scheme 
be unconditionally stable for an entire family of splittings (Ah, Bh), or (σ A0,h, Bh). If, for example, unconditional stability 
required one to choose the ImEx parameter δ as a function of the grid size h (i.e. such as δ = h), then such a choice would 
have a deleterious effect on the GTE (GTE ∼ O(h−rkr)), and limit the benefits of unconditional stability.

To be able to choose a single set of parameters (δ, σ) that stabilizes the family of splittings (σ A0,h, Bh) for all h, some 
care must be taken to ensure the matrix A0,h is properly chosen relative to Bh . Once a suitable choice of A0,h is fixed, one 
may use the Recipe 3 to simultaneously choose (σ , δ) for unconditional stability.

Remark 6. (Guidelines for choosing A0,h when Lh is the spatial discretization of a PDE) Generally speaking, it is a good idea 
to ensure that A0,h has the same derivative order as Lh , as backed up by the following heuristic scaling argument. Suppose

Lh ≈ C(x)
∂q

∂xq
+ (lower order derivatives).

A natural choice for A0,h might be

A0,h ≈ ∂ s

∂xs
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(one could include a variable coefficient approximation as well). Many spatial approximation methods yield the scaling 
∂
∂x ∝ h−1, hence one may expect some of the eigenvalues of (A0,h)−1 Lh to scale like O(hs−q). The re-scaling formulas in 
Remark 5 then imply that there may be generalized eigenvalues μ ∈ 3(σ A0,h, Bh) that scale like μ = 1 −σ−1O(hs−q). This 
gives rise to three cases for choosing s:

• If s < q, some of the generalized eigenvalues diverge μ = 1 − σ−1O(hs−q) → ∞ as h → 0. Using formula (B3) for the 
asymptotic behavior of D, the ImEx parameter δ would then have to scale like δ ∼ hq−s as h → 0 (and fixed σ ) to 
ensure that these large eigenvalues remain inside D (to satisfy the (NC)). Hence, (δ, σ) cannot be chosen independent 
of the mesh h.

• If s > q, some of the generalized eigenvalues μ = 1 −σ−1O(hs−q) → 1 as h → 0 (and fixed σ ). In this case, the formulas 
in (B2) show that only order r = 1, 2 schemes contain the point 1 ∈ D (see Fig. 1). Hence, s > q is generally not a good 
choice if one is looking for a scheme with orders r > 2.

• If s = q, then all generalized eigenvalues μ have a chance (based solely on the scaling of h) to be uniformly bounded 
(i.e. do not become arbitrarily large) as h → 0; and also remain strictly bounded away from 1 as h → 0. In this case, 
there is a chance to obtain high order by means of choosing the parameters (δ, σ) independent of h.

5. Limitations of unconditional stability for SBDF schemes

In §3, the unconditional stability region D was used to derive sufficient (SC) and necessary (NC) conditions for un-
conditional stability. Using these conditions, this section illustrates how the geometrical properties of D can be used to 
understand the fundamental limitations that classical SBDF methods possess with regard to unconditional stability. Specifi-
cally, two significant qualitative transitions occur: (i) moving from 1st to 2nd order schemes for non-symmetric matrices L; 
and (ii) moving from 2nd to 3rd order for symmetric matrices L. Guided by Recipe 2, we discuss under which circumstances 
a choice of σ exists so that a splitting (σ A0, L) is unconditionally stable with SBDF.

Case 1: L non-symmetric. Let L be a non-symmetric matrix that, together with A0, has both a range Re
¡
W p(A0, L)

¢
< 0

and eigenvalues Re
¡
3(A0, L)

¢
< 0 with negative real part, i.e. they lie strictly in the left-half plane, but are not necessarily 

contained on the real line. Such a situation occurs for instance in discretizations of advection–diffusion PDEs (with an 
implicit diffusion, and explicit advection). The following transition arises between first and second order SBDF when the 
ImEx splitting is taken as (σ A0, B):

1. SBDF1 can always be made unconditionally stable, by choosing σ suitably large. This is due to the fact that D for SBDF1 is 
a circle with its right-most point at 1. Hence one can always rescale W p(A0, L) (see Remark 5) so that W p(σ A0, B) ⊆D.

2. SBDF2 can, in general, not be made unconditionally stable by means of choosing σ > 0. This is a result of the cusp at 1
in D (see Fig. 2). If, for instance, the imaginary part of μ ∈ 3(A0, L) is larger (in absolute value) than its real part, then 
the scaled eigenvalue (see Remark 5) 1 + σ−1μ ∈ 3(σ A0, L) will never enter D, regardless of the value of σ .

We highlight these insights with the following simple example.

Example 3. (A non-symmetric L) Consider the following non-symmetric matrix L and choice of matrix A0:

L =
⎛
⎝ −0.2 0 0

0 −2 2
0 −2 −2

⎞
⎠ , A0 = −

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ . (5.1)

The generalized eigenvalues are 3(A0, L) = {−0.2, −2 + 2ı, −2 − 2ı}, and W1(A0, L) = conv{−0.2, −2 + 2ı, −2 − 2ı} is a 
triangle consisting of the convex hull2 of the eigenvalues. Note that, for simplicity, we have chosen an example in which 
A and B commute. Hence, Condition 1 may be used. We also plot W1(A, B) to illustrate how to apply Condition 2 (which 
is stronger than Condition 1) when one is faced with matrices A, B that do not commute. Fig. 2 visualizes that SBDF1 can 
be made unconditionally stable with σ = 2.5, while SBDF2 cannot be made unconditionally stable by only varying σ > 0. 
However, high order schemes (i.e. r ≥ 2) that are unconditionally stable for (5.1) are possible by varying both (δ, σ), as seen 
in Fig. 3.

Case 2: L symmetric. Let L be a symmetric negative definite matrix. Assume now that A0 is such that the range of 
W1(A0, L) and eigenvalues 3(A0, L) are real and strictly negative. Such a situation arises for instance in the discretization 
of a purely parabolic (gradient flow) problem. The following transition occurs between second- and third-order schemes for 
the splittings (σ A0, B):

2 The matrix L is normal, which results in a simple expression for the range W1(A0, L).
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Fig. 2. Example for non-symmetric L in (5.1). The figures show the SBDF1 (top row) and SBDF2 (bottom row) stability diagrams D (blue shaded re-
gion) in relation to the sets W1(σ A0, B) (red shaded region, abbreviated as W1) and 3(σ A0, B) (black dots) for (left to right) σ ∈ {1, 2.5, 5}. Note that 
W1(σ A0, B) ⊆ D for SBDF1 with σ ∈ {2.5, 5} guaranteeing the (SC) for unconditional stability. The bottom row highlights the fundamental limitation for 
SBDF2: no σ > 0 exists that can ensure 3(σ A0, B) ⊆ D. Dashed lines show the effect of the rescaling by σ , outlined in Remark 5, on the set W1(σ A0, B).

Fig. 3. Unconditionally stable schemes for (5.1), and orders (left to right) r ∈ {2, 3, 4}. The figure shows that W1(σ A0, B) ⊆ D when σ = 0.5, guaranteeing 
the (SC) for unconditional stability. Values are (left to right) δ ∈ {0.12, 0.08, 0.06}. The chosen (δ, σ)-values are guided by Recipe 3, and are almost optimal, 
however other values are also possible.

1. SBDF2 can always be made unconditionally stable, by choosing σ suitably large. This is due to the fact that the right-most 
point of D for SBDF2 is 1, and W1(A0, L) is real and negative, so one can always rescale (see Remark 5) W1(σ A0, B)

into D.
2. SBDF3 can, in general, not be made unconditionally stable by means of choosing σ > 0. This is because the right-most 

point of D is 1/2 (instead of 1), so that a negative real 3(A0, L) may be impossible to contain within D via the choice 
of σ .

Unconditional stability limitations of SBDF, applied to splittings (σ A0, B), may be overcome by simultaneously choosing 
(δ, σ), i.e. by following Recipe 3.

Example 4. (A symmetric L) Consider the following symmetric matrices:

L =
µ −2 1

1 −2

¶
, A0 = −

µ
1 0
0 1

¶
. (5.2)

Then 3(A0, L) = {−3, −1}, and W1(A0, L) = [−3, −1] is an interval along the real axis. Fig. 4 shows that SBDF2 can be 
made unconditionally stable with σ = 2.5, while SBDF3 cannot be made unconditionally stable by only varying σ > 0. In 
contrast, third to fifth order schemes that are unconditionally stable for (5.2) are possible by varying both (δ, σ), as seen in 
Fig. 5.
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Fig. 4. Example for symmetric L in (5.2). The figures show the SBDF2 (top row) and SBDF3 (bottom row) stability diagrams D (blue shaded region) in 
relation to the sets W1(σ A0, B) (red region, abbreviated W1) and 3(σ A0, B) (black dots) for (left to right) σ ∈ {1, 2.5, 5}. Note that W1(σ A0, B) ⊆ D for 
SBDF2 with σ ∈ {2.5, 5}, guaranteeing unconditional stability. The bottom row highlights the fundamental limitation for SBDF3: no σ > 0 exists that can 
ensure 3(σ A0, B) ⊆ D.

Fig. 5. Unconditionally stable schemes for (5.2), and orders (left to right) r ∈ {3, 4, 5}. The figure shows that W1(σ A0, B) ⊆ D provided σ = 1 and (left to 
right) δ ∈ {0.25, 0.19, 0.15}. The chosen (δ, σ)-values are guided by Recipe 3, however other values are also possible.

6. Examples from diffusion PDEs

In this section we apply the unconditional stability theory from §4.1 and Recipe 3 to PDE diffusion problems with 
spatially varying, and even non-linear diffusion coefficients. The presented methodology highlights how one can avoid a 
stiff time step restriction (here: of diffusive type k ∝ h2, where h is the smallest grid size) — or any time step restriction 
for that matter — while inverting only simple constant coefficient matrices. This allows one to leverage fast solvers where an 
implicit treatment of Ah (i.e. using the fast Fourier transform) can be carried out much more rapidly than a fully implicit 
treatment of Lh (i.e. that contains all the stiff diffusive terms). The new ImEx coefficients (see §5) enable high order time 
stepping beyond what is possible using only SBDF methods.

6.1. Numerical discretization

We start by providing numerical details for the one-dimensional Fourier spectral methods used. Computations in three 
dimensions are then conducted by naturally extending the one-dimensional approach via Cartesian products. We use a 
periodic computational domain Ω = [0, 1]; discretize space using a uniform grid with an even number of grid points N; 
and approximate the function u(x) at x j by u j ≈ u(x j), where:

x j = jh, h = 1

N
, u = ¡

u1, u2, . . . , uN
¢T ∈R

N .

Because our analysis is based on the matrices A0,h that are written in terms of Fourier transforms, it is useful to 
introduce notation for the discrete Fourier transform (DFT) matrix F , and for the spectral differentiation matrix D — even 
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though in practice one will never use those matrices, but rather use the fast Fourier transform (FFT) to compute F u = fft(u). 
The DFT matrix F has the coefficients:

F j` = ω( j−1)×(`−1), ω = e− 2πı
N , so that (F u) j =

NX
`=1

u` ω( j−1)×(`−1).

The (spectral) differentiation of a function defined on the uniform grid amounts to a scalar multiplication in Fourier space, 
i.e. (Du) j ≈ ux(x j). Hence, the matrix D takes the form: D = ı F −1 diag(ξ) F , where diag(ξ) denotes the matrix with diago-
nal entries of the vector:

ξ = ¡
ξ1, ξ2, . . . , ξN

¢T ∈R
N , where ξ j =

⎧⎨
⎩

2π( j − 1) if 1 ≤ j ≤ N
2 ,

2π( j − N) if N
2 + 1 < j ≤ N,

Nπ if j = N
2 + 1.

(6.1)

Since F −1 = N−1 F †, the matrix D† = −D is skew-Hermitian and the matrix D2 is Hermitian. If Ah is diagonalized by F , 
then solving for un+r in the implicit step of the evolution (2.2), i.e. (ar I − kcr Ah)un+r = RHS, is done via two FFTs.

6.2. An FFT-based treatment for the variable coefficient diffusion equation

We now devise unconditionally stable ImEx schemes for the variable coefficient diffusion equation (with diffusion coef-
ficient d(x) > 0)

ut = ¡
d(x)ux

¢
x + f (x, t), on Ω × (0, T ], (6.2)

that make use of an FFT-based treatment of the implicit matrix Ah . The choice of splitting (Ah, Bh) is guided by §4.1, and 
the choice of parameters (δ, σ) by Recipe 3. To ensure a high spatial accuracy, we adopt a spectral discretization of equation 
(6.2) and set:

Lh = D
¡
diag(d)

¢
D, where d = ¡

d(x1),d(x2), . . . ,d(xN )
¢T

.

Note that Lh is a dense matrix and (due to the x-dependence of d(x)) is not diagonalized via the DFT matrix F . To seek 
an ImEx splitting of Lh , we follow the guidelines in Remark 6: the matrix Lh has two factors of D and hence the implicit 
matrix Ah should have two factors of D as well. This motivates the following matrix splitting:

Ah = σ D2, Bh = D
³

diag(d) − σ I
´

D, (6.3)

i.e. Ahu ≈ σ uxx and Bhu ≈ ¡
(d(x) − σ)ux

¢
x .

Our goal is to determine, following Recipe 3, the parameters (δ, σ) that guarantee unconditional stability. Before doing 
so, we must discuss a caveat: the matrices Lh and Ah are not invertible — which was an assumption in the derivation of the 
conditions for unconditional stability. We do not provide a general treatment for when Ah is not invertible due to subtleties 
that may arise (for instance when the null space of Ah interacts with Bh through the ImEx evolution). However, for the 
specific splitting (6.3), the unconditional stability theory presented in §3 (and recipes in §4) can be applied with only a 
minor adaptation, namely: the definition/computation of the sets W p(Ah, Bh) and 3(Ah, Bh) are done on the subspace V
where Ah is invertible, as follows.

The matrix D has a null space spanned by the constant vector 1 = (1, 1, . . . , 1)T . Hence, D2 and Ah have the null space 
1, and column space (range) V where:

V := {u ∈ C
N : 1T u = 0}, 1 := span{1}, so that C

N = V⊕ 1.

Using the orthogonal projection P = I − N−11 1T onto V, and noting that Ah (and also Bh) satisfies 1T Ah = Ah 1 = 0, so 
that Ah = P Ah = Ah P , the evolution equation

ut = Ahu + Bhu (6.4)

decouples into separate components that lie in the subspaces 1 and V (i.e. 1 and V are invariant subspaces of equa-
tion (6.4)):

Dynamics in 1 : ¡
1T u

¢
t = 1T ¡

Ahu + Bhu
¢ = 0. (6.5)

Dynamics in V : ¡
P u

¢
t = P

¡
Ahu + Bhu

¢ = Ah
¡

P u
¢ + Bh

¡
P u

¢
. (6.6)

Equation (6.5) shows that the mean of u, i.e. (1T u), remains constant. Any zero-stable ImEx scheme (such as the ones we 
use) applied to (6.4) automatically ensures that (1T u) evolves according to (6.5) with stable growth factors (independent 
of k, given by a(z) = 0). Hence, the mean (1T u) is unconditionally stable. In turn, equation (6.6) can be viewed as the 
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restriction of equation (6.4) to the space V. Because Ah is invertible on V, the stability theory outlined in §3 applies to 
equation (6.6), where the sets W p(Ah, Bh) and 3(Ah, Bh) are computed on the subspace V instead of CN . To summarize 
the results:

Remark 7. (Modification of W p(Ah, Bh) and 3(Ah, Bh) for a non-invertible Ah) The splitting (6.3) with the discretization in 
§6.1 leads to a matrix Ah that is not invertible. This violates the assumptions for the necessary and sufficient conditions in 
§3. Nevertheless, Conditions 1–2 may be used, provided W p(Ah, Bh) is computed on the space V:

W p(Ah, Bh) =
n
hx, (−Ah)

p−1 Bhxi : hx, (−Ah)
pxi = 1, x ∈V

o
,

and likewise, μ ∈ 3(Ah, Bh) are restricted to the eigenvalues with corresponding eigenvectors v ∈ V.

With a slight abuse of notation, we continue to use W p(Ah, Bh) and 3(Ah, Bh) throughout this section with the under-
standing that they are computed only on the subspace V.

Owing to the simple structure of Bh in relation to Ah , we can compute (almost exactly) the (modified) set W1(Ah, Bh)

described in Remark 7, as well as the minimum and maximum eigenvalues (the eigenvalues in this case are real) 3(Ah, Bh)

in terms of the discrete vector d and diffusion coefficient d(x). To do so, we introduce the notation

dmin = min
x∈Ω

d(x), dmax = max
x∈Ω

d(x),

as well as the discrete values

d2,min = ©
Second smallest element of d

ª
, μmin = min

©
μ : μ ∈ 3(Ah, Bh)

ª
,

d2,max = ©
Second largest element of d

ª
, μmax = max

©
μ : μ ∈ 3(Ah, Bh)

ª
.

The sets W1(Ah, Bh) and max/min values in 3(Ah, Bh) then satisfy:

Proposition 6.1. The set W1(Ah, Bh) for any splitting of the form (6.3) is strictly real and contained inside the interval:

1 − σ−1dmax ≤ W1(Ah, Bh) ≤ 1 − σ−1dmin.

Moreover, the generalized eigenvalues 3(Ah, Bh) are all real, and are bounded by

1 − σ−1dmax ≤ μmin ≤ 1 − σ−1d2,max, 1 − σ−1d2,min ≤ μmax ≤ 1 − σ−1dmin.

Remark 8. (Motivation based on operators) The intuition for the proof of Proposition 6.1 arises at the continuum level of 
differential operators. Roughly speaking, one can write A = d2

dx2 and B = d
dx d(x) d

dx , so one may expect A− 1
2 ∝ ( d

dx )−1. This 

yields the operator product A− 1
2 BA− 1

2 = d(x), which allows for the computation of W1(A, B). The proof of Proposition 6.1
in Appendix A effectively formalizes this operator computation at the level of matrices. Moreover, due to the continuum 
nature of the argument, Proposition 6.1 carries over to other spatial discretizations, such as other spectral methods, finite 
differences, etc.

Proposition 6.1 is useful as it allows the design of unconditionally stable ImEx schemes by choosing (δ, σ) so that 
W1(Ah, Bh) ⊆ D. It is significant for two more reasons. First, the bounds on W1(Ah, Bh) and 3(Ah, Bh) in Proposition 6.1
do not depend on h. This allows one to choose a single ImEx parameter δ (independent of h) to stabilize an entire family 
of splittings (Ah, Bh). Second, the proposition is almost exact:

Remark 9. (Proposition 6.1 is almost exact) Although the formulas in Proposition 6.1 are inequalities, they are almost exact. 
For smooth functions d(x), the values d2,min, d2,max are at least O(N−1) close to dmin and dmax. Hence, the bounds for μmin
or μmax are sharp to within O(N−1). In a similar fashion, it can be shown that the inequalities on the set W1(Ah, Bh) in 
Proposition 6.1 are accurate to within an error O(N−1).

We now follow Recipe 3 to choose both (δ, σ) to design an unconditionally stable scheme:

1. Retrieve the formulas for D. Since both 3(Ah, Bh) and W1(Ah, Bh) are real, it is sufficient to use the interval [ml, mr] of 
D on the real line via the formulas (B2).

2. The second step is heuristic only: establish a range of (δ, σ)-values that ensure the (NC), i.e. 3(Ah, Bh) ⊆ D. In 
this case, the upper (resp. lower) estimate for μmax (resp. μmin) agrees exactly with the upper (resp. lower) esti-
mate on W1(Ah, Bh). Therefore, there is (essentially) no difference in trying to ensure that 3(Ah, Bh) ⊆ D, versus 
W1(Ah, Bh) ⊆D.
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3. Apply the (SC) to determine feasible (δ, σ)-values. Setting W1(Ah, Bh) ⊆ D requires that the endpoints of W1(Ah, Bh)

lie within D:

Left endpoint of W1(Ah, Bh) in D : ml < 1 − σ−1dmax, (6.7)

Right endpoint of W1(Ah, Bh) in D : 1 − σ−1dmin < mr . (6.8)

Equations (6.7)–(6.8) can be rewritten as:

(1 − ml)
−1dmax < σ and σ < (1 − mr)

−1dmin. (6.9)

The inequalities (6.9), along with σ > 0, 0 < δ ≤ 1, establish the feasible points (δ, σ) that guarantee unconditional 
stability. This feasible set is always non-empty, because as δ → 0, (6.9) yields 0 < σ < (1 + cos−r(π/r))dmin for 2 ≤ r ≤ 5. 
Hence, one can always achieve unconditional stability, by choosing δ small enough.

4. The last step is to choose a value (δ, σ) in the feasible set that maximizes δ — which is a proxy for minimizing the 
numerical truncation error.

Case 1: 1 ≤ r ≤ 2. Here the maximum value of δ∗ = 1 is feasible (i.e., one may use SBDF). The upper bound inequality 
(6.9) is satisfied since mr = 1 yields σ < ∞. The lower bound constraint on σ leads to a range of possible (δ∗, σ ∗) values:

For r = 1: δ∗ = 1, σ ∗ > 1
2 dmax, For r = 2: δ∗ = 1, σ ∗ > 3

4 dmax. (6.10)

Generally speaking, choosing σ ∗ large leads to large truncation errors. This motivates a choice of σ ∗ close to the mini-
mum possible values above.

Case 2: 3 ≤ r ≤ 5. In this case, SBDF may not be able to guarantee unconditional stability (see §4) when the value δ∗ = 1
is outside the inequalities (6.9). Fig. 6 displays the allowable (δ, σ)-values defined by the inequalities in (6.9) for some 
representative dmin and dmax values. Note that the optimal point (i.e. maximum δ) occurs at the intersection of the 
inequalities (6.9), and is below 1. To solve for the optimal (δ∗, σ ∗) values, we set the upper and lower bounds in (6.9)
almost equal to each other. Specifically, introduce a gap parameter 0 < η < 1, and set the left and right hand inequalities 
for σ in (6.9) equal to within a factor of (1 − η) to eliminate σ :³

1 − (1 − δ/2)r
´

dmax = (1 − η)
³

1 + (1 − δ/2)r cos−r(π/r)
´

dmin. (6.11)

Equation (6.11) defines an optimal (largest, up to a (1 − η) error) δ∗ value. Substituting this δ∗ back into (6.9) yields a 
range (roughly of size (1 −η)) of feasible σ values. Among those, we choose (somewhat arbitrarily) σ ∗ as the average of 
the two bounds in (6.9). Formulas for the (almost) optimal solutions (δ∗, σ ∗) are given as follows: fix a gap parameter 
0 < η < 1 (smaller values of η are more optimal) and order 3 ≤ r ≤ 5:

δ∗ = 2 − 2
³ 1 − κ

1 + κ cos−r(π/r)

´1/r
, σ ∗ = dmin

³
1 − 1

2
η
´ 1 + cos−r(π/r)

1 + κ cos−r(π/r)
, (6.12)

where κ = dmin

dmax
(1 − η).

Remark 10. (Failure of unconditional stability for SBDF and orders 3 ≤ r ≤ 5) The necessary conditions for unconditional 
stability require that the generalized eigenvalues 3(Ah, Bh) ⊆D. The formulas from Proposition 6.1 lead to the requirement 
that:

(1 − 2−r) d2,max ≤ σ and σ ≤ ¡
1 + 2−r cos−r(π/r)

¢
d2,min.

These two inequalities cannot be simultaneously satisfied if d2,max > Dr d2,min, where Dr is given by D3 = 2.1429, D4 =
1.2667, D5 = 1.0931 for orders r = 3, 4, 5, respectively. Note that d2,max/d2,min is (up to O(N−1)) a measure of the ratio 
dmax/dmin. As a result, if the ratio between the maximum and minimum diffusion coefficient values exceed Dr , then SBDF 
cannot provide unconditional stability for splittings of the form (6.3).

Remark 11. (Overcoming limitations for SBDF and orders 3 ≤ r ≤ 5) The formulas (6.12) provide a way to overcome the 
unconditional stability limitations encountered with SBDF methods for variable coefficient diffusion problems — regardless 
of the diffusion coefficient d(x).

To demonstrate that the new approach works in practice, we conduct a convergence test of equation (6.2) with the 
variable diffusion coefficient
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Fig. 6. Example of feasible (δ, σ)-values (shaded region), that sat-
isfy (SC) for order r = 3 and values dmin = 1, dmax = 4. The feasible 
point that maximizes δ is approximately (δ, σ) ≈ (0.74, 3).

Fig. 7. Set D (blue region) containing W1(Ah, Bh) (shown in red) 
with (optimal) parameters (δ, σ) = (0.1732, 2.69), order r = 5, 
N = 64.

Table 1
Errors ku −u∗k∞,h for variable coefficient diffusion test case (6.3) with (6.13), using ImEx and splitting parameters (δ, σ) = (0.1732, 2.69), final time t f = 5, 
and N = 64 Fourier modes. The range of fourth and fifth order convergence is capped due to round-off errors, amplified by the problem’s conditioning.

Num. k Error Rate Error Rate Error Rate Error Rate Error Rate
Steps r = 1 r = 2 r = 3 r = 4 r = 5

5 1 7.9e+00 – 4.7e+01 – 3.4e+02 – 9.0e+02 – 8.8e+02 –
10 2−1 3.4e+00 1.2 6.7e+01 −0.5 4.9e+02 −0.5 2.2e+03 −1.3 4.3e+03 −2.3
20 2−2 4.3e+00 −0.4 2.4e+01 1.5 5.6e+02 −0.2 3.7e+03 −0.7 6.3e+03 −0.5
40 2−3 1.3e+00 1.7 3.5e+01 −0.5 5.4e+02 0.1 6.3e+03 −0.8 5.8e+04 −3.2
80 2−4 6.9e−01 1.0 7.1e+00 2.3 1.3e+01 5.4 7.4e+02 3.1 6.0e+03 3.3

160 2−5 2.7e−01 1.4 1.0e+00 2.8 1.1e+01 0.2 5.3e+01 3.8 5.7e+01 6.7
320 2−6 2.2e−01 0.3 6.0e−01 0.8 2.5e+00 2.2 2.8e+00 4.2 7.1e+00 3.0
640 2−7 2.9e−01 −0.4 5.3e−01 0.2 6.3e−01 2.0 1.5e−01 4.3 4.0e−01 4.1

1280 2−8 2.5e−01 0.2 2.2e−01 1.3 5.0e−02 3.7 3.6e−02 2.1 2.5e−02 4.0
2560 2−9 1.6e−01 0.6 5.6e−02 2.0 4.9e−03 3.4 3.5e−03 3.4 2.8e−04 6.4
5120 2−10 9.1e−02 0.8 1.2e−02 2.2 8.5e−04 2.5 2.0e−04 4.1 1.0e−05 4.8

1.0e+04 2−11 4.8e−02 0.9 2.8e−03 2.1 1.3e−04 2.7 1.1e−05 4.2 3.8e−07 4.7
2.0e+04 2−12 2.5e−02 1.0 6.7e−04 2.1 1.8e−05 2.9 6.1e−07 4.2 1.3e−08 4.9
4.1e+04 2−13 1.2e−02 1.0 1.6e−04 2.0 2.4e−06 2.9 3.6e−08 4.1 1.1e−09 3.5
8.2e+04 2−14 6.3e−03 1.0 4.0e−05 2.0 3.0e−07 3.0 2.2e−09 4.0 1.4e−09 –
1.6e+05 2−15 3.1e−03 1.0 9.8e−06 2.0 3.8e−08 3.0 2.3e−10 3.3 2.8e−09 –

d(x) = 4 + 3 cos(2πx) =⇒ dmin = 1, dmax = 7.

This ratio dmax/dmin = 7 exceeds the value that can be stabilized by SBDF (see Remark 10). Using a value of η = 0.1 in 
(6.12), and order r = 5 yields the ImEx and splitting parameters (δ, σ) = (0.1732, 2.69) (see Fig. 7). Since the unconditional 
stability region D becomes smaller as the order r increases, using r = 5 automatically guarantees unconditional stability for 
all orders 1 ≤ r ≤ 5. We manufacture the forcing f (x, t) to generate an exact solution

u∗(x, t) = sin(20t)esin(2πx), (6.13)

run up to final time t f = 5. The multistep scheme is initialized with the exact data: u j = u∗( jk) for j = 0, −1, . . . , −r + 1. 
The spatial resolution is N = 64.

Table 1 shows the error ku − u∗k∞,h , using the discrete maximum norm kuk∞,h = max1≤ j≤N |u(x j)|, capped at 10−9. 
Convergence rates for 1 ≤ r ≤ 5 are reported. Note that with N = 64, the diffusive time step restriction is k ≤ 2−18. Hence, 
time steps can be used that are orders of magnitude larger than those required by an explicit scheme. This highlights the 
benefits of unconditional stability when performing computations with progressively smaller grids.

6.3. A nonlinear example: diffusion in porous media and anomalous diffusion rates

Thus far, the unconditional stability theory has been applied exclusively to linear problems. Now we use the linear theory 
as a guide for choosing (δ, σ) in nonlinear problems, and numerically demonstrate that the new concepts work. In spirit, 
the presented methodology shares some similarities with Rosenbrock methods (chapter VI.4, [54]) in that it also avoids 
nonlinear implicit terms by means of a properly chosen linear implicit term. A key difference — other than the fact that 
Rosenbrock methods are multistage schemes — is that we do not compute Jacobian matrices (which can be dense and 
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Table 2
Errors kρ − ρ∗k∞,h for three-dimensional nonlinear diffusion coefficient test case with manufactured solution (6.15) and (δ, σ) = (0.19166, 13.8). Errors 
are computed at the final time t f = 1, with 643 (N = 64) Fourier modes. Cancellation errors, amplified by the problem’s conditioning, limit the observed 
range of fourth and fifth order convergence.

Num. k Error Rate Error Rate Error Rate Error Rate Error Rate
Steps r = 1 r = 2 r = 3 r = 4 r = 5

8 2−3 1.0e+00 – 8.3e−01 – 6.4e−02 – 9.7e−02 – 3.4e−04 –
16 2−4 7.7e−01 0.4 3.8e−01 1.1 3.4e−02 0.9 2.2e−02 2.1 8.1e−04 −1.2
32 2−5 5.0e−01 0.6 8.3e−02 2.2 8.6e−03 2.0 1.9e−03 3.6 1.2e−04 2.7
64 2−6 2.6e−01 0.9 1.5e−02 2.4 1.4e−03 2.6 1.2e−04 4.0 7.6e−06 4.0

128 2−7 1.3e−01 1.0 3.6e−03 2.1 1.9e−04 2.8 6.6e−06 4.2 3.0e−07 4.7
256 2−8 6.4e−02 1.0 8.6e−04 2.1 2.5e−05 2.9 3.8e−07 4.1 1.3e−08 4.5
512 2−9 3.2e−02 1.0 2.1e−04 2.0 3.2e−06 3.0 2.2e−08 4.1 6.2e−09 –

1024 2−10 1.6e−02 1.0 5.2e−05 2.0 4.0e−07 3.0 9.8e−10 4.5 1.2e−08 –
2048 2−11 7.8e−03 1.0 1.3e−05 2.0 5.0e−08 3.0 6.9e−10 – 2.4e−08 –

time-dependent), but rather always invert a simple constant coefficient matrix determined from the theory. Hence, the new 
approach offers more flexibility for choosing efficiency-based implicit terms.

We consider a nonlinear model for a gas diffusing into a porous medium [55,56]:

ρt + ∇ · ¡V ρ
¢ = 0 (Conservation of mass), V = − κ̃

μ̃
∇p (Darcy’s law).

Here κ̃ is the intrinsic permeability of the medium, and μ̃ is the effective viscosity. Combined with the equation of state 
p = p0 ργ̃ , where γ̃ is the adiabatic constant (γ̃ = 5/3 for an ideal monatomic gas), the porous media equation takes the 
form:

ρt = a ∇ · ¡ργ̃ ∇ρ
¢
, on Ω × (0, T ]. (6.14)

The constant a = κ p0γ̃ μ̃−1 may, without loss of generality, be set to any positive value by re-scaling time.
We discretize (6.14) in three space dimensions using N3 Fourier modes on the periodic domain Ω = [0, 1]3. Our goal is to 

achieve unconditional stability by choosing the discrete matrix Ah ≈ σ∇2 proportional to the constant coefficient Laplacian 
(which is easy to treat implicitly). This approach then avoids an implicit treatment of nonlinear terms, thereby bypassing 
the need for nonlinear solvers. Due to the nonlinearity in the diffusion coefficient, our choice of (δ, σ) via the formulas 
(6.12) requires estimates for the maximum and minimum values of the solution ρ(x, y, z, t) over the simulation. At first 
glance, it may seem troubling to require time stepping parameters based on the solution; however this is not unusual — 
numerical simulations for nonlinear PDEs often require choosing a time step k that may depend on the solution.

To test the approach for unconditional stability and accuracy, we perform convergence tests of (6.14) with γ̃ = 5/3 and 
a = 1, using the manufactured solution

ρ∗(x, y, z, t) = 2e + esin(4πx) cos(2π y) cos(2π z) cos(t). (6.15)

We initialize the ImEx scheme with the exact initial data ρ j(x, y, z) = ρ∗(x, y, z, jk) for j = 0, −1, . . . , −r + 1. We estimate 
the maximum and minimum value of the nonlinear diffusion coefficient:

max
x∈Ω,t∈R

ρ∗(x, y, z, t)γ̃ ≤ (3e)5/3, min
x∈Ω,t∈R ρ∗(x, y, z, t)γ̃ ≥ e5/3.

Using formulas (6.12) with dmax = (3e)5/3, dmin = e5/3, η = 0.1, and r = 5 (so that the resulting scheme is stable for all 
orders 1 through 5), yields: (δ, σ) = (0.19166, 13.8).

Table 2 shows the numerical error kρ −ρ∗k∞,h , using the discrete norm kuk∞,h = maxx∈grid |u(x)| evaluated at the final 
time t f = 1, using 643 grid points (N = 64). In addition to confirming the convergence orders, the table demonstrates that 
the scheme is stable for k-values far larger than required by a fully explicit scheme. Moreover, we have confirmed the 
observations using other values γ̃ 6= 5/3 and other manufactured solutions (not shown here).

Now we conduct a test in which the nonlinear behavior is natural to equation (6.14): a decaying/spreading profile 
without forcing. We use a Gaussian ρ(x, y, z, 0) = 1 + e−kx−(0.5,0.5,0.5)k2/0.152

as initial data, which is not exactly periodic, 
but is sufficiently resolved in space using 1283 Fourier modes (N = 128) to carry out temporal convergence studies. We 
choose γ̃ = 5/3, and set a = 2−4, which for the given initial data will lead to dynamics that evolve on an O(1) time scale. 
Using (6.12) with dmax = 2γ̃ , dmin = 1, η = 0.1, and r = 3, we obtain (δ, σ) = (0.794, 2.616). To generate the initial data 
required to start the high-order multistep methods, we use the low order (r = 1 and r = 2) unconditionally stable schemes 
with many subgrid time steps.

Table 3 provides a verification for the test, by computing the convergence rate estimate

Rk := log2
¡kρ4k(t f ) − ρ2k(t f )k∞,h/kρ2k(t f ) − ρk(t f )k∞,h

¢
, (6.16)
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Table 3
Convergence test for a decaying Gaussian initial data, reporting the values Rk from (6.16) at t f = 1, and 1283 grid points.

k 2−4 2−5 2−6 2−7 2−8 2−9 2−10 2−11 2−12

r = 1, Rk 1.22 1.58 1.52 1.28 1.14 1.07 1.03 1.02 1.01
r = 2, Rk 0.39 5.12 2.06 2.02 1.96 1.95 1.96 1.97 1.98
r = 3, Rk 1.38 3.54 1.63 8.52 2.83 2.74 2.81 2.88 2.93

Fig. 8. Evolution of the solution towards t f = 1 for a Gaussian initial data. Snapshots are of the level sets {x : ρ(x, t) = ρ̄} for the reference solution (top), 
compared to the solution computed using order r = 3 with (δ, σ) = (0.794, 2.616) and a large time step k = 2−5 (bottom). Here ρ̄ is the discrete average 
value of the solution (which is a conserved quantity).

Fig. 9. Decay of the maximum solution ρM (t) to a constant. For reference, the slope of −3/2 is shown — which is the decay rate for Gaussian initial data 
obtained with a constant coefficient diffusion equation. The simulation uses the order r = 3 scheme with (δ, σ) = (0.794, 2.616), and k = 2−6 (64 time 
steps) as well as k = 2−8 (256 time steps). Both are much larger than the restriction k = 2−16 (65536 time steps) required by the fully explicit reference 
solution.

where ρk(t f ) denotes the discrete solution at t f computed using time step k. Table 3 confirms that at small k values, Rk
converges to the order of the scheme.

Finally, guided by the data in Table 3, we choose a time step k = 2−5, and compute the solution towards t f = 1
(i.e. merely 32 time steps). Fig. 8 visualizes level sets of the solution for different times and compares them to a refer-
ence solution (obtained using the fully explicit, second-order scheme with δ = 1, i.e. Adams–Bashforth, with k = 2−16, i.e. 
65536 time steps). The unconditionally stable method is successfully capturing the solution, albeit using very large time 
steps.

Meanwhile, Fig. 9 highlights the nonlinear effect (anomalous diffusion) in the solution with plots of the decay rate 
of the peak ρM(t) = kρ(x, t)k∞,h relative to the mean value ρ̄ := h3 P

x∈grid ρ(x, 0) ≈ R 1
0

R 1
0

R 1
0 ρ(x, 0) dx. For reference, 

the decay rate for a linear constant coefficient diffusion problem (−3/2) is shown as well. The plot shows, against the 
reference solution, the ImEx schemes with k = 2−6 (64 time steps, a small error) and k = 2−8 (256 time steps, visually 
indistinguishable).

7. Incompressible channel flow

In this section we perform a study that zooms in on the question of unconditional stability for ImEx splittings that 
arise in fluid dynamics problems. Specifically, for the time-dependent Stokes equation in a channel geometry, we devise 
unconditionally stable ImEx schemes that treat the pressure explicitly and viscosity implicitly. High-order ImEx schemes 
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that are provably unconditionally stable for the incompressible Navier–Stokes equations are notoriously difficult to attain 
(see for instance [57,23,27]). This study highlights some peculiar challenges that arise with ImEx schemes for incompressible 
flows, for instance that unconditional stability may depend on model parameters such as the shape and size of the domain. 
The new unconditional stability theory may provide new ways to stabilize operator splittings in fluid dynamics applications 
that might otherwise be unstable.

It is worth mentioning that in fluid flow, the alternative to unconditional stability may not necessarily be detrimental 
(in fact, the situation here is of that type). For instance, when unconditional stability is not attained, an ImEx approach 
may still provide competitive stability benefits, by incurring a time step restriction that is O(1) (i.e. independent on the 
spatial mesh), and thus not stiff. This type of stability restriction has been recently referred to as quasiunconditional stability
[29,30] (and has been applied to the compressible Navier–Stokes equations in an alternate direction implicit (ADI) setting). 
Nonetheless the question of whether unconditionally stable schemes can be devised is of interest, as in other situations the 
lack of unconditional stability may not be as forgiving as the quasiunconditional stability scenario.

We focus on reformulations of the incompressible Navier–Stokes equations [58,59,22,27,60], that take the form of a 
pressure Poisson equation (PPE) system (sometimes also referred to as an extended Navier–Stokes system). They replace the 
divergence-free constraint by a non-local pressure operator (defined via the solution of a Poisson equation), and thus allow 
for the application of time-stepping schemes without having to worry about constraints. In contrast to projection methods 
[22,27,58,60], PPE systems are not based on fractional steps, and thus allow in principle for arbitrary order in time. In turn, 
the use of ImEx schemes allows for an explicit treatment of the pressure — which (in contrast to fully implicit time-stepping) 
avoids large saddle-point problems in which velocity and pressure are coupled together. The challenge is that the explicit 
pressure term may become stiff (because it can be recast as a function of the viscosity term [22,60]).

For simplicity, we restrict this presentation to the linear Navier–Stokes equations (i.e. without the advection terms), 
because these equations already capture the key challenges arising from the interaction between viscosity and pressure. 
One could also investigate (unconditional) stability for incompressible flows with advection terms; however we do not 
pursue this here. For a two dimensional domain Ω ⊂ R

2, we use the PPE reformulation by Johnston and Liu [22,59] for 
problems with no-slip boundary conditions:

ut = uxx + u yy − px + f1 for x ∈ Ω,

vt = vxx + v yy − p y + f2 for x ∈ Ω,

u = v = 0 for x ∈ ∂Ω,

⎫⎪⎬
⎪⎭ (7.1)

where p is the solution of

pxx + p yy = ( f1)x + ( f2)y for x ∈ Ω,

n · ∇p = −n · (∇ × ∇ × u) + n · f for x ∈ ∂Ω,R
Ä

p(x)dx = 0

⎫⎪⎬
⎪⎭ . (7.2)

Equation (7.1) is the standard momentum equation for the velocity field (u, v), while equation (7.2) is the PPE reformulation 
for the pressure, acting to keep the flow incompressible. Note that the last requirement in equation (7.2) is added to uniquely 
define the pressure. Here, n is the outward facing normal on ∂Ω , and f = ( f1, f2) is the body force. The viscosity terms 
uxx + u yy and vxx + v yy are the stiff terms that are treated implicitly (matrix A), while the pressure terms px, p y are linear 
functions of the velocity (u, v) that are treated explicitly (matrix B). We consider a channel geometry, Ω = [0, Lx] × (0, 1), 
that is periodic in the x-direction.

The simple geometry allows us to solve for the pressure p analytically, and convert equations (7.1)–(7.2) into a non-local 
PDE for the velocity u. This simplifies the computation of the set W p(A, B) and provides fundamental insight into why 
existing ImEx splittings that treat the viscosity terms implicitly and pressure terms explicitly may become unstable. In more 
general problems, one would of course need to conduct a full spatial discretization of equations (7.1)–(7.2), and apply the 
recipes described in §4 to the resulting large ODE system. It is important to note that, while theoretical insights are less 
clear in that situation, there is no fundamental problem with applying the methodology.

To derive the non-local PDE for the velocity u, we start off by setting f = 0 (unconditional stability does not depend on 
the forcing). Because Ω is periodic in the x-direction, we conduct a Fourier expansion in the x-direction and set (u, v) =
(ıu(y, t; ξ), v(y, t; ξ))eıξx and p = p(y; ξ)eıξx . The system (7.1)–(7.2) then becomes:µ

u
v

¶
t
=

³ ∂2

∂ y2
− ξ2

´µ
u
v

¶
−

µ
ξ p
p y

¶
on 0 < y < 1 , and

µ
u
v

¶
= 0 on y = {0,1}, (7.3)

p yy − ξ2 p = 0 on 0 < y < 1 , and
dp

dy
= ξu y on y = {0,1}. (7.4)

The allowable wave numbers are given by ξ = ±2π L−1
x nξ and natural numbers nξ ∈ N. The pressure equation (7.4) is 

uniquely solvable for all ξ 6= 0; while for ξ = 0, the integral constraint in (7.2), together with (7.4), fixes p(y; 0) = 0. For 
ξ 6= 0, equation (7.4) can be solved analytically to obtain:
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p(y; ξ) = −cosh
¡
ξ(y − 1)

¢
sinh(ξ)

u y(0) + cosh(ξ y)

sinh(ξ)
u y(1). ξ 6= 0. (7.5)

The pressure can then be substituted back into equation (7.3) to yield a non-local PDE for the horizontal velocity u =
u(y, t; ξ) (for ξ 6= 0):

ut =
³ ∂

∂ y2
− ξ2

´
u + ξ

cosh
¡
ξ(y − 1)

¢
sinh(ξ)

u y(0) − ξ
cosh(ξ y)

sinh(ξ)
u y(1)

Boundary conditions: u = 0, on y = {0,1}.
(7.6)

Solving equation (7.6) for u(y, t; ξ) at every wave number ξ then allows one to reconstruct u(x, y, t). In a similar fashion, 
one can use (7.5) to reconstruct p(x, y). Once either u(x, y, t) or p(x, y) is known, the vertical velocity v(x, y, t) can then be 
obtained by solving either (i) the v-component of equation (7.3) with the pressure as a prescribed forcing, or (ii) using the 
fact that the PPE reformulation automatically enforces the divergence constraint so that v(y; ξ)y = −ξu(y; ξ). Collectively, 
the solutions (u, v, p) from (7.5)–(7.6) solve the original PDEs (7.1)–(7.2) with f = 0. Thus, devising unconditionally stable 
ImEx splittings for (7.6) can be used as a guide for stabilizing discretizations of the full equations (7.1)–(7.2).

7.1. Numerical discretization and ImEx splitting for equation (7.6)

In line with prior examples, we seek ImEx splittings of equation (7.6) in which the pressure terms are treated explicitly, 
while a portion of the viscosity is treated implicitly:

Ah,ξ u ≈ σ
³ ∂

∂ y2
− ξ2

´
u, Bh,ξ u ≈ (1 − σ)

³ ∂

∂ y2
− ξ2

´
u − ξ p . (7.7)

Although equation (7.6) is a non-local PDE, the highest derivative degree is 2 so that the splitting (7.7) still adheres to the 
guidelines in Remark 6. As with prior discussions, the inclusion of the splitting parameter σ in (7.7) provides additional 
flexibility in devising stable schemes, compared to many existing splittings that effectively fix σ = 1.

To obtain the matrices (Ah,ξ , Bh,ξ ) we discretize the y-direction using N y equispaced grid points y j = jh, and spacing 
h = (N y + 1)−1, so that u j = u(y j) ∈ R

N y , for 1 ≤ j ≤ N y . A standard 3-point finite difference stencil for ∂yy (with Dirichlet 
boundary conditions u(0) = u(1) = 0 at y ∈ {0, 1}) leads to the following discretization: Ah,ξ = σ A0,h,ξ , where

A0,h,ξ = 1

h2

⎛
⎜⎜⎜⎜⎜⎝

−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

⎞
⎟⎟⎟⎟⎟⎠ − ξ2 I . (7.8)

In a similar fashion, we set Bh,ξ = (1 − σ)A0,h,ξ + Q h,ξ where Q h,ξ u ≈ −ξ p is a matrix that computes the pressure. The 
matrix Q h,ξ is built using equation (7.5) as

Q h,ξ = a(ξ)dT
1 + b(ξ)dT

2 for ξ 6= 0, and Q h,0 = 0 for ξ = 0. (7.9)

Here the vectors d1 = h−1
¡

1, 0, . . . , 0
¢T and d2 = h−1

¡
0, . . . , 0,−1

¢T approximate the derivatives dT
1 u ≈ u y(0) and 

dT
2 u ≈ u y(1), and thus encode the boundary conditions u(0) = u(1) = 0. The vectors a(ξ), b(ξ) ∈ R

N y are discretizations of 
the functions

a(ξ) j = ξ csch(ξ) cosh
¡
ξ(y j − 1)

¢
, b(ξ) j = −ξ csch(ξ) cosh(ξ y j).

Note that for each fixed value of ξ , the matrix Q h,ξ is the sum of two rank-1 matrices.

7.2. Applying the unconditional stability theory to determine (δ, σ)

Now we follow the guidelines in Remark 6 to determine (δ, σ). We directly focus on computing an appropriate set 
W p(Ah,ξ , Bh,ξ ) to be used in the stability theory.

Unlike prior examples, for the channel flow application considered here, the choice p = 2 is most useful for the analysis 
of the W p sets. This is because the maximum size and shape of the sets W2(Ah,ξ , Bh,ξ ) are effectively independent of h. 
In contrast, numerical experiments show that the sets W1(Ah,ξ , Bh,ξ ) arising from (7.7) tend to grow as h → 0. It is worth 
noting that p = 2 is also motivated by [22], in which a version of the set W2(Ah,ξ , Bh,ξ ) was studied to prove that SBDF1 is 
unconditionally stable when applied to the channel flow PDEs (7.1)–(7.2). Here, we apply the full new unconditional stability 
theory to systematically investigate stability for high order schemes.
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Fig. 10. Sets W2(A0,h,ξ , Q h,ξ ) (red) in (7.10) for N y = 32 and wave numbers ξ ∈ {1, 5, 25, 50}. The sets are computed numerically and are confined to the 
real axis. The sets shrink in size as ξ increases.

Fig. 11. Plot of Wmax(ξ ; h) versus wave number ξ for N y = 64 (dashed) and N y = 256 (solid). The sets W2(A0,h,ξ , Q h,ξ ) (and consequently 
W2(σ A0,h,ξ , Bh,ξ )) are contained in the interval [0, 1] along the real axis.

To compute W2(Ah,ξ , Bh,ξ ), we use the scaling property from Remark 5 to write

W2(σ A0,h,ξ , Bh,ξ ) = 1 − σ−1 + σ−1 W2(A0,h,ξ , Q h,ξ ), (7.10)

and use Chebfun’s numerical range (field of values) routine [53] to compute W2(A0,h,ξ , Q h,ξ ); from which W2(σ A0,h,ξ ,

Bh,ξ ) is obtained via a shift and re-scaling. Note that Chebfun employs an algorithm due to Johnson [51] that reduces the 
computation of W2(σ A0,h,ξ , Bh,ξ ) to a collection of eigenvalue computations.

A theoretical study of the set W2(A0,h,ξ , Q h,ξ ) where continuum operators A = (−1u) and B = (−∇p) were used 
instead of discrete matrices A0,h,ξ , Q h,ξ (note that the set W2 is still defined using operators), was carried out in part 
of the work [22]. They showed that the set W2(A, B), using continuum operators, was real and contained in the interval 
[0, 1]. Our numerical computations of W2(σ A0,h,ξ , Bh,ξ ) also show that for each fixed value of ξ , the sets are within a 
discretization error (at most O(h)) of the interval [0, 1].

To quantify the region that W2(A0,h,ξ , Q h,ξ ) occupies along the real axis, let

Wmax(ξ ;h) = max Re
³

W2(A0,h,ξ , Q h,ξ )
´
, Wmin(ξ ;h) = min Re

³
W2(A0,h,ξ , Q h,ξ )

´
.

Fig. 10 plots the sets W2(A0,h,ξ , Q h,ξ ) for ξ ∈ {1, 5, 25, 50} and grid spacing N y = 32. Fig. 11 plots Wmax(ξ ; h) for different 
wave numbers ξ (where ξ = 0 is a special case and excluded from the plot) and grids N y ∈ {64, 256}. The plot shows that 
Wmax(ξ ; h) decreases (monotonically) with increasing ξ — which is important for the simultaneous stabilization of all wave 
numbers that arise in a channel geometry. The minimum value Wmin(ξ ; h) is always zero, i.e. Wmin(ξ ; h) = 0.

Since the sets W2(σ A0,h,ξ , Bh,ξ ) lie along the real axis, the procedure for choosing (δ∗, σ ∗) parallels that of the diffusion 
example in §6.2. For instance, we can use equations (6.10) (for r ∈ {1, 2}) and (6.12) (for r ∈ {3, 4, 5}) via the substitutions 
dmax → (1 − Wmin(ξ ; h)) = 1 and dmin → (1 − Wmax(ξ ; h)) to ensure that W2(σ A0,h,ξ , Bh,ξ ) ⊆D. This approach determines 
the parameters (δ∗, σ ∗) that ensure unconditional stability for the PDE (7.9) for one fixed wave number ξ . In practice, 
however, stabilizing equation (7.6) for a channel geometry requires that it be unconditionally stable for all allowable wave 
numbers ξ = ±2π L−1

x nx . The following remark shows that it suffices to ensure unconditional stability for the smallest 
non-zero wave number (which then stabilizes all others).

Remark 12. (Choosing one (δ∗, σ ∗) that works for all wave numbers ξ ) Unconditional stability for equations (7.1)–(7.2)
corresponds to ensuring that (7.6) is stable for all modes ξ = ±2π L−1

x nξ . Here we argue why it suffices to ensure that only 
the smallest mode is stable, i.e., to require that W2(σ A0,h,ξ1 , Bh,ξ1) ⊆ D, where ξ1 = 2π L−1

x is the smallest positive wave 
number.

To show this, we use the simple property that the sets W2(·, ·) may be written as a numerical range. First, one can 
view the simultaneous solution of equation (7.6) over all allowable ξ , as solving one very large system of equations with 
matrices A0,h and Bh that are written as direct sums. Specifically, write A0,h = L

ξ A0,h,ξ and Bh = L
ξ Bh,ξ , where the 

direct sum is over the wave numbers ξ = ±2π L−1
x nx and natural numbers nξ ∈ N (i.e. (A0,h, Bh) are infinite block di-
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Fig. 12. Unconditional stability for equation (7.6) and channel length Lx = 2π . The set W2(Ah, Bh) (shown in red) is contained within the unconditional 
stability region (blue set) when (δ, σ) = (0.0907, 0.2186).

agonal matrices with each block being A0,h,ξ or Bh,ξ ). Now use the fact that the set W2(σ A0,h,ξ , Bh,ξ ) may be written 
as a numerical range (see Remark 2) — and that the numerical range of the direct sum of two matrices is the convex 
hull of their two numerical ranges, i.e. W (X

L
Y ) = conv{W (X), W (Y )}. As a result, the set W2(σ A0,h, Bh) is the convex 

hull of the sets W2(σ A0,h,ξ , Bh,ξ ) over all allowable wave numbers. Lastly, we observe that the set W2(σ A0,h,ξ1 , Bh,ξ1)

contains (up to at most an error O(h)) each of the sets W2(σ A0,h,ξ , Bh,ξ ) for all ξ = ±2π L−1
x nx and nx ∈ N. This shows 

that the convex hull of the sets W2(σ A0,h,ξ , Bh,ξ ) over all ξ is approximately equal to the set W2(σ A0,h,ξ1 , Bh,ξ1). Specif-
ically:

• For the mode ξ = 0, we have Q h = 0. Hence W2(σ A0,h,0, Bh,0) = {1 − σ−1} is a single point contained in the set 
W2(σ A0,h,ξ1 , Bh,ξ1).

• The matrices Q h,−ξ = Q h,ξ and A0,h,−ξ = A0,h,ξ are even functions of ξ . Hence the sets W2(σ A0,h,ξ , Bh,ξ ) are the 
same for both ±ξ values.

• Fig. 11 shows that the value Wmax(ξ ; h) is a decreasing function of ξ . Hence, using formula (7.10) along with the def-
initions of Wmax(ξ ; h) (and the fact that Wmin(0; h) = 0), one has W2(σ A0,h,ξ , Bh,ξ ) ⊆ W2(σ A0,h,ξ1 , Bh,ξ1) whenever 
ξ > ξ1.

Hence we have that W2(σ A0,h, Bh) ≈ W2(σ A0,h,ξ1 , Bh,ξ1 ), where the ≈ sign (as opposed to an = sign) denotes the fact 
that there may be an O(h) error.

Based on this important insight, we now choose (δ∗, σ ∗) for a channel geometry of length Lx = 2π and smallest positive 
wave number ξ1 = 1. For grid size N y = 256, the set W2(σ A0,h,ξ1 , Bh,ξ1 ) is obtained by inserting the values Wmin(1; h) = 0
and Wmax(1; h) = 0.93 (see Fig. 11) into equation (7.10). A crucial observation is that the largest and smallest generalized 
eigenvalues 3(A0,ξ1;h, Q ξ1;h) equal the maximum and minimum values of Wmax(ξ1; h), see Fig. 11 — and the gap between 
these generalized eigenvalues exceeds the unconditional stability capabilities of SBDF3 (see Remark 10). Hence, the new 
coefficients (i.e. δ < 1) must be used to achieve unconditional stability. Using a gap parameter of η = 0.1, order r = 5, and 
values dmin → 1 − 0.93 = 0.07, dmax → 1 in equation (6.12), leads to (δ, σ) = (0.0907, 0.2186). Fig. 12 verifies that this 
choice in fact satisfies the sufficient conditions for unconditional stability.

We conclude this section with a few important observations. For a fixed value of ξ , the maximum value Wmax(ξ ; h)

remains bounded below 1 as h → 0. This implies that one value of (δ, σ) may be used to stabilize an entire family of split-
tings. On the other hand, the sets W2(σ A0,h,ξ , Bξ,h) do depend on ξ — and Fig. 11 implies that the sets W2(σ A0,h,ξ , Bξ,h)

(and also the generalized eigenvalues 3(σ A0,h,ξ , Bξ,h)) become large when ξ1 → 0. This observation is important because 
it implies that designing unconditionally stable schemes requires a choice of (δ, σ) that depends on the domain size Lx , and 
also on the fact that the domain is a channel geometry.

A natural question then arises: what values can W2(Ah, Bh) take for a general fluid dynamics problem? Because the set 
may depend on the geometry shape (for instance whether Ω has corners, see [61]) and size of the computational domain, 
one would expect that numerical computations may be required to determine or estimate W2(Ah, Bh). For instance, one 
may perform a few rapid computations of W2(Ah, Bh) using a coarse mesh (i.e. large h) and thus small matrices Ah and Bh , 
to obtain a guide for determining the parameters (δ, σ) for the fully resolved problem.

8. Conclusions and outlook

With this work on unconditionally stable ImEx multistep methods we wish to stress two key messages: first, we advocate 
to conduct the selection of the ImEx splitting and selection of the time-stepping scheme in a simultaneous fashion; and 
second, it is often possible to achieve unconditional stability in significantly more general settings than one might think at 
first glance.
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The examples and applications discussed herein may serve as a blueprint for how to approach many other types of 
problems, by using the new stability theory and new ImEx schemes to determine feasible and optimal parameters (δ, σ)

that characterize the scheme and splitting, respectively.
The theoretical foundations of this work establish necessary and sufficient conditions for unconditional stability, resulting 

from unconditional stability diagrams (that depend only on the scheme) and computable matrix quantities (that depend 
only on the ImEx splitting). This analysis is then used to explain fundamental limitations of the popular SBDF schemes. In 
particular, it is shown why SBDF can frequently not be extended beyond first or second order — and how the new schemes 
can overcome this barrier.

The variable coefficient and nonlinear diffusion examples highlight the practical impact that the new methodology can 
bring: being able to treat problems whose stiff terms are challenging to invert, without stiff time step restrictions and
without having to conduct challenging solves. In addition, the theory serves to provide some fundamental insight into 
unconditional stability (or breakdown thereof) in incompressible fluid flow simulations.

A key limitation of this work is the formal restriction to positive definite matrices A. This excludes many splittings that 
would be warranted for intrinsically non-symmetric problems, such as advection or dispersion. Regarding this limitation, it 
should first be noted that much of the theory persists when the assumptions on A are relaxed (for instance, A may be a 
normal matrix with eigenvalues λ having complex arguments |arg(−λ)| that are not too large). Second, the extension of the 
theory to truly non-symmetric A is an important subject of future work.
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Appendix A. Proof of Proposition 6.1

Throughout this section we suppress the subscript h on the matrices (Ah, Bh), and simply write (A, B). We start with 
computing the set

W1(A, B) =
n
hv, B vi : hv, (−A)vi = 1, v ∈V

o
(A.1)

=
n
hD v,

¡
σ I − diag(d)

¢
D vi : hD v, D vi = σ−1, v ∈ V

o
(A.2)

In the expression in (A.2), we have used the fact that the derivative matrix is skew-symmetric D† = D
T = −D . Note that 

D is invertible on the space V (i.e. V is orthogonal to 1 — which is the nullspace of D). Making the change of variables 
y = σ

1
2 D v in (A.2), we observe that as v varies over V, y varies over V. This yields:

W1(A, B) =
n
hy,

¡
I − σ−1diag(d)

¢
yi : kyk = 1, y ∈ V

o
= 1 − σ−1

NX
j=1

d(x j)|y j|2,

where y = ¡
y1, y2, . . . , yN

¢T . Since kyk2 = 1, each value |y j |2 is real and confined to the region 0 ≤ |y j |2 ≤ 1 (note that 
because y ∈ V, not all vectors y are allowed — only those having zero mean). Combining the results leads to the following 
inequality:

dmin = dmin

NX
j=1

|y j|2 ≤
NX

j=1

d(x j)|y j|2 ≤ dmax

NX
j=1

|y j|2 = dmax.

Hence, the set W1(A, B) is real and bounded by:

1 − σ−1dmax ≤ W1(A, B) ≤ 1 − σ−1dmin.

This concludes the first part of the proof. To prove the eigenvalue bounds on 3(A, B), the upper bound estimates (i.e. the 
bounds overestimating the largest μ and underestimating the smallest μ) follow directly from using the established bounds 
on W1(A, B) with the fact that 3(A, B) ⊆ W1(A, B). Thus, it suffices to prove only the lower bounds. We are interested 
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in bounding the eigenvalues of μ(−A)v = B v with eigenvectors 1T v = 0 restricted to V. Substituting A and B into the 
eigenvalue equation yields:

μD2 v =
³

D S D
´

v, where S := (I − σ−1diag(d)).

As before, let y = D v , which is an invertible transformation on V. Then

D
³

S y − μy
´

= 0, yT 1 = 0,

or alternatively

(S − μI)y = α1, yT 1 = 0, (A.3)

for some α ∈C. We now solve equation (A.3) for two separate cases:

Case 1: S1 = 0. Here σ = d(x j) for all d(x j). This is only possible if d(x j) = d0 for all j, i.e. one has a constant coefficient 
diffusion, and thus S = 0 identically. Dotting (A.3) through by 1 further shows that α = 0, thereby forcing all μ = 0. Hence, 
Proposition 6.1 is satisfied (trivially) because μmax ≥ 1 − σ−1d2,min = 0 and μmin ≤ 1 − σ−1d2,max = 0.

Case 2: S1 6= 0. In this case, we solve equations (A.3) by first writing the components of y in terms of the unknown 
eigenvalue μ:

y j = α

1 − σ−1d(x j) − μ
.

Applying the constraint 1T y = 0 to the vector y, shows that the eigenvalues μ are roots to the following equation:

g(μ) = 0, where g(μ) :=
NX

j=1

¡
1 − σ−1d(x j) − μ

¢−1
.

Ordering the poles of g(μ) along the real axis from smallest to largest shows that there is at least one root of g(μ) between 
the smallest two values (or largest two values) of (1 − σ−1d(x j)). Hence, Proposition 6.1 follows.

Appendix B. Formulas for the ImEx coefficients

Table B.4
ImEx coefficients for orders 1–5 as functions of δ. To use, choose an order and determine a value 0 < δ ≤ 1 small enough to ensure 
the splitting of choice (A, B) is unconditionally stable. Substitute this value δ into the table to obtain the time stepping coefficients. 
Coefficients reduce to SBDF when δ = 1.

Order j = 3 j = 2 j = 1 j = 0

1 a j . . δ −δ

c j . . 1 (δ-1)
b j . . 0 δ

Order j = 3 j = 2 j = 1 j = 0

2 a j . 2δ − 1
2 δ2 −4δ + 2δ2 2δ − 3

2 δ2

c j . 1 2(δ − 1) (δ − 1)2

b j . 0 2δ (δ − 1)2 − 1

Order j = 3 j = 2 j = 1 j = 0

3 a j 3δ − 3
2 δ2 + 1

3 δ3 −9δ + 15
2 δ2 − 3

2 δ3 9δ − 21
2 δ2 + 3δ3 −3δ + 9

2 δ2 − 11
6 δ3

c j 1 3(δ − 1) 3(δ − 1)2 (δ − 1)3

b j 0 3δ −6δ + 3δ2 (δ − 1)3 + 1

Order j = 4 j = 3

4 a j . 4δ − 3δ2 + 4
3 δ3 − 1

4 δ4 −16δ + 18δ2 − 22
3 δ3 + 4

3 δ4

c j . 1 4(δ − 1)

b j . 0 4δ

j = 2 j = 1 j = 0

a j 24δ − 36δ2 + 18δ3 − 3δ4 −16δ + 30δ2 − 58
3 δ3 + 4δ4 4δ − 9δ2 + 22

3 δ3 − 25
12 δ4

c j 6(δ − 1)2 4(δ − 1)3 (δ − 1)4

b j −12δ + 6δ2 12δ − 12δ2 + 4δ3 (δ − 1)4 − 1

(continued on next page)
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Table B.4 (continued)

Order j = 5 j = 4

5 a j 5δ − 5δ2 + 10
3 δ3 − 5

4 δ4 + 1
5 δ5 −25δ + 35δ2 − 65

3 δ3 + 95
12 δ4 − 5

4 δ5

c j 1 5(δ − 1)

b j 0 5δ

j = 3 j = 2

a j 50δ − 90δ2 + 190
3 δ3 − 65

3 δ4 + 10
3 δ5 −50δ + 110δ2 − 280

3 δ3 + 35δ4 − 5δ5

c j 10(δ − 1)2 10(δ − 1)3

b j −20δ + 10δ2 30δ + 10δ3 − 30δ2

j = 1 j = 0

a j 25δ − 65δ2 + 200
3 δ3 − 365

12 δ4 + 5δ5 −5δ + 15δ2 − 55
3 δ3 + 125

12 δ4 − 137
60 δ5

c j 5(δ − 1)4 (δ − 1)5

b j −20δ + 30δ2 − 20δ3 + 5δ4 (δ − 1)5 + 1

Appendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .09 .044.
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