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Abstract—In most process control systems nowadays, process
measurements are periodically collected and archived in histori-
ans. Analytics applications process the data, and provide results
offline or in a time period that is considerably slow in comparison
to the performance of many manufacturing processes. Along
with the proliferation of Internet-of-Things (IoT) and the intro-
duction of “pervasive sensors” technology in process industries,
increasing number of sensors and actuators are installed in
process plants for pervasive sensing and control, and the volume
of produced process data is growing exponentially. To digest
these data and meet the ever-growing requirements to increase
production efficiency and improve product quality, there needs a
way to both improve the performance of the analytic system
and scale the system to closely monitor a much larger set
of plant resources. In this paper, we present a real-time data
analytics platform, referred to as RT-DAP, to support large-
scale continuous data analytics in process industries. RT-DAP is
designed to be able to stream, store, process and visualize a large
volume of real-time data flows collected from heterogeneous plant
resources, and feedback to the control system and operators in a
real-time manner. A prototype of the platform is implemented on
Microsoft Azure. Our extensive experiments validate the design
methodologies of RT-DAP and demonstrate its efficiency in both
component and system levels.

I. INTRODUCTION

In most existing process control systems, process measure-
ments are periodically collected and communicated to gate-
ways, controllers, and workstations [1]. Feedback is provided
through alarm/control messages and visualization to both the
system itself and to human operators. All collected data are
put into a time-series form that can be used by the modeler
and archived in historians [2]. Then, analytics applications
read the data from these historians, find the right set of
features and the correct subset of data to use to capture
the desired variation, and provide results off-line or in a
time period that is considerably slow in comparison to the
performance of the manufacturing process. However, due to
the lack of an efficient and scalable real-time data analytics
infrastructure specifically designed for process monitoring and
control applications, only a minimal set of process conditions
and plant equipment is monitored, and a limited set of control
and analytics algorithms is provided.

With the proliferation of Internet-of-Things (IoT) [3] and the
introduction of “pervasive sensors” technology in process in-
dustry, the volume of produced process measurements and the

complexity of the analytics tasks are growing exponentially.
To digest these data and meet the ever-growing requirements
to increase production efficiency and improve product quality,
there needs a way to provide easy access to the data, improve
performance of the analytics tasks and scale of the system to
closely monitor a much larger set of plant resources and their
operational environments.

In this paper, we present the design and implementation of
a scalable real-time data analytics platform, referred to as RT-
DAP, to support continuous data analytics for a wide range
of industrial process monitoring and control applications.
Although the design and development of real-time analytics
platforms have received growing interests in recent years due
to the great demand on processing streams of data for real-
time event monitoring and detection [4], [5], most of them are
not designed for industrial process control systems.

RT-DAP can serve as the core component in the real-time
sensing, communication, analytics and control loop for the
next-generation large-scale process monitoring and control
systems. A large volume of real-time data flows can be
collected from heterogenous plant resources via the smart
plant communication infrastructures. These real-time process
measurements will be streamed into RT-DAP for real-time
data storage, modelling and analytics. Data visualization and
control decisions will be made and fed back to the system and
operators in a real-time manner for both emergency and daily
process operations.

RT-DAP differs from existing general-purpose computing
platforms with the following key components: 1) a unified
messaging protocol to support massive real-time process data,
2) a distributed time-series database specifically designed for
storing and querying process data, and 3) a model develop-
ment studio for designing data and control flows in process
control related analytics tasks. The developed models and
analytics modules can be deployed on an elastic real-time
processing framework to distribute the computation on the
parallel computing infrastructure. We further design an indus-
trial IoT field gateway, referred to as IIoT-FG, through which
RT-DAP can be connected to various heterogeneous plant
resources for distributed data acquisition. Combined with the
real-time communication infrastructure deployed in process
plants nowadays, the integrated communication and computing



framework will significantly improve the scalability, reliability
and real-time performance of industrial process monitoring
and control applications, and close the loop of process moni-
toring, communication, decision making, and control.

To validate the design methodologies, we have implemented
a prototype of RT-DAP on Microsoft Azure and a prototype
of IIoT-FG on Minnowboard [6]. Our extensive experiments
on both component- and system-level testing demonstrate
the efficiency of the platform in providing real-time data
streaming, storage, decision making and visualization for real-
time analytics applications in process industries. In the follow-
ing, Section II reviews the existing real-time data analytics
platforms, in particular for industrial automation applications.
We present our platform design in Section III and describe its
implementation on Microsoft Azure in Section IV. We present
the performance evaluation results in Section V. Section VI
concludes the paper and discusses the future work.

II. RELATED WORKS

Internet-of-Things (IoT) has drawn a tremendous amount
of attention in recent years. A growing number of physical
objects and devices are being connected to the Internet at
an unprecedented rate to collect and exchange data [7]. To
fully utilize these data, many data acquisition and analytics
systems have been developed in different application domains
[8]–[10]. In the field of industrial automation, the focus of
our study in this paper, many analytics platforms have also
been developed. These platforms include but are not limited
to the HAVEn [11] from HP, the Industrial Solutions System
Consolidation Series from Intel, and the Omneo [12] from
Siemens. Although these analytics systems are comprehensive,
they are designed for general purpose industrial automation
applications, and few details on their architecture design,
implementation and performance evaluation are provided. In
this paper, we will present the design details of RT-DAP, which
is specifically developed for industrial process monitoring and
control applications. We first summarize the state of the art in
the key components of the proposed platform.

With the exponentially growing number of data sources
and data volume, efficient messaging protocols and messaging
systems particularly designed for IoT applications have gained
their popularity in recent years. Data collected from physical
objects and devices are streamed into messaging systems
through messaging protocols and eventually consumed by
IoT applications. Among many existing messaging protocols,
MQTT, AMQP, CoAP and STOMP are the four most popular
ones based on TCP/IP. All these protocols are designed for
resource constrained devices and networks, and thus can be
efficiently implemented on a variety of embedded systems. A
comparison among these protocols are provided in [13].

In order to partition and separate the data streams, and
process messages asynchronously, most messaging systems
are carefully designed with features like scalability, reliability,
clustering, multi-protocol and multi-language support. Mes-
saging systems usually comprise several servers, known as
messaging brokers, working in the middle of the data sources

and data analytics systems. These systems such as ActiveMQ,
RabbitMQ, ZeroMQ, and Kafka share many similarities. Some
throughput and latency benchmarks are provided in [14] for
their performance comparison.

Data store is another critical component of a data analytics
system. Relational databases have been widely used in past
decades, but it is not suitable for storing a large amount of
time series data without explicit structures and relations [15].
A variety of NoSQL databases thus have been designed to
address this problem, including key-value stores and document
stores. Key-value stores – including Berkeley DB (BDB) [16],
Oracle NoSQL Database [17], HBase [18], and Cassandra [19]
– use a map or dictionary as a collection of key-value pairs
as the fundamental data model. On the other hand, Document
stores – including CouchDB [20] and MongoDB [21] – differ
on the definition of “document”, but generally all assume
that documents encapsulate and encode data in some standard
formats or encodings including XML, YAML, and JSON.

Regarding the parallel computing framework, Storm [22]
and Spark [23] are the two most popular solutions nowadays
for real-time big data processing, while they have different
strengths and use cases. Apache Storm is a distributed com-
putation framework which is suitable for reliably processing
unbounded data streams. It uses custom created “spouts”
and “bolts” to define information sources and manipulations
to allow batch, distributed processing of streaming data. In
Storm, all data are stored in memory if the message exchang-
ing happens in the same machine. This design makes Storm
fast enough to process huge amount of data in real-time.
Apache Spark is an open source cluster computing framework.
In contrast to Hadoop’s two-stage disk-based MapReduce
paradigm, Spark’s multi-stage in-memory primitives provide
performance up to 100 times faster for certain applications.
By allowing user programs to load data into a cluster’s
memory and query it repeatedly, Spark is well-suited to
machine learning algorithms [23]. A detailed design overview
and performance comparison between the Storm and Spark
streaming platforms is provided in [24].

III. RT-DAP DESIGN DETAILS

Fig. 1 presents the overall architecture of RT-DAP. It
consists of five key components: one or multiple industrial IoT
field gateways for connecting to heterogenous plant resources,
a run-time execution engine for real-time data processing,
a distributed time-series database for fast data loading and
queries, an analytics studio to define analytics models, and a
rich set of web services for data visualization and interactions.

The industrial IoT field gateway (IIoT-FG), provides hard-
ware interfaces and protocol adaptation between RT-DAP
and various heterogeneous plant resources running different
communication protocols (OPC-UA [25], HART-IP [26], etc.)
for distributed data acquisition. The collected process mea-
surements from the field are in essence time-series data, and
will be streamed into RT-DAP through a unified messaging
protocol. These real-time data will be digested in the run-time
execution engine which is a combination of data flow system
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Fig. 1: An overview of the architecture of the real-time data analytics platform (RT-DAP) for large-scale process control.

(like Kafka [27]) and parallel real-time computing framework

(like Storm [22]) where data analytics tasks will be performed

in a parallel and resource-aware manner. The computed results

will either be fed back to the physical systems directly in the

forms of notification and alarm messages, or loaded into the

time-series database system for further queries and processing.

The analytics studio is designed to develop various anayltics

models using first principle and/or data-driven methods. These

developed models will be deployed in the run-time execu-

tion engine for performing online continuous data analytics.

Lastly, a web server is developed to interact with the time-

series database to provide real-time visualization to end users

through a variety of dashboards. In the following, we will

elaborate the design of each key components.

A. Naming Conventions

We first describe our naming convention to distinguish real-

time data points from different plant resources. The format

is consistent with the one used in DeltaV [28] system, and

other major Distributed Control System (DCS) vendors apply

a similar approach. Each data point is assigned a unique tag

name. Within one zone, the top name of the tag can be one of

three types: module, workstation/controller, and device. The

data points are all defined as paths from the top name. In a

plant of multiple zones, zone name will be prefixed to the top

name. To further distinguish different plants, domain name

will be prefixed to the zone name. For ease of presentation,

in this paper we only consider the data points from a single

plant and thus domain name is not included. Considering an

example where we have a zone named “UCONN-ITEB-311”.

Inside this zone, there is one wireless Gateway with a 5-byte

UniqueID of “A5EF69D256”, which has one sensor device

connected with a 5-byte UniqueID of “A286BD21FA”. In the

following, Tag-1 represents the health status of the Gateway,

and tag-2 and tag-3 represent the health status and primary

variable (PV) output value of the sensor device respectively.

Tag-1: UCONN-ITEB-311::A5EF69D256/Health

Tag-2: UCONN-ITEB-311::A5EF69D256/A286BD21FA/Health

Tag-3: UCONN-ITEB-311::A5EF69D256/A286BD21FA/OUT.PV

B. Industrial IoT Field Gateway

As our vision of the industrial IoT paradigm in process

industry, a large number of real-time data points from hetero-

geneous plant resources will be collected from a variety of data

connectors (both hardware devices and software interfaces)

which are geographically distributed in the field. For example,

OPC UA servers are used to connect to DeltaV systems

to retrieve periodic measurements from installed modules,

controllers and hardware devices. HART and WirelessHART

gateways are used to collect sensor and actuator measurements

as well as network health information in a real-time and con-

tinuous manner. Wireless packet sniffers, spectrum analyzers

and surveillance cameras are installed in the plant to monitor

its operation and RF spectrum environments. All these real-

time data will be streamed into cloud-based data analytics

platform(s) (such as RT-DAP) for advanced modeling, scalable

analytics, real-time visualization and mobile alerting.

Given the connectors are usually running different commu-

nication protocols (e.g., OPC UA and HART-IP), instead of

implementing protocol adapters on each of the connectors to

stream the data to the cloud, we design the IIoT-FG to connect

to multiple data connectors to provide protocol adaptation and

remote configuration. IIoT-FG is designed to be of small form

factor, cheap, and thus can support massive field deployment.

Fig. 2(a) presents the software architecture of IIoT-FG.

The current prototype is implemented on Minnowboard and

has the following major software modules: (1) a web portal

running on Apache to enable remote configuration, (2) a

dataconcentrator module and an OPC publisher module to

interpret HART-IP and OPC UA messages respectively, (3)
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Fig. 2: (a) Software architecture of the IIoT field gateway (IIoT-FG);
(b) web portal for remote access and network/device configuration.

a device mapping module to map device UID to the device

key used on the analytics platform, and (4) an IoT hub

module to stream the data to the data analytics platform

by supporting different messaging protocols, such as HTTP,

MQTT and AMQP. All these modules communicate with each

other through a message bus. As shown in Fig. 2(b), operators

can remotely access to the IIoT-FG via the web portal and

configure the target data points and the associated streaming

parameters. Process measurements will be streamed into IIoT-

FG for protocol adaptation, and then further forwarded to the

data analytics platform according to the messaging protocol to

be described in Section III-C. In the data analytics platform,

these data points will be further stored, fused, analyzed and

visualized to represent the current status of plant operations.

C. Messaging Protocol for Data Collection

Along with the ever-growing number of sensors and ac-

tuators being deployed in field, a large amount of real-time

measurements are being collected from heterogeneous plant

resources for various monitoring and control applications.

A simple and unified streaming protocol is thus needed to

define these data streams for cross-platform data emitting and

retrieving. Given its capability to represent rich data structures

in an extendable way, we use JSON objects to define these data

streams. In RT-DAP, we set up a TCP portal server based

on Netty and design a streaming API for clients to interact

with the TCP server. This streaming API is designed with

two fields at the top level: the request type, and its associated

parameter, which is another JSON object with multiple fields.

The followings are two major request types:

• Stream Definition: This request type is created by the client

to define the data stream before sending any data records to

the server. It has a type of “D” and a parameter with id, tag,

type and optional fields. This indicates that the stream has a

unique id and is mapped to the tag name. Upon receiving such

a request, the server will create the mapping.

• Data Record: After a stream is defined, the client can emit

data records through the Data Record request. This request has

a type of “d” and an associated parameter with fields of id,

time, value, and status. It represent a data record from stream

id, with its timestamp (in UTC format), data value and status.

Given the fact that JSON essentially sends its schema along

with every message, it requires relatively large bandwidth.

Since many compatible compression techniques have been

reported to achieve good JSON format compression rates,

they can be performed on Data Record requests to make the

streaming protocol more bandwidth-efficient. Our performance

evaluation in Section V-B summarizes our experimental results

on how the compression techniques will affect the throughput

of the TCP portal server. All data records collected through

the streaming APIs will be streamed into RT-DAP.

D. Scalable Time Series Database Design

Data records collected from plant resources include contin-

uous, batch, event, and other data sources such as lab systems

and material handling systems. These data records are in

essence time series data and need to be periodically transferred

to the system’s Real-Time Database (RTDB) to provide a

complete picture of the plant operation and support operator

trends, process analysis, model building and data mining

activities. To serve these purposes, we design a distributed and

scalable time series database on top of HBase [18]. The time

series database addresses a common need: store, index and

serve process and related data collected from the distributed

control systems (control strategies, DCS equipment, devices,

lab systems, applications, etc.) at a large scale, and make this

data easily accessible. We design the time series database as

a general-purpose data store with a flexible data model. This

allows it to craft an efficient and relatively customized schema

for storing its data.

The non-relational database mechanisms in HBase enable

design simplicity, horizontal scaling, and finer control over

data availability. In the logical data model of HBase as shown

in Fig. 3, it stores a piece of data within a table based on a 4D

coordinate system: rowkey, column family, column qualifier,

and version. In our design, the rowkey of the raw data table

(DATA TABLE) consists of the tagID of the data stream and

higher-order of the timestamp when a data record is received;

the column qualifier contains the data type, status and the

lower-order of the timestamp; the column family is reserved

for future use, and the size and contents of the value field

depends on specific data streams. We have this design to sort

the time series according to their unique names and time

resolutions, so that the set of values for a single TagID is

stored as a contiguous row. Within the run of rows for a TagID,

stored values are ordered by timestamp. The timestamp in the

rowkey is rounded down to the nearest 60 minutes so a single
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row stores a ‘bucket’ of measurements for the hour. Dividing

the rowkey this way allows users to shrink their scan range

by specifying the names of the target data streams and the

required time intervals.

Following the design principles of HBase, our database

design installs all raw data records into one big table

(DATA TABLE), which can be automatically split and dis-

tributed to multiple region servers in HBase for fault tolerance

and scalability. In addition to the raw data table, as shown

in Fig. 3, we create an index table (TAG TABLE) which

contains two column families: ‘tag name’ and ‘id’. This table

provides a 2-way dictionary of tag name to TagID. Based on

the requirements of typical process control applications, we

further create a set of aggregation tables (MM AGG TABLE,

HH AGG TABLE, DD AGG TABLE) to store aggregated

data about the rows according to different time resolutions,

for example minimum, maximum and close values for a given

tag in each hour. This allows discarding time ranges that are

known not to include data in the search range without scanning

each sample. The creation and update of the aggregation tables

can either be done in the runtime or offline.

E. Analytics Model Development Studio

Developing an analytics-based solution not only requires

access to data, but also an environment to develop models

using that data, an easy method to deploy models, and a way

to monitor the operation of the deployed models. For example

in process industry, the overall scope of a project may be

to ensure that the separations coming out of a column are

maintained across a wide range of material compositions. The

way to do this is to provide continuous and timely feedback

on how the separations column is performing. In many cases

it may be possible to install and utilize one or more on-line

analyzers. However, in some cases it may be too expensive or

not possible to install an analyzer in the process. In other

cases, there may not be an analyzer available to measure

the properties that are needed for the control strategy. As an

alternative inferred measurement may be used. Each inferred

measurement may be periodically validated and the models

recalibrated using lab data. Each of these inferred measure-

ments is developed using our self-developed tool called Model

Development Studio (MDS).

MDS provides a visual workspace to build, test, deploy, and

monitor analytics strategies. The studio environment makes it

easy for the model developer to develop and test using differ-

ent datasets, different data cleaning techniques, and different

algorithms. The environment is both interactive and visual.

The user creates an analytics module and work inside it. The

analytics strategy inside an analytics module is constructed

from a pallet of analytics blocks. Blocks are arranged into

categories. Each category is used to hold blocks for accessing

data, cleaning data, manipulating data, modeling, and testing.

An MDS example is shown in Fig. 4(a). In this example the

analytics module has one instantiated analytics block called

LoadFile1. As a first step the data could be loaded into MDS

and visualized. This first step is often used to get a quick feel

for shape of the data and to summarize missing data, outliers,

and bad data. To complete the inferred measurement described

above the data must be separated into features used to predict

the measurement we are after. The completed model is shown

in Fig. 4(b). Once the analytics strategy is ready it may be

deployed for online operation using the Online option. The

online operation automatically strips off blocks that are needed

for runtime execution of the model. The online view also

provides options for the user to control execution of the model

and direct the output of the block, for example the inferred

measurement may be written back to the control system using

OPC or other interfaces. The online view is shown in Fig. 4(c).

The overall architecture of MDS is shown in Fig. 5. Its

front-end is a web-based application. The studio environment

itself contains a menu structure for creating and deploying

modules, a side-bar for switching between studio and a run-

time dashboard, a pallet for organizing analytics blocks, and a

work surface for organizing the data flow through blocks. The

model editor also supports dragging/dropping blocks from the

pallet of blocks on to the work surface and connecting blocks

on the work surface.

The Web Server contains a controller for interacting with the

client and web socket interface for serving up data. The actual

analytics blocks themselves are designed separately and loaded

into the analytics environment. Each block contains both an

algorithm and a set of meta data describing the interfaces for

the block. In this way the model clients don’t need to know

anything about the internals of blocks.

Analytics blocks are defined externally using a wrapper,
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Fig. 4: An example of model development studio (MDS)

which describes both the offline aspects for off-line editing and

on-line operation. Block definitions are defined in the wrapper

and then loaded into a MongoDB. Once in the database the

blocks are immediately available to the editor. When users

drag blocks on to the work surface they are instantiating

an analytics block. The structure and configuration of each

analytics model is stored in the MongoDB as a separate entity.

F. Real-Time Runtime Execution Engine

The developed models in the MDS will be deployed on

the real-time runtime execution engine to perform designated

analytics tasks. Among many existing computing frameworks,

the MapReduce provides good performance in processing large

datasets with a parallel, distributed algorithm on a cluster,

and brings in scalability and fault-tolerance by optimizing

the execution engine once. Our proposed RT-DAP fully sup-

ports running complex MapReduce jobs on HBase datasets

to perform computation intensive analytics tasks for process

monitoring and control. MapReduce however is not a good

choice for processing unbounded real-time data streams. It is

hard to achieve processing rates with short latencies, which

is critical for real-time continuous analytics. Although we can

run the MapReduce jobs periodically, the startup and shutdown

cost on a MapReduce job is proved to be heavy.

In RT-DAP, we use a combination of Apache Kafka [27]

and Storm [22] frameworks to serve as the runtime execution

engine. The real-time data measurements streamed to the

portal server will be pushed to the Kafka framework for

queuing and to achieve “at least once” delivery guarantee.

These measurements will then be pulled by the Storm frame-

work for real-time and parallel processing. Storm provides an

enhanced computation model by extending MapReduce jobs

to a computation topology. Incoming data streams are split

among a number of processing pipelines. Each node on the

computation topology run a specific job continuously on the

unbounded data streams flowing through it by using long-
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Fig. 5: Overall architecture of the model development studio

lived processes, and thus amortize the startup costs to zero

and significantly improve the latency.

Fig. 6 gives an example of Kafka partition and Storm

topology to support parallel data aggregation tasks. Real-

time data records are streamed into different Kafka partitions

according to their tag IDs. The data records in each Kafka

partition are handled by a separate Storm topology which

contains one Spout and one Bolt. The Spout subscribes to the

corresponding Kafka partition and keeps pulling in the data

records and stores them in a local buffer. The Bolt receives the

buffered data records from the Spout, accesses the HBase to

retrieve historical data, calculate the min, max and close values

according to different time resolutions (minute, hour and day),

and update the new aggregation results back to HBase.

Kafka and Storm have been shown in our experiments

to be very effective in queuing and processing unbounded

real-time streams. It is however difficult for the system de-

signer to decide how to create and optimize the computation

topology so that the timing constraints on the analytics jobs

can be met. To overcome these deficits, we are working on

an enhanced computation model for the existing real-time

processing frameworks by taking timing requirements of the

analytics jobs into consideration. As the ongoing work, we are

exploring how to automatize the parallelizing process on the

existing analytics model into a computation topology. Another

challenge is how to dynamically allocate physical computing

resources to each computation unit in the computation topol-

ogy, so that the overall required computing resources will be

minimized while the timing constraints on the analytics tasks

can still be maintained.

IV. IMPLEMENTATION ON AZURE

RT-DAP can either run on a private computing infrastructure

or be deployed on an enterprise cloud platform, such as Mi-
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crosoft Azure. In this section we describe the implementation

details of our prototype development on Microsoft Azure.

Fig. 7 presents the system architecture. It follows a Clien-

t/Server architecture design. The server provides high-volume

data ingest, exactly-once delivery, scalable time-series data

storage and real-time parallel data processing. The clients can

either push real-time streams into the server or retrieve data

(e.g., in the form of queries, visualization, etc.) from the server,

through either web or Thrift interface. We created a portal

VM to bridge RT-DAP and external data sources. The portal

VM includes 1) a standalone TCP server running on Netty to

accept the meta/raw data streams from plant resources using

the unified JSON format, 2) a web server to query HBase and

provide user-friendly web UI for visualization, and 3) a Storm

development tool to define, build and submit Storm topologies

for the analytics models developed in the MDS.

A combination of Apache Kafka and Storm frameworks

is running in a HDInsight cluster for queuing and real-time

processing on data streams received from the portal VM. Raw

data are also sent directly to a HDInsight HBase cluster and

stored in Azure storage. HDInsight cluster deployment tool

provided by Azure allows us to quickly deploy and scale

HBase and Storm clusters, while the Kafka cluster needs

to be manually installed because it is not yet supported by

Azure. Currently we deploy a single node Kafka service in the

headnode of Storm HDInsight cluster, and reuse its zookeeper

nodes. By default, the HDInsight cluster only exposes the

Web manager interface to the Internet which only provides

basic and high-level management. We created and deployed

the HDInsight Storm cluster, HBase cluster, and the Portal

VM in a same Azure virtual network. By doing so, the services

provided in the Portal VM can get exposed to the Internet by

creating endpoints in the Azure platform and adding firewall

exceptions. A connection to a virtual public IP address will

be redirected to the Portal VM.

Sample models were created in MDS for fault detection

based on both historical data in HBase and real-time data

Fig. 7: System implementation on Microsoft Azure

streams flowing through the Storm topology. Power BI and

Dashboards were used for reporting, and real-time alerts

and notification. On the client side, various data sources,

either physical plant resources (DeltaV DCS system, wireless

Gateways, etc.) or virtual resources (Crude simulator, packet

generator, etc.) are connected to RT-DAP and stream real-time

data measurements. The web interface provided by the web

server allows authenticated clients to send queries to RT-DAP

and retrieve both analytics results and raw data from anywhere

on any device.

V. PERFORMANCE EVALUATION

In this section, we report our experimental results on the

TCP portal server, the time series database, and the runtime

execution engine running the aggregation tasks. A crude oil

refining plant simulator (Crude simulator for short) is used to

be one of the data sources for streaming real-time process

measurements into the platform. The Crude simulator can

simulate a complete oil refinery process with high fidelity, and

all process measurements are accessible via the OPC server.

The key performance metrics used in our experiments are

the throughput and latency of the platform in digesting high-

volume real-time data streams. For ease of presentation, we

implemented a general aggregation function in our perfor-

mance evaluation, which is a common building block for many

batch processing and continuous analytics tasks.

A. Experiment Setup

Our experiments are performed on the prototype devel-

opment on Microsoft Azure as described in Section IV.

Multiple Crude simulators have been running on workstations

to simulate the process measurement flows sent to the real-

time data analytics platform from geographically distributed

oil refineries over the Internet. A wide range of process

measurements are extracted from the Crude simulator through

an OPC server and then sent to the portal server via the

JSON-based streaming APIs. The tags to be sampled and their

corresponding sampling rates are configurable and decided by

individual applications. The portal server further forwards the

data to different Kafka partitions which are identified by the

tag ID, so that the data records for the same tag will always
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Fig. 8: (a) TCP server throughput w/ and w/o compression mechanism applied on data records; (b) Performance of the write operations;
(c) Performance of the read operations
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Fig. 9: Throughput of the TCP server with different computing
resources (CPU core number varied from 1 to 8)

go to the same partition. By doing partitions, we are able to

divide work load and parallelize their processing.

B. Throughput of the TCP Portal Server

In the first set of experiments, we varied the computing

resources (in terms of number of cores) on the virtual machine

where the TCP portal server is deployed. We evaluated the

maximum throughput of the TCP server in terms of number

of processed tags per second. It reflects the maximum input

throughput of RT-DAP.

To reach the maximum throughput, instead of using the

Crude simulator, we used 7 TCP packet generators installed on

different workstations to send JSON objects (in the format of

Data Record with a payload size of 70 bytes) to the TCP server

at their maximum speeds. The maximum throughput of the

TCP server will then be derived when its CPU usage reaches

100%. As shown in Fig. 9, we performed four experiments

with the number of CPU cores (AMD Opteron 4171 HE) set

to be 1, 2, 4, and 8, respectively. Each core is assigned with

1.75 GB memory while all other settings are identical. Each

experiment run for 1000 seconds. From Fig. 9, we observe

that when the TCP server run on an one-core machine, it can

process approximately 40K data tags per second. When the

number of cores is increased to 2, 4 and 8, the maximum

throughput of the TCP sever increases to 90K, 180K and

280K data tags per second, respectively. With this near linear

growth of the throughput along with the increased allocation

of computing resources, the throughput of the portal server

can be easily scaled up.

To evaluate how data compression mechanism affects the

throughput of the TCP server, we performed another set of

experiments to compare the server throughput by sending

compressed and uncompressed data records, respectively. We

used the same TCP server as in the last set of experiments

and used four cores and 7 GB memory in total. 7 TCP

packet generators were used to send JSON objects to the TCP

server at their maximum speeds with the payload size varied

from 2 bytes to 512K bytes. In the experiments, we used the

“zlib” library [29] for data compression, and the payload was

randomly generated using a combination of numbers (0 to 9)

and characters. We repeated the experiments to evaluate the

throughput with compressed and uncompressed data records.

The experimental results are summarized in Fig. 8a. We

have the observation that the throughput of the TCP server

is around 200,000 tags per second when the payload size is

smaller than 64 bytes. For each tag, once a new data record

is received at the TCP server, it takes a constant time for

processing. A smaller payload size led to a larger number

of tags consumed by the TCP server which results a higher

CPU usage. When the payload size is small, the bottleneck of

the TCP server is the CPU resource rather than the network

bandwidth. Since it takes CPU time to decode the compressed

data, applying data compression would downgrade the TCP

throughput. On the other hand, when the payload size is

larger than 8K bytes, the network bandwidth becomes the

bottleneck. Since a smaller number of tags are transmitted

to the server, the CPU resource is sufficient to process all

compressed data records. Under this situation, transmitting

data records with compression will save network bandwidth

which in turn improve the server throughput.
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Fig. 10: (a) Distribution of the execution time in the aggregation tasks with varied input speeds; (b) Distribution of the execution time in
the aggregation tasks with varied max queue size; (c) Average queue size vs. Maximum queue size

C. Performance of the Time Series Database

To evaluate the performance of the time-series database

schema design, we conducted two sets of experiments to

compare the throughput of database write and read under

different settings. We tested the write performance by loading

an one-month dataset collected from a real-world refinery with

a total number of 3,677,625 data records. We tested the read

throughput by performing queries on a four-month dataset with

a total number of 15,574,062 data records. These data records

were loaded from the portal server to the HBase cluster on

the Microsoft AZure platform. This cluster comprises of 2

head nodes (one primary and one secondary), one Zookeeper

quorum of 3 nodes and a varied number (1-4) of region

servers. These machines were configured with the same type

of CPU (AMD Opteron 4171 HE) as we chose in Section V-B.

HBase head nodes and region servers used 4-core CPUs and

the zookeeper masters used 2-core CPUs. We evaluated the

read and write performance of the time series database by

changing the batch write size and the number of region servers

in the HBase cluster. These experiments were also repeated

with the HBase caching mechanism enabled and disabled. The

experimental results for the write and read performance are

summarized in Fig. 8b and Fig. 8c, respectively.

We observe from Fig. 8b that the write throughput can be

improved with a larger batch size and more region servers.

With a batch size of 2000 data records, we can achieve a

writing speed of 40,000 data records per second on a cluster

with four region servers. In the experiments, we pre-split the

raw data table with 1, 2 and 4 regions respectively to ensure

that each region server will hold one region. The write requests

were distributed almost evenly among the region servers to

achieve a better throughput. However, given that the write

operations have to hit HBase root and meta tables before they

are written in to the raw data table and these operations cannot

be paralleled, the write performance does not exhibit a linear

improvement.

The read tests are performed on a four-month dataset in

the raw data table. This table is pre-split with four regions.

In each read test we scanned all data records within a time

window of varied length from 1 minute to 2,400 minutes and

we randomly chose these time windows within the four-month

time period. We performed these read tests 1,000 times and

calculated the average execution time per scan. From Fig. 8c,

we observe that the average execution time per scan remains

stable when we increased the time window size from 1 minute

to 960 minutes. This is consistent with our database schema

design, in which each row contains one hour’s data records

for a given tag. Since the HBase scan is row-based, when the

time window is smaller than one hour, we still scan the entire

row. From Fig. 8c, the average scan time is only significantly

increased when the size of the time window is larger than

960 minutes. The scan time increased mainly because of the

increased sizes of the scan results.
Comparing Fig. 8b and Fig. 8c, we observe that each scan

operation took a much longer time than write operation. This

is because HBase will scan the whole region for the specified

row key after the scan hits root and meta table. An important

technique to accelerate the reading speed is caching. HBase by

default enables an LRU cache to accelerate operations on row

level. From Fig. 8c, we observe that this caching mechanism

leads to a doubled scanning speed in average.

D. Performance of the Aggregation Task
To evaluate the performance of the runtime execution en-

gine, we implemented the time series data aggregation task as

described in Section III-F. Process data flows were streamed

into the Kafka via the TCP server. The Spouts in the Storm

topology used the Kafka consume function to receive the data

records from the associated Kafka partitions, and send them

to the corresponding Bolts. The Bolt, once received a data

record, first pushed it into the HBase raw data table, and

then performed the data aggregation tasks. It first retrieved the

aggregated data records from the aggregation tables, calculated

the new high, low and close values based on the new received

data measurements, and then stored the results back to the

HBase at three different time resolutions (minute, hour and

day). To complete these aggregation tasks, 3 HBase GET

operations and 4 PUT operations are needed.
To reduce the number of HBase accesses during the data

aggregation, we implemented a queue in each Spout in order

to process multiple data records in batch. To achieve a balance



between HBase throughput and latency, we made the queue
size self-adaptive. We had one thread on the Spout to keep
filling the queue by receiving the data from Kafka. The other
thread sent the complete queue to the Bolt and waited until
the Bolt finished the aggregation tasks. The size of the queue
was affected by the Bolt processing speed. When there were
more data records coming in, it took the Bolt a longer time
to process, and the Bolt would receive a larger queue in the
next round for aggregation. This made the HBase access more
efficient but introduced in a larger latency. In the experiments,
we bounded the queue size with a maximum number to prevent
the scenario when the data input speed is consistently faster
than the processing speed of the Storm. Under this situation,
the data records will be accumulated in the Kafka, but the
Storm will keep a reasonable processing latency, which is the
speed of the Bolt processing a maximum size queue of data.

Fig. 10a summarizes the results where we tested the maxi-
mum number of tags the aggregation task can process. We let
the Crude simulator keep sending data records to the analytics
platform for 500 seconds at different speeds, and measured the
time it spent on the Bolt to perform the aggregation tasks. In
addition to the total processing time, we also measured the
HBase scan and write time. In Fig. 10a, the red bar represents
the HBase write time while the yellow bar represents the scan
time. It shows that the aggregation tasks on the Bolts took
negligible amount of computation time when compared to the
time spent on HBase access. The results also indicate that
when the sending speed was faster than 1200 tags per second,
the data could not be processed in time since it would take
more than 500 seconds for processing all data records.

Fig. 10b and Fig. 10c summarize the results of the exper-
iments where we tested the performance of the aggregation
tasks with different maximum queue sizes. In the experiments,
we kept the data sources sending data records for a time
duration of 500 seconds and fixed the sending speed at 1000
tags per second. The maximum queue size is varied from
20 to 200 to measure the execution times on the Bolts as
well as the actual queue sizes. In Fig. 10b, we observe that
when the maximum queue size increased, the execution time –
especially the HBase write time – dropped significantly. When
the maximum queue size approached to 200, the execution
time started to drop below 500 seconds, where the processing
speed in the runtime execution engine catched up the sending
speed. The similar conclusion can be derived from Fig. 10c,
where the average queue size in runtime became smaller than
the maximum queue size when it went beyond 160.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present the design and implementation of
a real-time data analytics platform called RT-DAP for large-
scale industrial process monitoring and control applications.
The proposed platform consists of a distributed time-series
database for scalable data storage, an analytics model devel-
opment studio for data and control flow design, and a real-time
runtime execution engine to perform parallel and continuous
analytics. RT-DAP can be connected to various plant resources

through lightweight industrial IoT field gateway via a unified
messaging protocol. Our prototype development on Microsoft
Azure and extensive experiments validate the platform design
methodologies and demonstrate the efficiency of the data
analytics platform in both component and system levels.

For future work, we will extend the time-series database
design to support heterogeneous data formats, enhance the
real-time parallel processing framework with resource-aware
features, and add more analytics models in MDS to support a
wider range of continuous analytics tasks.
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