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Abstract This chapter is an introduction to nanocompo-
site materials and its classifications with emphasis on
orthopedic application. It covers different types of matrix
nanocomposites including ceramics, metal, polymer and
natural-based nanocomposites with the main features and
applications in the orthopedic. In addition, it presents
structure, composition, and biomechanical features of bone
as a natural nanocomposite. Finally, it deliberately presents
developing methods for nanocomposites bone grafting.

Keywords nanocomposite materials, orthopedic applica-
tions, bone grafting nanocomposites, nanocomposites
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1 Introduction

Nanocomposite materials are known as the materials of the
21st century owing to the unique design and properties
which are not similar to the conventional composite
materials [1]. They are defined as a new type of composites
as they show excellent properties compare to the
microscale materials. These new type of materials are
considered as potential candidates to meet the emerging
demand in advanced technologies [2]. There are many
types of nanocomposite which are prepared in different
processes, however, there is still a big challenge for the
researchers to overcome the problems associated with nano
size materials [3]. Therefore, there is a great opportunity
and tremendous interest in investigation on nanocomposite
materials in a wide range of areas [4]. Recently, there are
growing needs for bone tissue substitutes due to the huge
rise in the number of elderly populations and patients with
trauma and bone cancer [5]. According to the statistical
reports, about 6.3 million bone fractures occur in the

United States of America annually [6]. In addition,
investigators predict that there will be about 6.3 million
hip fractures in 2050 while it was 1.7 million in 1990 [7].
Over the past 25 years, different types of composite
materials have been developed and applied to fulfill a
broad diversity of orthopedic requirements. In all ortho-
pedic implants, a variety of features such as physicochem-
ical, mechanical, and biological properties is required as
key factors to increase the success rate of implantation
[8,9]. Recently, development in nanocomposites provides
an excellent potential to enhance the performance of
current orthopedic implants [10]. It is believed that
nanocomposites and nanostructure materials play a key
role in orthopedic applications since bone itself is an
amazing and true nanocomposite [11].

2 What is nanocomposite?

Nanocomposites have been studied for more than 50 years
[12]. However, the significance of nanocomposite materi-
als in many applications have been revealed as early as
1990 [1]. Since then nanocomposite science and engineer-
ing have appeared in all field of materials such as
biomaterials, ceramics and more. Nanocomposite is a
heterogeneous combination of two or more materials with
different properties in which at least one of the material is
in the scale of nano (less than 100 nm) [13,14]. Developing
nanocomposites is an effort to blend the best properties of
materials to create an efficient material with unique
properties and big design opportunities [15]. The unique
characteristics of nanocomposites can be derived from the
effective mixture of original components into a single
material. The structure of nanocomposites consists the
reinforcement in the form of nanoparticles, nanofibres,
nanotubes plus the matrix material [16]. The applications
of nanocomposite materials is expanding rapidly in many
fields such as bone cement [17], solar cell [18], and filter
membranes [19]. Due to the control of composition and
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stoichiometry in the nanocomposite materials, it is
believed that they can be applied as an alternative
candidate to limit the restriction of microcomposite and
monolithic materials [1,20]. The overall insight of
nanocomposites properties has still considered as a big
challenge for the researchers. It is indicated that changes in
the properties of materials occur when the size is less than a
certain level, which is called as critical level [1]. Moreover,
with the decrease of dimension to the nano level, the
interactions at phase interfaces become significantly
enhanced which is important on the improvement of
materials properties. In this regard, the surface area/volume
ratio of reinforcement in nanocomposite materials is very
critical in determining the structure-property relationships
[1,21]. The properties of nanocomposites depend on
different factors such as the matrix dimension, loading,
shape, orientation, and degree of dispersion of the second
phase [21]. To date, many nanocomposite materials have
been developed and used in orthopedics application. For
instance, it is known that tricalcium phosphate (TCP) is
similar to the natural bone in terms of chemical properties
therefore, is applied as a suitable candidate in bioresorb-
able bone healing devices [22]. However, it is not
considered as good material for load-bearing sites due to
the brittleness and low bending strength [23]. Swain et al.
[24] developed a β-TCP-matrix nanocomposite containing
30 vol-% iron (Fe), with and without silver (Ag). Findings
revealed that all the nanocomposites prepared in different
concentrations have superior mechanical strength with
several folds higher than that of pure β-TCP. Incorporation
of Fe with Ag results in an increase in both strength and
ductility [24]. In addition, owing to the antimicrobial
properties of Ag [25], the developed β-TCP-FeAg
nanocomposites provides the significant antibacterial
effect.

2.1 Classification of nanocomposites

Nanocomposite materials used in orthopedic applications
are classified into four different categories including
ceramic, metal, polymer, and natural-based nanocompo-

sites. The details regarding structures and properties of
these four types of nanocomposites with emphasis on the
orthopedic application are discussed as follow.

2.1.1 Ceramic nanocomposites

Ceramic matrix nanocomposites (CMNC) are a subgroup
of nanocomposite materials which have been shown to be
extremely important materials for future application [16].
Due to the enhanced mechanical properties, excellent wear
resistance and chemical stability, CMNC have been
attracted considerable attention in many fields of study
[26]. One of the main application of CMNC is in thin films.
A solid layer consists of few nm to some tens of µm
thickness coated on a substrate is called thin film [27].
Over the past half-century hydroxyapatite (HA) as a
bioceramic material has received significant attention
particularly in orthopedics owing to its desirable attributes
such as high biocompatibility and osseointegration rate, as
well as similar structure and composition to the bone
[28,29]. Hydroxyapatite (Ca10(PO4)6(OH)2), is a suitable
coating layer for orthopedic implants, however, brittleness
and poor mechanical features such as fracture toughness
and micro-hardness and make it an unsuitable candidate in
many load bearing applications [30–33]. To overcome
these problems different reinforcements in nanoscales such
as alumina nanoparticles, TiO2 nanoparticles and nano-
tubes, and carbon nanotubes have been incorporated into
the HA matrix [34–36] to create HA-based nanocompo-
sites. In a study conducted by Shirdar et al. [37], TiO2

nanotubes was incorporated into the matrix of HA coating
layer to improve the mechanical properties including
micro-hardness and adhesion strength. Field emission
scanning electron microscopes images of pure HA and
HA-TiO2 nanotubes coating layer on the metallic implant
is illustrated in Fig. 1. It is obvious that the HA-TiO2

nanotubes coating layer has a denser structure as compared
to the pure HA coating layer. This study indicated that
TiO2 nanotubes filled up the micro porous of pure HA
layer and create a crack-free nanocomposite coating layer
with enhanced mechanical properties.

Fig. 1 Field emission scanning electron microscopes images of (a) Pure HA and (b) HA-TiO2 nanocomposite coated layer on Co-Cr-
based alloy [37]

2 Front. Chem. Sci. Eng. 2019, 13(1): 1–13



2.1.2 Metal nanocomposites

Metal matrix nanocomposites (MMNC) are the materials
consist of a ductile metal or alloy matrix with some
implanted nanosized reinforcement [38]. MMNC are
promising candidates for production of materials such as
orthopedic implants in which adequate mechanical proper-
ties are required [39]. Metal matrix nanocomposites are
classified as continuous and non-continuous reinforced
materials [27]. Carbon nanotube metal matrix composite is
one of the important continuous nanocomposite which is
an emerging new material with high tensile strength
[40,41]. In the field of orthopedics, metal nanocomposite
materials have attracted fundamental research. For exam-
ple, magnesium (Mg) has known for its high biocompat-
ibility and comparable mechanical properties to the natural
bone [42]. Therefore, it is widely used in orthopedic
implants over traditional metallic materials [43]. However,
two major drawbacks of Mg which are initial fast
degradation and low level of bioactivity, limit its
application in this area [44]. Recently, incorporation of
nano-HA and nano-TiO2 as reinforcement materials in Mg
matrix have been reported [45]. Results indicated that
MgO coated Mg-HA-TiO2 nanocomposite remarkably
enhanced the ductility and corrosion resistance of Mg-
based nanocomposite [45]. Figure 2 presents the schematic
illustration of Mg-HA-TiO2 nanocomposite and surface
field-emission scanning electron microscopy (FESEM) of
MgO coated Mg-HA-TiO2 nanocomposite. In another
study conducted by Zhu et al. titanium/silicon carbide (Ti/
SiC) MMNC was fabricated by friction stir processing.
Findings revealed that the developed nanocomposite not
only have superior mechanical properties under stress-
bearing conditions but also provide improved surface and

physicochemical properties for cell attachment and
osseointegration [46]. In addition, in order to enhance
surface mechanical properties as well as osteogenic
capacity, a novel Ti-6V-4V/zinc surface nanocomposite
was developed using friction stir processing. Results
suggested that this novel nanocomposite has significantly
improved mechanical properties and biocompatibility, in
addition to promoting osseointegration and thus has
potential for dental and orthopedic applications [47].

2.1.3 Polymer nanocomposites

Polymer matrix nanocomposites (PMNC) consists of a
polymer or copolymer and non-filter or non-particle in the
polymer matrix [48]. This new class of nanocomposite
materials has been received significant attention in
biomedical applications owing to lightweight, ease of
production, and some ductile nature [49,50]. In orthopedic
applications, the modulus of the PMNC need be compar-
able to the bone for efficient load transfer [51]. In addition,
they should be non-toxic, non-corrosive, and easy to
remove when it is required [52]. As a result, a polymer
based nanocomposite implant should fulfill certain design
and functional criteria such as mechanical properties,
biocompatibility, biodegradability, and possibly aesthetic
demands [52]. Poly(vinyl alcohol) or PVA is one of the
vinyl polymers with high hydrophilicity, flexibility and
biocompatibility which has been widely employed in
biomedical applications [53]. However, its application in
the orthopedic surgery has been restricted owing to
inadequate durability and mechanical strength [54]. In a
study conducted by Mohanapriya et al. [54], PVA was
reinforced with TiO2 nanoparticles to improve thermo-
mechanical stabilities, surface properties and osteoblastic

Fig. 2 (a) Schematic illustration of Mg/HA/TiO2 nanocomposite, and (b,c) FESEM micrographs of MgO coated Mg/HA/TiO2

nanocomposite (adapted and re-drawn from [45])
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cell adhesion. Therefore, a PVA-TiO2 nanocomposite film
with adequate mechanical and biocompatible properties
was developed. Findings revealed that the optimum
composition of TiO2 nanoparticles resulted in mechani-
cally stable nanocomposite films with enhanced mechan-
ical properties as well as corrosion resistance. In addition,
results from cell adhesion and in vitro bioactivity tests
indicated that TiO2 promoted the interaction between cell
and substrates and enhanced apatite. Figure 3 schemati-
cally illustrates a higher degree of interaction of osteoblast
with PVA-TiO2 nanocomposite surface compared to the
pure PVA film. Moreover, cytotoxicity and cell adhesion of
this developed nanocomposite film revealed that PVA-
TiO2 nanocomposite possibly is a promising candidate for
bone implant applications.
Studies indicate that ceramic-polymer nanocomposites

are more effective for application in bone tissue regenera-
tion due to the improvement in mechanical properties and
bioactivity as compared to the ceramics and polymers [55].
Cui et al. [56] developed n-HA/collagen/PLA bone
scaffold nanocomposite which can be applied in bone
tissue engineering [56]. Findings revealed that the elastic
modulus of the nanocomposite was 47.3 MPa with 10%
PLA that is close to the compressive modulus of trabecular
bone (50 MPa). In vivo evaluation indicates that n-HA/
collagen/PLA bone scaffold nanocomposite is a potential
candidate material for bone tissue engineering. In another
study, a novel polymer nanocomposite with good mechan-

ical properties and biocompatibility was developed for
replacing conventional polymer composites reinforced
with large hydroxyapatite microparticles. Polypropylene
(PP), hexagonal boron nitride (hBN) nanoplatelets and
nanohydroxyapatite (nHA) were employed for preparation
of PP-hBN-nHA nanocomposite. Mechanical and biolo-
gical results revealed that this nanocomposite is a suitable
candidate for orthopedic applications [57]. Figure 4 shows
the scanning electron microscopy (SEM) images of
fractured surface of PP-hBN-nHA nanocomposite.

2.2 Natural-based nanocomposites

Recently, nanostructured biomaterials such as nanocom-
posites have become increasingly popular with bone tissue
engineering, due to their capability of promoting cell
adhesion and proliferation which leads to new bone growth
as compared to conventional materials in micro scales
[58,59]. Specially, nanocomposites consisting biopoly-
meric matrices and bioactive nanosized fillers are exten-
sively used in bone tissue engineering due to the
hierarchical nature of the bone [60]. These materials
should possess high mechanical strength, biodegradability
and osteointegration [61]. For instance, calcium phos-
phates (CaP) has desirable osteoconductivity, resorbability,
and biocompatibility [62] while biopolymers possess
suitable biological performance, resemblance to extracel-
lular matrices and desirable degradation rates [63]. Thus,

Fig. 3 Schematic illustration of higher degree of interaction of osteoblast with PVA/TiO2 hybrid nanocomposite surface compared to the
pure PVA film [54]

Fig. 4 SEM micrographs showing fractured surface of PP-hBN-nHA nanocomposite at (a) low and (b) high magnifications. Black
arrow: hBN; white arrow: nHA [57]
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nanocomposite material combining nanosized CaP and
biopolymers gained much interest in orthopedics owing to
the capability of mimicking the structure and mechanical
properties of bone tissues [60]. Calcium phosphates
provides the required biocompatibility and osteoconduc-
tivity features while natural polymers offer different
degradation rates [62,63]. So far, several natural poly-
mer/CaP nanocomposite scaffolds have been developed
for tissue engineering. For instance, a collagen/nano-HA
nanocomposite scaffold possesses sufficient mechanical
properties and high biological activity similar to the
collagen control scaffold has been reported by Cunniffe’s
group [64]. In addition, Yan et al. [65] developed a
nanocomposite scaffold consisting silk fibroin and nano-
sized CaP with a self-mineralization capability and no
cytotoxicity. Barbani et al. [66] introduced gelatin/HA
nanocomposite scaffolds with chemical composition,
structural organization, and elastic modulus comparable
to the natural bone. The findings from this study showed
high interactions between the organic and inorganic
elements of the matrix which are confirmed by the
appropriate adhesion and proliferation on the scaffold of
hMSCs.

3 Bone nanocomposite

Bone is natural nanocomposite with an amazing balance of
toughness, stiffness and vibrational damping properties
which serving physiological, protective, and mechanical
functions [67,68]. It is a complex system of connected
tissue which forms the skeleton of the body [69]. Bone
plays as a store for minerals, such as CaP, which provides
mechanical support. Bone is a dynamic tissue due to the
ability of self-remodeling and self-regenerating during the
lifetime [70]. There are two main nanoscale phases in the
bone matrix including organic and inorganic which is an
interesting example of a natural nanocomposite material
[69]. Each phase consists of multiple components includ-
ing minerals, collagen, water, non-collagenous proteins,
lipids, vascular elements, and cells. Some trace elements
such as magnesium, potassium, citrate, carbonate, sodium,
chloride, and fluoride enrich the bone minerals for different
metabolic functions [69]. Bone is an extremely hard and
tough nature product composed of soft (collagen) and

brittle (HA) components. The major role of collagen is to
provide tensile strength and flexibility, whereas the bone
minerals supply rigidity and toughness. The total composi-
tion of the natural bone is summarized in Table 1 [6].
The design of ideal nanocomposite for bone grafting

requires fundamentals understanding of bone structure,
composition, and architecture. The bone-building strategy
involves a biological mechanism which has not been
discovered yet [71]. The hierarchical structural organiza-
tion of bone at the different scales such as nano, micro and
macro are important for its mechanical properties [72].
Figure 5 illustrates the hierarchical structural organization
of the natural bone. To determine the mechanical features
of the bone, the mechanical properties of each component
phase, and the structural relationship between them at the
various levels of the hierarchical structural organization
need to be investigated [72]. There are five levels and
structures in a bone including macrostructure such as
cancellous and cortical bone; microstructure (from 10 to
500 µm) such as Haversian systems, osteons, and single
trabeculae; sub-microstructure (1–10 µm) such as lamel-
lae; nanostructure (from a few hundred nanometers to
1 µm) such as fibrillar collagen and embedded mineral; and
sub-nanostructure (> few hundred nanometers) molecular
structure of constituent elements such as mineral, collagen,
and non-collagenous organic proteins [73]. Table 2
represents the biomechanical properties of the bone. The
mechanical properties of the bone are varied at different
structural levels. For instance, Young’s modulus of the
bone is in the range of 14–20 GPa range while tensile
strength is in the range of 50–150 MPa. There is an amount
of water in the bone. The mechanical properties of the bone
also depend on the amount of water exist in the bone [6].

4 Nanocomposite for bone grafting

A surgical procedure that replaces missing bone in order to
repair bone fractures is called bone grafting [74]. First-
generation bone graft did not fulfill the requirements as a
stand-alone graft substitute. Therefore, designing an ideal
bone graft which mimics the function and structure of the
natural bone remains a great challenge [11]. Table 3
summarizes the different groups of bone substitutes:
natural and synthetic biodegradable polymers, ceramics,

Table 1 The composition of bone [6]

Organic phase wt-% Inorganic phase wt-%

Collagen 20 Hydroxyapatite 60

Water 9 Carbonate 4

Non-collagenous proteins 3 Citrate 0.9

Other traces: polysaccharides, lipids, cytokines Sodium 0.7

Primary bone cells: osteoblasts, osteocytes, osteoclasts Magnesium 0.5

Other traces: Cl‒, F‒, K+ Sr2+, Pb2+, Zn2+, Cu2+, Fe2+
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metals, composites and nanocomposites [6,75]. Recently,
researchers enhance the performance of the bone graft
substitutes using the biomimetic process to create desirable
nano-structure materials [76]. It is realized that nanocom-
posite materials possess the potential capacity for devel-
oping ideal bone grafting due to their nanoscale features
that promote bone cell growth and consequently tissue
formation [77,78]. Regarding to this fact that bone itself is
a natural nanocomposite material with a complex hier-
archical structure, thus nanocomposites as a new genera-
tion of materials are considered as a promising substitute in
bone grafting [69]. These materials use a combination of
different nanoscale bone graft in conjunction with
osteogenic cellular components and osteoinductive growth
factors. For instance, nanocomposite bone graft consists of
nano-HA and collagen or nano-HA chitosan promotes
superior osteoconduction and related functions as com-
pared to the microscale bone grafts [79–81]. This type of
nanocomposite bone graft shows similar structure and
composition to the natural bone [82]. The possibility of

developing new bone grafts with enhanced performance is
increased by innovations in the processing of nanocompo-
site materials [6].

5 Development of nanocomposite for bone
grafting

Conventional materials employed in bone grafting were
not close to the ideal bone substitutes due to their low level
of bioactivity and difference mechanical properties as
compared to the bone [99]. For instance, using conven-
tional materials possibly mechanically destroy and cause
allergy and inflammation in the normal bone owing to the
abrasive and toxic particles such as nickel, cobalt,
chromium, aluminum and vanadium in the metallic
implant such as titanium alloys, stainless steel, cobalt
chromium [100]. In addition, implantation of metal oxides
such as alumina (AL2O3) and zirconia (ZrO2) cause the
same clinical and mechanical problems [99]. HA and
β-TCP are bioactive ceramics and make a direct connection
to the bone, however, brittleness of these two materials
may cause crash in the bone [99]. The most important
criteria for developing an ideal artificial bone is to select
materials with the most similarity in composition,
nanostructure, and biological response to the bone [99].
It seems that nanocomposite materials are the best
selection to fulfill these requirements [99]. Nanocomposite
materials are attracted in bone grafting implants due to the
unique functional properties as mentioned in the previous
sections. There are three processing methodologies
including conventional, tissue engineering, and biomi-
metic for developing nanocomposite materials.

5.1 Convectional method

Conventional methods for producing nanocomposite

Table 2 Biomechanical properties of bone [6]

Properties Measurement

Cortical bone Cancellous bone

Compressive strength /MPa 170–193 7–10

Young’s modulus /GPa 14–20 0.05–0.5

Tensile strength /MPa 50–150 10–20

Fracture toughness /(MPa$m1/2) 2–12 0.1

Strain to failure 1–3 5–7

Surface/bone volume /(mm2$mm–3) 2.5 20

Density /(g$cm–3) 18–22 0.1–1.0

Apparent density /(g$cm–3) 1.8–2.0 0.1–1.0

Total bone volume /mm3 1.4 � 106 0.35 � 106

Total internal surface 3.5 � 106 7.0 � 106

Fig. 5 Hierarchical structural organization of the natural bone (adapted and re-drawn from [73])
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include mixing or blending a heterogeneous combination
of at least two materials with different combinations or
morphologies [101]. This method is not a new concept and
it has widely employed for many years. Although blending
techniques produce nanocomposite with tailor-made
properties, however, control of homogeneity and unifor-
mity is quite difficult [6]. The blending procedure begins
with the incorporation of nanoscale components into the
macroscopic material to form the nanocomposite. In this
technique controlling the size and structure of the
developed nanocomposite is complicated. Very few study
have reported the blending of TiO2 with HA to develop
HA-based nanocomposite [37]. This nanocomposite is
applicable as a coating layer for orthopedic metallic
biomaterials such as cobalt chromium and titanium
implants. First, titanium nanotubes as a reinforcement
agent were synthesized and then mixed with the specific
ratio to the sol-gel of HA [102]. Finally, the metallic
implant was coated through dip coating process by HA-
TiO2 nanocomposite. The schematic illustration of dip
coating process was shown in Fig. 6. The nanocomposite
coating layer with this technique possibly is not uniform
and possess different crystalline size. Titanium nanotubes
heterogeneously distributed to the HA matrix due to the
often agglomeration. In addition, no chemical interaction
occurs between nanotubes and HA, possibly owing to the

lack of appropriate interfacial-bonding [103]. Therefore,
the structure uniformity of this nanocomposite coating
layer with the conventional method is not close to the
natural bone.

5.2 Tissue engineered method

Tissue engineering is known as a common method for
developing nanocomposites through the application of
both bioengineering and biosciences [104]. A novel
biological substitute developed by this method is able to
improve, maintain and restore tissue function [104]. In
bone tissue engineering, before scaffold implant into the
body, a specific cell from patient is isolated in order to be
cultured on the scaffold [105]. There are three vital factors
including cells, scaffold and cell-matrix interaction which
determine the success rate of bone tissue engineering [106].
The scaffold has a critical role in cells accommodation. In
the formation process of the particular tissue, the cells
undergo proliferation, migration and differentiation [107].
Bone tissue engineering includes the use of osteogenic
cells with osteoconductive scaffold and osteoinductive
growth factors that possibly form a bone graft [6]. A design
strategy for a tissue-engineered nanocomposite graft is
illustrated in Fig. 7. Owing to the osteoconductivity of HA,
it is used as a scaffold matrix for bone tissue engineering.

Table 3 Bone grafting materials used for bone repair and regeneration

Materials Examples Refs.

Polymers
Natural

Protein: Collagen, fibrin, gelatin, silk fibroin
Polysaccharides: Hyaluronic acid, chondroitin
sulphate, cellulose, starch, alginate, agarose,

chitosan, pullulan, dextran

[83‒87]

Synthetic Poly-glycolic acid (PGA)
Poly-lactic acid (PLA)

Poly-(ε-caprolactone) (PCL)
Poly-(lactide-co-glycolide) (PLGA)

Poly-hydroxyethylmethacrylate (poly-HEMA)

[83,84,86‒89]

Ceramics
Calcium phosphate

Coralline or synthetic HA
Silicate-substituted HA

β-TCP
Dicalcium phosphate dehydrate

[83,86,90‒94]

Bioglass and glass ceramics Silicate bioactive glasses
(45S5, 13-93)

Borate/borosilicate bioactive glasses
(13-93B2, 13-93B3, Pyrex®)

Metals

Titanium and its alloys
Tantalum

Stainless steel
Magnesium and its alloys

[83,95,96]

Composites

Calcium-phosphate coatings on metals
HA/poly-(D,L-lactide)
HA/chitosan-gelatin

[83,97,98]

Nanocomposites

Nano-HA/collagen,
Nano-HA/gelatin,
Nano-HA/chitosan,
Nano-HA/PLLA

[6]
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However, a biodegradable polymer such as collagen needs
to be utilized to make a composite with HA to overcome its
low biodegradability and lack of osteoconduction. Studies
show that HA/collagen nanocomposite matrix is a promis-
ing material for successful bone tissue engineering. The
scaffold supported the cellular growth and related function
leading to form new bone. Investigations show that an ideal
bone graft involves osteoconductive matrix in association
with osteogenic cells and growth factor with similar
composition, structure, physiochemical and a mechanical
and biological feature to the natural bone [6]. Recently,
surface factualization of nanocomposite in bone tissue
healing has attracted considerable attention. In a study
conducted by Gentile et al. a functionalized porous
membrane was developed that stimulates early events in

bone healing for initiating a regenerative cascade. Layer-
by-layer assembly was applied to modify the surface of
osteoconductive electrospun meshes, based on poly(lactic-
co-glycolic acid) and nanohydroxyapatite, by using poly
(allylamine hydrochloride) and poly(sodium 4-styrenesul-
fonate) as polyelectrolytes. Characterizations including
scanning electron microscopy, infrared spectroscopy, and
X-ray photoelectron spectroscopy confirmed the successful
surface functionalization. In addition, the peptide incor-
poration enhanced cellular processes, with good viability
and significant increase of alkaline phosphatase activity,
osteopontin, and osteocalcin. The functionalized mem-
brane induced a favorable in vivo response after implanta-
tion for four weeks in nonhealing rat calvarial defect model
[108].

Fig. 6 Schematic illustration of dip coating process of Co-Cr alloy with HA-TiO2 nanocomposite

Fig. 7 Design strategy of tissue-engineered nanocomposite bone graft (adapted and re-drawn from [6])
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5.3 Biomimetic method

A microstructural processing which in part or whole,
mimics or inspires the biological mechanism is called
biomimetic method [109]. Biomimetic method for fabrica-
tion of nanocomposite bone graft based on nature
strategies has received considerable attention to be
beneficial over the conventional method. This method is
a bottom-up approach starts with design and synthesis of
molecules which can naturally self-assemble or self-
organize into a higher order of microscale or macroscale
structure [110,111]. Developing nanocomposite grafts with
certain features of natural bone in terms of structure and
composition through biomimetic self-assembly possibly
imitate the natural process. In this method, a nanocompo-
site which simulates biomineralization after implantation is
considered as a potential candidate for bone applications
[112,113]. Figure 8 schematically illustrates the nucleation
and growth of crystalline HA onto collagen in a controlled
manner. By mimicking the biological phenomenon, this
process provides a proper system for bone regeneration
with higher osteoconductivity as compared to the pure HA
and pure collagen [114].

6 Summary

Application of nanocomposites in orthopedics has had an
attention for researchers in recent years. Novel properties
and enhanced performance of nanocomposites make them
suitable candidates to meet the emerging demands arising
from advanced orthopedic products. Owing to the natural
nanocomposite structure of the bone, nanocomposite
materials are possibly the best candidates for orthopedics
application by mimicking the structure and property of the

bone tissues. Different classification of nanocomposite
materials including ceramic, metal, polymer, and natural-
based nanocomposites provide a great opportunity to
overcome the problems associated with conventional
materials and thus propose enhanced performance as
compared to the monolithic and microcomposite materials.
Although a wide range of applications already exists for
nanocomposites, however, many research needs to be
conducted for a better understanding of nanocomposite
materials in terms of structures and properties.
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