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Abstract— The world is experiencing an unprecedented, endur-
ing, and pervasive aging process. With more people who need
walking assistance, the demand for lower-extremity gait rehabil-
itation has increased rapidly over the years. The current clinical
gait rehabilitative training requires heavy involvement of both med-
ical doctors and physical therapists and thus are labor-intensive,
subjective and expensive. To address these problems, advanced
automation techniques, especially along with the proliferation
of smart sensing and actuation devices and big data analytics
platforms, have been introduced into this field to make the gait
rehabilitation convenient, efficient, and personalized. This survey
paper provides a comprehensive review on recent technological
advances in wearable sensors, biofeedback devices and assistive
robots. Empowered by the emerging networking and computing
technologies in the big data era, these devices are being intercon-
nected into smart and connected rehabilitation systems to provide
non-intrusive and continuous monitoring of physical and neuro-
logical conditions of the patients, perform complex gait analysis
and diagnosis, and allow real-time decision making, biofeedback,
and control of assistive robots. For each technology category, a
detailed comparison among the existing solutions is provided. A
thorough discussion is also presented on remaining open prob-
lems and future directions to further improve the safety, efficiency
and usability of the technologies.

Index Terms— Lower-extremity neurorehabilitation; wearable
sensors; biofeedback; assistive robots; big data analytics plat-
forms; gait quantification, disease diagnosis and analysis

[. INTRODUCTION

The world is experiencing an unprecedented aging process. In
2014, 46 million people lived in the United States are 65 or older,
accounting for 15 percent of the total population. This number is
projected to be 74 million in 2030, representing 21 percent of
the total U.S. population [1]. Many diseases are strongly related
to aging, such as cardiovascular, muscularskeletal, and neurological
diseases. For example, stroke is the leading cause of serious, long-
term disability in the United States, with approximately 795,000
people suffer a stroke each year, and the risk of having a stroke
doubles each decade after the age of 55 [2]. Many stroke survivors
suffer from difficulty in standing, balancing, and walking. As a result,
the demand for gait rehabilitative training has increased rapidly in
recent years. Currently the clinical gait training is primarily carried
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out by the physical therapists, who observe patients’ walking patterns
and use clinical measures to design the training plan, and provide
active assistance and stimulation to help patients regain walking
capability. However, those standard clinical approaches cannot fully
satisfy the needs from patients, as they are labor-intensive, subjective,
and expensive. Moreover, patients have to visit clinics regularly and
only get treatment during training sessions. This is inconvenient and
time-consuming, and the patients are unable to exercise at home and
receive feedback from the therapists, which significantly slows down
the rehabilitation progress [3], [4].

In observation of the increasing demand and current limitations
of gait training practice, advanced engineering techniques have been
introduced into this field to make the gait rehabilitation automated,
efficient and personalized. This is a very popular but challenging
research field as it requires interdisciplinary expertises in mechatronic
engineering, computer science, neuroscience, and physical therapy, to
list a few. In the past decade, we have seen tremendous advances in
sensing, biofeedback and assistive device design and development.
For example, instrumented treadmill and wearable sensors have been
developed to measure force, torque, and kinematics during walking
to facilitate disease diagnosis and training plan development [5].
Based on the collected sensor data, various biofeedback mechanisms
have been developed to make the data intuitive and helpful for
patients and medical professionals [6]. Numerous assistive robots
have also been developed to provide walking assistance for different
joints, and have been tested in clinical environments with patients to
validate their efficacy in improving the gait training performance [7].
Despite the fast development in sensing, biofeedback and robotic
technologies for gait training, several fundamental challenges remain
to be solved before those technologies become really safe, reliable,
efficient, and affordable. Moreover, large amount of real-time data
will be generated with the massive implementation and deployment
of sensors and robotics, and this brings in new challenges on 1) how
to connect those sensors and store the large volume of data generated
from them, 2) how to perform both batch and continuous analytics
on those data, and 3) how to provide real-time decision making and
feedback to the gait rehabilitative training.

We envision the emerging networking and computing technologies
that are being developed along with the proliferation of Internet of
Things (IoT) devices and big data analytics platforms will provide
good solutions to address the aforementioned challenges. Fig. 1
gives an overview of the future smart and connected lower-extremity
neurorehabilitation systems. It is expected that sensing, feedback and
assistive devices will be interconnected with an unforeseen speed to
form integrated body area networks (BANs) to perform nonintrusive
and continuous monitoring of physical and neurological conditions
of the patients. Novel and powerful computing platforms will be
utilized to process the exponentially growing (mostly unstructured)
data collected during the full course of the rehabilitation planning
and training process. These powerful platforms will make it feasible
to execute complex gait monitoring, analysis, and diagnosis methods
online, which used to be run in local computing facilities offline with
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Fig. 1. Overview of sensing, feedback, networking and computing components in a smart and connected gait rehabilitation platform

frequent interrupt and intensive input from the medical professionals.
The combination of these technological advances now has the true
potential to close the loop of sensing, communication, decision
making and feedback in gait rehabilitation systems, and is expected
to significantly improve their responsiveness, efficiency and safety.

This survey paper provides a comprehensive review on recent
advances in automation technologies in the IoT and Big Data era that
can lead to smart and connected gait rehabilitation systems. Novel
force and kinematic sensing techniques are summarized in Section
II. Section III introduces various user interfaces and robotic devices
to provide active feedback to patients and medical professionals.
Section IV summarizes the desired key features of networking
technologies in connected gait rehabilitation systems, and gives a
comparison among the existing BAN technologies. In Section V, a
systematical review on the computational methodologies is given for
gait quantification, analysis, and pattern recognition. Most of these
methods are based on recent advances in machine learning and data
mining techniques. They are computation-intensive, and were not able
to be executed online without the support of the emerging streamlined
computing platforms which are also reviewed in Section V. Finally,
a discussion on remaining open problems and future directions in
gait rehabilitation research is presented in Section VI. Section VII
concludes the paper.

[I. NOVEL SENSING TECHNOLOGIES

There is a growing interest in utilizing smart sensing devices to
facilitate gait rehabilitation in ambulatory settings as the traditional
methods used by medical professionals can be subjective and inaccu-
rate [5], [8]. Wearable sensors can offer a more accurate, convenient
and efficient way to provide useful information on gait kinematics
and gait kinetics. Gait kinematics studies the human motion and it
can be measured using inertial sensors as well as motion capture
systems. Gait kinetics refers to the study of forces and torques that
result in the dynamic movements in a human gait. In this section,
force, torque, and kinematic sensing will be surveyed. It should be
noted electromyography (EMG) and electroencephalography (EEG)
signals are often measured to help gait analysis as well, but they will
not be included in this paper due to the page limit.

A. Force and Torque Sensing

Force and torque sensing plays an important role to understand
human walking dynamics. For gait analysis and rehabilitation, force

sensing usually takes place at the ground contact and torque sensing
usually takes place at the joint level. With contact force and joint
torque measurement, researchers are able to build full lower-extremity
walking models [9], [10] to understand the causes for pathological
gaits [11], and to determine the assistance that a robotic device
should provide [12]. Ground contact forces (GCFs) [13] are important
for classifying gait phases [14], [15], understanding human walking
intention [16], and detecting abnormal gait [17] and fall [18]. To
measure GCFs, force sensitive resistors (FSRs) are very popular given
their low price and ease of use [19]-[22]. For example, a shoe-
integrated wireless sensor system based on FSRs has been developed
to provide quantitative gait analysis [23], as shown in Fig.2 (a). Force
plates are often used in the clinical environment to provide high-
accuracy GCFs measurements [24]-[29]. In order to collect GCFs
outside a motion capture laboratory, a portable force plate (Fig.2 (b))
has been developed [30]. As shown in Fig.2 (c), Fiber-based force
sensors have been used [31] to improve the user’s comfortability but
its measurement accuracy is generally low [32]-[34]. Pneumatic-
based force sensing systems have been developed to measure GCFs
[35]. For example, as shown in Fig.2 (d), a smart shoe system has
been developed, where a silicone tube is coiled at the bottom of
the insole and connected to a barometric sensor to estimate GCFs
by the air pressure measurement [36]—[38]. In addition, soft force
sensor based on embedded microfluidic channels (Fig.2 (e)) has been
developed to measure both the normal and shear forces during ground
contact [39]. Additionally, load cells have also been used to measure
GCFs [40]. Instead of direct measuring torque during gait rehabilita-
tion, torques are usually calculated through model-based estimation.
Toque estimation can be achieved by inverse kinematics based on
data from force sensing and human body segment parameters [41].
There have been several successful research and commercialized
products using force and torque sensors. For example, a robot suit
has been developed to enhance healthy users’ activities and support
physically challenged person’s daily life by measuring and utilizing
GCFs to estimate the motion intention of the user [44]. Moreover,
a novel method to provide a distributed measure of the pressure
interaction between the user and the exoskeleton at the right leg
upper cuff has been proposed [45], in which the pressure between
the user-exoskeleton contact area is obtained through a distributed
pressure sensor, which can be served as an effective tool for real-
time monitoring of the local stress on the user’s skin and changing
the exoskeleton control to avoid excessive local pressure possible.
ReTiSense developed smart insoles called Stridalyzer with embedded
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Fig. 2. Examples of wearable sensing systems for gait analysis: (a) Force sensitive resistor [23], (b) Force plate [30], (c) Fiber-based force sensor
[31], (d) Pressure-based force sensor [36], (e) Soft force sensor [39], (f) Xsens IMU unit [42], (g) Micro IMU [43]

Comparison FSR Force plate | Fiber-based sensor | Calibrated pressure sensor Comparison IMU Motion capture systems | Computer vision | Encoder
Accuracy | Medium High Low High Accuracy | Medium High Medium High
Cost Low High Low Medium Cost Low High Medium Medium
Sensitivity Low High Low Medium Sensitivity | Medium High Low High
Flexibility | High Low High High Portability | High Low Medium Medium
TABLE | TABLE Il

COMPARISON BETWEEN DIFFERENT FORCE SENSING TECHNOLOGIES

fiber-based force sensors, which can provide users with real-time
tracking and analysis during walking and running. Commercialized
smart socks with embedded fiber-based force sensors have been
developed by Sensoria, which are able to identify injury-prone
running styles and provide real-time feedback via audio cues based on
force sensing. As a summary, the general characteristics of different
force sensing technologies are compared in Table 1. Force sensitive
resistors, force plates, fiber-based sensors, and calibrated pressure
sensors are compared for force sensing based on literature review
and authors’ own experience.

B. Kinematic Sensing

Kinematic sensing provides motion information of the user. Tradi-
tionally, encoders [46], [47] and inclinometers (tilt sensor) [48] have
been used in kinematic sensing. Encoders generally provide accurate
measurements but they need to jointly work with rigid mechanical
segments [49]. Inclinometers have been used in measuring joint
angle [50]. In recent years, inertial measurement units (IMUs) are
widely used for analysis of human motion [51], postural orientation
[52], estimation of step length [53], detection of fall [54] and
estimation of gait phases [55]. IMUs usually consist of accelerometers
and gyroscopes, sometimes also including magnetometers [56]. An
accelerometer can be used to sense accelerations of an object to
which it is attached [57]-[59], and gyroscopes can sense the rate of
turning of an object and orientations can be estimated accordingly.
Magnetometers can sense the earth’s magnetic field strength and
can be used to calculate the North Pole direction as an absolute
reference direction. However, the gyroscope signals are subject to
drift and the accelerometer measurements can be very sensitive.
Signal interference with ferrous material nearby can cause inaccuracy
of magnetometer measurement [60]. The IMUs are often used to
estimate lower-extremity joint angles through sensor fusion. Kalman
filters [61], [62], extended Kalman filters [63], [64], complementary
filters [65]-[67], and particle filters [68], [69] have all been developed
to deal with the accelerometer noise and gyroscope drift.

There are also several commercialized IMUs for motion analysis,
for example, Xsens (Fig.2 (f)) developed different commercialized
IMUs that can be used for real-time applications in gait analysis,
rehabilitation, and injury prevention [42]. Moreover, as shown in
Fig.2 (g), a micro IMU has been developed for motion analysis in
portable and embedded applications [43].

Motion capture has been widely used for activity tracking, pose
estimation, and movement recognition in rehabilitation purposes [70].
Typical motion capture systems are marker-based tracking systems
and the markers can be passive [71]-[73] and active [74]. Passive

COMPARISON BETWEEN DIFFERENT KINEMATIC SENSING
TECHNOLOGIES

markers only reflect incoming light while active markers can produce
light to be collected by a camera system [75]. Gait analysis is
one major application of motion capture in rehabilitation study. For
example, a human motion tracking system for gait and dynamic
balance training program has been developed [76]. Existing systems
have demonstrated that motion capture helps accelerate recovery in
human movement [70], [77], [78], but many challenges still remain
due to the long time required for setting up the instrumentation,
complexity for analyzing the data, low mobility, and high cost [75].

Human activity monitoring and recognition by computer vision
systems have also been studied for human motion analysis and
intelligent human-robot interactions [79]. Computer vision is often
preferred because it can provide a mobile, non-obtrusive, and in-
expensive solution [80] for whole-body tracking and human mo-
tion analysis without markers. Computer vision systems have been
used for various human motion analysis applications which include
tracking (segmenting and continuously monitoring humans), pose
estimation (estimating the kinematics of humans) and recognition
(recognizing the identity of individuals and their actions from im-
ages) [81]. In recent years, Kinect-based systems have been widely
applied in physical therapy and rehabilitation [82], [83]. Compared
to traditional RGB-based cameras, Kinect integrates in an infrared
(IR) emitter and an IR depth sensor, and thus supports full-body 3D
motion capture. Its Software Development Kit (SDK) also makes the
development of rehabilitation-related applications much easier and
faster. Despite all the recent technological advances, human motion
analysis using computer vision is still a challenging problem mainly
due to large variations in human motion and environment settings.
With the development in artificial intelligence (Al), it is possible to
employ those technologies to improve human motion analysis in gait
rehabilitation [84]-[87]. Different kinematic sensing technologies are
compared in Table II, which includes IMUs, motion capture systems,
computer vision, and encoders.

I1l. NOVEL FEEDBACK MECHANISMS

Biofeedback, a technique for providing biological information in
real-time, has been used for a few decades to help the patients
regain their normal movements [6]. Haptic, auditory, visual feedback
systems and brain-computer interfaces are commonly used in lower
extremity rehabilitation [95]-[97]. With the information collected
from such feedback systems, robotic assistive devices, such as
exoskeletons and prosthetics, have been used to provide assistance
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Fig. 3. Examples of robotic rehabilitation devices: (a) Indego Exoskeleton [88], (b) Hybeid Assistive Limb (HAL) [89], (c) Rewalk [90], (d) ETH

Zurich Exoskeleton [91], (e) Quasi-passive Exoskeleton from Yale University [92], (f) Passive Robotic Ankle Exoskeleton From Carnegie Mellon

University [93], (g) Soft Exosuit from Harvard University [94]

for both healthy or impaired users. Due to the page limit, this section
focuses on biofeedback and exoskeleton for gait rehabilitation.

A. Biofeedback

Haptic sensations have been primarily provided through the sys-
tem’s high-frequency vibration. The advantage of haptic feedback is
apparent as it allows for the user to free up their auditory and visual
sensory channels for other tasks [98]. Wearable tactile feedback has
been used to facilitate gait improvement in foot progression angle [99]
and tibia angle [100]. An integrated haptic feedback (IHF) system is
designed to provide post-stroke ambulatory subjects over-ground gait
training [101]. This system contains a portable cane and a wearable
vibrotactor array to generate kinesthetic and haptic feedback. Since
the IHF system is relatively easy to use and low-cost, it could be
a valuable tool to assist physical therapists in gait rehabilitation of
patients with neurological disorders.

Virtual reality (VR) and augmented reality (AR) also have promis-
ing applications in rehabilitation. The major difference between VR
and AR is the working environment. AR adds digital information to
the image of current view to enhance the version of reality while VR
uses computer technology to create an immersive virtual environment.
There have been several successful healthcare studies using VR and
AR. In [102], the performances of gait rehabilitation with a robot
and VR system are compared with only a robot, and it shows that
subjects walk faster and farther after using the robot and VR system.
Also, a VR-based cycling training system for lower-limb balance
improvement has been developed [103]. The functionality of the
training system is tested with 10 stroke patients. Results of both
bilateral pedal force and force plate test suggest that the subjects’
standing balance is improved.

Brain-computer interface (BCI) is attracting great interest from
the research community, and researchers are able to decode the
neural signals associated with specific human functions such as
lower-limb movement [97]. Many of techniques are investigated to
achieve non-invasive BCI, such as magnetoencephalography [104],
electroencephalography [105] and functional magnetic resonance
imaging (fMRI) [106]. In [107], researchers also examine the possible
benefits of assistive robots and BCIs in this field. In addition, the
European Commission (EC) has funded a coordination and support
action for the BCI community called BNCI Horizon 2020 in 2015
to provide a global perspective on the BCI [108]. This roadmap
provides the community with a clear picture of the potential benefits
and challenges of BCIs now and in the future.

B. Robotic Assistive Devices

Lower-extremity exoskeleton and orthosis are primarily developed
for three types of applications: gait rehabilitation, human locomotion
assistance, and enhancing the physical abilities of able-bodied hu-
mans [109]. In the form of actuation mechanism, exoskeletons are
classified as: active, quasi-passive and passive devices. Compared to
passive or quasi-passive devices, active exoskeletons are generally
heavier, but they are able to adapt the level of assistance by tuning
the actuator output force/torque in real time, which is more suitable
for rehabilitation. For powered exoskeletons, hydraulic actuators,
pneumatic actuators and electrical motor are commonly used to
generate desired force or torque [88], [110], [111]. Hydraulic and
pneumatic actuators usually provide higher power but both of them
require additional supply system which makes such designs not
portable and the intricate fluid dynamics of these systems are difficult
to model and control [7]. In contrast, electrical motors are light and
easy to control which makes this type of actuator a popular solution
for portable rehabilitation device.

Researchers from both industry and academia are interested in
rigid-link exoskeletons whose frames are pivoting about individual
joints. Vanderbilt exoskeleton (commercialized as Indego), Hybrid
Assistive Limb (HAL), ReWalk and Modular Lower Limb Exoskele-
ton from ETH Zurich (Figs. 3 (a)-(d)) use electrical motors as their
actuators to provide assistance on multiple joints [88], [112], [113].
The research group from Ekso Bionics also uses DC motors to assist
individuals with spinal cord injuries to stand and walk [114]. Quasi-
passive and passive devices (Figs. 3 (e)-(g)) utilize elastic components
to store and release energy based on different locomotions of human
body. Commonly used electrical actuators are direct-driven motors
and series elastic actuators (SEAs) [115]. Compared to the direct-
driven mechanism, SEAs provide improved safety for the user since
the elastic components will absorb the energy when the actuator
outputs large amount of torque. In addition to the compliant feature,
force controllable and back-drivable characteristics are also favored
in the rehabilitation applications.

Effective control and optimization strategies are critical for lower-
limb rehabilitation robots [116]. The overall control strategies can be
classified into three levels [117]. High-level controllers are responsi-
ble for predicting the users locomotive intent based on signals from
the user and environment [118], [119]. Mid-level controllers receive
information about user’s motion intentions from high-level controllers
and translate those signals to output state for the robotic device as a
desired profile [120], [121]. By directly controlling the actuator, low-
level controllers minimize the error between the current measurement
and desired value to track the desired profile [122], [123]. Commonly
used techniques for the low-level control are PID control, adaptive
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control, and robust control. A PID controller is easy to design but
finding the proper PID gains for a specific robot and user can be
difficult. Both adaptive controllers and robust controllers are designed
to deal with uncertainties from the robot, human, and environment.
In [124], researchers calculate the active human torque components
using the inverse dynamic algorithm and adapt the assistance level of
the exoskeleton accordingly. While in [125], a robust control method
is presented to control a knee assistive device. This method guarantees
the controller is stable in the presence of modeling error in both stance
and swing phases.

As a relatively new field, soft robotic devices refer to those with
compliant materials/mechanisms and could generate large strains
in normal operation [126]. Soft robots are primarily composed of
easily deformable matter such as fluids, gels, and elastomer [127],
which matches the elastic and rheological properties of biological
tissue [128]. Many soft robotic devices have been developed for
healthcare and rehabilitation purposes. The lower-limb soft exosuit
(Fig. 3 (i)) developed by researchers at Harvard University is used
to assist patients with muscle weakness and physical or neurological
disorders [129], [130]. A design and control of a bio-inspired soft
wearable robotic device for ankle-foot rehabilitation has also been
presented [131]. In addition, active soft orthotic devices for assistance
of ankle [131], [132] and knee [111], [133], [134] motion have been
developed. However, accurate pressure or position control of a soft
actuator is still an open problem due to the complicated material
properties and fluid dynamics.

IV. NETWORKING TECHNOLOGIES FOR WBANS

With the great advances of sensing and feedback technologies
developed for lower-extremity neurorehabilitation, an ever-growing
large amount of biosensing data is constantly generated, and needs
to be transported to either a local or cloud-based computing system
for processing, analysis and decision making. In addition, the control
of feedback devices needs to be performed in a timely manner to
optimize the user experience and training performance. To achieve
these goals, networking techniques play a critical role to interconnect
heterogeneous sensing and feedback devices to achieve fast, scalable
and reliable data transport while preserving required security and
privacy. Many Wireless Sensor Networks (WSN) and Wireless Body
Area Networks (WBAN) based solutions have been proposed to attain
these properties [135]-[138]. However the fast growing volume and
complexity of the sensor data, the integration of assistive robotic
devices, the user mobility and network co-existence issues bring in
many new challenges in WBAN designs. Comprehensive surveys
on the latest advances in WBAN research and development have
been provided in [137], [139]-[143], and a selective list of recent
802.11 and 802.15.4 based WBAN solutions along with their key
characteristics are summarized in Table III. In the following, we
focus on reviewing four key parameters of networking technologies
in WBANS: timing performance, reliability, scalability, privacy and
security. We select these parameters due to their great importance
to characterize how suitable a networking technology is to support
real-time, reliable and secure communication among an ever-growing
number of sensing and feedback devices. Please note that to provide
further connectivity to cloud-based computing systems, Wide Area
Network (WAN) infrastructures are generally employed. Review on
networking technologies beyond the single BAN setting can be found
in [137].

A. Timing Performance

Networking technologies employed for lower-extremity rehabilita-
tion systems need to support real-time communication to close the

loop of sensing, computing and decision making in physical rehabil-
itative training. Many factors can impact the timing performance of
WBANS, and a major one is the employed data link layer protocols.
For example, collision-based Media Access Control (MAC) proto-
cols [140], [146] can achieve good network throughput especially
when the network traffic is light [146], but cannot provide timing
guarantees on the transmission latency and jitter. Time Division
Multiple Access (TDMA)-based MAC protocols can provide bounded
delay with a carefully designed communication schedule [144], but
will experience significant packet loss when the network traffic grows.
Many recent research efforts on WBANs also focus on the design
of QoS profiles that provide the desired properties like low end-to-
end delay [152]. Furthermore, the timing performance of WBANSs
may suffer from the mobility of the users. To address this problem,
research efforts have been reported to design low-delay multi-hop
protocols that can handle emergency messages [144], [149].

In addition to controlling transmission delay, time synchronization
is another important design issue related to the timing performance in
WBAN:S, as it helps not only in the design of MAC protocols, but also
in the accurate data time-stamping. Extensive research work has been
reported to design and evaluate time synchronization mechanisms
among sensing and control devices in WBANs [150], [151], [153].

Comparing to sensing devices, assitive robots require much higher
sampling rates (> 1kHz) and have even more stringent requirements
on bounding the transmission delays and jitters to provide desired
control performance. In [154], a real-time high-speed wireless proto-
col called RT-WiFi was developed based on 802.11 physical layer. It
was successfully integrated into a gait rehabilitation system and can
support a sampling rate up to 6kHz. The design of RT-WiFi, however
did not take energy consumption into consideration and is thus diffi-
cult to be directly applied on low-power sensing devices. We envision
that an ideal real-time wireless protocol designed for WBANs will
be configurable from software, and can be easily adapted to serve
heterogenous sensing and control devices based on their different
requirements on sampling rates and energy consumption.

B. Reliability

Reliable network connectivity is crucial to the success of connected
rehabilitation systems, as critical health data need to be reliably
transported to their destinations where intelligent decision making
and feedback to the medical professionals and patients can be suc-
cessfully and smoothly performed. As with the timing performance,
the reliability performance can be considered either end-to-end or
per link, and is typically reported in packet delivery ratio, in-order
delivery, etc. [139]. The ubiquitous use of electromagnetic signals
for wireless communication in clinic environments brings in serious
challenges, such as increased and unpredictable interferences, and
the “high mobility” and “group-based movement” make WBANS
neither equivalent to wireless sensor networks nor mobile ad-hoc
networks [155]. The work in [156] addresses these problems by
proposing a social network based interference mitigation scheme for
WBAN using acoustic signal processing and power management.
Other research attempts solve the interference mitigation by using
game theory in a distributed fashion [157] and coloring-based TDMA
scheduling mechanisms [155].

The selection of the MAC protocols can significantly affect the
reliability of the network. The CSMA/CA based protocols are
generally not reliable for WBANSs due to their unreliable clear
channel assessment (CCA), traffic correlation, and heavy collision
problems [140], [146]. On the other side, TDMA based protocols aim
to minimize transmission conflicts, and thus have better reliability
performance with appropriate retransmission mechanisms incorpo-
rated [144], [145]. The work in [140] reviews MAC protocols for
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WBANSs and concludes that TDMA mechanisms are good alternative
as they can accommodate unpredicted sporadic events presented in
the human physiological data. In addition to the MAC protocol
designs, the designs of network architecture also affect the reliability
of WBANSs significantly. In general, the mesh topology is more
reliable than the tree structure in the multi-hop WBANS, but the rout-
ing protocols need to be carefully designed to achieve performance
balance between the desired reliability, the incurred network traffic
and energy consumption.

C. Scalability

With the increasing number of sensors deployed in the rehabilita-
tion systems, scalable networking technologies need to be employed
to support the ever-growing volume of sensor data. Several factors
can affect the scalability of the system at different layers of the
communication protocols. In the MAC layer, contention and collision
based protocols, like [152], are more scalable as they have no strict
constraint on time synchronization, which makes them more preferred
solutions compared to TDMA based technologies. Heterogeneous ad-
hoc Ist-tier and multi-hop relay networks have been used to provide
direct communication to the sensor nodes [149]. This architecture
can incorporate high performance networks, like 802.11 to serve as
backbone relay networks [147], which improves the scalability of
the system significantly. Other research efforts aim to balance the
power usage of the employed protocols and the network throughput.
Hybrid solutions, like S-MAC [158], are attractive because they
combine the benefits of contention and schedule based medium access
mechanisms in order to scale to larger number of nodes. From
the topology perspective, mesh and tree structures in WBANs can
improve the scalability as there is no central bottleneck as in the star
network topology [144], [146]-[148]. In addition to that, in order
to reduce the data traffic within WBANs and from the WBANs to
the cloud, edge computing technologies have been emerging, where
the sensor nodes and gateways are being equipped with significant
computing capability and storage capacity, so that the generated
sensor data can be processed either in-network or at gateways, instead
of transporting to the cloud [153].

D. Privacy and Security

Security protection and privacy preservation are among the most
important issues in any networking technologies, especially in the
healthcare industry where sensitive and private patient information is
constantly exchanged [159]. The works in [142], [160] review secu-
rity requirements, threats and solutions in WBANS, and [140] gives a
survey on MAC layer security. The IEEE 802.15.4 standard classifies
security modes into no security, encryption only, authentication only
and encryption and authentication modes [140], [160]. Many existing
WBAN:S use one or a combination of these modes, with most of them
incorporating encryption and authentication mechanisms [145], [148],
[151]. Due to the limited computing and power resources available

on sensors, hardware accelerated security mechanisms are attractive
solutions [148], while in the Application layer, novel biometric
authentication methods have been used for designing secure WBANS
[161], [162].

To preserve the privacy of the subject, de-identification of data is
one of the ways that health related data are shared among systems
and institutions [163]. By doing so, there is no direct way to identify
where the subject data were collected from. Other ways to preserve
the subject privacy include the dynamic privacy configuration rules
change on the fly when an individual exhibits a behavior that is
critical to his health and enable the authorized medical personnel to
access vital data, which is otherwise hidden or available for anony-
mous statistical purposes only [148]. In [164], the authors consider
the trade-off between individual privacy and system performance and
introduce the notion of differential privacy, which can be used to
formulate a performance optimization problem given a differential
privacy requirement. Since networked rehabilitation systems are in
essence networked control systems, this optimization framework can
be employed in WBANS to achieve privacy-driven network resource
management, while taking the other network performance, such as
timing and reliability, into consideration.

V. COMPUTING METHODOLOGIES AND PLATFORM
DESIGN FOR GAIT ANALYSIS AND DISEASE DIAGNOSIS

In this section, we review emerging methodology design for gait
analysis and disease diagnosis, and streamlined computing platform
design to perform these learning and analytic tasks in distributed
and near real-time manner. We focus on popular algorithmic and
computing methodologies that have been used for gait quantification,
analysis, disorder diagnosis, and pattern categorization. The review
starts with an overview of gait cycle, gait phase detection and gait
parameters estimation. It then details the pattern recognition methods
for classification and clustering of gait patterns. Figure 4 summarizes
the methodologies that we will review in this section. At the end of
this section, we review existing streamlined computing frameworks
that can potentially serve as the computing platforms for large-scale
networked rehabilitation systems.

A. Gait Quantification and Analysis

Gait quantification is important for objective gait assessment,
analysis and diagnosis. It relates to the methods used for objective
estimation of gait cycles and gait phases, and measurement of gait
parameters which can be used to assess the severity of a subject’s
gait abnormality. Neurodegenerative disorders can affect the motor
function of a patient and their gait. For example, Parkinson’s dis-
ease (PD) is a complex disorder that is characterized by multiple
symptoms such as bradykinesia, hypokinesia, muscular rigidity, and
resting tremor [165]. In this subsection, we review methods and
recent developments in gait quantification and analysis to estimate
gait phases and gait parameters, including symmetry, balance and
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stability, mobility and tremor detection. Please note this is not an
extensive list of parameters. Depending on the patient condition,
various other parameters can be introduced.

Gait cycle is the time interval between the same repetitive events of
walking. Fig. 5 [166] gives an overview of two gait cycles at the lower
two horizontal solid lines and gait phases at the top part. Typically
there are eight gait phases for a healthy subject [36], [166], [167] (in
Fig.5 terminal stance phase is not shown). However, in a pathological
gait, some gait phases might be missing and the time allocation of
gait phases might also be different from a normal gait. As discussed
in Sections II-A and II-B, gait phase detection can be done with
the use of GCF or IMU sensing devices. Various algorithms have
been developed to classify all or some gait phases, such as Fuzzy
logic rules [167], hidden Markov models [168], threshold-based
rules [169], and Support Vector Machines (SVM) [170]. However,
all the algorithms above require subjective input from both therapists
and engineers. For example, the number of expected gait phases need
to be pre-defined, or the threshold values of fuzzy logic rules and
threshold-based algorithms need to be decided subjectively and they
need to be adjusted for different subjects. As a recent development,
in [37], [166] a new method is presented for real-time data-driven
gait phase detection, which uses a parallel particle filter to estimate a
Bayesian non-parametric model and does not require subjective input
from experts.

To further study disorder specific gait abnormalities and symptoms,
additional gait parameters are used in gait analysis and are calculated
after the identification of gait phases. These gait parameter categories
include but are not limited to mobility, symmetry, balance and tremor.

Mobility is used to quantify gait, and includes general movement
characteristics like cadence, single and double support ratio (Fig.5)
and periodicity [171], [172]. Symmetry is another important gait
parameter and is defined as a perfect agreement between the actions
of the two lower limbs [173]. To calculate symmetry, mobility
parameters (e.g., single support ratio) or spatio-temporal parameters
(e.g., step length) can be used [172]. Symmetry indices (SI) have
also been developed from GCFs data [173].

Balance or walking stability is mainly used to predict falls. In [174]
multiple balance and stability measures are proposed, including RMS
acceleration, jerk (time-series of first derivative of acceleration), sway
(a measure on how much a person leans his/her body), step and
stride regularity and variability. Lastly, tremor is a gait abnormality
indicator and symptom of PD affected gait. In [175], the authors use
a 2D stylus accelerometer to identify tremor in PD patients. It is
observed that pathological oscillations are identifiable in the lower
limbs through use of accelerometer measurements despite minimal
evidence of tremor pathology during clinical examination. Features
used include tremor intensity (RMS ACC recorded in 0.9 to 15
Hz band), center frequency, and intra-individual variability of center
frequency.

Apart from studying sensor data for extracting features and pa-
rameters that are going to be used to evaluate and classify gait,
analytic methods like Artificial Neural Networks (ANN) and gradient
descent can be used to predict parameters that would otherwise need
additional sensor types to be recorded. In [176], prediction of GCF
during level walking is performed by employing an ANN and gait
parameters like trajectory, velocity, and acceleration of the whole
segment’s mass center. In [177], a gradient decent based algorithm
is used to predict the foot progression angle in real time, which
is typically measured from marker-based motion capture systems.
These methods can potentially be used in predicting parameters in
home rehabilitation where expensive hardware equipment are harder
to purchase. Finally, to overcome dispersement of gait patterns from
patient’s physical characteristics, such as weight, age and walking
speed, novel normalization methods using dimensionless equations
and multiple regression have been introduced, that can lead to
statistically significant improved features and better classification
performance [178].

B. Gait Pattern Recognition

In this subsection, we review classification and clustering tech-
niques to capture and objectively evaluate gait abnormalities. The
use of these learning methods aims to find groups of patients that
contain similar sensing features and gait parameters, and thus may
experience similar gait abnormalities. For this purpose, machine
learning algorithms have been used to either perform cluster analysis
or classification of gait patterns and to understand the importance
of individual gait features. Domain knowledge has been used to
define groups for classification of patients with relevant clinical
meaning [179]-[181]. When such knowledge is not available, or
not well understood, cluster analysis may be performed to explore
underlying patterns in the data and group patients together accord-
ing to their sensing features. The use of gait pattern recognition
methods can significantly improve the outcome of gait rehabilitation
in multiple aspects, such as assist in gait objective assessment,
study gait changes due to disease progression [180], predict possible
ongoing gait abnormalities, provide monitoring of gait outside the
lab [182], [183], understand activations of multiple muscle groups
[180], [184], develop targeted and personalized treatment [179], select
patients for future studies [185] and develop a common framework
for communication between clinicians [181].
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Extensive research efforts have been reported to perform cluster
analysis of post-stroke gait patterns to enable targeted treatment for
patients within a cluster. In [186] non-hierarchical cluster analysis
is used to categorize four subgroups based on the spatio-temporal,
kinematic parameters, isometric torques, angle at the knee, and EMG
data. Four clusters of patients are discovered, each having patients
with similar gait abnormalities. Similarly, hierarchical cluster analysis
of post-stroke gait patterns is conducted in [187], identifying three
groups of patients with homogeneous levels of dysfunction. In [184]
the authors present and validate a hierarchical clustering algorithm,
being able to group strides and showing homogeneous onset-offset
EMG activation intervals, which can be very important for designing
therapeutic treatments tailored on the patient’s needs. In [185], k-
means clustering is used to group gait patterns in order to optimize
participant selection in a biofeedback pedaling treatment.

Classification of abnormal gait patterns is another example of
using machine learning methods in gait analysis for objective di-
agnosis [188]. For example, Unified PD Rating Scale (UPDRS),
which is a representative clinical test scale for PD, not only relies
on the experience of skilled clinicians, but also produces subjective
judgment and can require very long time for recording of required
items. The judgment is based on statistical scores rather than some
unified objective rule-based system [189]. Using classification meth-
ods based on sensor data is therefore important as it provides a more
objective judgment. Also, such methods can help reduce the workload
of clinicians and let them rely on such computational methods to
support and treat the increasing number of patients.

Classifying healthy from abnormal gait affected by a neurological
disorder, such as PD or stroke, is one of the very well studied
topics. Classification of post-stroke gait patterns against healthy gait
is performed in [190] and [171], using kinematic and kinetic data.
Classification of PD gait patterns against healthy gait is also studied.
In [191] SVM and ANN are used to classify between PD and healthy
gaits. In their experiments, twelve PD patients and twenty healthy
subjects are asked to participate in the study and GCFs are measured
using force plates. In [189] an open dataset of 93 PD patients
and 73 healthy subjects is used for classification. Comprehensive
preprocessing and wavelet analysis are used to extract features before
data were fed to a neural network with weighted fuzzy membership
functions. ANN are used in [192] to classify post-stroke patient’s
gait into three categories based on the types of foot positions on
the ground at first contact: forefoot, flatfoot, and heel. Classification
of gait based on groups derived from clinical knowledge is another
well-studied topic [179]-[181]. [179] classifies hemi-paretic gait in
three groups with two subgroups each. It shows the advantage of great
usability in clinical routines without necessitating complex apparatus.
In [180] the authors identify gait patterns in patients with Multiple
Sclerosis by using concurrent recording of 2D video gait analysis,
GCFs and surface EMG. They classify patients into 3 clinically
meaningful classes based on the severity of their gait, including
good, minimally impaired and moderately impaired walkers. In [181],
the authors determine the extent to which gait disorders associated
with traumatic brain injury are able to be classified into clinically
relevant and distinct subgroups. Classification of gait patterns resulted
from two major neurological disorders, i.e. PD and stroke, and
healthy gait is performed in our recent research work [188]. An
advanced classification algorithm, multi-task feature learning, is used
to improve the classification performance and identify important gait
features that can be used to distinguish gait patterns between the
three groups. Finally, novel classification methods have been designed
specifically for stroke related impairments, by utilizing geometrically
unconstrained fuzzy membership functions to address the motion
class overlapping issue with very low error rate [193].

Use of intelligent data analysis for lower extremity neuroreha-
bilitation has the potential to uncover hidden data representations,
but multiple challenges require attention. Clinically derived groups
can be well understood by clinicians, but they are highly coupled
with clinical experience and may lead to differences in interpretation
and subjective evaluation. On the contrary, statistically driven clas-
sifications can define groups that only depend on the data and do
not require expertise. A major difficulty however is interpretation of
the derived groups, sensing features, and the possibility of creating
artificial groups since these methods depend highly on the data and
specific population used for the study. To overcome these challenges,
future studies may need to design experiments with larger populations
to reduce the non-generalizable results and design methods that
assume the provided ground truth class labels may be unreliable to
limit subjective bias from individual experts. Additionally, there is a
lack of standardization, need for more studies on gait perturbation,
severity and prognostic assessment rather than comparing healthy to
pathological gait and more homogeneous protocols so that compari-
son between studies can be achieved [194].

C. Streamlined Computing Platforms

Based on the requirements on response time, gait analysis and
disease diagnosis in rehabilitation can be done in either batch or
streamlined manner. In batch-processing data are first stored and
then analyzed. MapReduce [195] is a very popular batch-processing
model, where data (key-value pairs) are divided in small chunks.
Map tasks process these small chunks in parallel and Reduce tasks
aggregates the intermediate results into final results. However such
parallel big data processing frameworks do not naturally or effi-
ciently support many important Data Mining and Machine Learning
algorithms and can lead to inefficient learning systems. To avoid
the scattered adaptation of mining and learning algorithms into the
MapReduce framework, GraphLab [196] is introduced to support
key machine learning and data mining algorithm properties, such
as sparse computational dependencies, asynchronous computation,
dynamic scheduling and serializability in large scale problems.

On the other hand, streamlined processing supports real-time
processing on data streams or time-series data, such as those gener-
ated by smart sensing devices in rehabilitation systems. Streamlined
computing platforms can provide a data pipeline for real-time gait
monitoring, analysis, feedback and control, and thus significantly
improve the response time of gait rehabilitation related learning
and analytics tasks. Among the many existing real-time computing
frameworks, Apache Storm [197] is a distributed framework which
makes it easy to reliably process unbounded data streams. It uses
custom created “spouts” and “bolts” to define information sources
and manipulations to allow batch, distributed processing of streaming
data. A Storm application is designed as a “topology” in the shape
of a directed acyclic graph (DAG) with spouts and bolts acting as
the graph vertices. Edges on the graph are named streams and direct
data from one node to another. Together, the topology acts as a data
transformation pipeline. From a high-level view, the general topology
structure is similar to a MapReduce job, with the main difference
being that data is processed in real-time as opposed to in individual
batches. In Storm, all the data are stored in memory if the message
exchanging happens in the same machine. This design makes Storm
fast enough to process huge amount of data in real time.

Another alternative is the Apache Spark which is an open source
cluster computing framework. In contrast to Hadoop’s two-stage
disk-based MapReduce paradigm, Spark’s multi-stage in-memory
primitives provide up to 100 times faster performance for certain
applications. By allowing user programs to load data into a cluster’s
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memory and query it repeatedly, Spark is well-suited to machine
learning algorithms [198]. Some research efforts have also been
made to integrate in the advantages of batch and streamlined data
processing paradigms. In [199], the authors extend the MapReduce
programming model to process streaming data. Their approach also
includes two methods to predict streaming data workload in run time,
so runtime Map and Reduce tasks can be increased or decreased.

To leverage all the computing infrastructures, many easy program-
ming models and tools have been developed. For example, Spark
provides a simple but expressive programming model that supports
a wide range of applications, including ETL (extract, transform,
load), machine learning, stream processing, and graph computation,
which suit well for healthcare data processing [200]. The Spark
API is centered on a data structure called resilient distributed
dataset (RDD) which provides a form of restricted distributed shared
memory. Continuous Query Language (CQL) is an expressing SQL-
based declarative language for registering continuous queries against
streams and stored relations [201].

Although the Storm and Spark computing frameworks have been
widely used in many data analytics and decision making systems,
their application in rehabilitation systems is still quite limited to
the best of our knowledge. This may be attributed to the limited
adaptation of large scale rehabilitation and the challenges associated
with the different components, such as connectivity and distributed
computing algorithms. To fill this gap, effective data stores need
to be designed to support the increasing diversity and volume of
sensor data collected from the rehabilitative trainings, and support
both structured, and semi-structured/unstructured data. Furthermore,
the streamlined computing platforms designed for rehabilitation need
to be integrated or operate along with existing solutions for clinical
decision support (CDS) systems [202] to support intelligent and
objective decision making. However, interoperability and integration
of different devices and heterogeneous system components should
not compromise the effectiveness and security of the system [203],
[204].

VI. OPEN PROBLEMS AND FUTURE DIRECTIONS

Despite the great advances in various aspects related to lower-
extremity neurorehabilitation, there are still many open problems
that need to be addressed before these technologies can be safe,
reliable, efficient, and affordable for patients to improve the training
performance and quality of life.

User-friendliness for Wearable Sensors: Long-term continuous
health monitoring will require novel energy solution especially for
systems with multiple sensors [205]. Many ongoing research has
focused on the development of micro IMUs [206] so that those
sensors can be attached accurately at different joints of interests.
Flexible pressure sensors are a good fit for rehabilitation purposes
due to their compliance and light weight, but currently they can
undergo only extremely limited strain [207]. Thus, it is important
to develop flexible pressure sensors with a large measurement
range. It is also important to address the problem of weight and
comfortableness of wearable sensors. Besides the design of wearable
sensors, some practical problems include end user centric design
and ethical and safety issues, which are also extremely important
for wearable sensors but are often ignored [208]. The fast advances
in self-powered MEMS devices [209] and soft sensors [210] provide
promising solutions to make future wearable sensors more durable
and user friendly. Researchers have also started the discussion of
ethical issues in ubiquitous wearable sensors from both sensor
design and clinical implementation [211], [212].

Safe and Efficient Human-robot Interactions:  Despite  various
types of sensing technologies available, at present most wearable

sensor data are not fully used for robot control. Understanding how to
interpret the sensor data is important for the design of robot control
algorithms. With the rapid development in machine learning, deep
learning and artificial intelligence, it is a popular topic to apply those
learning techniques on robot control. However, many learning and
control algorithms based on artificial intelligence require significant
computing resources and powerful hardware, which makes them
less applicable for wearable applications. Moreover, many artificial
intelligence algorithms could lead to safety risks to patients wearable
assistive robots [213]. So far very few exoskeletons have secured
FDA approval for in-home use and it is really important to design
robotic devices with higher safety standards so that the product can
be accessible to customers easier. Cost is also another key factor
for assistive robots to be popular in rehabilitation. For example,
the price for HAL is between $14,000 and $19,000, which is not
affordable for many patients. We have observed increased interests
in the wearable robotics community on new algorithm framework
to use model-based control for low-level motion force/motion
control and machine learning for high-level planning to achieve
both adaptation and robustness [214], [215]. Moreover, the emerging
field of soft robotics also provided potential solutions to help with
the safety issues due to its material compliance [216]. The U.S.
National Science Foundation also identified soft robotics as one
topic for its Emerging Frontiers in Research and Innovation program
in 2018 [217].

Configurable and Adaptive WBAN Technologies: Despite the great
advancements of WBAN technologies in recent years, many chal-
lenges remain. For example, human body movement needs to be
better studied so that MAC and network layer protocols can be better
adapted and become more reliable [139]. Also, existing network
protocols may need to be further improved or even redesigned to
support high bandwidth requirements [137] imposed by emerging
rehabilitation systems and applications, especially with the integration
of assistive robots. Network management solutions that support
QoS [152], [218] also need to be further investigated, as they can
help in balancing the available resources, while keeping up with
the application requirements. Body energy harvesting solutions are
also promising [139] and can help in supporting more resource-
hungry requirements, such as increased security and local processing.
The fundamental security requirements of the overall system are
confidentiality, data integrity, accountability, availability and access
control. To assure these requirements efficient encryption methods
and key management protocols may need to be provided or further
investigated [143].

Gait Analytics and Disease Diagnosis: Despite the great advance-
ments of intelligent data analysis and its application in gait rehabil-
itation, the potential provided by such methods has not been fully
exploited yet and many challenges remain [219]. For all the studies
that employ new technologies to gait analysis, emphasis should be
placed on the combined efforts of scientists to 1) increase human
participant population sizes and patient characteristics to avoid cre-
ation of artificial groups from data-driven methodologies, 2) provide
measurements in naturalistic environments, as it is likely to provide
more realistic data [183], 3) study new or under-investigated topics
(e.g. study of rigidity and non-motor domains for PD), as most of the
studied topics involve classification of abnormal and normal gait, and
4) standardized and more stringent validation procedures [219], [220].
The high diversity of observed gait deviations, especially after stroke,
limits the study to a small set of gait abnormalities [187], [192].
Furthermore, high quality research is needed to better understand the
use of wearable sensors for the early identification of PD symptoms
and for assessing fall’s risk in this population [174]. Synergies
between scientists are desired to improve the adoption of more
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objective statistically-driven classifications, which currently provide
non-generalizable and artificial groups, compared to the clinically-
driven classifications that are derived from the subjective clinical
experience of the users [179]. To improve intelligent decision making
and uncover hidden data representations and properties, contextual
information may need to be taken into account, such as medication
time-points, mindful state, alertness and EHR historic data [221]. To
accelerate adaptation of distributed and scalable computing, statisti-
cal models need to provide objective assessment without need for
extensive computing resources and selected algorithms need to be
parallelizable and provide sparsity and effective feature selection.

Data Security and Patient Privacy: Protecting data security and
patient privacy is an important but not extensively studied topic in
this field. It is crucial that rehabilitation related data are kept intact at
all levels of the analytic process from sensing to analytics. Security
and privacy issues are especially important if we take into account the
fact that gait data can be used as someone’s identity, with extensive
research efforts focusing on using gait for identification and authen-
tication [222]. Appropriately securing such personal information can
prevent identity theft and further personal data loss or theft.

VIl. CONCLUSION

This paper gives a comprehensive review on the recent advances
in automation technologies for lower-extremity neurorehabilitation.
In the IoT and big data era, it is expected that mechatronics, com-
munication and computing technologies, and health informatics are
converging to close the treatment and rehabilitation loop for patients.
The fast technology development makes it expectable that in the near
future patients can conduct most of the training at home or local
communities, while the medical professionals can access the wearable
sensor and robot data remotely in real time, and provide high-
level feedback and comments to the patients to guide their training.
Given the broad range and fast advances of engineering technologies
for lower-extremity neurorehabilitation, this survey paper focused
on the recent advances on interdisciplinary approaches to enhance
rehabilitation. It is expected that successful clinical trials will be
conducted to validate the performance of connected wearable sensors
and robots, as well as various data-driven approaches. We envision
that these advanced technologies will become commercially available
for the daily care of patients in the very near future.
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