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We theoretically examine heat transfer by conduction from oblate spheroidal and bispherical surfaces
into a stationary, infinite medium. The surfaces are presumed to maintain a constant heat flux.
Assuming steady-state condition and uniform thermal conductivity, we analytically solve Laplace’s equa-
tion for the temperature distribution and discuss the challenge of dealing with the Neumann (uniform
flux) versus more convenient Dirichlet (isothermal) boundary condition. The solutions are obtained in
boundary-fitting coordinate systems using the method of separation of variables and eigenfunction
expansion. And, exact expressions for the average Nusselt number are presented along with their
approximations.
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1. Introduction

In the area of heat transfer (like other fields of science and engi-
neering), analytical solutions of elementary problems are regarded
as invaluable resources that can be used to identify relevant
dimensionless parameters, to obtain basic insights into the phe-
nomena under consideration, to quickly quantify the effects of
key factors, and, ultimately, to pave the way for understanding
more complex problems arising in practice. The solutions can also
serve as excellent benchmarks for calibrating experimental setups
and validating numerical techniques. Last but not least, analytical
solutions are usually used for teaching students fundamental con-
cepts. Hence, they are educationally worthwhile, too.

Here, we present analytical solutions for the problem of steady-
state conduction heat transfer in an infinite medium due to the
presence of hot/cold inclusions. Specifically, two geometries for
the heat source/sink are considered, namely an oblate spheroid
and a pair of spheres (see Figs. 1 and 2). For both cases, a uniform
heat flux is assumed to emanate from the surface of the inclusions.
This boundary condition models many scenarios that appear fre-
quently in engineering applications, such as when a surface is cov-
ered by a thin layer of electric heater [1]. The assumption of the
Neumann boundary condition is the novel aspect of our study. As
we shall see in Sections 2.1 and 2.2, mathematical derivations
under this condition become more challenging compared to the
situation where an isothermal (Dirichlet) surface condition is
considered.
In what follows, we first formulate the problem mathematically
and then provide a detailed description of the solutions for the two
geometries of interest. Next, we discuss the results for the temper-
ature distribution and average Nusselt number and, finally, we give
a brief summary of our study.

2. Problem formulation and solutions

Consider one or more objects surrounded by an infinite medium
at rest. Suppose that heat is released/absorbed from/by the surface
of the objects at a constant uniform rate and that the temperature
at infinity is maintained at a constant value. Of interest here is the
steady-state temperature distribution in the surrounding medium
assuming that the transport of heat is dominated by conduction
and that the thermal conductivity is constant. Given the above con-
ditions, the boundary-value problem governing the distribution of
the temperature is

r2T ¼ 0 with
�kn � $T ¼ qs for r 2 So and T ! T1 as r ! 1;

ð1Þ

where T represents the temperature field, k is the thermal conduc-
tivity of the medium, n is the unit vector outward normal to the sur-
face of the objects denoted by So; r is the position vector with
magnitude r ¼ rj j, and qs and T1 are constants.

Let ‘ be a characteristic length scale of the problem. Then, upon
the change of variables h ¼ k T � T1ð Þ=qs‘; ~r ¼ r=‘, and ~r ¼ r=‘,
Eq. (1) simplifies to the following dimensionless form:
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Fig. 1. (a) Oblate spheroidal coordinates in a meridian plane. The arrows show the
direction of the unit vectors en and eg . (b) Surfaces of constant n and g depicted in
cyan and gray, respectively. The red curve in (a) and its corresponding surface in (b)
represent a hot/cold oblate spheroid that releases/absorbs heat at a constant
uniform rate. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 2. (a) Bispherical coordinates in a meridian plane. The arrows show the
direction of the unit vectors ef and eb . (b) Surfaces of constant f and b depicted in
cyan and gray, respectively. The red curves in (a) and their corresponding surfaces
in (b) represent a pair of identical hot/cold spheres that release/absorb heat at a
constant uniform rate. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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r2h ¼ 0 with
n � $h ¼ �1 for ~r 2 So and h ! 0 as ~r ! 1:

ð2Þ

One can define an average Nusselt number for this problem as

Nu ¼ So

2p�hs
; ð3Þ

where So represents the dimensionless surface area of the object
and �hs is the mean value of h on So. Below, we solve Eq. (2) and cal-
culate the average temperature for cases in which So represents the
surface of an oblate spheroid and a pair of spheres, respectively. For
each case, the solution is obtained via the method of separation of
variables and eigenfunction expansion in a coordinate system that
matches the boundaries of the problem.

The correctness of the derivations is independently verified by
comparing the results against those obtained from the numerical
solution of Eq. (2). A second-order finite volume method as imple-
mented in OpenFOAM (see, e.g., [2]) is used to perform the compu-
tations. The outer boundary at infinity is modeled as a very large
sphere, and 2D axisymmetric meshes concentrated around So are
employed to discretize the physical domains.
2.1. Temperature field around an oblate spheroid

Consider an oblate spheroid of equatorial radius ‘ and aspect
ratio (ratio of polar to equatorial radius) e. Let x; y; zð Þ be the com-
ponents of a reference Cartesian coordinate system located at the
center of the spheroid such that the z axis coincides with the rev-
olution axis of the spheroid. The coordinates are nondimentional-
ized by ‘. To solve Eq. (2), we adopt an oblate spheroidal
coordinate system n;g;uð Þ defined as [3,4]

x= cosu ¼ y= sinu ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n2
� �

1� g2ð Þ
q

; z ¼ cng; ð4Þ
where c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
is the (dimensionless) radius of the focal circle

and

0 6 n < 1; �1 6 g 6 1; 0 6 u < 2p: ð5Þ
The metric coefficients associated with n;g;uð Þ are

hn ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

1þ n2

s
; hg ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

1� g2

s
; hu ¼ q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: ð6Þ

As shown in Fig. 1, the surfaces of constant n and g are oblate spher-
oids and one-sheet hyperboloids of revolution, respectively. In par-
ticular, n ¼ n0 ¼ e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
represents So and n ! 1 corresponds to

a bounding surface at large distances.
In the orthogonal curvilinear coordinate system n;g;uð Þ, Eq. (2)

takes the form of [3,4]

r2h ¼ 1
c2 n2 þ g2
� � @

@n
1þ n2
� � @h

@n

� �
þ @

@g
1� g2� � @h

@g

� �� �

þ 1
c2 1þ n2
� �

1� g2ð Þ
@2h
@u2 ¼ 0 with

1
hn

@h
@n

				
n¼n0

¼ �1 and h ! 0 as n ! 1:

ð7Þ

Since the boundary conditions do not depend on u, we deduce that
h is azimuthally independent, i.e., @h=@u ¼ 0. Hence, Laplcae’s equa-
tion for h reduces to

@

@n
1þ n2
� � @h

@n

� �
þ @

@g
1� g2
� � @h

@g

� �
¼ 0: ð8Þ

Starting with the ansatz hðn;gÞ ¼ XðnÞHðgÞ, where X and H are to-
be-determined functions, and following the steps involved in the
separation of variables technique [3,4], it can be shown that the
general solution of Eq. (8) is

h ¼
X1
m¼0

A1
mPmðinÞ þ A2

mQmðinÞ
h i

A3
mPmðgÞ þ A4

mQmðgÞ
h i

; ð9Þ

where m is an integer, A1
m; . . . ;A

4
m are constants, i2 ¼ �1, and Pm and

Qm are Legendre functions of the first and second kind, respectively
[5]. The latter function is defined as:

Q0ðzÞ ¼ 1
2 ln zþ1

z�1

� �
; Q1ðzÞ ¼ z

2 ln zþ1
z�1

� �� 1;

Qnþ1ðzÞ ¼ ð2nþ1Þz Qn�n Qn�1
nþ1

The function PmðinÞ blows up as n ! 1 for m – 0 and so does
QmðgÞ at g ¼ �1 for all m. Therefore, to keep the solution finite,

we need to set A1
m ¼ 0 for m – 0 and A4

m ¼ 0 for all m. By demand-

ing h to vanish at infinity, we find that A1
0 is zero, too, since

P0ðinÞ ¼ P0ðgÞ ¼ 1 and QmðinÞ decays to zero for large n. Thus,
Eq. (9) simplifies to

h ¼
X1
m¼0

AmQmðinÞPmðgÞ; ð10Þ

where the constant coefficients Am are determined by applying the
constant flux boundary condition on So:
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1
hn

@h
@n

				
n¼n0

¼ i
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n20
n20 þ g2

s X1
m¼0

AmQ 0
mðin0ÞPmðgÞ ¼ �1; ð11Þ

with Q 0
mðxÞ ¼ dQmðxÞ=dx. Note that although the gradient of h in the

direction normal to the boundary is constant, its derivative with
respect to n (coordinate normal to the boundary) is equal to the
scale factor hn, which varies along the boundary. Had we been con-
sidering the constant temperature boundary condition (i.e., h ¼ 1)
at n ¼ n0, we would have been dealing with a significantly simpler
situation where h would have been also independent of g and Eq.
(8) would have further reduced to an ordinary differential equation
with the solution (see, e.g., [6])

h ¼ cot�1n

cot�1n0
¼ cot�1n

cos�1 e
: ð12Þ

The eigenfunction Pm has the following orthogonality property:Z 1

�1
PmðxÞPnðxÞ dx ¼

2= 2mþ 1ð Þ if n ¼ m

0 if n –m

�
; ð13Þ

where n is an integer. Using this feature, the unknown coefficients
are obtained as

Am ¼ i
Q 0

mðin0Þ
2mþ 1
2ð1þ n20Þ

Z 1

�1
PmðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 þ g2

q
dg: ð14Þ

The integral in Eq. (14) is zero for odd values of m and is otherwise
calculated via [7]

Z 1

�1
PmðgÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20þg2

q
dg¼2m

Xm=2

n¼0

Cðm=2þnþ1=2ÞI2nðn0Þ
Cð2nþ1ÞCðm�2nþ1ÞCðn�m=2þ1=2Þ ;

ð15Þ
where C is the gamma function and

I2nðn0Þ ¼
Z 1

�1
g2n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 þ g2

q
dg

¼ 2n0
2nþ 1 2F1 �1=2;nþ 1=2;nþ 3=2;�n�2

0

� �
: ð16Þ

Here, 2F1 is the hypergeometric function [5]. Having determined the
temperature distribution, the average h on the surface of the spher-
oid can be calculated as

�hs ¼ 1
So

Z
So

h dS ¼ 2pc2

So

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n20

q Z 1

�1
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 þ g2

q
dg

¼ �
4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n20

q
So

X1
m¼0

Am
2

2mþ 1
iQ 0

mðin0ÞQmðin0Þ; ð17Þ

where

So ¼
Z
So

1 dS ¼ 2p 1þ n20ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n20

q coth�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n20

q0
B@

1
CA: ð18Þ

It is worth noting that the results of this section for an oblate
spheroid can be converted to those for a prolate spheroid by allow-
ing e to be greater than one and by replacing n with �in in all rela-
tions (see, e.g., [8]).

2.2. Temperature field around two identical spheres

Consider a pair of identical spheres, with radius ‘, that are
placed distance 2‘=� apart, where 0 < � < 1. Recall the Cartesian
coordinate system of §2.1. Only this time, the origin is located in
the middle of the line that connects the center of the spheres
and the z axis is oriented in the direction of that line. The natural
coordinate system for dealing with this geometry is a bispherical
coordinate system f; b;uð Þ defined as [3,4]
x= cosu ¼ y= sinu ¼ c sin b
cosh f� cos b

; z ¼ c sinh f
cosh f� cosb

; ð19Þ

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 � 1

p
is half the (dimensionless) focal distance and

�1 < f < 1; 0 6 b 6 p; 0 6 u < 2p: ð20Þ
The coordinates have the following scale factors:

hf ¼ hb ¼ c

cosh f� cosb
; hu ¼ q ¼ c sin b

cosh f� cosb
: ð21Þ

Fig. 2 depicts the surfaces of constant f and b that are non-
intersecting spheres surrounding the foci (points located at
z ¼ �c) and intersecting tori passing through the focal points,
respectively. In this curvilinear coordinate system, the thermally

active spheres are represented by f ¼ �f0 ¼ cosh�1��1 and

ðf; bÞ ! ð0;0Þ correspond to r
� ! 1.

The boundary-value problem introduced at the beginning of
this section can be written in terms of f; b;uð Þ as [3,4]

r2h¼ coshf�cosbð Þ3
c2 sinb

"
@

@f
sinb

coshf�cosb
@h
@f


 �
þ @

@b
sinb

coshf�cosb
@h
@b


 �

þ 1
sinb coshf�cosbð Þ

@2h
@u2

#
¼0

with
1
hf

@h
@f

				
f¼�f0

¼�1 and h!0 as ðf;bÞ! ð0;0Þ:
ð22Þ

The boundary conditions are, again, independent of u, which sim-
plifies Laplace’s equation to

@

@f
sin b

cosh f� cos b
@h
@f


 �
þ @

@b
sinb

cosh f� cos b
@h
@b


 �
¼ 0: ð23Þ

Unlike Eq. (8), this equation is not simply separable and belongs to a
class of partial differential equations called R-separable equations
[4]. Therefore, to solve Eq. (23), we start with the ansatz
hðf;bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh f� cos b

p
ZðfÞBðbÞ, where Z and B are the unknown

functions we seek to determine. Substituting the proposed form for
h into Eq. (23), we arrive at a pair of ordinary differential equations
for Z and B. Upon solving those equations, the following general
solution for h emerges [3,4]:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh f� cos b

p X1
m¼0

B1
m sinh ðmþ 1=2Þfþ B2

m cosh ðmþ 1=2Þf
h i

� B3
mPmðcosbÞ þ B4

mQmðcosbÞ
h i

; ð24Þ
where B1

m; . . . ;B
4
m are constant coefficients.

As indicated before, the function QmðcosbÞ is singular at
cosb ¼ �1. Thus, B4

m vanish in order to retain the regularity of the
solution. One can infer from the geometry of the problem and the
boundary conditions that the temperature distribution is symmet-
ric about the x� y plane, whichmeans @h=@f ¼ 0 at f ¼ 0. To satisfy
this condition, we must set B1

m ¼ 0. Conveniently, the infinity
boundary condition is already satisfied thanks to the term outside
the summation that approaches zero as ðf; bÞ ! ð0; 0Þ. Incorporat-
ing these results, the solution for h reduces to

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh f� cos b

p X1
m¼0

Bm cosh ðmþ 1=2ÞfPmðcosbÞ; ð25Þ

where the constant coefficients Bm are determined by enforcing
the normal gradient boundary condition on the surface of the
spheres, i.e.,

1
hf

@h
@f

				
f¼f0

¼ �1
hf

@h
@f

				
f¼�f0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh f0 � cos b

p
c

�
X1
m¼0

Bm Dm PmðcosbÞ � Em cosbPmðcos bÞ½ � ¼ 1; ð26Þ



Fig. 3. (a) and (b) Contour plots of the (dimensionless) temperature field h (in
meridian planes) around an oblate spheroid of aspect ratio e ¼ 0:3. The left panel
illustrates the results of the two-term approximation whereas the right panel
presents those obtained by setting m ¼ 19, considered here as exact results. (c) The
Nusselt number Nu versus the aspect ratio e for oblate spheroids. Red, blue, and
black lines represent the results corresponding to m ¼ 3, linear interpolation based
on the Nu of sphere and disk, andm ¼ 19, respectively. The inset shows the relative
difference between the approximate and exact results. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
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where

Dm ¼ sinhf0 coshðmþ1=2Þf0
2

þðmþ1=2Þ coshf0 sinhðmþ1=2Þf0;
Em ¼ðmþ1=2Þ sinhðmþ1=2Þf0:

ð27Þ
Yet, again, we see that the application of the constant flux boundary
condition results in a more convoluted equation for the unknown
coefficients compared to the situation where the isothermal condi-
tion h ¼ 1 is imposed at f ¼ �f0 (see, e.g., [9]).

In addition to the orthogonality property Eq. (13), the following
integral relations apply to the eigenfunction Pm [7]:

Z 1

�1
PmðxÞPnðxÞ x dx ¼

2 mþ1ð Þ
2mþ1ð Þ 2mþ3ð Þ if n ¼ mþ 1

2m
2m�1ð Þ 2mþ1ð Þ if n ¼ m� 1

0 if n –m� 1

8>><
>>: ;

Z 1

�1

PmðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh f0 þ x

p dx ¼ 2
ffiffiffi
2

p

2mþ 1
e� mþ1=2ð Þf0 :

ð28Þ

Utilizing the above relations in conjunction with Eq. (13), we obtain
a recursive formula for the coefficients in the form of

B1 ¼ F0 þ B0;

Bmþ1 ¼ Fm þ Gm Bm þ 1� Gmð ÞBm�1;
ð29Þ

where

Fm ¼ � 2
ffiffiffi
2

p
sinh f0 e� mþ1=2ð Þf0

mþ 1ð Þ sinhðmþ 3=2Þf0
;

Gm ¼ 1
mþ 1

1þ 2m cosh f0 sinhðmþ 1=2Þf0
sinh ðmþ 3=2Þf0

� �
:

ð30Þ

We are now left with the task of determining B0, accomplished by
demanding the terms in the solution that correspond to large eigen-
values to be finite. This condition is satisfied by requiring Bm ! 0 as
m ! 1, which, after some mathematical manipulations, yields

B0 ¼ � lim
m!1

Hm; ð31Þ

where

H0 ¼ F0; H1 ¼ F1 þ G1 F0;

Hm ¼ Fm þ GmHm�1 þ 1� Gmð ÞHm�2:
ð32Þ

With the coefficients known, the mean h over the surface of each
sphere is calculated via

�hs ¼ 1
So

Z
So

h dS ¼ 2pc2

So

Z p

0

h sin b

cosh f0 � cos bð Þ2
db

¼ sinh f0ffiffiffi
2

p
X1
m¼0

Bm 1þ e� 2mþ1ð Þf0� 

:

ð33Þ

3. Results and discussion

We begin with the results for oblate spheroids. First, we con-
sider the limiting cases of e ¼ 1 (sphere) and e ¼ 0 (disk). The
results for the former have been already known to be

h ¼ 1=~r; �hs ¼ 1; Nu ¼ 2: ð34Þ
For the latter, however, we find

Am ¼
i 2mþ 1ð Þ

m� 1ð Þ mþ 2ð Þ
m!

2m ðm=2Þ!½ �2
( )2

if m � 0 ðmod2Þ

0 if m � 1 ðmod2Þ

8>><
>>: ;

ð35Þ
which, consistent with [1], results in

�hs ¼ 8=3p; Nu ¼ 3p=8: ð36Þ

Next, we examine other aspect ratios. Quite unexpectedly, our cal-
culations indicate that the series solution for the temperature (see
Eq. (10)) is very well approximated by its first two non-zero terms
for the entire range of e, i.e.,

h 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ n20

q
So

4p
cot�1nþ 5

64
2þ 3n20
� �þ 4þ 3n20

� �
1� So

2p


 �� ��

� 3n� 3n2 þ 1
� �

cot�1n

3 1þ n20
� �

n0cot�1n0 � 2þ 3n20
� �

" #
3g2 � 1
� �)

: ð37Þ

In fact, the maximum percent difference between the results corre-
sponding to m ¼ 3 and m ¼ 19 happens to be less than 4%. A visu-
ally convincing demonstration of this result is provided in Fig. 3,
where we present side-by-side contour plots of the temperature
field (in meridian planes) around an oblate spheroid of aspect ratio
e ¼ 0:3. As you can see, the approximate results of Fig. 3a are barely
distinguishable from the (nearly) exact results of Fig. 3b.
this article.)



Fig. 4. (a) and (b) Contour plots of the (dimensionless) temperature field h (in
meridian planes) around two spheres whose centers are three radii apart (� ¼ 2=3).
The left panel illustrates the results of the four-term approximation whereas the
right panel presents those obtained by setting m ¼ 9, considered here as exact
results. (c) B0 as a function of 1� �, where the dashed and dotted lines represent the
asymptotic approximations in the limits of �! 0 and �! 1, respectively. And, the
inset shows the relative error of the approximations. (d) The Nusselt number Nu
versus the inverse of the dimensionless separation distance � for a pair of identical
spheres. Red, blue, green, and black lines represent the results corresponding to
m ¼ 3, linear interpolation based on the Nu of single sphere and two touching
spheres, asymptotic behavior in the limit of �! 0, and the converged solution (i.e.,
m 
 1), respectively. The inset shows the relative difference between the approx-
imate and exact results. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Equally interesting, we also find that the average Nusselt num-
ber for oblate spheroids varies almost linearly with the aspect ratio
(see Fig. 3c). Therefore, the Nu versus e curve can be approximated
by the line that passes through its end points, i.e.,

Nu 	 Nudisk þ Nusphere � Nudisk
� �

e ¼ 3p
8

þ 2� 3p
8


 �
e: ð38Þ

The maximum relative error of this approximation occurs at e 	 0:5
and falls below 3%, which underscores its validity for all aspect
ratios (see the inset of Fig. 3c). Furthermore, from Fig. 3c and its
inset, we learn that the Nusselt number calculated based on the
two-term representation of h is extremely accurate, differing less
than 0.25% from the actual values.

We now analyze the results for bispheres. In the limit �! 0, the
spheres are very far from each other and, therefore, the solution
simplifies to Eq. (34) for a single sphere. On the other hand, when
�! 1 (i.e., when the gap between the spheres vanish), Eq. (25) for
the temperature distribution does not immediately reduce to a
simple form. The average surface temperature and Nusselt number
in this case are �hs ¼ 1:57721 and Nu ¼ 1:26806.

Again, we observe that setting m ¼ 3 in the series solution for h
(Eq. (25)) provides excellent results, accurate to within 5% of the
converged solution for 0 < � < 4=5 (see, e.g., Fig. 4a and b). As
the gap between the spheres narrows, the error of the four-term
approximation increases, which means that more terms are
needed to represent the temperature field accurately. For example,
the error grows to 10% as the gap size reduces to ‘=4.

Given the recursive relation defined in Eq. (29), what carries the
most weight in calculating Bm is determining B0. Fig. 4c shows the
variation of this coefficient as a function of 1� �. As it can be seen,
B0 approaches zero as

ffiffiffi
2

p
�when the distance between the spheres

is large and it asymptotes to �1 as lnð1� �Þ=
ffiffiffi
2

p
� 0:26085 when

the spheres almost touch each other. The asymptotic formulas can
be used to estimate, with reasonable accuracy, the value of B0 over
a wide range of � (see the inset of Fig. 4c).

Lastly, our calculations indicate that the Nusselt number of the
two-sphere system, like that of the oblate spheroid changes almost
linearly with � (see Fig. 4d). Hence, again, a linear interpolation
using the Nu of a single sphere and a pair of touching spheres
can be employed to effectively approximate the curve of Nu versus
� (see the inset of Fig. 4d). There exists another approach for
approximating this curve based on the asymptotic behavior of �hs
in the limit �! 0. When the spheres are widely separated, they
see each other as a point source/sink. Thus, to the leading order
in �, the average surface temperature and consequently the Nusselt
number take the forms of �hs ¼ 1þ �=2 and Nu ¼ 4= 2þ �ð Þ. Perhaps
surprisingly, this approximation outperforms the linear interpola-
tion for gap sizes larger than the radius of the spheres (compare
blue and green lines in the inset of Fig. 4d).
4. Summary

We derived analytical solutions for the problems of conduction
heat transfer from an isolated oblate spheroid and a pair of
spheres. The derivations were carried out in curvilinear coordinate
systems, befitting each geometry, using the method of separation
of variables and eigenfunction expansion. While the solutions are
in the form of infinite series, we showed that considering only
the first few terms provides excellent results, often accurate to
within a few percent of the exact values. We also found that the
Nusselt number in both cases considered varies rather linearly
with respect to the relevant dimensionless length scale of the prob-
lem. Needless to say, these and other findings of this study apply
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equally well to equivalent mass transfer problems. Furthermore,
our results can be used to develop perturbation solutions for the
problems of forced convection heat transfer from heated spheroids
and bispheres in uniform laminar flows at small Péclet numbers
[10–12].

In conclusion, it is worth noting that although there have been
many studies on analytical modeling of conduction heat transfer
from objects of various shapes (or analogous problems in mass
transfer, electrostatics, etc.), a large number of them have focused
on the isothermal (Dirichlet) boundary condition (see, e.g., [6,9,13–
22]) and a relatively small number have considered the uniform
flux (Neumann) boundary condition (see, e.g., [11,23]). Here, we
have attempted to partially fill this gap in the literature. However,
still many problems in this area remain unexplored.
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