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Glucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other 
plant specialized metabolites, their presence does not directly affect the plant survival in 
terms of growth and development. However, specialized metabolites are essential to combat 
environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many 
pungent plants in the order of Brassicales. To date, more than 200 different GLS structures 
have been characterized and their distribution differs from species to species. GLSs co-exist 
with classical and atypical myrosinases, which can hydrolyze GLS into an unstable aglycone 
thiohydroximate-O-sulfonate, which rearranges to produce different degradation products. 
GLSs, myrosinases, myrosinase interacting proteins, and GLS degradation products 
constitute the GLS-myrosinase (GM) system (“mustard oil bomb”). This review discusses the 
cellular and subcellular organization of the GM system, its chemodiversity, and functions in 
different cell types. Although there are many studies on the functions of GLSs and/or 
myrosinases at the tissue and whole plant levels, very few studies have focused on different 
single cell types. Single cell type studies will help to reveal specific functions that are missed 
at the tissue and organismal level. This review aims to highlight (1) recent progress in cellular 
and subcellular compartmentation of GLSs, myrosinases, and myrosinase interacting proteins; 
(2) molecular and biochemical diversity of GLSs and myrosinases; and (3) myrosinase 
interaction with its interacting proteins, and how it regulates the degradation of GLSs and 
thus the biological functions (e.g., plant defense against pathogens). Future prospects may 
include targeted approaches for engineering/breeding of plants and crops in the cell type-
specific manner toward enhanced plant defense and nutrition.
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INTRODUCTION

One of the most extensively studied classes of anti-herbivore chemical defenses in plants is 
glucosinolates (GLSs), a group of sulfur-rich, amino acid-derived metabolites combining a 
β-d-glucopyranose residue linked via a sulfur atom to an N-hydroxyimino sulfate ester, 
which are plant-derived natural products (Halkier and Gershenzon, 2006; Halkier, 2016). 
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GLSs are widely distributed in the order Brassicales, which 
includes vegetables (cabbage, cauliflower, and broccoli), spice 
plants supplying condiments (mustard, horseradish, and wasabi), 
and reference species, Arabidopsis thaliana (Fahey et al., 2001; 
Reichelt et  al., 2002). Upon insect feeding or mechanical 
disruption, GLSs are hydrolyzed by myrosinases (thioglucoside 
glucohydrolase, TGG, EC 3.2.1.147) into unstable thiohydroximate-
O-sulfonates, which rearrange to form different hydrolytic 
products such as isothiocyanates (ITCs), nitriles, and other 
by-products depending on the nature of the GLS side chain 
and the reaction conditions, such as iron, pH, and presence 
of myrosinase interacting proteins (Chen and Andreasson, 
2001; Wittstock et  al., 2016a). This GLS-myrosinase (GM) 
system is popularly known as “mustard oil bomb” (Lüthy 
and Matile, 1984; Ratzka et  al., 2002). Myrosin cells (an 
idioblast cell type accumulating TGGs) are involved in plant 
defense by hydrolyzing GLSs into toxic volatiles such as ITCs 
or nitriles (Wittstock et  al., 2003). TGGs are known to 
be  present in all A. thaliana organs and were reported in 
A. thaliana and B. napus phloem parenchyma as well as in 
guard cells (Andréasson et  al., 2001; Thangstad et  al., 2004). 
In general, GLSs are enriched in “S-cells” that are found in 
Arabidopsis flower stalks and occur close to myrosin cells 
(Koroleva et  al., 2000; Andréasson et  al., 2001).

The spatial distribution of GLSs was demonstrated in A. thaliana 
leaves by constructing ion intensity maps from matrix-assisted 
laser desorption/ionization-time of flight (MALDI-TOF) mass 
spectra, where major GLSs were found to be  more abundant 
in tissues of the midvein and the periphery of the leaf than 
the inner lamina (Shroff et  al., 2008). Although this study 
concluded that GLSs are not abundant on A. thaliana leaf 
surfaces, the authors could not obtain information on the cell 
type distribution of GLSs in leaves. Moreover, all the genes in 
the GLS biosynthetic pathways have been identified, and it is 
somewhat known where GLSs are stored (Koroleva et  al., 2000; 
Andréasson et  al., 2001), but it has remained elusive where 
GLSs are specifically produced at the subcellular, cellular, and 
tissue levels (Rask et  al., 2000; Nintemann et  al., 2017). Neither 
is it clear about the cellular and subcellular compartmentation 
of different myrosinases and their interacting proteins, which 
include myrosinase-binding proteins (MBPs), myrosinase-
associated proteins (MyAPs), and different specifier proteins.

In the following sections, we  discuss various aspects of the 
GM system based on current knowledge, starting from the 
cellular control of enzymes, cell type, and subcellular organization, 
to uniqueness of myrosinases and myrosinase interacting proteins 
covering a range of small molecule and macromolecular 
interactions of the “mustard oil bomb.”

THE GLUCOSINOLATE-MYROSINASE 
SYSTEM AND CELLULAR CONTROL OF 
ENZYME REACTIONS

As found in the order of Brassicales, including important crops 
(e.g., mustard, oilseed rape, radish, broccoli, and cabbage), 
GLSs co-exist with myrosinases. When tissue damage occurs, 

the “mustard oil bomb” is detonated and GLSs are hydrolyzed 
and converted to different degradation products with a variety 
of biological activities (Rask et al., 2000; Halkier and Gershenzon, 
2006; Yan and Chen, 2007; Bednarek et  al., 2009; Clay et  al., 
2009; Halkier, 2016; Wittstock et al., 2016a). For example, these 
degradation products play important roles in plant defense 
against pathogens and herbivores, as well as serve as attractants 
to specialists (Rask et  al., 2000; Barth and Jander, 2006; Clay 
et al., 2009; Wittstock et al., 2016a). Several of these degradation 
products are involved in plant nutrition (Holmes, 1980; 
Armengaud et  al., 2004) and growth regulation (Hasegawa 
et  al., 2000; Hull et  al., 2000; Mikkelsen et  al., 2000). In plant 
metabolism, it is important that enzymes and substrates are 
under tight regulation, which is more relevant for toxic 
compounds, as these chemical defenses are derived from 
specialized metabolites. There are several ways of regulation: 
(1) coarse control through biosynthesis; (2) fine control of 
enzyme activity through protein interaction and allosteric 
regulation; and (3) substrate and enzyme compartmentalization 
(Sweetlove and Fernie, 2013). While the regulation is well 
studied in primary metabolism (e.g., photosynthesis and 
respiration), it is not clear in many of the specialized metabolic 
processes such as GLS metabolism. Furthermore, protein-protein 
interactions are intrinsic to virtually every cellular process and 
have been extensively studied in animals and yeast (Uetz et al., 
2000; Gavin et al., 2002; Ho et al., 2002; Li et al., 2004; Huttlin 
et  al., 2017). In plants, this area has lagged behind in spite 
of recent progress (Hosseinpour et al., 2012; Zhang et al., 2016; 
Jiang et  al., 2018). Vast majority of the studies did not go 
beyond identifying physical interactions to the point of functional 
analysis. Figure 1 shows the potential molecular interactions 
of the GM system in the context of cell type-specific metabolisms.

CELL TYPE-SPECIFIC CELLULAR AND 
SUBCELLULAR ORGANIZATION OF THE 
“MUSTARD OIL BOMB”

Myrosinase is located in myrosin cells, which are scattered 
cells in radicles, stems, leaves, petioles, seeds, and seedlings 
of several species (Husebye et al., 2002). A cell-specific localization 
was found in radicles and cotyledons of the maturing embryo 
resembling the pattern of the myrosin cells (Bones et al., 1991). 
Most GLSs are constitutively present in all Arabidopsis tissues 
(Petersen et  al., 2002; Brown et  al., 2003). The key steps in 
the biosynthesis of the different types of GLSs are localized 
in distinct cells in separate as well as overlapping vascular 
tissues (Nintemann et al., 2018). The presence of GLS biosynthetic 
enzymes in parenchyma cells of the vasculature may assign 
new defense-related functions to these cell types (Nintemann et  al., 
2018). To date, the cellular and subcellular compartmentation 
of the “mustard oil bomb” (Lüthy and Matile, 1984) is not 
completely clear and is rather contradictory. For instance, in 
Arabidopsis flower stalks, GLSs were found in the elongated 
sulfur-rich “S-cells” situated between phloem and endodermis 
(Koroleva et  al., 2000; Husebye et  al., 2002). However, the 
myrosinase TGG1 was found to be  abundant in guard cells, 
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whereas TGG1 and TGG2 were localized to the phloem-
associated cells close to the “S-cells” (Husebye et  al., 2002; 
Thangstad et al., 2004; Barth and Jander, 2006). Thus, it appears 
that myrosinases and their substrates were physically separated 
in the plant tissues. However, such an arrangement may not 
be the case as a recent proteomics study located the myrosinases 
in “S-cells” (Koroleva and Cramer, 2011). In Brassica juncea 
seedlings, myrosinase was found to co-localize with GLSs in 
aleurone-type cells (Kelly et al., 1998). In Arabidopsis suspension 
cells, both myrosinases and GLSs were present (Alvarez et  al., 
2008). Such diverse co-localization results may indicate that 
myrosinases and GLSs are spatially separated at the subcellular 
levels. Alternatively, they could be  in the same compartment 
with tight control of myrosinase activities. GLSs were found 
in vacuoles rich in ascorbic acid (Grob and Matile, 1979), 
which plays a role to inhibit myrosinase at high concentration 
and activate myrosinase at low concentration. This dual regulation 
supports the potential co-localization of GLSs and myrosinases 
in the same subcellular compartment.

Recent metabolomics data have confirmed the presence of 
GLSs in guard cells (Geng et  al., 2016; Zhu and Assmann, 
2017) and revealed the changes in GLS metabolism in guard 
cells upon treatment with CO2 (Geng et  al., 2016) and ABA 
(Zhu and Assmann, 2017). The first indication of the role of 
GLS metabolism in stomatal movement was obtained through 
analysis of the effect of ABA on stomatal movement of the 
Arabidopsis myrosinase mutant tgg1 (Zhao et  al., 2008). 
Subsequently, additional reverse genetics studies corroborated 
the role of GLS metabolism in stomatal movement (Islam et al., 
2009; Zhu et  al., 2014). Furthermore, stomatal closure was 
induced by pharmacological treatments with different GLS 
hydrolysis products (Khokon et al., 2011; Sobahan et al., 2015). 
However, these products and the amounts used are of synthetic 
origin and abundance. It is not known what degradation 
products are produced and how much in vivo, which GLSs 
and myrosinases [TGGs and/or Penetration 2 (PEN2)] are 
involved, and how protein interactions regulate the GLS 
breakdown in guard cells.

FIGURE 1  |  Putative interactions between myrosinases (TGGs), myrosinase interacting proteins, GLSs, and volatiles in the context of cell type compartmentation. A 
myrosin cell shows vacuolar localization of TGGs, myrosinase-binding proteins (MBPs), and myrosinase-associated proteins (MyAPs); peroxisomal localization of 
penetration (PEN2); and ER localization of TGG. Transporters that are specific to GLSs such as NRT1/PTR glucosinolate transporter (GTR) 1, GTR2 or non-specific 
transporters could be aiding in their transport to site of accumulation such as S-cells or guard cells. Importantly, these cells may have the capability of de novo 
biosynthesis of GLSs. In addition, the presence of epithiospecifier modifier (ESM, MyAP-like), epithiospecifier (ESP), and nitrile specifier (NSP) 1, NSP5, etc. may lead 
to the breakdown of GLSs to nitriles and isothiocyanates (ITCs) for roles in cell type-specific signaling and defense against pathogen and herbivores. GLSs, TGGs, 
and ESP were found in the S-cells, and the presence of ESM and NSP is indicative of other cell types.
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The Arabidopsis cyp79b2/cyp79b3 mutants are known to 
produce mostly aliphatic GLSs (Zhao et  al., 2002; Chen et  al., 
2003; Grubb and Abel, 2006; Khokon et  al., 2011; Sobahan 
et  al., 2015), while the myb28/myb29 mutants are known to 
produce mostly indolic GLSs (Hirai et  al., 2007; Beekwilder 
et al., 2008). Furthermore, the tgg1/tgg2 double mutant showed 
undetectable myrosinase activity, and damage-induced breakdown 
of endogenous GLSs was not from aliphatic GLSs and was 
greatly slowed for indole GLSs (Barth and Jander, 2006). 
Moreover, the tgg1/tgg2 mutant lacking the foliar myrosinases 
was compromised in activation of their GLS defense. Another 
mutant, atvam3 mutant showed abnormal distribution of myrosin 
cells and overproduction of TGG1 and TGG2 (Ueda et  al., 
2006). Thus, beyond TGGs, MYB28, MYB29, AtVAM, CYP79s, 
and other biosynthetic genes all affect GLS deposition levels 
and possibly cell type specificity of the GM system. To understand 
the regulation and correlation of these proteins, we  used 
GeneMANIA software (Warde-Farley et al., 2010) and predicted 
the association of the known genes involved in GLS metabolism 
(from our selected gene list in Supplementary Table  S1). This 
software further added putative proteins with similar functions 
and potential involvement in the GM system (Figure 2).

In B. napus leaves, myrosinases are localized in mesophyll 
cells and phloem cells (Chen and Andreasson, 2001) and were 
mainly stored in protein-rich vacuolar structures of myrosin 
cells (Rask et  al., 2000; Ueda et  al., 2006). There is also a 
report of the presence of myrosinase as cytosolic enzymes bound 

to intracellular membranes (Lüthy and Matile, 1984). The 
knowledge of the localization of myrosinases and interacting 
proteins was advanced by vacuolar proteomics. Myrosinases, 
TGG1 and TGG2, and myrosinase-associated protein (MyAP) 1 
were identified in the vacuoles. In the early leaf developmental 
stages, TGG1 is more abundant than TGG2, whereas in fully 
expanded leaves, both TGG1 and TGG2 levels show increased 
accumulation. Concurrently, MyAP1 levels are increasingly 
abundant. We  have previously observed such regulation of 
myrosinase expression, which correlated with GLS turnover 
(Petersen et  al., 2002). The co-localization of myrosinase and 
MyAP1 and the concurrent expression during development lead 
to the hypothesis that the vacuolar myrosinases may be  active 
and MyAPs may interact with myrosinase to play a role in 
GLS hydrolysis. For example, MyAPs may facilitate ITC production 
(Zhang et al., 2006). Indeed, immunogold analysis of leaf sections 
showed the presence of TGG1 and TGG2  in the same vacuoles 
(Ueda et  al., 2006). An independent vacuolar proteomics study 
also identified these proteins (Carter et  al., 2004). In addition, 
two more MyAPs (At1g54000 and At1g54010) and three 
myrosinase-binding proteins (MBPs) (At1g52040, At3g16470, 
and At2g39330) were localized in the vacuoles (Carter et  al., 
2004). TGG1 and TGG2 were also found in the endoplasmic 
reticulum (ER), ER bodies, and transvacuolar strands, and this 
localization is dependent on MyAP1 (MVP1). Mutation of the 
MyAP1 clearly altered the subcellular localization profiles of 
the green fluorescent protein (GFP)-tagged TGG1 and TGG2 

FIGURE 2  |  Visualization of functional prediction of protein networks in the glucosinolate-myrosinase (GM) system using GeneMANIA (http://genemania.org/). The 
protein names are indicated inside the nodes, and the links between the nodes indicate the network edges in which the proteins are connected. The color of the 
edges represents evidence for the connection, which includes co-expression (purple), predicted (yellow), shared protein domains (beige), physical interactions (pink), 
co-localization (blue), and genetic interactions (green). As to functions associated with each protein, the color code inside the nodes indicates GLS metabolic 
process (red), sulfur compound metabolic process (blue), defense response to bacterium (yellow), defense response to insect (purple), response to oxidative stress 
(green), defense response to fungus (pink), and stomatal movement (light blue).
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(Agee et  al., 2010). Interestingly, the myrosinase PEN2 
(hydrolyzing indole GLSs and shown to function in plant defense 
(Bednarek et  al., 2009; Clay et  al., 2009; Millet et  al., 2010; 
Fan et al., 2011; Johansson et al., 2014; Frerigmann et al., 2016; 
Luti et  al., 2016; Xu et  al., 2016; Vilakazi et  al., 2017)) is 
targeted to peroxisomes and the outer mitochondrial membrane 
(Fuchs et  al., 2016). In addition to MyAPs and MBPs, specifier 
proteins including epithiospecifier modifier (ESM, MyAP-like), 
epithiospecifier protein (ESP), nitrile specifier protein (NSP), 
and thiocyanate forming protein (TFP) may affect the outcome 
of GLS degradation (Lambrix et  al., 2001; Burow et  al., 2006; 
Zhang et al., 2006; Wittstock et al., 2016a,b; Backenköhler et al., 
2018). ESP was found to be  in “S-cells” and in guard cells 
with NSP1 and NSP5 (Burow et  al., 2007; Zhao et  al., 2008). 
The functions of these MyAPs, MBPs, and specifier proteins 
in “S-cells” and guard cells and their interactions with myrosinases 
in different cell types are not known.

To understand the subcellular organization of the GM system, 
we  compared the proteins and pathways involved in GLS 
biosynthesis, degradation, and transport using available and/
or predicted subcellular localization information. Figure  3 and 
Supplementary Table S1 provide an overview of the GM system 
at subcellular level based on available literature and analysis 
using different protein localization tools: (1) Plant-mPLoc1 
(Chou and Shen, 2007, 2008, 2010); (2) TAIR2 (with annotation 
based on literature); (3) Eplant3 using SUBA (Subcellular 
Localisation Database for Arabidopsis) with annotation based 
on subcellular proteomics and/or protein fluorescence microscopy; 
(4) TargetP4 based on the N-terminal targeting sequences 
(chloroplast transit peptide (cTP), mitochondrial targeting peptide 
(mTP), or secretory pathway signal peptide (SP) (Emanuelsson 
et  al., 2000) [with a reliability score of 1–5 (1 being most 
reliable and 5 least reliable)]; (5) LocTree5 using support vector 
machines for localization prediction (in the form of expected 
accuracy); and (6) ngLOC6 using Bayesian method for prediction 
of localization. As shown in Figure 3, most GM system proteins 
were found to be  in the cytoplasm followed by nucleus, where 
the transcriptional regulators were localized. All the cytochrome 
P450s involved in GLS biosynthesis and modification were 
localized to endoplasmic reticulum, and other GLS biosynthesis-
related proteins were in the chloroplast and cytoplasm. 
Glucosinolate transporters (GTR1 and GTR2) and nitrate 
transporters (NRT1.6, NRT1.7, and NRT1.9) were found to 
be  in plasma membrane. It is not known how glucosinolates 
are transported into vacuoles. PEN2 and BZO1 were localized 
in peroxisomes. No GM system proteins were found on Golgi 
apparatus. Out of the 114 GM system proteins used in this 
study (Supplementary Table S1), 65 proteins had experimental 
evidence of localization, 26 were predicted using the software 
tools (at least three tools with consistent result), and 23 proteins 
could not be  conclusively localized.

1�http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
2�https://www.arabidopsis.org/tools/bulk/protein/index.jsp
3�https://bar.utoronto.ca/eplant/
4�http://www.cbs.dtu.dk/services/TargetP/
5�https://rostlab.org/services/loctree3/
6�http://genome.unmc.edu/ngLOC/index.html

DISTINCT MOLECULAR AND 
BIOCHEMICAL PROPERTIES  
OF MYROSINASES

Myrosinases are classified into two types, typical (classical) 
and atypical myrosinases. The crystal structure of a classical 
myrosinase shows that the protein folds into an (β/α)8 barrel 
structure (Burmeister et  al., 1997). In the active site, a Glu 
(E) residue is involved in nucleophilic attack to initiate the 
release of an aglycone (thiohydroximate-O-sulfonate) and form 
a glucosyl-enzyme intermediate. Another Gln (Q) residue 
enables the hydrolysis of this intermediate with assistance 
from water and ascorbate. Classical myrosinases (with QE 
catalytic residues) use ascorbate as a cofactor and proton 
donor to facilitate the release of bound glucose (Burmeister 
et al., 1997; Wittstock and Burow, 2010; Bhat and Vyas, 2019). 
In contrast, atypical myrosinases have two catalytic Glu residues 
(EE), which function as acid/base catalyst in the active site. 
They do not require ascorbate. In addition, atypical myrosinases 
have two basic amino acid residues at different positions (+6 
and  +7) for glucosinolate binding compared to +0 position 
arginine residue of classical myrosinases (Wittstock and Burow, 
2010; Nakano et  al., 2017; Shirakawa and Hara-Nishimura, 
2018; Bhat and Vyas, 2019). Classical myrosinases are 
glycosylated, activated by low concentrations of ascorbate, and 
accepted GLSs as the only substrates (Chen and Halkier, 1999; 
Chen and Andreasson, 2001). In contrast, atypical myrosinases, 
such as PEN2 and PYK10, can hydrolyze indole GLSs and 
also use O-glucosides as substrates (Bednarek et  al., 2009; 
Nakano et  al., 2017). Although myrosinase does not use 
acylated GLSs and desulpho-GLSs as substrates, it may accept 
a wide range of GLS substrates (Chen and Halkier, 1999; 
Rask et  al., 2000; Barth and Jander, 2006). Myrosinases from 
B. napus and Crambe abyssinica degrade different GLS at 
different rates (James and Rossiter, 1991; Finiguerra et  al., 
2001). However, the mechanism underlying this substrate 
specificity is not established. Myrosinases in B. napus are 
encoded by >29 genes in three subfamilies, denoted as MA, 
MB, and MC. The MA myrosinases occur as dimers, while 
MB and MC myrosinases exist in complexes with MBPs and/
or MyAPs (Lenman et  al., 1990; Rask et  al., 2000). By 
heterologous expression in yeast, we have previously produced 
a functional free form myrosinase Myr1 from the MB subfamily 
(Chen and Halkier, 1999). The activity of this Myr1 suggests 
that MBPs and MyAPs are not absolutely necessary for 
myrosinase activity, but raises questions on the functions of 
MBPs and MyAPs and their interactions with myrosinases.

Bioinformatic analysis of the Arabidopsis genome revealed 
the presence of six myrosinase genes TGG1-TGG6 (Xu et  al., 
2004). TGG1 and TGG2 are expressed in leaves (Xue et  al., 
1995; Husebye et  al., 2002; Thangstad et  al., 2004; Barth and 
Jander, 2006; Ueda et  al., 2006) and flowers (Ruan et  al., 1998; 
Barth and Jander, 2006), while TGG4 and TGG5 are specifically 
expressed in roots (Zimmermann et  al., 2004). TGG3 and 
TGG6 are pseudogenes (Husebye et al., 2002; Zhang et al., 2002). 
Although TGG1 and TGG2 appear to display a low degree 
of substrate specificity, the activities of TGG1 and  
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TGG2 have been correlated with the feeding preference  
and growth of different generalist and specialist insects (Barth 
and Jander, 2006). Interestingly, overexpression of TGG1 and 
TGG2 leads to accumulation of several GLS degradation  
products, including 5-methylhexanenitrile, heptanenitrile, 
1-isothiocyanato-3-methylbutane, 1-isothiocyanato-4-methyl 
pentane, and 1-isothiocyanato-3-methylhexane. Based on the 
degradation product profile, possible endogenous substrates for 
the two TGGs include 4-methylthiobutylglucosinolate, 
4-methylpentylglucosinolate and 3-methylbutylglucosinolates 
(Ueda et  al., 2006). Investigating endogenous substrates of 
different classical and atypical myrosinases is an important 
future direction.

In leaves, TGG1 was found to be  abundant in guard cells, 
while TGG2 appeared only present in phloem-associated cells 
(Barth and Jander, 2006; Zhao et  al., 2008). Considering the 
presence of GLSs in guard cells (Geng et  al., 2016; 
Zhu and Assmann, 2017), how the GM system plays a role 

in guard cell functions (e.g., stomatal immunity) is an 
interesting question. Clearly, mutation of the TGG1 and/or 
TGG2 genes affected the guard cell size, stomatal aperture, 
and leaf metabolites, such as fatty acids, glucosinolates, and 
indole compounds (Ahuja et  al., 2016). Another proteomic 
study of trichome and epidermal pavement cells did not 
identify the TGG1 protein in the samples (Wienkoop et  al., 
2004). However, a single cell type study in trichomes found 
the presence of gene encoding transcription factors of aliphatic 
GLS (MYB28, MYB29 and MYB76) and indole GLS (MYB34, 
MYB51 and MYB122), indicating that trichomes have 
biosynthetic genes for the GM system (Frerigmann et  al., 
2012), but nothing was suggested about myrosinases activity 
or expression. Given the defense roles of guard cells and 
trichomes, characterization of the GM systems in these special 
cell types is of great importance to understand the molecular 
mechanisms underlying the cell type-specific functions, e.g., 
defense against pathogen invasion.

FIGURE 3  |  Subcellular localization of Arabidopsis proteins involved in GLS biosynthesis, degradation, and transport. The subcellular organelles and their localized 
proteins are given in similar color. Most of the subcellular localizations are based on literature evidence. The names of the proteins with an asterisk are predicted 
localization information (i.e., for proteins that do not have localization information in literature) that are based on consensus from at least three software tools used. 
The prediction tools used were Eplant, TargetP, LocTree, ngLOC, Plant-mPLoc, and TAIR. Please refer to Supplementary Table S1 for detailed information.
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COMPLEX FORMATION  
BETWEEN MYROSINASE AND  
ITS INTERACTING PROTEINS

As described earlier, myrosinase interacting proteins include 
MBP, MyAP, and specifier proteins (ESM, ESP, NSP, and TFP). 
The first six MBPs identified in B. napus range in size from 
30 to 110  kDa (Taipalensuu et  al., 1996; Chisholm et  al., 
2000). All MBPs contain jacalin-like repeats (Chisholm et  al., 
2000; Andréasson et  al., 2001). Jacalin-related proteins share 
the domain structure of plant lectins and are upregulated by 
phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene) 
and pathogens (Taipalensuu et  al., 1996; Geshi and Brandt, 
1998; Xiang et  al., 2011; Vilakazi et  al., 2017). Recently, 
identification of bacterial lipopolysaccharide interacting proteins 
in Arabidopsis revealed myrosinases, TGG1 and TGG2, and 
a MBP (Vilakazi et  al., 2017). It remains unclear how the 
MBP levels are regulated and whether MBPs directly interact 
and affect myrosinase activity and specificity. In B. napus 
seeds, MBPs are present in most cells but not in the myrosin 
cells (Rask et al., 2000; Ueda et al., 2006). During germination, 
MBPs are co-localized with myrosinases in cotyledons, suggesting 
that preformed myrosinase complexes do exist (Geshi and 
Brandt, 1998; Eriksson et al., 2002). Using basic local alignment 
search tool (BLAST) to interrogate the Arabidopsis genome 
reveals >30 putative MBPs. MBP1 and MBP2 are like lectin 
jacalins and plant aggregating factors. MBP1 and MBP2 are 
abundantly expressed in immature flowers, and the pattern 
is similar to that of myrosinase TGG1 (Capella et  al., 2001). 
MBP expression and myrosinase activity are affected in the 
coi1 mutant, which is insensitive to jasmonate (Capella et  al., 
2001). Depletion of MBPs does not alter the cellular distribution 
of myrosinases but prevents myrosinases from forming complexes 
(Eriksson et  al., 2002). Thus, the functions of MBPs are not 
fully understood. Interestingly, most NSPs possess jacalin-like 
domains and are MBP-like (Kuchernig et al., 2012). The jacalin-
like domain may interact with the glycans of myrosinases to 
potentially affect GLS degradation. However, experimental 
evidence is lacking. NSPs were shown to enhance simple nitrile 
formation (He et  al., 2009; Kissen and Bones, 2009; Chen 
et  al., 2015; Wittstock et  al., 2016b). Recently, iron was shown 
to be a centrally bound cofactor of ESP, TFP, and NSP involved 
in glucosinolate breakdown. In addition, NSP active site has 
fewer restrictions to the aglycone conformation than ESP and 
TFP. This may explain why NSP facilitates simple nitrile 
production, but not production of epithionitrile and thiocyanate 
that may need exact positioning of the aglycone thiolate relative 
to the side chain (Backenköhler et  al., 2018). In addition to 
MBPs, MyAPs form complexes with myrosinases in B. napus 
(Taipalensuu et  al., 1996). In Arabidopsis, TGG2 was pulled 
down with MyAP1  in leaf extracts (Agee et  al., 2010). MyAPs 
display high similarity to GDSL lipases, which have a motif 
of Gly, Asp, Ser, and Leu residues in the active site. The 
Arabidopsis genome contains >80 genes encoding GDSL lipases, 
typically with a GDSL-like motif, a catalytic triad of Ser, Asp 
and His residues, and a lipase signature sequence GxSxxxxG 

(Brick et  al., 1995). The possible lipase activity of MyAP 
suggests a potential role of MyAP in releasing acyl groups 
from acylated GLSs, thereby making them available for 
myrosinase hydrolysis. Arabidopsis contains acylated GLSs in 
seeds, but B. napus does not contain acylated GLSs; thus, 
MyAP in B. napus may have other functions. A recent study 
shows that overexpression of B. napus MyAP1 led to enhanced 
plant defense against a fungal pathogen Sclerotinia sclerotiorum 
(Wu et  al., 2017). A MyAP-like ESM was found to favor ITC 
production and protect Arabidopsis from herbivory (Zhang 
et al., 2006). However, whether this system involves myrosinase 
complex formation is still not known. In some plants, ESPs 
are involved in GLS hydrolysis (Foo et  al., 2000; Burow et  al., 
2006). Hydrolysis of alkenyl GLSs in the presence of ESP 
leads to the formation of nitriles or epithionitriles, instead 
of isothiocyanates (Zabala Mde et  al., 2005; Burow et  al., 
2006). Because ESPs can alter the course of hydrolysis, they 
are important in determining plant herbivore choice and host 
resistance (Lambrix et  al., 2001). Furthermore, this suggests 
that ESP is situated close to the active site so that it could 
promptly convert the unstable aglycone to nitriles. Although 
kinetic studies have showed that ESP acts as a non-competitive 
inhibitor of myrosinase (MacLeod and Rossiter, 1985), no 
stable interaction between ESP and myrosinase has been 
reported (Burow et  al., 2006). Like nitrile formation, the 
production of thiocyanate was found to be  associated with 
TFP. For detailed description of myrosinase specifier proteins, 
please refer to a recent review (Wittstock et  al., 2016a). In 
summary, several other groups of proteins may interact with 
myrosinases and function to affect how GLSs are degraded, 
leading to the formation of different metabolic products. 
Systematic studies to characterize the interaction of these 
proteins with myrosinases are needed to elucidate their 
specific functions.

DIRECTIONS FOR FUTURE RESEARCH 
AND CONCLUSIONS

Currently, the cellular and subcellular location of myrosinases, 
GLSs, and their interacting proteins, i.e., the GM system, are 
far from established. Given >100 cell types in plants and >5,500 
species of GLS producers, it would be  a challenge to capture 
all the species-specific and cell type-specific information of 
the “mustard oil bomb.” In addition, with temporal accumulation 
and expression patterns of metabolites and enzymes involved 
typically in case of specialized metabolites, these eventual 
pictures could be very complex. Using cell type-specific genetic 
manipulations (e.g., GFP fusion and CRISPR), one can envision 
to capture the cell type-specific expression patterns and 
functional role of the glucosinolate biosynthetic proteins, 
myrosinases, and myrosinase interacting proteins. There exist 
large gaps in the knowledge base of the GM system, e.g., 
myrosinase interacting proteins in terms of their interactions, 
co-localizations, regulations, and functions in specific cell types. 
Furthermore, the developmental staged appearance and regulation 
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of the proteins and metabolites are not clear. Moreover, the 
reported interactions of myrosinases and other proteins could 
be  very much cell type-specific or subcellular localized, which 
is not well studied till date. Without resolving the cell type 
specificity of the proteins and metabolites, it would be  very 
challenging to draw mechanistic conclusions on the specific 
roles of the enzymes, interactors, transporters, and the metabolites 
from tissue- and whole plant-based data where the information 
are averaged out (Dai and Chen, 2012; Misra et  al., 2014).

In the future, efforts need to focus on large-scale speedy 
preparations of organelles and subcellular fractions (e.g., 
vacuoles, peroxisomes, and chloroplasts) in a time-dependent 
manner to capture the dynamics of protein interactions and 
GLS metabolism. It is obviously challenging to prepare and 
enrich plant cell types (e.g., the “S-cells”) in copious amounts 
for more system-wide experiments such as transcriptomics, 
proteomics, and metabolomics and to obtain preparations 
at a given time and for a specific treatment. With the 
recent development of single-cell omics tools (Misra et  al., 
2014; Efroni and Birnbaum, 2016; Doerr, 2019), such large-
scale molecular characterization of different single cells is 
within sight and will greatly enhance the understanding of 
the chemodiversity of the GM system at the single-
cell resolution.
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