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Glucosinolates (GLSs) are a well-defined group of specialized metabolites, and like any other
plant specialized metabolites, their presence does not directly affect the plant survival in
terms of growth and development. However, specialized metabolites are essential to combat
environmental stresses, such as pathogens and herbivores. GLSs naturally occur in many
pungent plants in the order of Brassicales. To date, more than 200 different GLS structures
have been characterized and their distribution differs from species to species. GLSs co-exist
with classical and atypical myrosinases, which can hydrolyze GLS into an unstable aglycone
thiohydroximate-O-sulfonate, which rearranges to produce different degradation products.
GLSs, myrosinases, myrosinase interacting proteins, and GLS degradation products
constitute the GLS-myrosinase (GM) system (“mustard oil bomb”). This review discusses the
cellular and subcellular organization of the GM system, its chemodiversity, and functions in
different cell types. Although there are many studies on the functions of GLSs and/or
myrosinases at the tissue and whole plant levels, very few studies have focused on different
single cell types. Single cell type studies will help to reveal specific functions that are missed
at the tissue and organismal level. This review aims to highlight (1) recent progress in cellular
and subcellular compartmentation of GLSs, myrosinases, and myrosinase interacting proteins;
(2) molecular and biochemical diversity of GLSs and myrosinases; and (3) myrosinase
interaction with its interacting proteins, and how it regulates the degradation of GLSs and
thus the biological functions (e.g., plant defense against pathogens). Future prospects may
include targeted approaches for engineering/breeding of plants and crops in the cell type-
specific manner toward enhanced plant defense and nutrition.

Keywords: glucosinolate, myrosinase, cell type, metabolism, protein-protein interaction

INTRODUCTION

One of the most extensively studied classes of anti-herbivore chemical defenses in plants is
glucosinolates (GLSs), a group of sulfur-rich, amino acid-derived metabolites combining a
B-d-glucopyranose residue linked via a sulfur atom to an N-hydroxyimino sulfate ester,
which are plant-derived natural products (Halkier and Gershenzon, 2006; Halkier, 2016).
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GLSs are widely distributed in the order Brassicales, which
includes vegetables (cabbage, cauliflower, and broccoli), spice
plants supplying condiments (mustard, horseradish, and wasabi),
and reference species, Arabidopsis thaliana (Fahey et al., 2001;
Reichelt et al., 2002). Upon insect feeding or mechanical
disruption, GLSs are hydrolyzed by myrosinases (thioglucoside
glucohydrolase, TGG, EC 3.2.1.147) into unstable thiohydroximate-
O-sulfonates, which rearrange to form different hydrolytic
products such as isothiocyanates (ITCs), nitriles, and other
by-products depending on the nature of the GLS side chain
and the reaction conditions, such as iron, pH, and presence
of myrosinase interacting proteins (Chen and Andreasson,
2001; Wittstock et al., 2016a). This GLS-myrosinase (GM)
system is popularly known as “mustard oil bomb” (Liithy
and Matile, 1984; Ratzka et al., 2002). Myrosin cells (an
idioblast cell type accumulating TGGs) are involved in plant
defense by hydrolyzing GLSs into toxic volatiles such as ITCs
or nitriles (Wittstock et al., 2003). TGGs are known to
be present in all A. thaliana organs and were reported in
A. thaliana and B. napus phloem parenchyma as well as in
guard cells (Andréasson et al., 2001; Thangstad et al., 2004).
In general, GLSs are enriched in “S-cells” that are found in
Arabidopsis flower stalks and occur close to myrosin cells
(Koroleva et al., 2000; Andréasson et al., 2001).

The spatial distribution of GLSs was demonstrated in A. thaliana
leaves by constructing ion intensity maps from matrix-assisted
laser desorption/ionization-time of flight (MALDI-TOF) mass
spectra, where major GLSs were found to be more abundant
in tissues of the midvein and the periphery of the leaf than
the inner lamina (Shroff et al, 2008). Although this study
concluded that GLSs are not abundant on A. thaliana leaf
surfaces, the authors could not obtain information on the cell
type distribution of GLSs in leaves. Moreover, all the genes in
the GLS biosynthetic pathways have been identified, and it is
somewhat known where GLSs are stored (Koroleva et al., 2000;
Andréasson et al,, 2001), but it has remained elusive where
GLSs are specifically produced at the subcellular, cellular, and
tissue levels (Rask et al., 2000; Nintemann et al., 2017). Neither
is it clear about the cellular and subcellular compartmentation
of different myrosinases and their interacting proteins, which
include myrosinase-binding proteins (MBPs), myrosinase-
associated proteins (MyAPs), and different specifier proteins.

In the following sections, we discuss various aspects of the
GM system based on current knowledge, starting from the
cellular control of enzymes, cell type, and subcellular organization,
to uniqueness of myrosinases and myrosinase interacting proteins
covering a range of small molecule and macromolecular
interactions of the “mustard oil bomb”

THE GLUCOSINOLATE-MYROSINASE
SYSTEM AND CELLULAR CONTROL OF
ENZYME REACTIONS

As found in the order of Brassicales, including important crops
(e.g., mustard, oilseed rape, radish, broccoli, and cabbage),
GLSs co-exist with myrosinases. When tissue damage occurs,

the “mustard oil bomb” is detonated and GLSs are hydrolyzed
and converted to different degradation products with a variety
of biological activities (Rask et al., 2000; Halkier and Gershenzon,
2006; Yan and Chen, 2007; Bednarek et al., 2009; Clay et al.,
2009; Halkier, 2016; Wittstock et al., 2016a). For example, these
degradation products play important roles in plant defense
against pathogens and herbivores, as well as serve as attractants
to specialists (Rask et al.,, 2000; Barth and Jander, 2006; Clay
et al., 2009; Wittstock et al., 2016a). Several of these degradation
products are involved in plant nutrition (Holmes, 1980;
Armengaud et al, 2004) and growth regulation (Hasegawa
et al., 2000; Hull et al., 2000; Mikkelsen et al., 2000). In plant
metabolism, it is important that enzymes and substrates are
under tight regulation, which is more relevant for toxic
compounds, as these chemical defenses are derived from
specialized metabolites. There are several ways of regulation:
(1) coarse control through biosynthesis; (2) fine control of
enzyme activity through protein interaction and allosteric
regulation; and (3) substrate and enzyme compartmentalization
(Sweetlove and Fernie, 2013). While the regulation is well
studied in primary metabolism (e.g., photosynthesis and
respiration), it is not clear in many of the specialized metabolic
processes such as GLS metabolism. Furthermore, protein-protein
interactions are intrinsic to virtually every cellular process and
have been extensively studied in animals and yeast (Uetz et al,,
2000; Gavin et al.,, 2002; Ho et al., 2002; Li et al., 2004; Huttlin
et al., 2017). In plants, this area has lagged behind in spite
of recent progress (Hosseinpour et al., 2012; Zhang et al., 2016;
Jiang et al, 2018). Vast majority of the studies did not go
beyond identifying physical interactions to the point of functional
analysis. Figure 1 shows the potential molecular interactions
of the GM system in the context of cell type-specific metabolisms.

CELL TYPE-SPECIFIC CELLULAR AND
SUBCELLULAR ORGANIZATION OF THE
“MUSTARD OIL BOMB”

Myrosinase is located in myrosin cells, which are scattered
cells in radicles, stems, leaves, petioles, seeds, and seedlings
of several species (Husebye et al., 2002). A cell-specific localization
was found in radicles and cotyledons of the maturing embryo
resembling the pattern of the myrosin cells (Bones et al., 1991).
Most GLSs are constitutively present in all Arabidopsis tissues
(Petersen et al., 2002; Brown et al, 2003). The key steps in
the biosynthesis of the different types of GLSs are localized
in distinct cells in separate as well as overlapping vascular
tissues (Nintemann et al., 2018). The presence of GLS biosynthetic
enzymes in parenchyma cells of the vasculature may assign
new defense-related functions to these cell types (Nintemann et al.,
2018). To date, the cellular and subcellular compartmentation
of the “mustard oil bomb” (Liithy and Matile, 1984) is not
completely clear and is rather contradictory. For instance, in
Arabidopsis flower stalks, GLSs were found in the elongated
sulfur-rich “S-cells” situated between phloem and endodermis
(Koroleva et al., 2000; Husebye et al., 2002). However, the
myrosinase TGG1 was found to be abundant in guard cells,
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FIGURE 1 | Putative interactions between myrosinases (TGGs), myrosinase interacting proteins, GLSs, and volatiles in the context of cell type compartmentation. A
myrosin cell shows vacuolar localization of TGGs, myrosinase-binding proteins (MBPs), and myrosinase-associated proteins (MyAPs); peroxisomal localization of
penetration (PEN2); and ER localization of TGG. Transporters that are specific to GLSs such as NRT1/PTR glucosinolate transporter (GTR) 1, GTR2 or non-specific
transporters could be aiding in their transport to site of accumulation such as S-cells or guard cells. Importantly, these cells may have the capability of de novo
biosynthesis of GLSs. In addition, the presence of epithiospecifier modifier (ESM, MyAP-like), epithiospecifier (ESP), and nitrile specifier (NSP) 1, NSP5, etc. may lead
to the breakdown of GLSs to nitriles and isothiocyanates (ITCs) for roles in cell type-specific signaling and defense against pathogen and herbivores. GLSs, TGGs,
and ESP were found in the S-cells, and the presence of ESM and NSP is indicative of other cell types.
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whereas TGG1 and TGG2 were localized to the phloem-
associated cells close to the “S-cells” (Husebye et al., 2002;
Thangstad et al., 2004; Barth and Jander, 2006). Thus, it appears
that myrosinases and their substrates were physically separated
in the plant tissues. However, such an arrangement may not
be the case as a recent proteomics study located the myrosinases
in “S-cells” (Koroleva and Cramer, 2011). In Brassica juncea
seedlings, myrosinase was found to co-localize with GLSs in
aleurone-type cells (Kelly et al., 1998). In Arabidopsis suspension
cells, both myrosinases and GLSs were present (Alvarez et al.,
2008). Such diverse co-localization results may indicate that
myrosinases and GLSs are spatially separated at the subcellular
levels. Alternatively, they could be in the same compartment
with tight control of myrosinase activities. GLSs were found
in vacuoles rich in ascorbic acid (Grob and Matile, 1979),
which plays a role to inhibit myrosinase at high concentration
and activate myrosinase at low concentration. This dual regulation
supports the potential co-localization of GLSs and myrosinases
in the same subcellular compartment.

Recent metabolomics data have confirmed the presence of
GLSs in guard cells (Geng et al, 2016; Zhu and Assmann,
2017) and revealed the changes in GLS metabolism in guard
cells upon treatment with CO, (Geng et al., 2016) and ABA
(Zhu and Assmann, 2017). The first indication of the role of
GLS metabolism in stomatal movement was obtained through
analysis of the effect of ABA on stomatal movement of the
Arabidopsis myrosinase mutant tggl (Zhao et al, 2008).
Subsequently, additional reverse genetics studies corroborated
the role of GLS metabolism in stomatal movement (Islam et al.,
2009; Zhu et al, 2014). Furthermore, stomatal closure was
induced by pharmacological treatments with different GLS
hydrolysis products (Khokon et al., 2011; Sobahan et al., 2015).
However, these products and the amounts used are of synthetic
origin and abundance. It is not known what degradation
products are produced and how much in vivo, which GLSs
and myrosinases [TGGs and/or Penetration 2 (PEN2)] are
involved, and how protein interactions regulate the GLS
breakdown in guard cells.
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The Arabidopsis cyp79b2/cyp79b3 mutants are known to
produce mostly aliphatic GLSs (Zhao et al., 2002; Chen et al,,
2003; Grubb and Abel, 2006; Khokon et al., 2011; Sobahan
et al,, 2015), while the myb28/myb29 mutants are known to
produce mostly indolic GLSs (Hirai et al., 2007; Beekwilder
et al., 2008). Furthermore, the tggl/tgg2 double mutant showed
undetectable myrosinase activity, and damage-induced breakdown
of endogenous GLSs was not from aliphatic GLSs and was
greatly slowed for indole GLSs (Barth and Jander, 2006).
Moreover, the tggl/tgg2 mutant lacking the foliar myrosinases
was compromised in activation of their GLS defense. Another
mutant, atvam3 mutant showed abnormal distribution of myrosin
cells and overproduction of TGG1 and TGG2 (Ueda et al,
2006). Thus, beyond TGGs, MYB28, MYB29, AtVAM, CYP79s,
and other biosynthetic genes all affect GLS deposition levels
and possibly cell type specificity of the GM system. To understand
the regulation and correlation of these proteins, we used
GeneMANIA software (Warde-Farley et al., 2010) and predicted
the association of the known genes involved in GLS metabolism
(from our selected gene list in Supplementary Table S1). This
software further added putative proteins with similar functions
and potential involvement in the GM system (Figure 2).

In B. napus leaves, myrosinases are localized in mesophyll
cells and phloem cells (Chen and Andreasson, 2001) and were
mainly stored in protein-rich vacuolar structures of myrosin
cells (Rask et al., 2000; Ueda et al., 2006). There is also a
report of the presence of myrosinase as cytosolic enzymes bound

to intracellular membranes (Luthy and Matile, 1984). The
knowledge of the localization of myrosinases and interacting
proteins was advanced by vacuolar proteomics. Myrosinases,
TGG1 and TGG2, and myrosinase-associated protein (MyAP) 1
were identified in the vacuoles. In the early leaf developmental
stages, TGG1 is more abundant than TGG2, whereas in fully
expanded leaves, both TGG1 and TGG2 levels show increased
accumulation. Concurrently, MyAP1 levels are increasingly
abundant. We have previously observed such regulation of
myrosinase expression, which correlated with GLS turnover
(Petersen et al.,, 2002). The co-localization of myrosinase and
MyAP1 and the concurrent expression during development lead
to the hypothesis that the vacuolar myrosinases may be active
and MyAPs may interact with myrosinase to play a role in
GLS hydrolysis. For example, MyAPs may facilitate ITC production
(Zhang et al., 2006). Indeed, immunogold analysis of leaf sections
showed the presence of TGG1 and TGG2 in the same vacuoles
(Ueda et al., 2006). An independent vacuolar proteomics study
also identified these proteins (Carter et al.,, 2004). In addition,
two more MyAPs (At1g54000 and Atl1g54010) and three
myrosinase-binding proteins (MBPs) (At1g52040, At3g16470,
and At2g39330) were localized in the vacuoles (Carter et al.,
2004). TGG1 and TGG2 were also found in the endoplasmic
reticulum (ER), ER bodies, and transvacuolar strands, and this
localization is dependent on MyAP1 (MVP1). Mutation of the
MyAP1 clearly altered the subcellular localization profiles of
the green fluorescent protein (GFP)-tagged TGG1 and TGG2
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FIGURE 2 | Visualization of functional prediction of protein networks in the glucosinolate-myrosinase (GM) system using GeneMANIA (http://genemania.org/). The
protein names are indicated inside the nodes, and the links between the nodes indicate the network edges in which the proteins are connected. The color of the
edges represents evidence for the connection, which includes co-expression (purple), predicted (yellow), shared protein domains (beige), physical interactions (pink),
co-localization (blue), and genetic interactions (green). As to functions associated with each protein, the color code inside the nodes indicates GLS metabolic
process (red), sulfur compound metabolic process (blue), defense response to bacterium (yellow), defense response to insect (purple), response to oxidative stress
(green), defense response to fungus (pink), and stomatal movement (light blue).
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(Agee et al, 2010). Interestingly, the myrosinase PEN2
(hydrolyzing indole GLSs and shown to function in plant defense
(Bednarek et al., 2009; Clay et al., 2009; Millet et al.,, 2010;
Fan et al,, 2011; Johansson et al., 2014; Frerigmann et al., 2016;
Luti et al, 2016; Xu et al, 2016; Vilakazi et al., 2017)) is
targeted to peroxisomes and the outer mitochondrial membrane
(Fuchs et al., 2016). In addition to MyAPs and MBPs, specifier
proteins including epithiospecifier modifier (ESM, MyAP-like),
epithiospecifier protein (ESP), nitrile specifier protein (NSP),
and thiocyanate forming protein (TFP) may affect the outcome
of GLS degradation (Lambrix et al., 2001; Burow et al., 2006;
Zhang et al., 2006; Wittstock et al., 2016a,b; Backenkohler et al.,
2018). ESP was found to be in “S-cells” and in guard cells
with NSP1 and NSP5 (Burow et al., 2007; Zhao et al., 2008).
The functions of these MyAPs, MBPs, and specifier proteins
in “S-cells” and guard cells and their interactions with myrosinases
in different cell types are not known.

To understand the subcellular organization of the GM system,
we compared the proteins and pathways involved in GLS
biosynthesis, degradation, and transport using available and/
or predicted subcellular localization information. Figure 3 and
Supplementary Table S1 provide an overview of the GM system
at subcellular level based on available literature and analysis
using different protein localization tools: (1) Plant-mPLoc'
(Chou and Shen, 2007, 2008, 2010); (2) TAIR? (with annotation
based on literature); (3) Eplant’ using SUBA (Subcellular
Localisation Database for Arabidopsis) with annotation based
on subcellular proteomics and/or protein fluorescence microscopy;
(4) TargetP' based on the N-terminal targeting sequences
(chloroplast transit peptide (cTP), mitochondrial targeting peptide
(mTP), or secretory pathway signal peptide (SP) (Emanuelsson
et al, 2000) [with a reliability score of 1-5 (1 being most
reliable and 5 least reliable)]; (5) LocTree® using support vector
machines for localization prediction (in the form of expected
accuracy); and (6) ngLOCS using Bayesian method for prediction
of localization. As shown in Figure 3, most GM system proteins
were found to be in the cytoplasm followed by nucleus, where
the transcriptional regulators were localized. All the cytochrome
P450s involved in GLS biosynthesis and modification were
localized to endoplasmic reticulum, and other GLS biosynthesis-
related proteins were in the chloroplast and cytoplasm.
Glucosinolate transporters (GTR1 and GTR2) and nitrate
transporters (NRT1.6, NRT1.7, and NRT1.9) were found to
be in plasma membrane. It is not known how glucosinolates
are transported into vacuoles. PEN2 and BZO1 were localized
in peroxisomes. No GM system proteins were found on Golgi
apparatus. Out of the 114 GM system proteins used in this
study (Supplementary Table S1), 65 proteins had experimental
evidence of localization, 26 were predicted using the software
tools (at least three tools with consistent result), and 23 proteins
could not be conclusively localized.

'http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/
*https://www.arabidopsis.org/tools/bulk/protein/index.jsp
*https://bar.utoronto.ca/eplant/
*http://www.cbs.dtu.dk/services/ TargetP/
*https://rostlab.org/services/loctree3/
Shttp://genome.unmc.edu/ngLOC/index.htm]

DISTINCT MOLECULAR AND
BIOCHEMICAL PROPERTIES
OF MYROSINASES

Myrosinases are classified into two types, typical (classical)
and atypical myrosinases. The crystal structure of a classical
myrosinase shows that the protein folds into an (B/a),; barrel
structure (Burmeister et al.,, 1997). In the active site, a Glu
(E) residue is involved in nucleophilic attack to initiate the
release of an aglycone (thiohydroximate-O-sulfonate) and form
a glucosyl-enzyme intermediate. Another Gln (Q) residue
enables the hydrolysis of this intermediate with assistance
from water and ascorbate. Classical myrosinases (with QE
catalytic residues) use ascorbate as a cofactor and proton
donor to facilitate the release of bound glucose (Burmeister
et al,, 1997; Wittstock and Burow, 2010; Bhat and Vyas, 2019).
In contrast, atypical myrosinases have two catalytic Glu residues
(EE), which function as acid/base catalyst in the active site.
They do not require ascorbate. In addition, atypical myrosinases
have two basic amino acid residues at different positions (+6
and +7) for glucosinolate binding compared to +0 position
arginine residue of classical myrosinases (Wittstock and Burow,
2010; Nakano et al., 2017; Shirakawa and Hara-Nishimura,
2018; Bhat and Vyas, 2019). Classical myrosinases are
glycosylated, activated by low concentrations of ascorbate, and
accepted GLSs as the only substrates (Chen and Halkier, 1999;
Chen and Andreasson, 2001). In contrast, atypical myrosinases,
such as PEN2 and PYKI10, can hydrolyze indole GLSs and
also use O-glucosides as substrates (Bednarek et al., 2009;
Nakano et al., 2017). Although myrosinase does not use
acylated GLSs and desulpho-GLSs as substrates, it may accept
a wide range of GLS substrates (Chen and Halkier, 1999;
Rask et al., 2000; Barth and Jander, 2006). Myrosinases from
B. napus and Crambe abyssinica degrade different GLS at
different rates (James and Rossiter, 1991; Finiguerra et al.,
2001). However, the mechanism underlying this substrate
specificity is not established. Myrosinases in B. napus are
encoded by >29 genes in three subfamilies, denoted as MA,
MB, and MC. The MA myrosinases occur as dimers, while
MB and MC myrosinases exist in complexes with MBPs and/
or MyAPs (Lenman et al, 1990; Rask et al, 2000). By
heterologous expression in yeast, we have previously produced
a functional free form myrosinase Myrl from the MB subfamily
(Chen and Halkier, 1999). The activity of this Myrl suggests
that MBPs and MyAPs are not absolutely necessary for
myrosinase activity, but raises questions on the functions of
MBPs and MyAPs and their interactions with myrosinases.
Bioinformatic analysis of the Arabidopsis genome revealed
the presence of six myrosinase genes TGGI-TGG6 (Xu et al,
2004). TGGI and TGG2 are expressed in leaves (Xue et al.,
1995; Husebye et al., 2002; Thangstad et al., 2004; Barth and
Jander, 2006; Ueda et al., 2006) and flowers (Ruan et al., 1998;
Barth and Jander, 2006), while TGG4 and TGG5 are specifically
expressed in roots (Zimmermann et al, 2004). TGG3 and
TGGE6 are pseudogenes (Husebye et al., 2002; Zhang et al., 2002).
Although TGG1 and TGG2 appear to display a low degree
of substrate specificity, the activities of TGG1 and
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FIGURE 3 | Subcellular localization of Arabidopsis proteins involved in GLS biosynthesis, degradation, and transport. The subcellular organelles and their localized
proteins are given in similar color. Most of the subcellular localizations are based on literature evidence. The names of the proteins with an asterisk are predicted
localization information (i.e., for proteins that do not have localization information in literature) that are based on consensus from at least three software tools used.
The prediction tools used were Eplant, TargetP, LocTree, ngLOC, Plant-mPLoc, and TAIR. Please refer to Supplementary Table S1 for detailed information.

TGG2 have been correlated with the feeding preference
and growth of different generalist and specialist insects (Barth
and Jander, 2006). Interestingly, overexpression of TGGI and
TGG2 leads to accumulation of several GLS degradation
products, including 5-methylhexanenitrile, heptanenitrile,
1-isothiocyanato-3-methylbutane,  1-isothiocyanato-4-methyl
pentane, and 1-isothiocyanato-3-methylhexane. Based on the
degradation product profile, possible endogenous substrates for
the two TGGs include 4-methylthiobutylglucosinolate,
4-methylpentylglucosinolate and 3-methylbutylglucosinolates
(Ueda et al, 2006). Investigating endogenous substrates of
different classical and atypical myrosinases is an important
future direction.

In leaves, TGG1 was found to be abundant in guard cells,
while TGG2 appeared only present in phloem-associated cells
(Barth and Jander, 2006; Zhao et al., 2008). Considering the
presence of GLSs in guard cells (Geng et al, 2016;
Zhu and Assmann, 2017), how the GM system plays a role

in guard cell functions (e.g., stomatal immunity) is an
interesting question. Clearly, mutation of the TGG1 and/or
TGG2 genes affected the guard cell size, stomatal aperture,
and leaf metabolites, such as fatty acids, glucosinolates, and
indole compounds (Ahuja et al., 2016). Another proteomic
study of trichome and epidermal pavement cells did not
identify the TGG1 protein in the samples (Wienkoop et al.,
2004). However, a single cell type study in trichomes found
the presence of gene encoding transcription factors of aliphatic
GLS (MYB28, MYB29 and MYB76) and indole GLS (MYB34,
MYB51 and MYBI22), indicating that trichomes have
biosynthetic genes for the GM system (Frerigmann et al,
2012), but nothing was suggested about myrosinases activity
or expression. Given the defense roles of guard cells and
trichomes, characterization of the GM systems in these special
cell types is of great importance to understand the molecular
mechanisms underlying the cell type-specific functions, e.g.,
defense against pathogen invasion.
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COMPLEX FORMATION
BETWEEN MYROSINASE AND
ITS INTERACTING PROTEINS

As described earlier, myrosinase interacting proteins include
MBP, MyAP, and specifier proteins (ESM, ESP, NSP, and TFP).
The first six MBPs identified in B. napus range in size from
30 to 110 kDa (Taipalensuu et al, 1996; Chisholm et al.,
2000). All MBPs contain jacalin-like repeats (Chisholm et al.,
2000; Andréasson et al., 2001). Jacalin-related proteins share
the domain structure of plant lectins and are upregulated by
phytohormones (e.g., jasmonic acid, salicylic acid, and ethylene)
and pathogens (Taipalensuu et al, 1996; Geshi and Brandt,
1998; Xiang et al, 2011; Vilakazi et al., 2017). Recently,
identification of bacterial lipopolysaccharide interacting proteins
in Arabidopsis revealed myrosinases, TGG1 and TGG2, and
a MBP (Vilakazi et al, 2017). It remains unclear how the
MBP levels are regulated and whether MBPs directly interact
and affect myrosinase activity and specificity. In B. napus
seeds, MBPs are present in most cells but not in the myrosin
cells (Rask et al., 2000; Ueda et al., 2006). During germination,
MBPs are co-localized with myrosinases in cotyledons, suggesting
that preformed myrosinase complexes do exist (Geshi and
Brandt, 1998; Eriksson et al., 2002). Using basic local alignment
search tool (BLAST) to interrogate the Arabidopsis genome
reveals >30 putative MBPs. MBP1 and MBP2 are like lectin
jacalins and plant aggregating factors. MBP1 and MBP2 are
abundantly expressed in immature flowers, and the pattern
is similar to that of myrosinase TGG1 (Capella et al., 2001).
MBP expression and myrosinase activity are affected in the
coil mutant, which is insensitive to jasmonate (Capella et al.,
2001). Depletion of MBPs does not alter the cellular distribution
of myrosinases but prevents myrosinases from forming complexes
(Eriksson et al., 2002). Thus, the functions of MBPs are not
fully understood. Interestingly, most NSPs possess jacalin-like
domains and are MBP-like (Kuchernig et al., 2012). The jacalin-
like domain may interact with the glycans of myrosinases to
potentially affect GLS degradation. However, experimental
evidence is lacking. NSPs were shown to enhance simple nitrile
formation (He et al., 2009; Kissen and Bones, 2009; Chen
et al,, 2015; Wittstock et al., 2016b). Recently, iron was shown
to be a centrally bound cofactor of ESP, TFP, and NSP involved
in glucosinolate breakdown. In addition, NSP active site has
fewer restrictions to the aglycone conformation than ESP and
TFP. This may explain why NSP facilitates simple nitrile
production, but not production of epithionitrile and thiocyanate
that may need exact positioning of the aglycone thiolate relative
to the side chain (Backenkohler et al., 2018). In addition to
MBPs, MyAPs form complexes with myrosinases in B. napus
(Taipalensuu et al., 1996). In Arabidopsis, TGG2 was pulled
down with MyAP1 in leaf extracts (Agee et al., 2010). MyAPs
display high similarity to GDSL lipases, which have a motif
of Gly, Asp, Ser, and Leu residues in the active site. The
Arabidopsis genome contains >80 genes encoding GDSL lipases,
typically with a GDSL-like motif, a catalytic triad of Ser, Asp
and His residues, and a lipase signature sequence GxSxxxxG

(Brick et al., 1995). The possible lipase activity of MyAP
suggests a potential role of MyAP in releasing acyl groups
from acylated GLSs, thereby making them available for
myrosinase hydrolysis. Arabidopsis contains acylated GLSs in
seeds, but B. napus does not contain acylated GLSs; thus,
MyAP in B. napus may have other functions. A recent study
shows that overexpression of B. napus MyAP]I led to enhanced
plant defense against a fungal pathogen Sclerotinia sclerotiorum
(Wu et al,, 2017). A MyAP-like ESM was found to favor ITC
production and protect Arabidopsis from herbivory (Zhang
et al., 2006). However, whether this system involves myrosinase
complex formation is still not known. In some plants, ESPs
are involved in GLS hydrolysis (Foo et al., 2000; Burow et al.,
2006). Hydrolysis of alkenyl GLSs in the presence of ESP
leads to the formation of nitriles or epithionitriles, instead
of isothiocyanates (Zabala Mde et al., 2005; Burow et al,
2006). Because ESPs can alter the course of hydrolysis, they
are important in determining plant herbivore choice and host
resistance (Lambrix et al,, 2001). Furthermore, this suggests
that ESP is situated close to the active site so that it could
promptly convert the unstable aglycone to nitriles. Although
kinetic studies have showed that ESP acts as a non-competitive
inhibitor of myrosinase (MacLeod and Rossiter, 1985), no
stable interaction between ESP and myrosinase has been
reported (Burow et al., 2006). Like nitrile formation, the
production of thiocyanate was found to be associated with
TFP. For detailed description of myrosinase specifier proteins,
please refer to a recent review (Wittstock et al., 2016a). In
summary, several other groups of proteins may interact with
myrosinases and function to affect how GLSs are degraded,
leading to the formation of different metabolic products.
Systematic studies to characterize the interaction of these
proteins with myrosinases are needed to elucidate their
specific functions.

DIRECTIONS FOR FUTURE RESEARCH
AND CONCLUSIONS

Currently, the cellular and subcellular location of myrosinases,
GLSs, and their interacting proteins, i.e., the GM system, are
far from established. Given >100 cell types in plants and >5,500
species of GLS producers, it would be a challenge to capture
all the species-specific and cell type-specific information of
the “mustard oil bomb.” In addition, with temporal accumulation
and expression patterns of metabolites and enzymes involved
typically in case of specialized metabolites, these eventual
pictures could be very complex. Using cell type-specific genetic
manipulations (e.g., GFP fusion and CRISPR), one can envision
to capture the cell type-specific expression patterns and
functional role of the glucosinolate biosynthetic proteins,
myrosinases, and myrosinase interacting proteins. There exist
large gaps in the knowledge base of the GM system, e.g.,
myrosinase interacting proteins in terms of their interactions,
co-localizations, regulations, and functions in specific cell types.
Furthermore, the developmental staged appearance and regulation
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of the proteins and metabolites are not clear. Moreover, the
reported interactions of myrosinases and other proteins could
be very much cell type-specific or subcellular localized, which
is not well studied till date. Without resolving the cell type
specificity of the proteins and metabolites, it would be very
challenging to draw mechanistic conclusions on the specific
roles of the enzymes, interactors, transporters, and the metabolites
from tissue- and whole plant-based data where the information
are averaged out (Dai and Chen, 2012; Misra et al, 2014).

In the future, efforts need to focus on large-scale speedy
preparations of organelles and subcellular fractions (e.g.,
vacuoles, peroxisomes, and chloroplasts) in a time-dependent
manner to capture the dynamics of protein interactions and
GLS metabolism. It is obviously challenging to prepare and
enrich plant cell types (e.g., the “S-cells”) in copious amounts
for more system-wide experiments such as transcriptomics,
proteomics, and metabolomics and to obtain preparations
at a given time and for a specific treatment. With the
recent development of single-cell omics tools (Misra et al.,
2014; Efroni and Birnbaum, 2016; Doerr, 2019), such large-
scale molecular characterization of different single cells is
within sight and will greatly enhance the understanding of
the chemodiversity of the GM system at the single-
cell resolution.
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