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ABSTRACT: The reductive tricarboxylic acid (rTCA) cycle is an important central
biosynthetic pathway that fixes CO2 into carboxylic acids. Among the five reductive steps
in the rTCA cycle, the two-electron reduction of fumarate to succinate proceeds
nonenzymatically on the surface of photoexcited sphalerite (ZnS) colloids suspended in
water. This model reaction is chosen to systematically study the surface photoprocess
occurring on ZnS in the presence of [Na2S] (1−10 mM) hole scavenger at 15 °C.
Experiments at variable pH (5−10) indicate that monodissociated fumaric acid is the
primary electron acceptor forming the monoprotic form of succinic acid. The following
reaction scheme is proposed: (1) photoexcitation of ZnS generates conduction band
electrons and valence band holes, (2) the hole scavenger donates electrons while
producing sulfur-containing intermediates en route to sulfate formation, (3) a first
electron transfer occurs at the conduction band converting chemisorbed monoprotic
fumaric acid at surface zinc sites into an adsorb radical anion, and (4) the radical anion
accepts a second electron and forms an adsorbed carbanion, which (5) abstracts two
protons consecutively from either hydronium ion (acidic condition) or water (neutral and basic condition) to be desorbed as
monodissociated succinic acid. The apparent quantum yield measurement of succinate production (Φs) under periodic
irradiation at λ ≥ 305 nm shows that the time scale of electron transfer on the conduction band (t1) and valence band hole loss
(t2) are in the order of hundred microseconds and a few milliseconds, respectively. These transitions (t1 and t2) become
undistinguishable at 520 μs for a zeta potential ζ = −22.09 mV corresponding to [Na2S] = 0.57 mM. Overall, this work provides
new insights to model heterogeneous processes such as the reduction of CO2 occurring on the surface of photocatalysts and
advance present understanding of photocatalytic reactions.

■ INTRODUCTION

The photocatalytic harvesting of solar photons can potentially
address the growing demand of energy supply faced world-
wide.1 In this context, photocatalytic studies have largely
focused their attention in producing renewable H2(g) from
water splitting,2 while more recently the reduction of CO2 has
regained attention as a possible mechanism to fix this
atmospheric greenhouse gas and produce useful hydrocarbon
fuels.3−5 In general, the reported difficulty for promoting the
photocatalytic reduction of CO2 is the high initial energy cost
of the one-electron reduction to produce CO2

•−, which has a
standard reduction potential E0 = −1.85 V at pH 7.5 Efforts to
improve the low quantum yield of typical reductions have
proposed to control the properties of photocatalysts to increase
the number of photoexcited carriers on the surface where the
reaction takes place.2 Surface modifications that activate the
semiconductor also facilitate charge separation,2 suggesting the
importance of measuring the lifetimes of surface excited states.
Recently, various doping of nanostructures, combinations of
semiconductors, and the addition of sensitizers were explored.5

However, a central physical chemistry concept that has been
ignored5 until our previous publication3 is that the effective
transfer of electrons to adsorbed substrates occurs in relatively
slow time scales.3

In addition to the energy applications discussed above,
prebiotic chemists have been interested in the use of
photocataysis to drive a cycle of carbon fixation inspired in
the reductive tricarboxylic acid (rTCA) cycle relevant to the
origin of life.6−10 The origin of life is one of the most important
unsolved questions of science,11 which combines several diverse
disciplines, including physical chemistry. A further discussion to
context of this research in the origin of life field is presented in
the Supporting Information. Photocatalyzed reactions have
been proposed as fundamental for the origin of life6−10,12−14 by
directly providing carboxylic acids to the rTCA cycle.7−10 The
photoexcitation of mineral semiconductors by sunlight opens
new reaction pathways through the generated excited-state
species and radicals.10 For example, three out of five reductions
from the rTCA cycle can be driven by photocatalysis on the
surface of ZnS colloids suspended in water using Na2S hole
scavenger.7,10 The stoichiometric yields of the conversion from
oxaloacetate to malate, fumarate to succinate, and 2-
oxoglutarate to oxalosuccinate were 75, 95, and 2.5%,
respectively.10 The low yield for the reductive carboxylation
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of 2-oxoglutarate to oxalosuccinic acid, its consecutive
reduction to form cis-aconitic acid, and the reductive
carboxylation of succinic acid to 2-oxoglutaric acid have been
difficult to achieve.10 Furthermore, the actual photocatalytic
mechanism of the working reductive steps has remained
unexplored.6

The focus of this study on ZnS factors in that the
photocatalyst was indicated as an excellent mineral present in
Hadean environments due to its stability with respect to
ZnCO3.

10,14 The conduction-band electrons of the semi-
conductor have a sufficiently negative reduction potential
(−1.04 V vs NHE) to drive all the reductions steps in the rTCA
cycle.10,14 Moreover, ZnS can harvest energy from the sun’s
photons to promote the reaction under study, which is slow by
thermal chemistry alone.10,14 In our previous work, the
reduction of CO2 to formate (HCOO−) was reported in
great detail using illuminated aqueous suspensions of ZnS
semiconductor as the catalysts.3 The work developed new
methods to study photoreductions reactions3 and pointed out
that to enable any progress in this field, further understanding
of the photocatalytic processes and the associated surface
mechanisms are needed. In this context, the production of C−
C coupling dimers in a mixture of 2,5-dihydrofuran and
tetrahydrofuran on irradiated ZnS indicates the surface
reactivity of adsorbates with double bonds.15

In this work, the efficient and specific reduction of fumarate
to succinate is purposely chosen as a model reaction to study
the heterogeneous mechanism on ZnS. In this system, the
reaction is not governed by the equilibrium thermodynamics, as
for biological systems, because it should proceed favorably (E°
= +0.031 V, pH 7.0 and 298 K).16 Instead, the reaction is
sluggish due to kinetics limitations that can be reversed without
the generation of side products upon irradiation of ZnS to
proceed efficiently. This work aims to gain new fundamental
understanding of the photocatalytic process, compare it to that
of CO2 reduction,3 and provide insights conducting to
improving the efficiency for the reductive carboxylation
reactions on ZnS, e.g., for 2-oxoglutarate. The determination
of the bandgap of synthesized ZnS nanocrystallites suspended
in water is explored by quantifying the rate of succinate
production Rs at different cut-off wavelengths of irradiation
(λcut-off). After studying the effect of pH on Rs, the apparent
quantum yields of succinate production (Φs) at λ = 325 ± 20
nm are determined under continuous and periodic irradiation.
The dependence of Φs on [Na2S] yields information to
distinguish the time scales for hole loss and electron transfer for
the model system. Finally, all observations are summarized in a
proposed reaction mechanism showing the importance of
adsorption processes as a limiting factor regulating the transfer
time scale of charge carriers in photocatalysis.

■ EXPERIMENTAL DETAILS
Catalyst Preparation. ZnS photocatalyst was freshly

prepared at a loading of 2.3 g L−1 by dropwise addition of
100 mL of 50 mM Na2S (99.1% assay, Sigma-Aldrich) to 100
mL of 50 mM ZnSO4 (ZnSO4·7H2O, Sigma-Aldrich
ReagentPlus, 99.0%) under continuous N2(g) (UHP, Scott-
Gross) sparging.3 Degassed ultrapure water (18.2 MΩ cm, Elga
Purelab Flex, Veolia) was used in all experiments. The
concentration of stocked sulfide solution was measured after
a 1:100 dilution with 2.00 M NaOH (99.3% assay, Fisher
Chemicals) using a sulfide ion selective electrode (Thermo,
Orion 94-16).3 The previously diluted sulfide solution was

further diluted with an equal volume of 2.00 M NaOH and then
titrated with 100 mM cadmium nitrate (cadmium nitrate
tetrahydrate, Aldrich, ≥99.0%).3 The concentration of sulfide
hole scavenger during photoirradiation was potentiometrically
quantified using a calibration curve. The decrease of sulfide
concentration followed a first-order decay curve with a
correlation coefficients r2 > 0.998.

Photoirradiation Experiments. Experiments were per-
formed by placing 100 mL of ZnS suspension in a 200 mL
customized cylindrical quartz photoreactor surrounded with a
water jacket.3 The temperature was kept at 15 °C by flowing
water through the photoreactor from a circulating bath
(Thermo Scientific SC100-A25).3 A 1 kW high-pressure
Hg(Xe) arc lamp provided with a water filter, to remove
infrared radiation, was used in combination with a cut-off
optical filter. Optical filters with a cut off wavelength λcut-off =
280, 295, 305, 320, and 400 nm were used in selected
experiments.3 Results report the average of duplicate experi-
ments with one standard deviation. In a typical experiment, the
reduction of fumarate to succinate in an aqueous suspension of
ZnS was conducted under continuous irradiation at λ ≥ 305
nm. A volume of 0.25 mL of [Na2S] = 3.270 M was added to
the colloidal suspension, which was augmented with 1.0 mmol
sodium fumarate (Alfa Aesar, 99.6% assay). The initial
concentration of sulfide was ∼8.0 mM (pH ≈ 12.10) and
dropped to ∼2.0 mM upon adjustment to pH ∼ 7.05 with
H2SO4 (Acros Organics, 98.0%).
Φs was determined under continuous and periodic

illumination from the ratio of rate of succinate production to
the effective photon flux. The effective photon flux for the
wavelength range 325 ± 20 nm was determined by potassium
ferrioxalate actinometry after convoluting the spectrum of the
actinometer17 with that reported for the catalyst in water.3

Light modulation by pulses from 0.02 to 2400 Hz, for
illuminated periods lasting τL = 0.208 ms−25 s on, was
provided by a mechanical shutter and optical choppers as
described previously.3 Aliquots (5 mL) were extracted from the
reactor every 20 min and centrifuged at 4400 rpm for 5 min in
the dark. Sulfide concentrations were monitored with the ion
selective electrode as described above for experiments with
initial [Na2S]0 = 1.03, 2.03, 5.07, and 10.07 mM.
Control experiments (Table 1) were designed to prove that

the only operative mechanism for fumarate reduction was

photocatalysis. Each control tested whether succinate produc-
tion proceeded or not in the absence of one of the following
conditions: ZnS (control A), light (hv) (control B), fumarate
(control C), and hole scavenger (controls D). Alternatively, the
use of 8.0 mM sodium sulfite (99.9% assay, Fisher Chemicals)
instead of Na2S as the hole scavenger was assayed in control E.

Table 1. Control Experiments to Demonstrate the
Photocatalytic Production of Succinate

conditions product

ZnS UV fumarate hole scavenger succinate

experiment + + + + +
control A − + + + −
control B + − + + −
control C + + − + −
control D + + + − −
control E + + + +a +

a8.0 mM Na2SO3 was used instead of Na2S.
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Analysis of Products. All samples were centrifuged at 4400
rpm for 5 min, filtered (IC Acrodisc 0.2 μm pore size; Pall
Corp.) to discard the precipitate, and diluted 8 times for
analysis with a Dionex ICS-2000 ion chromatography system.3

This system was equipped with an AS autosampler (Dionex), a
suppressor, a hydroxide (OH−) eluent generator (KOH
cartridge EGC III, 0.38 mL/min as the flow rate), an anion
trap column (CR-ATC), and a conductivity detector.
Chromatographic separation of anions was carried out with
an IonPac AS11-HC analytical column (2 × 250 mm) coupled
with an IonPac AG11-HC guard column (2 × 50 mm).3 The
initial 1 mM hydroxide concentration was kept constant for 8
min and then increased linearly to 15 mM for 10 min, followed
by a second gradient to 30 mM [OH−] for 10 min, and a third
increment to 60 mM for 10 min.3 A 0.12 mL min−1 flow of 0.42
mM formic acid (Fisher Optima LC-MS grade, 99.6% assay) in
methanol (Fisher Optima LC/MS grade, 99.99% assay) was
mixed with the chromatographic eluent through a Tee
connection.3 A mass spectrometer (Thermo MSQ Plus)
interfaced by an electrospray ionization probe operating in
negative ion mode allowed sample identification of the mass-to-
charge ratio (m/z) of anions in the mixed flow. The optimized
mass spectrometry parameters were needle voltage 1.9 kV, cone
voltage 50 V, probe temperature 450 °C, and nitrogen
nebulizing 70 psi.3 Anions identified by mass spectrometry
included fumarate (m/z 115), succinate (m/z 117), bicarbonate
(m/z 61), bisulfite (m/z 81), bisulfate (m/z 97), hydrogen
thiosulfate (m/z 113), and hydrogen dithionite (m/z 129).
Succinate was quantified from calibration curves prepared with
sodium succinate (Alfa Aesar, 99.75% assay). In selected
experiments, the concentration of fumarate was also monitored
based on the comparison of integrated chromatographic peak
areas to a calibration curve prepared using sodium fumarate.
Mineral Characterization. The characterization and

stability of the mineral were assessed after drying samples of
ZnS as described before3 by powder X-ray diffraction (XRD)
and Raman spectroscopies as well as by transmission electron
microscopy (TEM). In summary, XRD spectra and TEM
micrographs show the catalyst is the same before, during, after
irradiation, and even after a second round of photolysis
experiments when reusing ZnS.3

The concentration of dissolved Zn2+ during photoirradiation
experiments was measured every 30 min by atomic absorption
spectroscopy (Thermo Scientific iCE 3000 Series) at λ = 213.9
nm using a Zn hollow cathode lamp with a flame made of
acetylene and air (both Scott Gross, UHP grade). A calibration
curve was prepared with the same matrix using a nonirradiated
sample under the same experimental conditions.

■ RESULTS AND DISCUSSION
Identification of Products. Figure 1 shows the ion

chromatogram of species identified as products during the
reduction of fumarate on ZnS colloids irradiated for 2 h at λ ≥
305 nm. The separated chromatographic peaks correspond to
anions eluting with m/z values with a retention time (tr):
succinic acid monoanion (m/z = 117, tr = 18.07 min), bisulfite
(m/z = 81, tr = 18.85 min), bicarbonate (m/z = 61, tr = 19.25
min), bisulfate (m/z = 97, tr = 19.32 min), fumaric acid
monoanion (m/z = 115, tr = 20.06 min), hydrogen thiosulfate
(m/z = 113, tr = 24.52 min), and hydrogen dithionite (m/z =
129, tr = 32.30 min).
The black traces in Figure 2 show examples for the

production of succinate versus time at (solid squares) pH

5.32 and (empty circles) 7.02. The linear fitting to the
experimental data yields succinate production rates with time, t
(min), of Rs = 2.669 μM min−1 × t (r2 = 0.992) at pH 5.32 and
Rs = 0.464 μM min−1 × t (r2 = 0.984) at pH 7.02. Control
experiments (Table 1) demonstrate that the reduction of
fumarate to succinate proceeds by heterogeneous photo-
catalysis. Controls A−D showed no production of succinate.
Specifically, the participation of any thermal reaction
contributing to the reduction of fumarate in our system is
discarded by control B in the absence of irradiation.
Interestingly, succinate production was observed when
substituting Na2S by 8.0 mM sodium sulfite as the hole
scavenger (control E). These results confirms that the
reduction of fumarate proceeds with high yield and that no
alternative products are generated,10 even when employing
several cut-off irradiation filters (λcut-off ≥ 280, 295, 305, and
320 nm) or varying the pH (5−10).

Figure 1. Ion chromatogram of a photolyzed (λ ≥ 305 nm) sample of
1.0 mM fumarate in 2.3 g L−1 ZnS at pH 7.02 for 2 h in the presence
of [Na2S]0 = 2.0 mM. Extracted anion peaks for succinate (m/z 117),
bicarbonate (m/z 61), bisulfite (m/z 81), bisulfate (m/z 97), fumarate
(m/z 115), hydrogen thiosulfate (m/z 113), and hydrogen dithionite
(m/z 129) are displayed. Peaks (∗) at m/z 97 and 113 are scaled down
10 times.

Figure 2. [Succinte] and dissolved [Zn2+] during 2 h irradiation
(λcut-off ≥ 305 nm). Key: empty black circle = [succinate] at pH 7.02;
solid black square = [succinate] pH 5.32; empty red triangle = [Zn2+]
at pH 7.02; solid red diamond = [Zn2+] at pH 5.32. Other conditions
as listed in Figure 1.
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The integrity of ZnS at low pH is affected as the material
starts to dissolve into Zn2+ and S2− ions (Figure 2). For
example, at pH 5.32, [Zn2+] rises exponentially with time
according to [Zn2+] = 43.7 × (1 − e−0.0473 t) (r2 = 0.997),
reaching a plateau after 1 h with maximum [Zn2+]max = 43.7 μM
(Figure 2). Even for this low pH, the generated excess of Zn2+

and the adsorption of H3O
+ on the surface of ZnS are not

sufficient to overturn the negative zeta potential ζpH=5 = −20.12
mV.3,18 This pH-dependent dissolution of ZnS should not be
confused with corrosion, which was observed in the absence of
hole scavenger (e.g., [Zn2+] = 365.59 μM at pH = 7.02 after
irradiation for 2 h). The photodecomposition of ZnS can
proceed via an irreversible reduction of lattice zinc ions by
conduction band electrons and the oxidation of lattice sulfide
ions by holes.19 Therefore, the presence of dissolved sulfide ion
hole scavenger in the experiment allows the reversal of
photooxidation by providing a substitution mechanism that
contributes to maintain the stability of ZnS during illumina-
tion.19 At pH ≥ 7.0, no dissolved Zn2+ was observed during
irradiation, as depicted in the experiment at pH 7.02 (ζpH=7 =
−31.09 mV) in Figure 2, proving the stability of the catalyst.
The production of elemental (rhombic) sulfur (S8) during

photoirradiation was observed as a slight yellow color
developed over the white background colloidal suspension.
Raman microspectroscopy provided a confirmation for the
generation of S8.

3 A photoxidation mechanism in the presence
of HS− hole scavenger prevents the photodegradation of the
photocatalyst by substituting S2− to the photooxidized lattice
sites.19 As a result, S8 is produced during irradiation from the
oxidation of sulfide hole scavenger.
Identification of a Monoanion Intermediate as the

Primary Electron Acceptor. Fumaric acid (pKa1 = 3.02 and
pKa2 = 4.38 at 25 °C)20 can dissociate twice as indicated by the
sequence of equilibrium reactions 1 and 2:

− −
⇄ − − +− +





HOOC CH CH COOH
HOOC CH CH COO H (1)

− −
⇄ − − +

−

− − +




HOOC CH CH COO
OOC CH CH COO H (2)

Based on the speciation of fumaric acid for pH < pKa1, the
diprotic form (H2A) is the major species present in equilibrium,
and the completely dissociated form (A2−) is the dominant
species for pH > pKa2. For the intermediate pH range bracketed
between pKa1 and pKa2, the monoanion form (HA−) of fumaric
acid becomes the main species in equilibrium. The same
concept applies to describe the dissociation of succinic acid, as a
diprotic acid (pKa1 = 4.21 and pKa2 = 5.64)20 product. Figure 3
shows the dependence of the rate of succinate production Rs on
pH and the speciation curves for the diprotic species succinic
acid in the pH range 5.06−10.09. The direct correlation of the
experimental Rs data to the calculated fraction of succinic acid
monoanion (HA−) suggests this preferred photoproduct is
directly generated from adsorbed monoprotic furmaric acid. In
consequence, adsorbed fumaric acid monoanion is reduced by
the sequential transfer of two electrons. These results agree
with the trend observed for a smaller number of experiments
that also monitored the initial rate of fumaric acid loss at
variable pH.
The resembling behavior of both Rs and the fraction of

succinic acid monoanion with pH depicts the surface reaction
of adsorbed fumaric acid monoanion to start through a weak π-

bond interaction with an active zinc site. The undissociated
−COOH group of fumaric acid monoanion is in closer
proximity to the surface than the dissociated −COO− group. A
lone pair of electrons in the CO moiety of the −COOH
group could facilitate this configuration by establishing a second
weak interaction with a contiguous zinc site. Instead, the
dissociated −COO− group of fumaric acid monoanion is
initially repelled from the negatively charged surface of ZnS
with a point of zero charge at pH 4.2.3 The adsorption of the
monoanion of fumaric acid by ZnS must occur reversibly21 in
an adsorption−desorption equilibrium that is quickly estab-
lished. The fast equilibrium proposed is needed to justify the
quantification of dissolved species in the bulk liquid. However,
the interchange between adsorbed and dissolves species must
be slow as compared to the generation of excited states during
illumination.
As stated above, the pH regulates the strength of the

electrostatic interactions between fumaric and succinic acids
with the nanoparticles of ZnS. While the associated binding
constants for the process considered remains unknown, they
can be assumed to be quite small so that the interaction
between both substrates and the particles are labile.22 For low
pH, the zeta-potential of ZnS becomes considerably less
negative (ζpH=5 = −20 mV)3 than at neutral conditions, while
simultaneously the fraction of monodissociated carboxylic acid
decreases as the concentration of the diprotic species growths.
This intermediate protic form may also represent the optimized
structure for succinic acid to be desorbed from the surface
preventing the reverse charge transfer reaction between succinic
acid and a hole. Therefore, the pH of the colloidal suspension
plays a role for the optimum adsorption to balance out the
surface charge of the nanoparticles and the availability of less
repulsive substrates. Overall, the photocatalytic reduction of
fumaric acid on the surface of ZnS proceeds through the most
stable configuration of the intermediate formed on the surface.
During the progression of the reaction, this intermediate is
depleted and replenished on the surface by other molecules of
fumaric acid available.

Bandgap Determination of ZnS in Water from
Reaction Rates. The bandgap energy of ZnS colloidal
suspensions in water was reported in our previous study
based on the dependence of the reaction rate of formic acid

Figure 3. Rate of succinate production (Rs) for λ ≥ 305 nm at variable
pH and corresponding fractions of (dashed line) fumaric and (solid
line) succinic acids available as diprotic acid (H2A, red trace),
monoanion (HA−, green trace), and dianion (A2−, blue trace) species.
Other conditions as listed in Figure 1.
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production from CO2 (RHCOO
−) on the cut-off wavelength of

irradiation.3 This work serves as a new demonstration that
measuring a reaction rate such as the reduction of fumarate to
succinate on photoexcited ZnS reveals the bandgap energy of
the semiconductor suspended in water. The measured rate of
succinate production in units of μM min−1 is Rs = 0.739 ±
0.020 (r2 = 0.994), 0.600 ± 0.022 (r2 = 0.986), 0.464 ± 0.002
(r2 = 0.984), and 0.298 ± 0.002 (r2 = 0.992), for irradiation at
λcut-off ≥ 280, 295, 305, and 320 nm, respectively. No
production of succinate was observed for irradiation at λcut-off
≥ 400 nm. Figure 4 shows the linear regression fitting of the

four quantifiable fumarate production rates vs λcut-off, in which
Rs (μM min−1) = 3.971−0.0115 × λcut−off (r2 = 0.999) is
extrapolated to Rs = 0 to intercept the abscise at λcut-off = 345
nm. This extrapolated value represents the minimum energy
required to excite the mineral catalyst for the photoreduction of
fumarate to occur, which corresponds to EBG for ZnS.
The extrapolated value of λcut-off = 345 nm is in an excellent

agreement with the measured photoreduction rate of CO2 to
formate on ZnS RHCOO

− (μM/min) = 14.152−0.0410 × λcut-off
(r2 = 0.995).3 Thus, this wavelength can be used to obtain the
bandgap of the semiconductor accordingly to EBG = hc/λcut-off =
5.74 × 10−19 J ≡ 3.59 eV, where h is the Planck constant and c
is the speed of light. Therefore, this bandgap value measured
during reactions in water confirms our previous finding and
agrees well with the reported absorption spectrum for a
colloidal suspension of ZnS (Figure 4).3

Apparent Quantum Yields under Continuous and
Periodic Illumination. The photoreduction of fumarate on
ZnS was studied under continuous and periodic illumination
experiments at λ = 325 ± 20 nm. The effective photon flux (I0)
was obtained after correcting the actinometric measurement by
convoluting the spectrum of ferrioxalate17 with that for ZnS in
water.3 The calculation of the apparent quantum yield of
succinate production at λ = 325 ± 20 nm was directly derived
from the ratio of the reaction rate to the effective photon flux:
Φs (%) = 100 × Rs/I0. This Φs value represents a lower limit for
the actual quantum yield because light is extinguished by
absorbing and scattering particles.23 For example, experiments
under continuous illumination of 2.3 g L−1 ZnS with 1.0 mM
fumarate, [Na2S]0 = 2.0 mM, at 15 °C and pH 6.73, proceed
with a reaction rate Rs = 7.74 × 10−9 mol L−1 s−1, which

combined to the measured I0 = 2.02 × 10−7 einstein L−1 s−1

yields Φs = 3.85%.
Despite any factors that could affect the measured Φs

values,24 the information below if of general interest because
it resolves the lifetime of redox carrier on the surface of
photoexcited ZnS during the reduction of fumarate. For this
purpose, a series of experiments applied monochromatic
periodic illumination with equally lasting dark (τD) and bright
(τL) cycles to study how Φs varies in the range 208 μs ≤ τL ≤ 1
s. For example, Figure 5 shows the dependence of Φs on τL, for

an initital hole scavenger concentration [Na2S]0 = 2.00 and pH
= 7.00. For the fastest time intervals explored, as τL → 0 the
apparent quantum yield under periodic illumination ΦL→0 is
practically identical to that measured under the continuous
irradiation (Φs = 3.85%). When moving from the measured
ΦL→0 value to the right in Figure 5, for progressively longer
bright intervals, lower quantum yields are registered down to a
minimum ΦL→∞ = 0.16% as τL → ∞. During this transition
from ΦL→0 to ΦL→∞ in Figure 5, there are two inflection points
associated with redox carriers with different reactivity.3,25 After
fitting a double sigmoid curve to the data in Figure 5 using
nonlinear least-squares regression, the inflection points are
extracted from the second derivative are t1 = 320 μs and t2 =
4.87 ms.
Similar values of t1 = 296 μs (in the order of hundreds of

microseconds) and t2 = 4.48 ms (in the order of a few
milliseconds) can also be obtained from the two inflection
points measured when plotting the first-order rate constant of
sulfide decay (k−H2S) vs τL, as described previously.3 While
sulfide was confirmed to remain stable in dark controls,
experiments under periodic illumination at variable [Na2S]0
allowed the assignment of t1 to the transfer of reducing
conduction band electrons to the monoanion of fumaric acid.
Accordingly, t2 corresponds to the loss of oxidizing valence-
band holes during the photooxidation of hole scavenger species.
The relationship of t1 and t2 to the redox carriers is explained by
their dependence on [Na2S]0 = 1.03, 2.03, 5.07, and 10.07 mM,
all values involving initial concentrations of the hole scavenger
<65 mM3 of submonolayer coverage of ZnS. The correlation of
[Na2S] versus ζ follows an exponential function reported in our
previous work.3

Considering that the surface potential of ZnS can be
represented by ζ for unchanged permittivity and viscosity in

Figure 4. Reaction rate of (black circle) succinate (Rs) production vs
cut-off wavelengths of irradiation. Other conditions as listed in Figure
1. For comparison, the reaction rate of (blue triangle) formate
production (RHCOO

−) from CO2 and the diffused reflectance
absorption spectrum of ZnS in water from ref 3 are included.

Figure 5. Apparent quantum yield of succinate production (Φs) vs the
bright interval time under periodic illumination (τL) of 2.3 g L−1 ZnS
with 1.0 mM fumarate at pH = 7.0 and [Na2S]0 = 2.03 mM.

The Journal of Physical Chemistry C Article

DOI: 10.1021/acs.jpcc.5b12380
J. Phys. Chem. C 2016, 120, 7349−7357

7353

http://dx.doi.org/10.1021/acs.jpcc.5b12380


the electrical double layer,26,27 an increment of [Na2S]0 is
associated with a more negative surface potential. Assuming
that suspended ZnS particles under irradiation behave as
microelectrodes, the surface potential of the mineral can be
related to the half-reduction and half-oxidation rate constants
from the Bulter−Volmer (BV) equation,3,25 which are kred = k0
e−[αrednredF/RT](E−E

0) and kox = k0 e
[αoxnoxF/RT](E−E

0), where nred and
nox are the number of electrons transferred in each half-reaction,
k0 is the standard heterogeneous rate constant, αred and αox are
the dimensionless charge transfer coefficients, E is the excess
redox potential, E0 is the standard redox potential of ZnS, R is
the gas constant, F is the Faraday constant, and T is the
absolute temperature.
Figure 6A shows the opposite trends that the lifetime for

both redox transitions t1 and t2 have for increasing [Na2S]0.

Figure 6B displays, as predicted by the expressions for the rate
constants kred and kox, the opposing trends for the dependence
of t1 and t2 on ζ. Given the opposite signs in the exponential
terms of the rate constants expressions (negative for kred and
positive for kox), and the reciprocal dependence between
lifetimes on rate constants, it follows that the first transition t1
∝ kred

−1 and the second transition t2 ∝ kox
−1. Therefore, as the

potential represented by ζ becomes more negative (for higher
[Na2S]0), t1 decreases while t2 increases in Figure 6. This
interpretation agrees with t1 being related to kred as reported for
the reduction of CO2 on ZnS3 and the generation of gaseous
H2 on CdS.28 In other words, t1 represents the overall time
needed to transfer conduction band electrons to reduce
fumarate to succinate. These t1 values (from 225 to 330 μs)
are well in the order of the lifetime of conduction band
electrons (∼200 μS) observed for CdSe/CdS sensitized solar
cells coated with two layers of ZnS for a photovoltage of 0.5
V.29 Similarly, t2 characterizes the slower loss of oxidizing
valence-band holes. Figure 6B also includes the linear fittings to
the semilog plot: log t1 = 0.02079 ζ + 0.1785 (r2 = 0.934), and
log t2 = −0.06809 ζ + 1.714 (r2 = 0.981). These transitions (t1
and t2) become undistinguishable at 520 μs for a zeta potential
ζ = −22.09 mV corresponding to [Na2S] = 0.57 mM.

The relatively long times linked to electron transfer and hole
loss at the surface of the photoexited ZnS* semiconductor
nanoparticles provides fundamental information to understand
the dynamic process of photocatalysis.30 The measured transfer
of surface carriers are relatively long (>200 μs for the transfer of
mobile electrons and a few milliseconds for loss of fixed holes)
when compared with the time scales explored by time-resolved
spectroscopy of semiconductors (e.g., 150 fs ⩽ τ1/2 < 100 μs).30

Averages values of t1 = 307 ± 17 μs and t2 = 4.68 ± 0.28 ms are
obtained for [Na2S]0 = 2.0 mM at pH 7 from the data in
Figures 5 and by measuring k−H2S vs τL. The fact that t1 and t2
are 11 and 29 times shorter than the corresponding values for
the reduction of CO2 (using pure inorganic reagents) to
formate under the same conditions3 indicates the structure of
the adsorbate modifies the lifetime of the surface-active center
of ZnS*.31 Overall, these results reveal concepts that can be
used to optimize applications of photocatalysis such as
wastewater treatment, abatement of air pollution, and energy
production.30

Proposed Mechanism for the Reduction of Fumarate
on ZnS. A strictly heterogeneous photoprocess is considered
to propose in Scheme 1 a reaction mechanism describing the

kinetic behavior observed in experiments performed under
variable pH, λcut-off, τL, and ζ. The previous assumption is useful
to simplify the mechanistic scheme proposed, which is not
necessarily the concluding pathway for the reactions.31

Reaction R1 in Scheme 1 shows that upon absorption of a
photon (λ ≤ 345 nm) by ZnS an oxidizing hole is created in the
valence band from where an electron is promoted to the

Figure 6. Transitions (●) t1 and (▲) t2 vs (A) variable [Na2S]0 and
(B) zeta potential (ζ). The red solid and black dashed lines show the
linear least-squares regressions, which intercept for a coverage of
[Na2S] = 0.57 mM, corresponding to ζ = −22.09 mV and t = 520 μs.

Scheme 1. Proposed Mechanism for the Reduction of
Fumarate to Succinate on Irradiated ZnS for the Interval
5.06 ≤ pH < 7.00
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conduction band.32 The electron−hole pair can undergo
recombination and release heat by reaction R2 (Scheme 1) in
processes that likely involves the trapping of charge carriers by
defects and the carrier recombination that occurs through such
defects (recombination centers).31 The sacrificial sulfide
electron donor is oxidized by valence band holes through
several intermediates (S8, S2O3

2−, SO3
2−, and S2O6

2−) en route
to form sulfate by reaction R3 (Scheme 1).3 Simultaneously,
fumaric acid is chemisorbed in dynamic equilibrium at an active
zinc surface center and accepts a first electron via reaction R4
(Scheme 1).15

While the surface of ZnS can be considered as reversibly
hydrated in an exchange that also allows adsorption of the
organic molecules, this solvation process can affect the size as
well as chemical and physical properties of ZnS. For example, if
ZnS in aqueous suspensions adsorbs a proton or hydroxide
ions, either positive or negative surface charges are generated.33

The hydration mechanism of aqueous ZnS in water can be
explained at variable pH as follows:34 (1) For pH < 4.2, the
isoelectric point of ZnS, the surface becomes positively charged
due to the neutralization of any negative charges from sulfide
sites and that dissolution releases Zn2+ (Figure 2). (2) For the
interval 4.2 < pH < 7.0, the acquisition of negative charge by
the surface is proposed to be related to the Lewis acidity of zinc
sites that forms SZnOH− and release protons to the
medium. (3) For basic conditions (pH > 7.0), negative surface
sites such as ZnOH− exist together with aqueous sulfide ions
(HS−, S2−) in the bulk solution, all contributing to the observed
negative zeta-potential of ZnS.35 However, because Zn2+ is a
borderline Lewis acid,36 the exchange of adsorbed water or
hydroxide ion by surface zinc occurs so fast that these active
sites are continuously available for adsorption of fumaric acid.
Two additional problems that need to be approached are:

(1) What is the most stable conformational isomer adsorbed to
zinc sites? (2) How does adsorption occur? Based on the acid−
base equilibria that optimizes the recognition of fumaric acid by
the surface-active sites of ZnS*, the mechanism in Scheme 1
depicts the monoanion species as the primary electron acceptor
adsorbed on the surface to the left side of reaction R4.
Considering conformational isomerism is useful to identify the
most stable monoanion species adsorbed on the mineral surface
to undergo photoreduction to form succinic acid monoanion.
The structures of two conformational isomers for the
monoanion of fumaric acid are displayed in Scheme 2, where

the carboxylate group is delocalized by resonance. These
isomers differ mainly in the distance between the centers C2
and O4, which are calculated to be 3.56 ± 0.04 Å for isomer A
and 2.75 ± 0.06 Å for isomer B.37,38 The higher stability of
isomer A is supported by a computational optimization of the
molecular geometry and zero-point energy of both isomers
using Gaussian 09 with B3LYP density functional theory
methods39,40 and a Gaussian 6-311G (d, p) basis set41,42 we

performed. Isomer B is predicted as less stable than isomer A
due to steric hindrance existing between the two π bonds.
The surface of synthesized ZnS exhibits a face-centered cubic

structure with four tetrahedral holes in each unit cell of length
5.39 ± 0.01 Å.3 The calculated distance between two zinc
centers on the surface is 3.81 ± 0.01 Å (see powder XRD
measurements in ref 3). With all the previous considerations,
Figure 7A depicts the reversible adsorption of fumaric acid

monoanion that likely results from a weak olefin π bond
interaction with an active zinc site (reactant of reaction R4,
Scheme 1). Similarly, the weak adsorption at a single zinc atom
was observed for cyclic olefins on ZnS, which occurs through
the formation of a π-complex with an electron-deficient surface
center.15 However, because the distance between two zinc sites
(3.81 ± 0.01 Å) is only slightly larger than the distance between
C2 and O4 atoms for conformer A in Scheme 2 (3.56 ± 0.04 Å),
a double interaction with two zinc sites could arise from the π
bond and a lone pair from the O4 atom in conformer A (Figure
7B). Therefore, the second adsorption model involving a stable
σ bond appears less favorable because desorption of the
product could be prevented.
Following the transfer of a first conduction band electron to

the monoanion of fumaric acid, a short-lived radical centered
on carbon C3 of conformer A (Scheme 2) is produced by
reaction R4 (Scheme 1). This adsorbed radical is stabilized by
resonance with a carbonyl group. The transfer of a second
electron to the previous radical intermediate also occurs on the
surface of ZnS* facilitated by zinc sites to form an adsorbed
carbanion depicted in reaction R5 (Scheme 1). The next steps
are the sequential abstraction of protons from water (or
hydronium for pH < 7) in reactions R6 and R7. Proton
abstraction by reaction R7 occurs concomitantly to the surface
desorption of succinic acid monoanion, as confirmed by the
small rise in pH associated with the consumption of protons
observed. Since the surface of ZnS is negatively charged at pH
> 4.2,3 the carboxylate group of the monoanions of fumaric and
succinic acids are repelled from the surface, contributing to the
desorption process of the product.

■ CONCLUSIONS
The data from experiments under periodic illumination
demonstrate that the timespan needed to establish equilibrium
condition between bulk and surface adsorbed fumaric acid
monoanion is in the order of hundreds of microseconds. This
conclusion is derived from modifying the period allowing
replenishment of fumaric acid adsorption in the dark to
contrast the depletion of reactive surface species during
illumination. The simple zero-order kinetic behavior for the

Scheme 2. Structure of Two Conformational Isomers of
Monodissociated Fumaric Acid

Figure 7. Adsorption of monodissociated fumaric acid on the surface
of ZnS by interactions of (A) one zinc site to a π bond, and (B) two
zinc sites to the π bond and a lone pair in a carbonylic oxygen atom.
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production of succinate indicates that the surface is quickly
depleted of fumaric acid monoanion. The previous observation
suggests that adsorption of fresh reagent limits (kinetic control)
the zero-order rate of reaction. Therefore, the rate of electron
transfer to the adsorbed species is limited by the rate of
replenishment of fresh reactant from the solution. Further work
should aim to advance this matter by studying the Langmuir
isotherm derived from experiments at variable fumaric acid
concentration that will change the surface coverage of ZnS.
Characteristic surface carriers remain active for several

hundred microseconds for electron transfer and a few
millisecond for the loss of oxidizing holes. This study confirms
that reactive intermediates in a photoexcited semiconductor
exist for relative long times, as observed before for adsorbed
CO2 undergoing reduction to HCOO− on the surface ZnS*,3

when compared to the values measured by time-resolved
spectroscopy of semiconductors (e.g., 150 fs ⩽ τ1/2 < 100 μs).30

The photoproduction of succinic acid in aqueous colloidal
suspensions of ZnS in the presence of Na2S directly consumes
monodissociated fumaric acid as the adsorbed species. The
reported bandgap of ZnS in water based on the dependence of
Rs on λcut-off agrees well with previous findings for the
production of formate.3 The measurement of Φs under periodic
illumination provides important evidence that the time scale of
redox processes on the surface of semiconductorsthe
effective transfer of reactive carriersis in the same order for
sorption−desorption equilibrium. For the previous reason the
structure of the adsorbate affects the lifetime of the surface-
active center of the photocatalyst.31 Overall, these results reveal
new knowledge needed in the optimization of future
applications of photocatalysis for fuel production, wastewater
treatment, the abatement of air pollution, prebiotic chemistry,
and abiotic photosynthesis.6,30
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