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Interfacial systems are ubiquitous and important to myriad

processes of interest such as protein-protein interactions and

catalysis of reactions. Investigating interfacial systems at the

molecular level presents unique challenges to both

experiments and molecular simulations. The challenges in

molecular simulations of interfacial systems range from

scalability of quantum simulations to transferability of empirical

force fields in classical simulations. In this article, we focus on

the advances in force field development to study interfacial

systems using protein-surface interactions and heterogeneous

catalysis as case studies. We also discuss the emerging role of

machine learning in force field development. We conclude by

providing our perspective on accelerating the progress in force

field development through concerted efforts for data collection

and standardization of parameter fitting protocols for extending

the force fields to new interfacial systems.
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Introduction
Interfacial systems are ubiquitous and play an important role

in every aspect of life — from governing the interactions

between proteins to formation of clouds. Behavior of mole-

cules near interfaces is different than in bulk due to the

asymmetryof interactions,andcanbemanipulatedtogovern

various processes. For example, through tuning the interac-

tions between a solid surface,water, and proteins, the surface

can be made toxic or non-toxic to living organisms. However,

the complexity of water-protein, protein-surface, and
Current Opinion in Chemical Engineering 2019, 23:138–145 
surface-water interactions makes it challenging to elucidate

theexactknobs thatneedtobeturnedtomakeatoxicornon-

toxic surface [1]. This thus, requires detailed molecular level

understanding of the processes governing the interfacial

behavior. However, interfacial systems present a challenge

to both experiments and simulations. In experiments it is

particularly challenging to image entities such as proteins,

small molecules, and water at interfaces [2]. Often, computer

simulations are used in synergy with experiments to fill this

gap and elucidate the interfacial behavior ofmolecules. Most

widely used computational techniques include quantum

simulations, and ab initio and classical molecular dynamics.

Computational studies are a powerful tool that have the

potential of unlocking the mysteries of interfacial systems;

however, there are some key limitations that need to be

addressed.

One of the most prominent and recurrent questions

relates to the the development of the potential energy

functions (i.e. force fields (FFs)) used in the simulations

to capture the various phenomena relevant to interfacial

processes (see Figure 1). Phenomena such as adsorption

of molecules to the surfaces, surface rearrangements upon

adsorption, effects of surface defects, and chemical reac-

tions on the surfaces need to be captured effectively

while keeping the simulations computationally viable

to access relevant length and timescales. In this perspec-

tive, we highlight some recent advances in FFs addres-

sing these challenges using two interfacial phenomena as

examples — protein interaction with surfaces and het-

erogeneous catalysis. We also discuss the recent efforts

using machine learning for FF development. We provide

our perspective on the potential role of these advances in

furthering the studies of interfacial systems and pro-

cesses. We note that this is not intended to be an

exhaustive review, and thus few selected examples are

presented to illustrate the breadth of approaches.

Adsorption of proteins to surfaces
Carbon nanomaterials, molybdenum disulfide (MoS2),

metallic nanoparticles, and polymers are some of the

material surfaces that are of both biological and industrial

interest in protein–surface adsorption studies [3]. Molec-

ular simulations play a critical role in elucidating the

adsorption mechanisms of proteins and in complement-

ing experiments by providing a detailed picture of the

adsorbed structures [4,5]. Studies report that the results of

protein adsorption behavior can be sensitive to the details
www.sciencedirect.com
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Figure 1

Interfacial systems involve a broad range of processes from the rearrangements of the surface to chemical reactions that all need to be captured

in the FFs for simulations of interfacial phenomena.
of the FFs, especially when considering the adsorbed

structure [6–8]. For example, Gu et al. [7] observed lesser

changes in the secondary structure of proteins (polyala-

nine, YAP65 WW-domain, and HP35) on a MoS2 surface

when the nonbonded parameters of MoS2 were tuned to

capture the experimentally observed contact angle of

water on MoS2. Consequently, they concluded that the

potential toxic effects of MoS2 were lower than those

predicted using the unmodified FF parameters.

The most common approach to study protein-surface inter-

actions has been to use the available FFs to describe the

proteins and surfaces. Most of these available FFs have

been parameterized based on bulk properties [9,10]. The

usage of general FFs based on chemical equivalency for

material surfaces seems reasonable because of the frag-

ment-based approach used in developing such FFs. Nev-

ertheless, the accuracy of the FF in describing the interfa-

cial phenomena needs to be verified [11]. Latour’s group

investigated this aspect by determining the free energy of

adsorption of peptides on self-assembled monolayers

(SAM) functionalized with different chemical groups

[12]. They obtained experimental values using surface

plasmon resonance spectroscopy and simulations results

were obtained using non-polarizable CHARMM FF

(CHARMM22/CMAP) [13,14]). They found that the sim-

ulationvaluesdidnotmatchwell with experimental results.

They thus implemented Dual FF parameters to represent

the bulk and interfacial regions separately, which gave

better agreement with experimental results. This type of

validation and tuning with adsorption free energies can

improve the reliability of FFs for interfacial phenomena.
www.sciencedirect.com 
We recently assessed the sensitivity of amino acid-gra-

phene interactions to the choice of FF [8]. The graphene

carbon atoms were represented by aromatic carbon type of

protein FF. We observed that the relative free energies of

adsorption of amino acids on graphene were qualitatively

similar across different non-polarizable protein FFs, and

the trends were consistent with available experimental

data. On the other hand, the structures of amino acids in

the graphene adsorbed state were more FF dependent.

The reliability of the FF used for protein–surface systems

will become clearer when more relevant experimental data

becomes available. However, access to such experimental

data is limited. Thus, currently most studies rely on ab initio
calculations and physiochemical knowledge of surfaces to

parameterize the FFs [3].

It has been contended that polarizability can play a

significant role in protein adsorption on surfaces like

graphene. This is usually not captured through classical

FFs. Thus, various approaches have been proposed to

capture these effects while balancing the computational

cost of such simulations [15�,16]. An example of incorpo-

rating polarizability while balancing transferability and

computational cost is the polarizable FF, GRAPPA.

Developed by Hughes and Walsh [17], GRAPPA cap-

tures the potential disruption of the electron densities of

carbons in graphene in the presence of ions and other

molecules. In GRAPPA, only the graphene atoms are

polarizable. The interactions between amino acids (or

analogs) and graphene are described using the standard

combination rules, where the amino acids (or analogs) are

represented by CHARMM22* [13,18] non-polarizable
Current Opinion in Chemical Engineering 2019, 23:138–145
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FF. The cross interaction terms are derived if the adsorp-

tion energies and the position of the analog molecules

with graphene in vacuum thus obtained are not consistent

with revPBE-vdW-DF based density functional theory

(DFT) calculations. In a later study [19], Comer’s group

compared the binding constants of small organic mole-

cules on graphene obtained from simulations using

GRAPPA with experimental values. The agreement

was moderate. In contrast, better agreement was observed

with experiments when the non-polarizable

CHARMM36 FF [20] and standard combination rules

were used for the same system [19]. This highlights the

difficulty in obtaining an accurate description of interfa-

cial phenomena while retaining transferability.

For metallic nanoparticles, the treatment of electrostatic

interactions with fixed point charges may not always be

valid because of their free valence electrons [3]. Similar to

GRAPPA, several polarizable FFs were developed to

represent metallic nanoparticles that work in conjunction

with non-polarizable protein FFs for protein–metallic

nanoparticle systems [21]. An additional challenge with

metallic nanoparticles and also mineral surfaces is in

developing FF parameters that can also differentiate

the selectivity of proteins to the various facets of a given

surface. Interfacial force field (IFF) developed by Heinz’s

group attempts to address this and also improves upon the

FF accuracy for numerous metals and mineral surfaces

with or without defects [22�]. IFF parameters were

recently extended to graphene and graphite systems to

improve the accuracy of the possible weak p-related
interactions of graphene when represented by uncharged

Lennard-Jones carbon atoms. IFF is designed to be

transferable and compatible with common protein FFs

and uses the standard combination rules. Parameters from

IFF have been validated against a variety of experimen-

tally available structural and thermodynamic properties of

surfaces such as lattice parameters, surface energy, and

hydration energy. IFF addresses several challenges but its

validation for protein–surface systems require extensive

experimental data similar to other FFs.

In addition to the ongoing efforts to improve all-atom

force fields for protein–surface systems, coarse-grained

(CG) models are in development. Wei and Knotts [23]

used Karanicolas and Brooks Go-like protein model and

benchmark experimental data of peptide–SAM surfaces

reported by Latour’s group [12] to develop CG models for

protein–surface systems. The resulting CG model that

can describe surfaces with tunable hydrophobicity gave

reasonable agreement when validated against free energy

of adsorption of globular proteins (lysozyme, myoglobin,

cytochrome C) on hydrophobic surfaces such as hydro-

xypatite, and butyl and octyl sepharoses. Brooks’s group

used a similar CG model and knowledge of the binding

affinity of various amino acids estimated from all-atom

simulations to develop CG model for protein–graphene
Current Opinion in Chemical Engineering 2019, 23:138–145 
[24�] and protein–MoS2 [25] systems. The resulting CG

model was used for explaining experimental observations

and to determine residue level structure of adsorbed

peptides.

Modeling protein-surface interactions also requires the

ability to differentiate the affinity of a protein for different

facets of the solid. In a recent study, Pacella and Gray [26]

tested the ability of RosettaSurface to predict selectivity

of peptides to various facets and their binding affinity on

four mineral surfaces (calcite, brushite, calcium oxalate

monohydrate, and mica). RosettaSurface uses a combina-

tion of Monte Carlo simulations and energy minimization

techniques to determine low energy adsorbed structures

of peptides on a surface using implicit solvent [27].

Pacella and Gray used IFF and CHARMM22/CMAP

FF [13,14] to describe the mineral surfaces, and the

peptide was described by Rosetta parameters. Indirect

inferences from experiments were made to rank the

preference of peptides to various facets and binding

affinity of the peptides for a given facet. While the

algorithm made reasonable predictions on the selectivity

of peptides to various facets, it had problems with pre-

dicting the order of peptide binding preferences for a

given facet.

From polarizability to coarse-graining — several

approaches have been proposed to capture the details

of molecular interactions at play in protein-surface sys-

tems. These approaches are indeed applicable to a broad

range of interfacial systems beyond protein–surface inter-

actions. One aspect that can play an important role but has

not been integrated much into these studies pertains to

reactions. These are important when considering reac-

tions mediated by proteins (e.g. enzymatic reactions) and

also in cases where proteins might react with the surface

(e.g. functionalization of surfaces with peptides). The

field where bond breaking and forming has been pivotal

and the focus in FF development is heterogeneous

catalysis.

Heterogeneous catalysis of reactions
In heterogeneous catalysis, the catalyst is a solid while the

reaction environment is a fluid. Force fields are needed

when the fluid environment is a liquid, and thus interacts

with the catalyst surface and catalytic species. In this

regard, most attention has been focused on aqueous reac-

tion conditions and metal nanoparticle catalysts. Since

catalysis involves bond breaking and forming, quantum

chemistry must be used to some extent. However, since

quantum simulations are more computationally demand-

ing than atomistic simulations, balance is needed. To

address this, Getman and co-workers developed a

“multiscale sampling” method [28]. This approach uses

classical MD simulations to generate configurations of

liquid H2O molecules at the water/metal catalyst interface

and DFT to calculate the system energies [29–31]. In the
www.sciencedirect.com
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MD simulations, interactions between the H2O molecules

and the metal surfaces/catalytic species are modeled using

Lennard-Jones + Coulomb potentialswith parameters from

standard FFs such as TIP3P [32], UFF [33], and OPLS-AA

[34]. Indeed, approaches such as GRAPPA or IFF can be

used in these MD simulations. However, as pointed out by

Steinmann et al., interactions between water and metal

catalyst surfaces can also be chemical in nature and thus

atomistic simulations can be incomplete for modeling the

interfacial H2O structure. To address this, they developed

the GAL17 FF, a DFT-based FF designed to improve the

solvation free energy at Pt interfaces [35]. GAL17 FF

describes chemical interactions between H2O/Pt(111),

by means of an anisotropic potential, which describes

molecule-surface interactions as a function of the xyz-
coordinates of the molecule in relation to the surface —

capturing the “surface corrugation” effects that influence

the interaction. GAL17 can be combined with other well-

established FFs for H2O, such as TIP3P and TIP4P, in the

MD simulations in order to model H2O/Pt interfacial

phenomena. Such an approach could be beneficial in

describing facet dependence of protein-surface interac-

tions. The main challenge in developing such anisotropic

potentials is the parameterization, since a general approach

for developing FFs at interfaces has not been established.

Even with improved FFs, modeling bond breaking and

forming in catalysis still requires quantum methods,

unless reactive FFs can be developed. Theoretically, if

a reactive FF could be developed that could accurately

model the bond breaking and forming processes that

occur on the catalyst surface, then the entire system could

be simulated in MD. Reactive FFs such as ReaxFF [36]

could serve this purpose. ReaxFF parameters are

obtained based on training sets generated from quantum

calculations and have been applied to a variety of gas and

liquid interfaces at solid catalyst surfaces [37�]. However,

challenges associated with accuracy and parameterization

have hindered the wider adoption of reactive potentials

for modeling catalytic phenomena at fluid/solid inter-

faces. For one, producing the training set of DFT data

is time- and cost-intensive. For example, to study the Pd/

O2 interface with ReaxFF, Senftle et al. developed a

training set comprising bulk Pd metal as well as Pd oxides

[38]. The Pd metal included three different surface facets

at various coverages of atomic oxygen — coverage is equal

to the number of species chemisorbed to the surface

divided by the number of surface metal atoms. Kinetics

of O2 dissociation were computed on the various facets

and coverages. Computing kinetic quantities on metal

catalyst surfaces is cost intensive in itself, having inspired

a subfield of “computational catalyst screening and

design,” which aims to reduce the cost of studying

catalytic reactions by estimating kinetic quantities based

on thermodynamic quantities [39]. Incorporating an

interacting fluid phase would certainly add to the compu-

tational expense [81]. For two, since ReaxFFs are
www.sciencedirect.com 
parameterized from DFT data, they could potentially

inherit the limitations of DFT. For instance, the ability

of DFT to accurately capture non-covalent interactions—

such as dispersion— [40,41], and its ability to calculate

the electronic structures of fluid phase molecules is

debated [42]. To address issues with the DFT description

of dispersion, approaches such as the D2 [43] and D3 [44]

methods of Grimme have been developed. The DFT-D3

method has been shown to quantify dispersion effects at

metal surfaces efficiently and accurately [45–48]. How-

ever, even with improved descriptions of dispersion,

parameterization of FFs from DFT data may miss key

phenomena such as polarization. We have recently dem-

onstrated that polarization effects at metal/H2O interfaces

can significantly influence the free energies of adsorbed

species [49]. Force fields including such interactions

might thus be needed. For example, the multipole expan-

sion method breaks an interaction energy down a priori
into contributions from dispersion, electrostatics, and

polarization, allowing each one to be fit individually

[41,50]. Further, charge equilibration methods, which

alter the partial charges on atoms based on their interac-

tion environments [51,52], could improve the ability of

FFs to capture non-covalent interactions (e.g. polarization

or induction) in interfacial phenomena. Such methods can

be applied to reactive FFs as well [53,54,55�].

Conclusions and outlook
The examples discussed illustrate the broad range of

phenomena that need to be captured in the FFs to study

interfacial processes in molecular simulations. It is desir-

able to have FFs that can describe structure and dynamics

of both molecules adsorbed to the surfaces as well as the

surfaces themselves in various environments. Further-

more, the FFs need to be transferable and computation-

ally feasible. This is clearly a rather challenging goal to

achieve. There has been commendable progress in devel-

oping such FFs; however, the efforts involved in param-

eterizing FF are rather resource consuming. Furthermore,

the limited experimental results of molecular structures

near surfaces makes it challenging to validate the results

from simulations. Thus, for further progress in FF devel-

opment it is desirable to have approaches that can enable

fast reparameterization of FFs or development of new

ones driven by availability of additional experimental

data and extension of interfacial studies to new systems.

Machine learning (ML) has found a valuable place in FF

development [56]. The attraction to these is primarily

grounded in the fact that they do not need to be limited to

standard functional forms of potential energy functions.

This is particularly attractive for reactive systems, which

can be difficult to represent with simple equations, since

in essence, representing a chemical reaction with a force

field is attempting to represent a non-continuous phe-

nomenon with a continuous functional form. They also

provide potentially quick pathways to go from detailed
Current Opinion in Chemical Engineering 2019, 23:138–145
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Figure 2

Illustration of customizable FF for interfacial systems using databases containing experimental and ab initio data, and code repositories with

standard protocols to generate FF parameters. q, a, and m refer to point charge, polarizability, and dipole moment, respectively. s and e are

Lennard-Jones parameters.
(and expensive) quantum calculations to more atomistic

(classical) potential energy functions. Given the chal-

lenges of constructing potential energy surfaces with

quantum-level accuracy, several studies have focused

on the composition and morphology of the interfaces

themselves [57,58,59�,60–62]. However, Hakouri et al.

[63] and Ulissi and co-workers have begun to use ML to

determine binding sites and geometries of catalytic spe-

cies [64�,65,66]. Many-body interactions can also be

incorporated to improve accuracy of FFs (which are

traditionally focused on pair interactions) through ML

methods. This has been demonstrated for developing

water models [67]. Theoretically such ML approaches

could be coupled with FFs such as GAL17 and

approaches such as multiscale sampling to model phe-

nomena at liquid/solid interfaces.

While the current approaches provide a strong platform

for simulations of interfacial systems, the key bottlenecks

are in validating the results and extending the FFs to

novel systems. The validation limitation can be addressed

as more experimental data becomes available. For the

rapid extension and updating of FFs, it is desirable to
Current Opinion in Chemical Engineering 2019, 23:138–145 
streamline the data acquisition and parameter fitting

protocols for generating FFs (see Figure 2).We can imag-

ine constructing databases of experimental properties for

various materials and detailed quantum calculations that

can be used for validation as well as development of FF

parameters. In synergy, we can build repositories of codes

that provide standard protocols for obtaining FF param-

eters from the input data. These protocols would include

both ML and non-ML based methods. This would be

followed with simulations, validation and refinement of

the FFs parameters, if needed. Access to such stream-

lined approaches and databases can greatly reduce the

time and cost of FF development and result in rapid

community-based growth of FFs for interfacial systems.

Furthermore, it can assist in developing approaches for

quantifying systematic errors that are typically difficult to

identify. These systematic errors can arise from approx-

imations in the highest resolution data (e.g., approxima-

tions made in DFT calculations) as well as from errors in

the experimental data that is used to validate the FF.

Recent efforts to overcome this have utilized Bayesian

approach to identify the FF parameters while accounting

for the errors in the reference data. [68,69] Additionally,
www.sciencedirect.com
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the errors from overfitting, which arise from excessively

complex FF functional forms, can be addressed by using

regularization-based techniques [70,71,72�].

Foundations for platforms as envisioned in Figure 2 are

already in place through the various efforts for materials

databases [73,74] and code sharing [75–78,72�] that have

come online in recent years. A recent effort towards such a

platform for biomolecular systems with a focus currently

on small molecules is the Open Force Field (OpenFF)

[79]. OpenFF provides an open source and open data

framework for sustainable and extensible automated

force field improvements. It combines several approaches

to make this process efficient and robust — Bayesian

framework for optimization of the functional form of a

potential, regularization-based techniques to address

overfitting and avoiding atom type proliferation for

increased efficiency [80]. Furthermore, integration of

the new FFs with existing simulation software will facili-

tate the widespread use of the FFs. Indeed, with such

databases and information sharing questions related to

data curation, data quality and reproducibility will have to

be tackled. Combining such rapid FF development with

advanced sampling techniques, and greater computa-

tional resources have the potential of accelerating simu-

lation-enabled discoveries in interfacial systems.
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