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Consider compact objects—such as neutron star or black hole binaries—in full, nonlinear general
relativity. In the case with zero cosmological constant A, the gravitational radiation emitted by such systems
is described by the well established, 504 year old framework due to Bondi, Sachs, Penrose and others.
However, so far we do not have a satisfactory extension of this framework to include a positive
cosmological constant—or, more generally, the dark energy responsible for the accelerated expansion of
the universe. In particular, we do not yet have an adequate gauge invariant characterization of gravitational
waves in this context. As the next step in extending the Bondi et al. framework to the A > 0 case, in this
paper we address the following questions: How do we impose the “no-incoming radiation” condition for
such isolated systems in a gauge invariant manner? What is the relevant past boundary where these
conditions should be imposed, i.e., what is the physically relevant analog of past null infinity 7, used in the
A = 0 case? What is the symmetry group at this boundary? How is it related to the Bondi-Metzner-Sachs
(BMS) group? What are the associated conserved charges? What happens in the A — 0 limit? Do we
systematically recover the Bondi-Sachs-Penrose structure at Z, of the A = 0 theory, or do some differences
persist even in the limit? We will find that while there are many close similarities, there are also some subtle
but important differences from the asymptotically flat case. Interestingly, to analyze these issues one has to
combine conceptual structures and mathematical techniques introduced by Bondi et al. with those
associated with guasilocal horizons. The framework introduced in this paper will serve as the point of
departure in the construction of the analog(s) of future null infinity, Z,/ where the radiation emitted by

isolated systems can be analyzed systematically.
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I. INTRODUCTION

This is a continuation of a series of papers aimed at
constructing the theory of gravitational radiation emitted by
isolated systems in full, nonlinear general relativity with a
positive cosmological constant A. The first paper in the
series [1] pointed out that there are unforeseen—and rather
deep—conceptual obstructions that prevent a direct gen-
eralization of the well developed A =0 theory due to
Bondi [2], Sachs [3], Penrose [4] and others. From a
physical perspective these difficulties can be traced back to
the fact that, if A > 0, space-time curvature does not decay
no matter how far one recedes from sources, and its
presence in the asymptotic region makes it difficult to
extract gravitational waves in a gauge invariant manner.
From a geometrical perspective, in the A = 0 case Z are
null, and using their null normals one can extract radiation
fields unambiguously. By contrast, in the A > 0 case, 7+ is
spacelike and, in absence of preferred null directions, the
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notion of the radiation field becomes ambiguous [4-6].
Although we have formulated the discussion in terms of a
positive A, the conceptual and technical issues that are
relevant to this series of paper also arise if the observed
accelerated expansion of the universe is because of another
form of dark energy, so long as that the accelerated
expansion continues indefinitely.

The subsequent two papers [7,8] showed that these
obstructions can be overcome for linearized gravitational
waves on a de Sitter background, although subtleties still
persist. For example, because all Killing fields in the
de Sitter space-time are spacelike near its boundaries
T+, the conserved de Sitter “energy” carried away by
gravitational—or even electromagnetic waves—across Z=
can be arbitrarily negative. Can time dependent isolated
systems then emit large amounts of negative energy
(thereby increasing their own energy by large amounts)?
A natural setup to analyze such issues is provided by a
time changing mass quadrupole, studied by Einstein over
a century ago, using the first post-Minkowski, post-
Newtonian approximation [9]. In presence of a positive
A, one can analyze the same problem using the first
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post-deSitter, post-Newtonian approximation. However,
one immediately faces a number of nontrivial conceptual
issues and technical difficulties in extending Einstein’s
quadrupole formula [8]. Fortunately, by now these issues
have been resolved. One finds that a time changing
quadrupole moment can only create gravitational waves
with positive energy. Thus, although a neighborhood of 7
does admit solutions to linearized Einstein’s equations with
negative energy, those waves cannot be produced by
physical sources [8,10]. Thus, at least at the linearized
level a careful analysis enables us to extend the A =0
theory to allow a positive A and the extension leads to
physically desirable results, just as one would hope.

Are there any observable consequences of this weak field
analysis? Einstein’s quadrupole formula does receive cor-
rections that depend on A. As one would expect, they go as
powers of Tgy,/Ty, where Ty, is the dynamical timescale

associated with compact binaries and Ty = 1/3/A is the
Hubble time scale of the background de Sitter space-time.
T4y, associated with compact binaries of interest to the
current gravitational wave observatories is at most a few
minutes. The value of the Hubble parameter in our universe
changes with time and the current value of T is huge. For a
rough estimate of the size of corrections, one could choose
as our background the de Sitter space-time whose T’y
equals T%.l Then the corrections to Einstein’s quadrupole
formula are completely negligible for the LIGO-Virgo
detectors. However, this is now a conclusion of a systematic
analysis rather than assumption. Furthermore, the modifi-
cations are conceptually important as they bring out
features of general relativistic gravity that had remained
unnoticed in the asymptotically flat case. (For a summary,
see [10].) In this sense, the overall situation is not dissimilar
to what Einstein encountered with his quadrupole formula.
At the time, his result was only of conceptual importance
because it brought out a deep underlying contrast between
general relativity and Newtonian gravity, although the
result had no practical importance at all because of the
technological limitations.

In this paper we will begin the analysis of gravitational
waves emitted by isolated systems in full, nonlinear general
relativity with A > 0, using the experience and intuition
gained from the weak field analysis. Specifically, we will
introduce the analog of the past boundary 7, of asymp-
totically flat space-times, now tailored to the study of
isolated system such as oscillating stars or compact binaries
that constitute interesting sources of gravitational radiation.

The central issue we resolve is the following. For these
isolated systems, one is interested in gravitational waves

lHowever, from the linearized analysis it is not clear whether
this strategy is justified; the value of H at the time of emission
may be more appropriate [11]. Then the corrections would be
more significant, especially for the supermassive black holes
created early in the history of the universe.

produced by sources themselves, not the ones that are
incident from past infinity. In the A = 0, asymptotically flat
case, the required “no-incoming radiation” condition can be
imposed in a gauge invariant fashion simply by requiring
the vanishing of the Bondi news tensor N, at 7, [2—4,12].
However, in the A > 0 case, we do not yet have an
unambiguous analog of N,. Therefore, one has to find
other geometric structures that capture the no-incoming
radiation condition in a gauge invariant manner. In the
mathematical literature, there are powerful results on non-
linear stability of de Sitter space [13]. Can we not use them
to introduce the notions needed to impose this condition?
Unfortunately we cannot, at least not directly. Indeed,
even in the asymptotically flat case with A =0, the
mathematically powerful results on nonlinear stability of
Minkowski space-time [14-16] do not by themselves
provide us with criteria to characterize gravitational radi-
ation, or to calculate energy-momentum carried by gravi-
tational waves; these came from the independent and older
Bondi-Sachs-Penrose framework. The nonlinear stability
results do provide us confidence that the boundary con-
ditions are satisfied by a large class solutions to Einstein’s
equations. However, there are important limitations even in
this respect. First, in both A > 0 and A =0 cases, the
primary focus of nonlinear stability analyses is on vacuum
(or electro-vac [17]) solutions to Einstein equations while
in physical applications we are interested in the radiation
emitted by compact astrophysical objects. More specifi-
cally, in the A = O case the physical interest lies in retarded
solutions in which there is no-incoming radiation—i.e.,
where N, = 0 at Z,—and, among solutions considered in
the nonlinear stability analysis, only Minkowski space
meets this requirement. In the A > 0 case there is a further
twist. The global, nonlinear stability results for de Sitter
space-time assume that the topology of Z% is S and
compactness of Z+ plays an important role in the analysis
[13,18]. As discussed in [1], for isolated systems such as
black holes and oscillating stars, Z* are noncompact, with
topology S? x R, and the analysis becomes more compli-
cated. Together, these considerations bring out the need to
go beyond the conceptual setting and mathematical tools
provided by the nonlinear stability analysis.

Our goal is to carry out this task. In this paper, we
will formulate the ‘“no-incoming radiation” condition
as the first step in the analysis of gravitational waves
emitted by spatially compact sources, and discuss the
associated geometrical structures and their physical con-
tent. Interestingly, the generalization of the Bondi er al
framework requires us to combine physical concepts and
mathematical techniques they introduced [2—4] with those
from the theory of quasilocal horizons developed [19-21]
some 40 years later.

In Sec. II we introduce the appropriate past boundary on
which the no-incoming radiation boundary condition is to
be imposed. We will refer to it as the “relevant scri-minus”
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and denote it by 7. In the A = 0 case, explicit examples
are useful in bringing out the motivation for various
conditions imposed at 7, and understanding the physics
and geometry of structures that emerge from them. In the
same spirit, in Sec. III we discuss two basic examples of
isolated systems in presence of a positive A. (A third
example is discussed in Appendix A). In Sec. IV we discuss
symmetry groups and in Sec. V the associated charges that
lead to definitions of total energy and angular momentum
on Zgp,. In both cases we compare and contrast the
structures with those at Z, of the A =0 asymptotically
flat space-times. In particular, we will find that, to begin
with, symmetry group at Z, is infinite dimensional, with
structure similar to that of the Bondi-Metzner-Sachs (BMS)
group B. However, addition of a physically motivated
structure reduces it to a finite dimensional group, that then
enables one to introduce the notion of energy and angular
momentum.” In Sec. VI we summarize our results and
comment on how the presence of a positive cosmological
constant (or, more generally, continued accelerated expan-
sion) forces us to change our intuition in several respects.
Appendix B collects results that are secondary to the main
discussion of this paper but which may well be useful for
future work.

Our conventions are as follows. Throughout we
assume that the underlying space-time is 4-dimensional
and the space-time metric has signature —,4,+,+.
Curvature tensors are defined via: 2V [,V k. = R .k,

R,. = R,,.b. Relation to the relevant Newman Penrose
curvature components is presented in Appendix B.

IL Z;,, AND THE NO INCOMING
RADIATION CONDITION

In Sec. ITA we recall from [1,8] that, because of
cosmological horizons, any given isolated system is visible
only from a part of the full asymptotically de Sitter space-
time. In terms of causal structure, then, this is the relevant
region of space-time for the given isolated system. We will
denote it by Mpg.. The cosmological horizon that con-
stitutes the past boundary of My, is now the analog of 7,
in the A = O case. Therefore, we will refer to this horizon as
the “relevant scri-minus” and denote it by Z¢,. It is a null
3-manifold just as Z~ is in the A = 0 case (see Fig. 1). We
will see that the no-incoming radiation condition can now
be naturally imposed by requiring that 7y, be a nonex-
panding horizon (NEH). In Sec. II B, we first recall the
notion of a nonexpanding horizon [19] and summarize its
properties that we will need. The older work on NEHS (see,
e.g., [19,20]) was focused primarily on black holes. New
issues arise while exploring their role as past boundaries

%A similar finite dimensional reduction of B occurs if one uses
the no-incoming radiation condition to introduce a family of
“good cuts” on Z, as additional structure; B reduces to the
Poincaré group [22,23].

IRe of isolated systems in presence of a positive A. In
subsequent sections we will find that now the relevant
geometrical structures are closer to those at Z~ in the A = 0
case. In Sec. I C we specify the class of space-times we
consider in the rest of the paper.

A. The setting

Let us begin with a linearized source (such as a star
or a compact binary with time changing quadrupole) on
de Sitter background, depicted in Fig. 1. Z* of de Sitter
space-time are spacelike 3-manifolds serving as future and
past boundaries, and the world-tube of the spatially
compact source intersects them in two points i*, respec-
tively. The future event horizon E*(i~) of i~ divides space-
time into two parts, each of which serves as a “Poincaré
patch.” The causal domain of influence of the source is the
future Poincaré patch. Therefore, in the investigation of
properties of the radiation emitted by the given isolated
system, only this portion of space-time is relevant. It is then
natural to regard the past boundary E* (i™) of this region as
the relevant scri-minus. We will do so, and from now on
denote it by Z . Since we are interested only in the
radiation emitted by the time-changing quadrupole moment
of the source, it is natural to impose the no-incoming
radiation boundary condition at Zg,, [8,10]. (See the left
panel of Fig. 1.)

This strategy is reenforced by energy considerations. The
points i* naturally select a de Sitter time-translation Killing
field T* whose trajectories are depicted (in the right panel
of Fig. 1) by the (red) dashed lines with arrows. The center
of mass of the linearized source follows an integral curve of
T¢. This Killing field is timelike near the source but
becomes spacelike in a neighborhood of Z*. (Indeed, all
Killing fields in de Sitter space-time have to be spacelike in
a neighborhood of Z* because Z* itself is spacelike and
every Killing field must be tangential to it.) As a conse-
quence, in general the flux of energy E(, associated with
T4 across ZT (or, a portion thereof) can carry either sign.
This is true for both gravitational and electromagnetic
waves [7]. Geometrically, one can pinpoint where positive
and negative contributions come from. For definiteness, let
us consider electromagnetic waves and consider the tri-
angular region of the right panel in Fig. 1, bounded by the
spacelike Z* to the future and two null boundaries to the
past: (i) the portion denoted by Z;", . (namely, the future half
of the past event horizon E~(i™) of i* that intersects Zg,, at
a 2-sphere i{ ), and, (ii) the portion of Z,, that lies to the
future of if .. Conservation of stress-energy tensor implies
that the energy flux across Z* equals the sum of energy
fluxes across the two null boundaries in the past. Note
however, that the Killing field 7“ is future directed and
null on the boundary (i) (i.e. Z;..), but past directed
on the boundary (ii). Therefore in any solution to

Maxwell’s equations, the energy flux across Z;' . is strictly
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FIG. 1. A linearized compact binary on de Sitter background. The binary is depicted by intertwined lines on the left edge of the figure.
It pierces spacelike Z* of de Sitter space-time at points i*. Solid (black) arrows denote the emitted radiation. Left panel: The thick (blue)
diagonal line represents the future event horizon E*(i~) of i~. Observers whose worldlines are confined to the portion of space-time to
the past of E* (i~)—i.e. to the past Poincaré patch—cannot see the source, nor the radiation it emits. Therefore in the investigation of the
isolated system, the relevant part Mg, of space-time is only the future Poincaré patch. It’s past boundary, denoted in the figure by Z¢
serves as the relevant 7~ . Right panel: For the future boundary, there are two choices: (i) spacelike Z; or, ii) local ™, the portion of the
past event horizon E~(i™) of i* that lies in Mg, denoted in the figure by Z;. It intersects Zg,, in a (bifurcation) 2-sphere, denoted by

if oo- The (red) dashed lines with arrows represent integral curves of a de Sitter “time-translation” Killing field adapted to the center of

mass of the linearized source. It is timelike near the source but spacelike near Z™.

non-negative while that across the other null boundary
(i) is strictly nonpositive. Since the energy flux across Z+
is the sum of these two contributions, in general it can be of
either sign. However, if we are interested only in the
retarded solutions created by the source, then there is
no-incoming radiation across Zy.,. Hence for these sol-
utions flux across the second null boundary (ii) vanishes
identically, and that across Z;'. is positive, making the flux
across ZT positive. Thus, while de Sitter space-time admits
solutions to Maxwell’s equations with negative energy,
these do not result from a physical source if there is no-
incoming radiation at Tg,,. (The situation is the same for
gravitational waves but the argument requires symplectic
geometric methods since we do not have a local, gauge
invariant stress-energy tensor [7,8].) Thus, in this example,
imposing no-incoming radiation condition at Z, has the
desired physical consequence.

Explicit geometrical structures in this well-understood
[8] example motivate our general strategy. Let us now
consider isolated systems in the full, nonlinear theory in
presence of a positive A. These systems are naturally
represented by asymptotically de Sitter space-times where
much of the structure we discussed is again available.
Indeed, these space-times admit a conformal completion
a la Penrose [4] with spacelike boundaries Z*. The
spatially compact source would again intersect Z* at points
i* and, in the study of the isolated system, the relevant
portion My, of space-time will again lie to the future of
E*(i7). Therefore, E*(i~) will again serve as the relevant
7~ and we will denote it by Z,, also in the general context.
In Sec. I B we will provide a precise formulation of the no-
incoming radiation condition on 7. Note that while the

past boundary Z~ of the full space-time M is spacelike, the
past boundary 7, of the relevant portion Mg, of space-
time is null, just as it is in the A = 0 case.

While the focus of this paper will be on 7, it is useful
to note structures that will provide the appropriate arena
to investigate properties of radiation emitted by the system.
Although this structure will be heavily used only in
subsequent papers, we will discuss it here briefly because
it plays a role in our present considerations as well. In the
discussion of outgoing radiation, one possibility is to use
the spacelike future boundary Z* as the arena, as was
done in the analysis that generalized Einstein’s quadrupole
formula to include a positive A [8]. But there is also another
possibility [24]: use a more local, null boundary, adapted
to the cosmological horizon of the source, obtained as
follows. Consider the past event horizon E~ (i) of i™ and
assume” that it is long enough to intersect 7 Rel 1N @ 2-sphere
that we will denote by if . (see the right panel of Fig. 1).
The intersection between the causal past and the causal
future of the isolated system is the shaded triangular region
M . that is the “local neighborhood of the source” since it
is bounded by the past and future event horizons of the
world-tube of the source. Thus, M . is the intersection of
the causal future and the causal past of the isolated system;
events in My, can influence the system and can also be
influenced by it. The required null boundary would then be

A priori, it is not clear whether in physically interesting
radiating space-times E~ (i) will be “long enough” to intersect
IR But nonlinear stability results [25] for Kerr-de Sitter space-
times suggest that there should be a large family of such space-
times representing isolated systems in presence of a positive A.
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the future boundary of M ,.—the portion of E~ (i) between
i and if .. We will denote it by Z; . and call it local
scri-plus (see Fig. 1). Note that M . resembles the Penrose
diagram of an asymptotically flat space-time containing an
isolated system, with the 2-sphere if . playing the role of
spatial infinity. Finally, if the source is spherically sym-
metric and static, then the static Killing field 7¢ is timelike
everywhere in M, except on the boundaries where it
becomes null, mimicking the behavior of the time-
translation  Killing fields in  Minkowski (and
Schwarzschild) space-time. In Sec. III we will examine
the geometry of 7p,;, Z{ . if oc» and T¢ in standard exam-
ples to gain further intuition.

Remark.—As mentioned in Sec. I, in de Sitter space-
time (without a linearized source), Z* are spatially compact
with topology S°. This is also the case more generally
in asymptotically de Sitter space-times that are usually
considered in the geometric analysis literature in the
cosmological context [18], because there is no isolated,
(uniformly) spatially compact source that pierces Z*. Then
there are no preferred points i* on Z* and hence no
Tge» L1 and i¢ .. The situation is then qualitatively
different from the one of interest to this series of papers
where the focus is on isolated systems in presence of a
positive A.

B. Nonexpanding horizons and their properties

Since Z,, is a cosmological horizon, we can readily use
the available results on quasilocal horizons to impose the
no-incoming radiation boundary condition at Ig,. The
appropriate notion turns out to be that of a nonexpanding
horizon (NEH). (For reviews on quasilocal horizons, see,
e.g., [21,26,27].)

Definition 1 [20].—A 3-dimensional submanifold A of
space-time is said to be a nonexpanding horizon if

(i) A is diffeomorphic to the product A x R where A is

a 2-sphere, and the fibers of the projection A x R —
A are null curves in A;

(ii) the expansion of any null normal 7 to A van-
ishes; and,

(iii) FEinstein’s equations hold on A and the stress-energy
tensor T, is such that —=T%,#* is causal and future-
directed on A.

Note that if these conditions hold for one choice of null
normal, they hold for all. Condition (iii) is very mild; in
particular, it is implied by the (much stronger) dominant
energy condition satisfied by the Klein-Gordon, Maxwell,
dilaton, Yang-Mills and Higgs fields as well as by per-
fect fluids. Finally, in view of the bundle structure, will
refer to A as the base space and fields on it will carry a
tilde. (In the literature on quasilocal horizons, one generally
uses a hat rather than a tilde—we switched to a tilde
because hats have been used to denote conformal com-
pletion in Sec. I1 A.)

Conditions in Definition I have a number of immediate
consequences [19,20]. First, the space-time metric g,
induces a natural degenerate metric ¢, of signature
(0,+,4+) and an area 2-form €, on A, satisfying
Lsqay =0, g =0 and Lyey, = 0, €,,¢° =0 for all
null normals #¢. Thus ¢, and €, can be regarded as pull-
backs to A of the metric and the area 2-form on the base
space A. In particular, then, the area of any 2-sphere cross
section of A is the same. This is a reflection of the fact that
there is no flux of energy—matter or radiation—across A.
Therefore if we ask that 7y, be an NEH, we would be
guaranteed that there is no-incoming radiation into Mgy
from 7. On a dynamical horizon, by contrast, there are
fluxes of matter and/or radiation across the horizon and the
area of cross sections changes in response to these fluxes in
a precise, quantitative fashion [28,29].

The second set of consequences arises from fields
associated with the space-time (torsionfree) connection
V that is compatible with g,,. The Raychaudhuri equation,
together with conditions in Definition I implies that all null
normals £ are also shear-free. This property, together with
condition (ii) implies that V induces a natural intrinsic,
torsion-free derivative operator D on A which is compatible
with the induced metric ¢,, on A: D,q,. =0 on A.
Furthermore, given any future-directed null normal ¢,
we have:

D" = w, ", (2.1)
for some 1-form @, on A and, under the rescaling
£ — ¢ = f¢* for any smooth positive function f on A,
we have:

w, > w,=w,+D,Inf. (2.2)
(Thus, strictly, the 1-form @, should also carry a label ¢
which we will omit just for notational simplicity.)
Following the Newman-Penrose notation, let us define
2ReY,; = Cypea??n’¢°n?, and 2Im¥, = *C . 0 nt¢“n,
where £ is any null normal to A and, given a null normal,
n? is any null vector field that satisfies #“n, = —1. (The
NEH structure implies that the pull-back to A of the space-
time field C,,.,Z“ vanishes, whence ¥, is well-defined in
spite of the freedom in choosing n“.) The 1-form w,
defined intrinsically on A serves as a potential for the
imaginary part Im¥, of the Newman-Penrose component
¥, of the 4-dimensional Weyl tensor evaluated on A:
D[aa)b] = Im‘P2€ab. (23)
Since Im¥, determines the angular momentum multipoles
of the horizon [30], w, is called the rotational I-form. Its
component k, = @, ¢ along ¢ is the surface gravity
associated with the null normal #“. The real part Re¥, of
¥, determines mass multipole [30]. Therefore, the field ¥,
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plays a key role in characterizing the geometry of WIHs
and extracting their physics [21]. We note an important
identity that relates ReW, to the scalar curvature >R of the
metric g,;, on any 2-sphere cross section C of an NEH:

_ 2 !
R = —4ReV¥, + EA + 827G (25“anab + 3 T)- (2.4)

where ¢ is any null normal to the NEH, n¢ the other null
normal to C such that g,,7°n” = —1, and T is the trace of
the stress energy tensor. Equation (2.4) is a special case of a
general geometric identity derived in Appendix B, now
applied to A on which the shear and expansion vanish for
any null normal 7.

Finally we note that surface gravity x, need not be
constant on A for a general choice of the null normal .
However, given an NEH A, one can exploit the freedom in
the choice of null normals to restrict x,. It turns out that
every NEH admits a subfamily of null normals #¢ such that
L,®, =0 [20]. This condition says that not only is the
intrinsic metric g, of the NEH time-independent but a part
of the connection D on the NEH—namely the part that
determines its action on these null normals #“—is also
time-independent. Thanks to the identity

Efwa =0 DaKf =0 (25)
that holds on any NEH [19], it follows that x, is constant,
i.e., the zeroth law of horizon dynamics holds for this
subfamily. If an NEH A is equipped with an equivalence
class [¢“] of preferred null normals that satisfy £,w = 0,
then the pair (A, [£“]) constitutes a weakly isolated horizon
(WIH); here two null normals are considered equivalent if
they are related by a rescaling with a positive constant.
While the no-incoming radiation condition introduced in
Sec. II C refers only to the NEH structure, the WIH structure
will play an important role in the subsequent discussion.

Note that if £“ is an affinely parametrized geodesic
vector field, k, = 0, and hence in particular a constant,
whence (A, [£“]) is automatically a WIH. These WIHs are
said to be extremal. If k, # 0, then (A, [£“]) is said to be
nonextremal. WIHs are of special interest because they turn
out to satisfy not only the zeroth law of horizon mechanics
but also the first law. The WIH structure will play an
important role in Secs. IV and V. Specifically we will use
three of their properties [20]:

(i) Every NEH admits a canonical, extremal WIH

structure (A, [z,”a]). [On every extremal WIH, the
rotational 1-form @, is the pull-back to A of a
I-form @, on the “base-space” A, and on the
canonical one, @, is divergencefree on the base
space (A, Ggp)]-

(ii)) An NEH does not admit a canonical nonextremal
WIH structure. However, given a geodesically

(iii)

complete NEH, there is a 1-1 correspondence
between nonextremal WIH structures (A, [£“]) on
it, and 2-sphere cross sections Cj, of A. The null
normals £ € [¢£“] vanish on C|, are future directed
to its past, and past directed to its future.

Every nonextremal horizon (A,[£“]) admits a
canonical foliation (such that the pull-back @, of
the rotational 1-form w, on A to the leaves of this
foliation is divergence-free with respect to the
2-metric g,, on each leaf, pulled back from A.)

In terms of the canonical extremal WIH structure
°a

(A, [Z ]) on the underlying NEH, if we set the affine

o

parameter v along any e [¢] to a constant value
on the preferred cross section Cj/, then the leaves of
the preferred foliation of (A, [£“]) are precisely the
v, = const cross sections of A.

Remarks.—

6]

2

3
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On any WIH (A,[¢%]) we have (L,D,-—
D,L,)¢" =0 and, as we remarked above, given
any NEH, one can always choose null normals £
that satisfy this condition. Thus, one can always
pass from an NEH to a WIH simply by restricting
oneself to a class of null normals. The restriction is
analogous to the one often made on null infinity Z

where one restricts the null normal n to be
divergencefree to simplify the subsequent math-
ematical expressions. In both cases, the restrictions
are compatible with symmetries that a space-time
may admit. Thus, in the A > O case, if the space-
time admits a Killing field whose restriction to A is
normal to it, then the normal automatically endows
A with the structure of a WIH.

It is tempting to strengthen the WIH condition and
ask (L,D,—D,L,)t" =0 for all vector fields ¢*
tangential to the A. Then (A,[£“]) is called an
isolated horizon. However, an NEH A need not
admit any null normal £ satisfying this condition.
Thus, while one can endow any NEH with a WIH
structure “free of charge,” one cannot in general
endow it with the structure of a IH. The notion of an
IHs turns out to be well suited to describe black hole
horizons in equilibrium [21,26,27]. By contrast, it
turns out to be too strong to describe Iy, if
(MRels 9ap) admits radiation. Therefore we have
focused on NEHs and WIHs. This point will be
discussed in detail in a forthcoming paper on Z ..
One may be tempted to ask: What about the
actual universe we inhabit? Although it will be
asymptotically de Sitter in the future (assuming
the accelerated expansion continues indefinitely) it
is not asymptotically de Sitter in the past as we
assumed in Definition 2. Note that we started
with Penrose’s [4] conformal completion mainly
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FIG. 2. Left panel: Collapse of a spherical star in general relativity with a positive A. The collapse results in a spacelike singularity in
the future, denoted by the wiggly (magenta) line. The singularity is hidden from the exterior region by a black hole horizon, and we also

have the future cosmological horizon of i~ which serves as Z,;, and (portion of) the past cosmological horizon of i ™ that serves as 7

Loc®

and intersects Z, in a 2-sphere cross section i .. The relevant space-time Mg is the portion to the causal future of i~. There is a static
Killing field T“ outside the star, whose integral curves are denoted by dashed (red) lines with arrows. It is timelike in the region bounded
by the black hole horizon, Z . and T, but spacelike near Z*. Right panel: Eternal spherically symmetric black hole in general
relativity with a positive A. Because Z= are spacelike, the future (past) boundary of the maximally extended solution consists of an
infinite sequence of singularities flanked by Z (respectively, Z~). Thus in contrast to the asymptotically flat, A = O case, the space-time
diagram continues ad-infinitum. However, following the strategy discussed in Sec. II, for us the relevant part My, of space-time is the

causal future of i~ which contains only one future singularity and one Z*. Situation with Z},

Locs ifoc and the static Killing field is the same

as in the figure in the left panel. The shaded portion represents My ., the intersection of the causal future of i~ with the causal past of i *.

to anchor the discussion in familiar constructions.
One could start with the physical space-time
(M, g,,,) and consider sources whose spatial support
is compact and uniformly bounded and let My be
the causal future of the world-tube of the source, and
1IRe be its past boundary (see Fig. 1). M}, would
then be the intersection of the causal future and
causal past of the world-tube of the source. One
could use Penrose’s conformal completion just for
(MReis 9ap)» and introduce Z* and i*, and use i to
define Z7 .. This construction will go through also
for black holes formed by gravitational collapse, and
enable us to define also the black hole horizon (see
left panel of Fig. 2). Thus all reference to Z~ can be
eliminated. Indeed, even when Z~ exists, to inves-
tigate radiation emitted by a given isolated system,
7~ is not the appropriate arena to specify the no-
incoming radiation condition; the appropriate arena
is Zg.. For example, in the Penrose diagrams
depicted in Fig. 1, there could be additional isolated
sources in the past Poincaré patch—e.g., at the
antipodal location depicted by the right vertical
line—in addition to the one of interest (depicted
in the figure). In this case, even if we were to impose
the no-incoming radiation condition at Z~, radiation
in the upper Poincaré patch would be an admixture
of that emitted by the source of interest and that
emitted by the other source that is not of interest.
This problem is neatly bypassed by imposing the no-
incoming radiation condition at Z,, without having
to know what is happening at Z~.

(4) Finally, note that the notion of an isolated system is
an idealization that has been very useful in many
areas of physics. In the A = 0 case, space-time is

just assumed to be asymptotically flat—one does not
worry about the fact that real stars and black holes
are produced at a finite time in the real universe.
Since there is now strong observational evidence that
A is positive, it is natural and meaningful to ask for a
generalization of the A = 0 framework to the A > 0
case—i.e. to use Einstein’s equations G, + Ag,, =
8zGyT,, with A > 0—while retaining the ideali-
zation of an isolated system, and therefore not
worrying about the fact that real stars and black
holes are produced at a finite time in the real
universe. That is, in this idealization i~ denotes
the birth of the star or the compact binary system,
just as it does in the A =0 case. Similarly, the
“center of mass of the isolated system” is a loose
physical term and we can just consider instead the
world tube representing the system.

C. Past boundary conditions on the relevant
part My, of space-time

The strategy developed in Sec. Il A and the structure
available on nonexpanding horizons summarized in Sec. II B
now lead us to specify the class of space-times we will
consider. Let us first recall from [1] the notion of asymp-
totically Schwarzschild-de Sitter space-times.

Definition 2.—A space-time is said to be asymptotically
Schwarzschild-de Sitter if there exists a manifold M with a
future boundary Z+ and a past boundary Z~, equipped with
a metric §,,, and a diffeomorphism from M onto the
interior (M\Z* U Z~) of M such that:

(i) there exists a smooth function Q on M such that

Jap = Qg on M; Q=00nZI%;and n, := V,Qis
nowhere vanishing on 7 +.
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(i) g, satisfies Einstein’s equations with a positive
cosmological constant, i.e., R, — %Rgab + Agu, =
82GT,, with A > 0; where Q~'T,, has a smooth
limit to ZF; and,

(iii) Z has topology S? x R, and the vector field n¢ is
complete in any divergencefree conformal frame
(i.e., when the conformal factor Q is chosen to
satisfy V/V,Q = 0 at 7%).

These conditions are appropriate for considering
space-times representing isolated systems in presence of
a positive A (assuming sources have spatially compact
support that is uniformly bounded in time). Now, since
S? xR = S$*\{p\, p»} (Where p,, p, are 2 points), we can
think of Z* as being obtained from the de Sitter Z* (with
S? topology) by removing points i* representing the future
and past timelike infinity defined by the source, and points
i’ that can be thought of spatial infinity (see Fig. 1).
Discussion of Sec. II A leads to the next definition:

Definition 3.—The physically relevant portion My, of
the given space-time (M, g,,,) is that which lies to the future
of the future horizon E* (i) of the point representing the
past timelike infinity i~ of the isolated source.

Being the past boundary of the physically relevant
portion Mg, ET(i”) can be taken as Zg,, the relevant
scri-minus. Finally, we impose the no-incoming radiation
boundary condition on Zg:

Definition 4—We will say that the given space-time
satisfies the no-incoming radiation condition if:

@) Iﬁcl is a nonexpanding horizon; and,

(i1) It is geodesically complete.

The geodesic completeness requirement can be rephrased
as asking that the extremal null normals ¢ (i.e., with
ky, = 0) are complete. If one extremal null normal is
complete then they are all complete. This completeness
requirement is completely analogous to the condition one
imposes on Z~ of the asymptotically Minkowski space-
times in the A = 0) case (see, e.g., [12]).

In the rest of the paper we will work with asymptotically
Schwarzschild-de Sitter space-times with no-incoming
radiation. This is the class of space-times representing
isolated gravitational systems in presence of a positive
cosmological constant and it will be denoted by C2 .

Remark—It is interesting to note the situation in the
asymptotically flat, A = 0 case. Let us again denote the
physical space-time by (M, g,;,), the conformally com-
pleted space-time by (M , Gap ), and work with a divergence-
free conformal frame that is normally used to analyze
structure at null infinity, which we will denote by Z,.
Suppose the space-time is asymptotically Minkowskian
[12]. Then, interestingly, Z, is null, geodesically complete
and a nonexpanding horizon in (#,§,,); its structure
closely resembles that of Zg, in the A > 0. However,
there is a key difference: whereas 7, is a submanifold of
the physical space-time, in the A =0 case Z, is the
boundary of the physical space-time (at which the physical

metric g,, diverges). As a consequence, presence or
absence of gravitational radiation is not encoded in the
NEH structure of 7. To ensure that there is no radiation at
7, one has to require, in addition, that the Bondi news
tensor N,, must vanish there. In the A > 0 case, by
contrast, the NEH structure implies that the shear tensor
6,4, of every null normal £¢ vanishes on Zy, and this
vanishing suffices to ensure that there is no flux of radiation
across Zg,;.

III. EXAMPLES

In this section we will examine the simplest examples
of isolated systems in general relativity with a positive
cosmological constant to illustrate the geometrical struc-
tures one can anticipate. (Another example is discussed in
Appendix A.) We will see explicitly that all conditions in
our definitions are satisfied in these examples. Furthermore,
the explicit form of the geometrical structures of these
examples—such as Killing vectors, curvature quantities
and their behavior in the A — 0 limit—will provide the
much needed intuition in the discussion of the symmetry
groups, physical fields and conserved charges at Zy,, of
general space-times. Although we have attempted to restrict
ourselves to the most essential points, the discussion is
rather long because the presence of a positive A introduces
certain unfamiliar structures that turn out to be important in
the subsequent discussion.

Throughout this paper, we use the symbol # in two
different ways: ¢ will stand for the cosmological radius

V/3/A, while #¢ will denote null normals to Zg.,.

A. Linearized gravity with sources
in the de Sitter space-time

In this subsection we will analyze the geometry and
symmetries of the future Poincaré patch, Mg, of the
space-time depicted in Fig. 1. We begin by listing the five
coordinate systems in which the background de Sitter
metric is commonly displayed because they are useful to
bring out various geometrical features that we will need.
The coordinates themselves are not important and will not
play an essential role in the subsequent discussion; only
the invariant structures they define in these examples will.
These include existence of Zy, and the WIH structure
thereon; 7., if,. and Z; ; and the relation between
physically interesting conserved quantities and these struc-
tures; see the last part of the discussion in each example.

1. Various forms of the metric

(1) Standard cosmological coordinates ¢, x, y, z:

ds? = —dr* + a*(1)(dx? + dy* + dz?),
with a(t) = e'/’.

(3.1)
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2

3

“

IRe corresponds to r= o0 and f= —oco (with
rr=x>4+y*+z7%,and T to t = c0. So the chart
does not cover either.

Conformal time 7, and spherical coordinates r, 8, ¢,
again on the cosmological slices:

ds? = @ (n)(dn? + dr? + P2ds3),

mmz—fzam

with = —¢e™"/?,

(3.2)

and where d§§ stands for the unit 2-sphere metric. In
this chart, 7y, corresponds to r = — = oo, and 7
to n = 0. Therefore, again Zy, and Z* are not
covered by this chart. R

Static coordinates 7, R,8,@, in which the T =
790, := 0/0T is manifestly a static Killing field
and R is the proper radius of 2-spheres of symmetry:

ds? = —f(R)dT? + dr + R%ds;
f(R) |
R2
with  f(R) = 1= (3.3)

This chart covers the lower half of the Poincaré patch
(ie. the portion that lies to the past of Zj )
excluding the boundaries Zg, and Z;_ . where

f(R) vanishes (see Fig. 1). In terms of 7, r of (2),
we have:

4 4 nz—rz
R=——r T——Eln( 7 )

n
e TI'R e Tty
-l 4

N 2 V1-R*/2

This form is best suited for generalization to the
Schwarzschild-de Sitter metric.
Eddington-Finkelstein coordinates (v, R, 8, @)

ds? = —f(R)dv? + 2dvdR + R2ds; with

£ (14+R/C
v:T+R*ET+—1n( +R/7)

TR (3.5)

As with the static coordinates, this chart covers the
lower half of the Poincaré patch, but now includes
the past boundary of this region—i.e., the lower half
of Zy.,,—along which v runs from —oco (at i) to oo

(at i¢,.). It excludes Z; . because v = oo there.

(5) Kruskal coordinates (U, V, 8, @)

£ .
ds? = S (=4dUAV + (1 + UV)2ds3).

(1-UV)
(3.6)

This chart covers the entire Poincaré patch of interest
to this paper, excluding Z* (as well as the lower
Poincaré patch that is not of interest to us). Zp,
corresponds to U =0 and is coordinatized by V
which runs from —oo (at i7) to oo (at i?). (Thus Jy is
future directed.) The 2-sphere if . (at which the
Eddington v diverges) corresponds to V = 0. Z_ is
the upper half of the V = 0 surface on which U runs
from O (at if ) to oo (at i"). The Kruskal coordinates
are related to the double-null Eddington-Finkelstein
coordinates (u, v) via

U = e, V =—e7, whereu=T-R,;
(3.7)
to the static coordinates (7', R) via:
T 1. |1+
U=exp(——--I 2.
exp<£ 2n’1_§>
T 1 [1+%
V = —exp(—?—iln' 1 _§ ),
R 1+UV T 1 U
K_2+ LN (3.8)

£ 1-UV £ 2 -V

and to the coordinates (1, r,0,¢) adapted to the
cosmological slices, via

4 r+mn
U: V:

r—mn 4

Uv -1 Uv +1
T="5u 2U (39)

2. Symmetries

While (the global) de Sitter space-time carries 10 Killing
fields, the Poincaré patch under consideration is left
invariant only by 7 of them [1]. These Killing fields are
manifest in the two cosmological charts (1) and (2) because
they are adapted to spatially flat slices, but not in the other
three. We have three spatial-translations Sf, and three
rotations R‘(li) associated with the spatial cartesian coor-
dinates x, y, z, and a time-translation 7 defined by

- 1
T:=T4, = ~7 (nOn + x0, + yd, + z0,) (3.10)

in the chart (2). (Because of the form 7“ takes in these
coordinates, it is sometimes referred to as a “dilation.”)
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The commutation relations between S<“l.) and RE’Z.) are the

familiar ones and 7% commutes with the three rotations
R?l.). These commutators do not refer to the cosmological

constant A; they are the same as those in Minkowski
space-time. On the other hand, commutators between 7¢
and space-translations are new and explicitly involve
£ =/3/A: [T,S;]* =15 Note that in the A — 0 limit,
¢ — oo whence the commutators vanish, as in Minkowski
space-time.

However, since the cosmological charts do not cover
I ge—and also fail to extend to the Schwarzschild-de Sitter
space-time—to investigate the behavior of the Killing fields
on Iy, we need to work with either the Eddington-
Finkelstein or the Kruskal coordinates [charts (4) and
(5)]. In the Kruskal coordinates (U,V,0,¢), the three
rotations assume the familiar form:

R) = —(sing)dy — (cot & cos ¢)d,;

R, = (cos ¢)8y — (cot@sin ®)0,; R, = d,. (3.11)
The time-translation becomes
- 1

4

while the form of the spatial-translations is more compli-
cated because the chart is not tailored to spatially homo-
geneous slices:

S, = sin@cos p(—U?dy + Oy)

sin ¢
—0,
i + UV sin@ ‘/’>
S, = sin 6 cos p(=U%0y + 0y)

<cos Osinpd,, — % 8¢>

(cos 0 cos pd, —

_I_

1+U0V

- 2U
S3 = cosO(=U?dy + Oy) — ————sin 69,

1
I+0v (3.13)

In this chart, 7y, corresponds to U = 0, whence it is
manifest that all seven Killing fields are well behaved and
tangential to Z ;. Note in particular that the restriction to
TR of the 4 translations is given by:

= (sin@cos @)dy, S, = (sin@sin )y,

Sy
S5 = (cos0)dy, (3.14)

and

- Vv

Since Oy is future directed on Zg,, and V is negative
between i~ and i°, the vector field T is also future directed

on I .. Recall that if . is coordinatized by U =V = 0.
Therefore, the time-translation Killing field 7¢ vanishes at
the local if ., whence if . is left invariant under the action
of the time-translation subgroup of the isometry group of
(Mget, 9ap)- Similarly, the three rotations are tangential to
the 2-sphere if .. Recall that 7| is the portion Z¢, to the
past of i ... The time-translation 7“ and the three rotations
R¢ leave Iy, invariant. By contrast, none of the three

space-translations St vanish at if .. Therefore 77 is not

left invariant by any of the space-translations. Thus, only 7
of the 10 de Sitter isometries leave the upper Poincaré patch
My, invariant, and only 4 leave the local cosmological
region M. around the source invariant. We will see in
Sec. IV that these features are reflected also in the structure
of the symmetry group at 7, of the class of space-times of
interest to this paper.

3. Global structure and physical fields

The full space-time (M, g,;) trivially satisfies Definition
2; it is asymptotically Schwarz—de Sitter. The physically
relevant portion Mg of this space-time is the upper half
Poincaré patch. Since its past boundary Zg,, is given by
U = 0 in the Kruskal coordinates, it follows immediately
from (3.6) that its topology is S*> x R and the expansion of
any of its null normal vanishes. Furthermore, the stress-
energy tensor 7', vanishes identically near Z,. Therefore
it meets all three conditions of Definition I; it is an NEH.
Finally, using the form (3.6) of the metric it is easy to verify

that ¢ defined by fu(?a = 0/0V is a future pointing,
affinely parametrized, null geodesic normal to Z . (As the

notation suggests, ¢" is in fact the canonical extremal null
normal on Z,, discussed in Sec. II B.) Since V runs from
—oo to co on Zg,, it is geodesically complete. Thus the
space-time under consideration belongs to the class C2 | of
Sec. II C. In fact, this is the “simplest” example of a space-
time in this class. It is analogous to Minkowski space with a
linearized source of compact spatial support in the class of
all asymptotically flat space-times in the A = 0 case.
The time-translation Killing field 7 is given by 70, =
—(V/¢)0y = 0, where, as before, v is the Eddington-
Finkelstein null coordinate. Thus 7¢ vanishes at if ., and
its affine parameter v runs from —oo (at i7) to co (at if ).
Therefore this vector field is complete already on Z .. Let
us denote its restriction to Z . by £“. Since £¢ is a null
normal to 77, it satisfies the geodesic equation £9V ¢ =
k¢ with k, = —1/¢. Thus, while surface gravity of the
Killing field 7¢ evaluated on the cosmological horizon Z1
is constant—as it must be since 7, is a Killing horizon—
in a stark contrast to the more familiar black hole horizons,
it is negative. The rotation 1-form associated with £¢ is

w, = —(1/£)0,v, while that associated with the affinely

parametrized geodesic vector field ¢" vanishes identically.
Hence Eq. (2.3) implies that Im¥, must vanish on Zg.
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Similarly since the horizon is spherically symmetric with
proper radius ¢, Eq. (2.4) implies that Re¥, must also
vanish on Z . Of course this also follows trivially from the
fact that the de Sitter metric is conformally flat.

Finally, let us consider the limit A — 0. Interestingly,
while the conformal coordinates (2) and the Kruskal
coordinates (5) are well suited to the study of different
aspects of Killing vector fields, the forms (3.2) and (3.6) of
the metric show that the differential structures they define
(via (n, r) and (U, V), respectively) are ill suited to take the
A — 0 limit.* Static and Eddington Finkelstein coordinates,
on the other hand, are well suited. In static coordinates (3),
the limiting metric

limds? = ds} = —d7? + dR? + RYds;  (3.16)

is the Minkowski metric in the spherical coordinates
T,R,0,¢. Since T ranges over (—oo,00) and R over
(0,7), the limiting space-time is the complete
Minkowski space (M,,g’,). It is manifest that the 7
becomes the standard time-translation Killing field in
Minkowski space, adapted to these coordinates. Note that
since Z7,, and Z; . are given by R = ¢, and £ — oo as
A — 0, it follows that in the limit Z[ . and Z; . become,
respectively the past and future null infinity Z, and Z} of
(M,, g%,). Thus, in the limit, the (shaded) triangular part
M, . of the de Sitter space-time expands to fill out all of
Minkowski space. However, since T = £R, along Z . and
T/ .., in the limit both T and R become ill defined there. As
usual, one has to carry out a conformal completion to attach
T as future and past boundaries of (M, g2, ). The limiting
procedure and the final result is the same if we begin with
the Eddington-Finkelstein coordinates (4).

Remark.—One can also choose to work with the
cosmological chart (1) since in the limit A — O the metric
(3.1) remains well defined:

ll\i_r}})dsz = ds? = —dr* + dx? + dy* + dz%. (3.17)
Since each of the 4 coordinates range from —oo to oo, the
limiting space-time is again the complete Minkowski space
(M,, g5,). But there is an interesting and important differ-
ence from the result we obtained above using the static (3)
or the Eddington-Finkelstein chart (4). Let us introduce a
chart v,, r, 0, @ on the full Poincaré patch Mg, with r> =
x> 4+ y* + 7% as before, and v, =t + r. In the limit, the
Minkowski metric g9, is now expressed in the advanced

*Note that in the limit A — 0 (i.e., £ — o) differential
structures defined by coordinates in (1) to (5) are no longer
equivalent even in subregions. For example, it follows from (3.4)
that if we work in the differential structure given by n, r, then T, R
become ill defined in the limit and vice versa. So, one has to first
fix the differential structure and then take the limit. One cannot
freely pass from one of the systems to another after taking the
limit.

null coordinates. So, by setting Q = 1/r,we can carry out a
conformal completion and attach a past null boundary 7,
coordinatized by v,, 0,9, to M,. Then as v, runs over
(—o0, ), one goes from i~ to i°. Thus, now, I, of the
limiting Minkowski space corresponds to the entire Iy —
rather than its bottom half, 1 .. (Furthermore, in this full
Minkowski space, we can introduce another chart u,,
r,0, ¢, with u, =t —r, and carry out a conformal com-
pletion to attach a future null boundary Z;} to the resulting
Minkowski space, coordinatized by u,, 6,¢. In this
completion, the entire Z* of de Sitter space-times corre-
sponds to “timelike infinity” i) of the conformally com-
pleted Minkowski space-time.)

This discussion brings out an important subtlety.
Because of global issues, we do not have a canonical
way to take the limit £ — co. Because we have to restrict
ourselves to charts in which the limiting metric is well
defined, the freedom in the procedure used to take the
limit is curtailed. However, even within the restricted
freedom, global aspects—such as which surface in the
A #0 space-time goes over to Z: in the limiting
Minkowski space-time—can depend on which admissible
chart is used. This is why we introduced both Z¢,, and 7.
in the class C» , of metrics under consideration.

isol

B. Schwarzschild-de Sitter space-time

Interestingly, Schwarzschild anti—de Sitter space-times
have drawn much more attention in the literature than
Schwarzschild—de Sitter space-times which are physically
more directly relevant. Even in the Schwarzschild—de Sitter
literature, black hole horizons have been studied more
extensively than the cosmological horizon, probably
because the latter do not exist in Schwarzschild anti—de
Sitter space-times. Notable exceptions are Ref. [31] where
properties of cosmological horizons were explored from
thermodynamical considerations, and Ref. [32] where the
emphasis was on the ambiguity in the normalization of the
time-translation vector field used in the mechanics of
WIHs. We will complement that discussion with geometric
considerations that are brought to the forefront by our
strategy of using the cosmological horizon E*(i™) as Zg,,
(and its bottom half as Z ). Since the relevant structures in
this example are very similar to those in Sec. IIT A, we will
primarily focus on new issues that arise due to the presence
of the mass term in the metric.

Because of the mass term, space-time no longer admits a
spatially homogenous foliation. Therefore the first two
charts used in Sec. III A no longer exist. However, the
remaining three can be readily generalized. It is convenient
to express the space-time metric in these three charts
because, as in Sec. III A, different aspects of the structure
become transparent in different charts.

(1) Static coordinates T, R, 0, ¢, in which the T%0, :=

0/0T is manifestly a static Killing field and R is the
proper radius of 2-spheres of symmetry:
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2)

3

ds? = —f(R)dT? + dR* + R%ds5,
f(R)
26m R
with f(R)=1-29"_R (3.18)

R

This chart covers only the region bounded by the
black hole horizon and Z} to the future, and Z7, to
the past.

Eddington-Finkelstein coordinates (v, R, 8, ¢):

ds? = —f(R)dv? + 2dvdR + R*ds5  with

v=T+R,. (3.19)
where as usual the Tortoise radial coordinate R, is
defined by dR = f(R)dR,. Its explicit form is more
complicated than in (3.5) because now f(R) has 3
roots, R, representing the radius of the black
horizon, R representing the radius of the cosmo-
logical horizon and a negative root R,. For our
purposes, it will suffice to note that R, has the form

oo R
« =P -
(Riey = R,)(Rie) = Ripy)
=p(R) - llnw (3.20)
a 4 ’

where p(R) is a rather complicated function of R that
is well behaved on the cosmological horizon and the
constant a, given by

(Rie) = R,)(Rie) — Ryy)
= , 3.21

is positive everywhere outside the black hole horizon
(and has dimensions of inverse length). This chart
contains the region covered by the static chart but
now also includes Z, . where v ranges from —oo
(at i7) to oo (at if ). But it excludes Z| . because v
diverges there.

Kruskal coordinates (U, V, 0, ¢):

5 4611/)(R) )
ds- = m(R - R(,)(R - R(m)dUdV + R dSz,

(3.22)

where the constant a is defined in (3.21). These
Kruskal coordinates are related to the past and future
Eddington-Finkelstein null coordinates » = 7' + R,
and u =T — R, via

U=¢é" and V=—e7". (3.23)
Let us examine the range of coordinates and asso-
ciated geometrical structures. As in Sec. IIl A, Jy is

future directed on Zp,: its affine parameter V
assumes the value —oco at i~, zero at if . and oo
at ;™. Thus, as usual, the Kruskal coordinates extend
the Eddington Finkelstein chart, in our case to 7,
and its future all the way to spacelike Z in the
asymptotic region. As in Sec. III A, past boundary of
the space-time covered by the Kruskal chart is the
entire Iy, not just I ... The future boundary is the
union of the black hole horizon in the interior region
and spacelike Z* in the asymptotic region. (Note
that, unlike in the A = O case, the black hole horizon

and the black hole region are excluded.)
Space-time has four Killing fields, a time-translation 7¢
and three rotations R¢, i = 1, 2, 3. The rotations have the
same form (3.11) as in Sec. IIT A. In Kruskal coordinates,

the static Killing field 7¢ is given by

10, = o, - Yo, (3.24)
2 2
on entire My. It is timelike in M .. and spacelike in the
asymptotic region near Z*.
Finally, the relevant global structures and physical fields
can be summarized as follows. First, Z, is clearly a NEH

since it is a Killing horizon. Second, £ * defined by 7 aﬁa =
Jy is a future pointing, affinely parametrized geodesic null
normal and 7z, is complete because V runs from —oo
(at i7) to +oo (at i?). Thus, this space-time satisfies
Definitions 2 and 4 and therefore belongs to the class
CA., under consideration. Next, let us consider the static
Killing field 7¢. Its restriction £¢ to Zg, is given by

£t = —(a/Z)Vfa. Since ¢ is future pointing and V is
negative to the past of if.. and positive to its future, it
follows that £¢ is future pointing on Ly, vanishes at iy
and past pointing to the future of if . (as in Sec. Il A).
Surface gravity «k, of this normal is given by
k= (1/2R())(1 = 3R, /¢?). The allowed range of R,
is between #? (when m = 0) and #?/3 which corresponds
to the Nariai solution [33]. For the entire class of these
solutions, the surface gravity x of T is negative on Zg.

Thus, while (Zg,,. [¢]) is an extremal WIH, (Z[..[¢]) is a
nonextremal WIH. ) ou

The rotation 1-form w, defined by # again vanishes,
and that associated with #“ is again exact, given by
w, = kzD,v. Therefore Im¥,e,, = Dy, vanishes on
ZIRes just as one would expect from the fact that since
the space-time is spherically symmetric, all angular
momentum multipoles must vanish on Zg,,. The identity
(2.4) and spherical symmetry imply that the real part Re¥,
on I, is given by

1/ 1 1
Re‘l‘2:§<@—ﬁ>

(3.25)
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(In fact this relation between ¥, and the area radius holds
on any spherically symmetric cosmological or black
horizon; see Appendix B.) Next, algebraic identities relate
Y, to the parameter m in the expression of the space-time
metric to ¥, = —-Gm/ R3. Therefore, in terms of structures
available at Zg, (or, Z;.), the parameter m in the
Schwarzschild—de Sitter geometry is given by the integral

1
m = R(C)Re‘Pzsz

- 3.26
4rG C ( )

evaluated on any 2-sphere cross section C of Zg,, (or Z;.)
Note that, in the asymptotically flat context, in absence of
incoming radiation, Bondi mass is given precisely by the
limit to Zy,, of the 2-sphere integral on the right side.

What happens in the A — 0 limit? As in Sec. Il A, the

Kruskal chart is ill suited to take this limit. But we can
take the limit using either the static or the Eddington-
Finkelstein chart. In either case, the region bounded by
the black hole horizon(s) and Zi . expands out to give
us the entire asymptotic region of the asymptotically flat
Schwarzschild metric (representing a spherical collapse of
a star as in the left panel of Fig. 2 or eternal black hole as in
the right panel). Thus, as in Sec. Il A, in the limit Z
becomes Z,, and Z; . becomes Z, of the asymptotically
flat Schwarzschild metric. The situation is completely
analogous to that in Sec. IIT A for the case when the limit
is taken using the static or the Eddington-Finkelstein chart.

Remarks.—

(1) Given any solution with a time-translation isometry,
energy E, is a linear map from the space of the time-
translation Killing fields to real numbers. Thus, if we
rescale the Killing field 1 — 7 = A%, the energy
also rescales: E; = AE,. This scaling is needed in the
first law OFE; = k;0A of horizon mechanics. For,
surface gravity also rescales linearly while area of
the horizon is of course unaffected. Therefore, if the
first law holds for 7%, it holds also for 74 For
considerations of the horizon energy and the first
law, then, we do not need to fix the rescaling
freedom in the time-translation Killing field.

On the other hand, only one of these energies E,
can be regarded as mass M. In the asymptotically flat
case, it is E, associated with that time-translation
Killing field #* which is unit at infinity. This method
of fixing the rescaling freedom is not available in the
A > 0 case, because the norm of all time-translation
Killing fields 7¢ diverge at infinity in de Sitter
space-time. However, we can take the limit A — 0
and choose as preferred 7¢ that vector field which, in
the limit, goes to the unit time-translation asymp-
totically as one approaches 7. The time-translation
vector field 7¢ used in this section is precisely this
vector field. Can we characterize it intrinsically on

11 ,.> without reference to the limit? The answer is in
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the affirmative. It turns out that the restriction £¢ of
T to I, is the unique nonextremal null-normal on
17, that satisfies two conditions:
(i) £“ vanishes at if .; and,
(i) Its surface gravity is k, = (1/2R(,))(1 — 3R%C> /
£?). This fact will serve as a guiding principle
in Sec. V.
The left panel of Fig. 2 depicts a spherical collapse
while the right side depicts an eternal black hole. In
both cases, the space-time continues ad infinitum—
on the right side for the collapsing situation and on
both sides for the eternal black hole. This means in
each case there is an infinite family of black and white
holes. However, as is well known, using the sym-
metries of the underlying space-time, for the eternal
black hole one can carry out an identification so that
we have only one black hole and only one white hole
(see, e.g., Sec. III. B in [1]). But then the topology of
space-time changes. Furthermore, this is not possible
for a collapsing star of the left panel without changing
the physical system we are interested in. From the
perspective developed in Secs. I and I, on the other
hand, the situation is simpler. Since we ignore every-
thing to the past of Z, and impose the no-incoming
radiation condition there, we are led to consider only
one collapsing star and only one black hole that
results from the collapse; the relevant space-time My,
for us is precisely this region.
For a linearized source in de Sitter space-time, we
found that there are two ways of taking the limit
A — 0. The first, discussed in the main text of
Sec. I A, generalizes the one we used for
Schwarzschild—de Sitter. The second, discussed in
the Remark at the end of Sec. III A exploited the
presence of spatially homogeneous slicing in de Sitter
space-time. If one uses the cosmological chart to take
this limit, entire Z,, tends to Z;. Can we not use a
similar procedure here and obtain Z of the limiting
asymptotically flat Schwarzschild metric as the limit
of full Zz,? The procedure cannot be taken over
directly because Schwarzschild—de Sitter space-time
does not admit spatially homogeneous slices. None-
theless, one might imagine using the Eddington-
Finkelstein chart, expressing the Schwarzschild—de
sitter metric as ds? = ds.gyer — 222 dv?, and then
using the cosmological chart ¢, x, y, z for the de Sitter
part of the metric. However, since the function v
diverges at if,, the extra term 22¢ dv? becomes ill-
defined there. Therefore this strategy does not lead to
a limit in which full 7y, of the Schwarzschild-de
Sitter space-time goes over to Z, of the asymptoti-
cally flat Schwarzschild metric. Thus, the second
method of taking the A — O limit in de Sitter space-
time exceptional and does not extend to more general
space-times in our class.
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Appendix A discusses the more complicated example of
Kerr-de Sitter space-time. We again find that: (i) the space-
time admits 7y, and Zy,.; (i) Zg. is geodesically
complete; (iii) there is a preferred time-translation
Killing vector field 7“ that vanishes at if . and its
restriction ¢ to Z7,. endows it with the structure of a
nonextremal WIH. The rotational Killing field is tangential
to if .. Thus, i . is again left invariant by the isometries.
We include this example to show that these structures are
robust in spite of important structural differences from the
Schwarzschild-de Sitter case. But we chose to postpone it
to the Appendix because expressions become long and the
discussion is technically more complicated.

IV. SYMMETRIES OF Z;, AND Z}

Loc

Let us begin by recalling the symmetry groups in the
asymptotically flat case. The past boundary of space-times
representing isolated systems is Z, which is endowed
with certain universal structure—the geometric structure
that is common to the past boundaries of all asymptotically
flat space-times. The symmetry group of Z, is then
the subgroup of Diff(Z,) that preserves this universal
structure. This is precisely the BMS group B. (For a
summary, see, e.g., [12].) Now, if we are interested in
isolated systems—-as opposed to, say vacuum solutions to
Einstein’s equations—then there is no-incoming radiation
at Z,. This restriction can be used to introduce additional
structure on Z,: a 4-parameter family of preferred cross
sections—often called “good cuts”—on which the shear of
the ingoing null normal n“ vanishes. This family is left
invariant by the BMS translations but not by the more
general supertranslations. If one adds this family of good
cuts to the universal structure, symmetries would be only
those elements of B that preserves this family. This is a 10
dimensional Poincaré group P of B [22,23]. We will see
that this situation in directly mirrored in the A > O case,
now under consideration.

In this case, the physically relevant portion My, of
space-time is the causal future of i~. As we saw in Secs. 11
and III, it is natural to impose the no-incoming radiation
condition at the past boundaries 7y, of Mg,. Therefore,
symmetries of Zp, we are now seeking would be the
analogs of the symmetries of the past null infinity, Z,. In
Sec. IVA we examine the universal structure at Zy—the
structure that is shared by the past boundaries of the
relevant portions My, of all space-times representing
isolated systems in presence of a positive cosmological
constant. The symmetry group & of Z,, would then be the
subgroup of Diff(Zg,,) that preserves this universal struc-
ture. In section IV B we will analyze the structure of this
symmetry group &. We find that ® is infinite dimensional,
analogous in its structure to B, but with an interesting twist
that captures the fact that we now have A > 0. (These
constructions were motivated by the analysis of

nonextremal black hole horizons in the A = 0 case [34]
where the BMS group arises for different reasons.)
Motivated by considerations of Secs. II B and III, in
Sec. IV C we introduce an additional structure—a preferred
cross section if . of Zg,,. (For purposes of this section, it
can be any cross section; it need not be the intersection of
the past event horizon E~(i*) of it with Z¢,.) Zj . is the

Loc
portion of Z, that is to the past of if .. We find that Z _ is

Loc* Loc
naturally foliated by a 1-parameter family of cross sections.
These are the analogs of good cuts in the A = 0 case. The
symmetry group of Z7 . is therefore the subgroup of & that
leaves this family invariant. Addition of new structure
always reduces the symmetry group. As in the asymptoti-
cally flat case, we find that the reduction is drastic: Infinite
dimensional & is reduced to a seven dimensional group
which we will denote by ®,.

We will use these symmetries to introduce conserved
quantities in the next section.

A. Universal structure of Z 5,

Recall that 7, is an NEH that is geodesically complete.
Thus, we are led to seek geometrical structures that are
common to all complete nonexpanding horizons. Let us list
these structures.

First, every NEH is a 3-manifold that is topologically
S? x R, ruled by the integral curves of null normals #°.
Second, as noted in Sec. II, each NEH comes equipped with

o

a canonical equivalence class [fa] of future directed null
o o/, o/, o
normals, where ¢~ ¢ if and only if “ = ¢¢" for some

°a
positive constant c. Each ¢ is a complete vector field
on Ig,.
Next, each NEH is also equipped with a degenerate

°h
metric g, of signature 0, +, +, satisfying ¢,,Z = 0 and
E;qab = 0. However, the metric ¢, itself is not universal.
For example, on the de Schwarzschild—de Sitter 7, g, is
spherically symmetric, while on the Kerr—de Sitter 7, it is
only axi-symmetric. More generally ¢,;, may not admit any
isometry. The scalar curvature *R of ¢,, varies from
one NEH to another. However, each NEH admits a unique
3-parameter family of unit round metrics &ab that are
conformally related to its q,;,. By construction, these round

metrics (O]ab are themselves conformally related to one

another. Furthermore, since the g, are all unit, round
metrics, the relative conformal factors between them have a
very specific form:

where a1 (0, @) = ay + a; sinfcos ¢
(4.1)

oy 5©
9ab = A Gap>

+ a, sin@sin ¢ + a3 cos 0,

where ), a; with i = 1, 2, 3 are real constants satisfying,
—a}+|a*=-a}+al+al+a3=—-1,and P and g are a
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set of standard spherical coordinates associated with the
metric ¢,,. Thus, a~'(6,¢) in (4.1) is just a linear

combination of the first four spherical harmonics of g]ab.
Note that the relative conformal factor a(6, @) refers only to

the family {g,,} of round 2-sphere metrics; it has no
memory of the physical metric g,, which varies from one
space-time to another.

To summarize, the past boundary Z,, of every space-
time in the class C., under consideration, is equipped with
the following three structures:

(1) Zg, is a 3-manifold, topologically S$? x R; ou

(2) It carries with a preferred, equivalence class [£ | of

°a
complete vector fields £ where two are equivalent if
they are related by a rescaling by a positive constant.

Integral curves of these vector fields £ ‘ provide a
fibration of 7, endowing it with the structure of a
fiber bundle over S2.

(3) Iy carries an equivalence class of unit round

2-sphere metrics Z]ab, related to each other by a
conformal transformation of the type (4.1), such that

o ° b o o

qu? =0 and C;qab =0 for every ¢q,, in this

family. This is the universal structure at Z7 ..
Overall, the situation is analogous to that at null infinity,

T, ,of asymptotically flat space-times. If we were to restrict
ourselves to Bondi conformal frames—as is often done—then

°a

the universal structure at Z, consists of pairs (.2 ) of
fields on Z,, where Z]a,, is a unit, round, 2-sphere metric,

and #* a null normal, such that any two pairs are related
by conformal rescalings of the type (gl fla) =
(260, 9)Gap. (0. q))fa) with (6, ¢) again is given by
(4.1). (See, e.g., [12].) There is however one difference:
while Z¢,, admits a canonical [fa} that is not tied to the
3-parameter family of unit round metrics auh, in the
asymptotically flat case, Z, admits a 3-parameter family

°oq °
of null normals ¢ , each tied to a round metric g,

undergoing a rescaling by a~'(6, ) when g, is rescaled
by a?(6, @). This difference will play a key role: It lies at the
heart of the subtle but important difference between the
BMS group B at 7, and the symmetry group ® of 7,
discussed in Sec. IV B.

Note that the universal structure on Z, refers neither to
the physical metric ¢,,, nor to the intrinsic derivative
operator D,, nor to the rotation 1-form w,, as these
structures vary from the Zy,, of one physical space-time
to another. These constitute physical fields on Iz, that
capture physical information—such as mass, angular
momentum and multipole moments—contained in the
gravitational field of the specific space-time under

consideration. (In particular, in the universal structure,

o

[fu] are only complete vector fields; not geodesic vector
fields since the notion of geodesics requires a connection.)
This situation is completely analogous to that in the
asymptotically flat case. There, the connections D, on
T, whose curvature defines the news tensor N, [23], and
the Newman Penrose components [4,12] ¥§, ..., P] of the
(appropriately rescaled) Weyl curvature of the of the con-
formally rescaled metric g, are physical fields on I, that
vary from one space-time to another.

B. Symmetries of T,

As in the asymptotically flat case, discussion of asymp-
totic symmetries is most transparent if one first introduces
an abstract 3-manifold, 7 4y, that is not tied to any specific
space-time, but is endowed with the universal structure of
IRe- Thus, T zps will be:

(1) a 3-manifold, topologically S*> x R; equipped with:

(2) aclass [fa] of complete vector fields ¢, related to
each othero by a rescaling by a positive constant; and,
(3) a class {g,,} of conformally related, unit, round

o °b
2-sphere (degenerate) metrics such that ¢, 2 =0
and E;glab = 0. [Note that the fact that the Z]ab are

unit, round metrics that are conformally related
implies that the relative conformal factor a must
of the type (4.1).]

The space of integral curves of s topologically

S? and we will denote it by 7 .
The symmetry group ® is then the subgroup Diff(Z )
that preserves this structure. Given any concrete space-time

in our class C2,, there exist diffeomorphisms from the

oa °
concrete Zz,, to Z ap that send [¢ | and {g,,} on Zg, to

o

[fa] and {q,,} on T .. However, these diffeomorphisms
are not unique. Any two are related by an element of the
symmetry group ® (since elements of & are the diffeo-
morphisms from 7 4, to itself that preserve the universal
structure on Z py,).

Let us examine the structure of ®. As in the asymptoti-
cally flat case, it is simplest to first discuss the structure of
its Lie algebra g. Since ® is a subgroup of Diff(Z ),
every element of g is represented by a vector field £ that
generates a |-parameter family of diffeomorphisms pre-

°a
serving the universal structure. Elements of [¢ ] differ from

each other only by a rescaling ¢ = et where ¢ is a
positive constant, and elements of {f]ab} are related by
qup = @*(0.9)q,, where the conformal factor (6, ¢) is
specified in (4.1). Therefore, under a 1-parameter family
d(2) of diffeomorphisms generated by a symmetry vector
field &%, we must have:
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°a °a

Z - C(ﬂ)f and aab - az(/l)éab (42)

where for each 4, ¢(4) is a constant, and a(4) is a function
of 6, ¢ of the form given in Eq. (4.1), with ¢[,_, = 1 and
al,_o(0,p) = 1. Furthermore, Eq. (4.1) implies that the
four constants ag(4)...a3(4) in the expression of the
conformal factor a(4) must satisfy af(4) —|a(2)]> =1
for each A. Now, to obtain infinitesimal action of the Lie
algebra element, we just need to take the derivative with
respect to 4 and evaluate the result at 4 = 0. Thus, to qualify
as an infinitesimal symmetry, the vector field &% on Z pp,
must satisfy

o

ﬁgfa = —K}a and Ef&ab = 2¢(9’ (p)aalw

v and Vi, (4.3)

where —k = (dc(1)/dA)|,—o and ¢ = (da(4)/dA)|,—,. Here
the constant x € R depends on £ but is independent of the
choice of ' € [:”a} (and the minus sign in front of « is

introduced in (4.3) for later convenience). The function ¢,
on the other hand, varies from one round metric %ab to
another. Restrictions on a(4) imply that ¢ is a linear
combination of the first three spherical harmonics defined

by ¢, and in particular satisfies L’}q’) = 0. Thus, it projects

down to a function ¢ on the space 7 x, of integral curves of
°a 22~ ~0 2
¢ (and satisfies D,D,¢ = ¢q,,, where D, is the deriva-

tive operator defined by §,, on Z ).

Since the conditions (4.3) that characterize infinitesimal
symmetries £ are so simple, it is rather straightforward to
analyze the structure of the Lie algebra g.

Let us first consider the space )V of symmetry vector

°a
fields &¢ that are vertical, i.e. proportional to ¢ . These
would be analogous to supertranslations on Z,. Let us fix a

°a

fiducial £ in [¢ ] and set &4 = fz,”a. (Thus, given a & there
is an ambiguity & — ¢~!£ in the choice of function £.) Since

o o °b
ﬁ;qab =0 and ¢, ¢ =0, it follows immediately that

L'J]ab = 0 for all 5,1,7 in our universal structure. Therefore,
the second of Eq. (4.3) is automatically satisfied (with
@(0,9) = 0). The first condition on the other hand is a
genuine restriction on the function &. To write the solution
explicitly, let us introduce a cross section C of 75y, and

denote the affine parameter of ¢" that vanishes on this C by
v. Let us also introduce spherical coordinates (0,¢) on C
and extend them to all of Z ,,, by demanding that they be

constant along fibers (i.e. integral curves of :”a). Then, the
general solution to the first of Eqs (4.3) is simply

o

E=kv+ f(0,9) sothat & = (kv + f(0, (p))fa.
(4.4)

Thus &% € V if and only if it has the form (4.4), whence
every vertical symmetry vector field £* can be labeled by a
pair (x, f) where k is a real number and f a function on Z

satisfying E; f = 0.” Now, given a vertical vector field & =

1314 “in V and a general infinitesimal symmetry &, by first
of the Eq. (4.3), the commutator is given by

°a
[52,51]‘1 = ((552 - Kz)‘fl)f . (4-5)
Since the right side is again vertical, it follows that the
space V of vertical symmetry fields constitutes a Lie-ideal
of g.

Let us therefore take a quotient g/). Each element of
g/V is an equivalence class {&?} of symmetry vector fields
&%, where two are equivalent if they differ by a vertical
symmetry vector field. Since, furthermore, [125” is again

vertical for any £ € g, it follows that every symmetry
vector field £ can be projected to a vector field & on the
base space Z sy, of Z aps unambiguously and, furthermore,
all vector fields in a given equivalence class {&*} have the
same projection E°. Therefore elements of the quotient g/
are in 1-1 correspondence with the projected vector fields
&% on T pp. Now, the second of Eq (4.3) implies that each £

is a conformal Killing field for every round metric §,, on
7 aps In our universal structure. (If it is a conformal Killing

field for one g, it is also a conformal Killing vector field
for every other because all our round metrics are con-
formally related.) Thus, the quotient g/} is isomorphic
with the Lie algebra of conformal Killing vectors on our

family of unit, round metrics ,;, on the 2-sphere Z 5. But
it is well known that this Lie algebra is isomorphic to the
Lie algebra £ of the Lorentz group & in 4 space-time
dimensions. Thus, we conclude that the quotient g/V
of the symmetry Lie algebra by the subalgebra of vertical
symmetry fields is isomorphic with the Lorentz Lie
algebra L.

Returning to the group ®, we have shown that the
vertical diffeomorphisms in & constitute a normal sub-
group B, and the quotient &/ is isomorphic with the
Lorentz group. Thus, & is a semidirect product of the
Lorentz group & with B: @ = BxL. Recall that, in
the asymptotically flat case, the BMS group B has similar

*However, this labeling depends on our choice of ¢" and the

choice of an affine parameter » (or a cross section C of 7 ).
Under the most general change of these fiducial choices, we have

£ =ct and b1 = (1/¢)(vy, + a(f.)), with ¢ > 0,

we have: ¥ =« and cf’ (0, ¢) = f(0,¢) — a(0, ¢)k.
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structure: It is a semidirect product B = Sx where S is
the group of supertranslations. However, there are two key
differences that can be traced back directly to the
differences in the universal structure in the two cases:
(1) The normal subgroup 3 of ® is generated by vertical

vector fields of the form & = (kv, + f(0, (p))fa
where k € R and f(6, ) is a smooth function on
the base space 7 4p,s. In the case of the BMS group, the
supertranslation subgroup S is generated by vector

fields on Z,, of the type & = f(0, )¢ (where £ is
again a fiducial null normal, now representing a
“pure” time-translation in a fiducial Bondi conformal
frame). Thus heuristically, 288 has “one more” gen-
erator than S. Furthermore, while the supertranslation
subgroup S is Abelian, V is not.

(2) Another—and more important—difference is that
the semidirect product structure is quite different. In
the parametrization introduced above, a general
element £ of g can be represented as

& = [kv + f(0,0))¢" + K (4.6)

where K has the following properties:
(i) L;I_(“ = 0; and, (ii) K“ is tangential to each v =
const cross sections of 7 5}, and a conformal Killing

field of the metric ci]ab, obtained by pulling back to

. . . °
the cross section any round, unit 2-sphere metric ¢,
in the universal structure. Thus, for any given choice

o °a
of the affine parameter v of £ , we have a decom-
position of &% into a vertical vector field, propor-

°a —
tional to # and a horizontal vector field K¢, that is

tangential to all v = const cross sections. The six
horizontal K¢ are generators of a Lorentz subgroup
{ of 4.° The situation in the BMS group is different.
There, none of the Lorentz subgroups leave invariant

an entire family of cross sections, v = const, of Z o
Indeed, every Lorentz subgroup & of B leaves
invariant precisely one cross section.
There is another way to display the structure of & that
brings out a different aspect of its relation to the BMS

®Since %ab is a unit 2-sphere metric, the six conformal Killing
°ab °ab
vectors K have the form K =g D,p(0,9) +& Dy (0, p).

oab °ab
Here € is the alternating tensor defined by g , and ¢(6, ¢) and
w(0, ) are linear combinations of the three Y|, (0.¢), ie.,
22 22 o

solutions to D ¢ = —2¢ and D w = —2y on each v = const
°a °la

cross section. Finally, if we change the vector £ — ¢

°a

[¢ ] but retain the cross section C as the origin of the affine

°a
=c¢f in

parameter—that ?=1v=0 on C—then « =x; f(6,9) =

(1/¢)f(0.¢): K" = K“.

group. It is clear from Eq. (4.4) that supertranslations—i.e.
vertical vector fields of the type & = (6, (p)fa—form an
Abelian sub-Lie algebra of g. Furthermore, if & =

f1(6, (p):”a is a supertranslation, and &5 is a general element
of g, then Eq. (4.5) implies:

o o

16,61 = ((Le, — ) F1(0.0))" = F(0,0)¢"

for some F(0,¢), since it is easy to verify that
£;((£§2—K2)f1(9,(p)):0. Thus, the subgroup S of

supertranslations is also a normal subgroup of the sym-
metry group ®. As one would expect from the fact that VV
can be thought of as “the Lie algebra 8 of supertranslations,
augmented with one extra element,” the quotient is a 7
dimensional group &,. Thus, & can also be expressed as
another semidirect product where the normal subgroup is
the group S of supertranslations: & = Sx®,. Recall that
for the BMS group 8 we have B = Sx& where R is the
6-dimensional Lorentz group.

To explore the structure of &, let us work with Lie
algebras. An element of the Lie algebra g5 is an equivalence
class {£} of elements of g where two are equivalent if they
differ by a supertranslation. It is immediate from the form
(4.6) of a general infinitesimal symmetry £ that a general
element of g; can be written as an equivalence class

(4.7)

{K‘;Jf “ K@} of elements of g. Each equivalence class is
labeled by a real number x and a conformal Killing field K¢
on a unit, round 2-sphere. Now, since the vector space of
conformal Killing fields is 6 dimensional, it follows that g
is a 7 dimensional Lie algebra. It is easy to verify that the

element {moffa} commutes with every element of g;.
Therefore, at the level of groups, & is just a direct product
®; = R x &. Put differently, &7 is a central extension of
the Lorentz group, albeit a trivial one.

Let us summarize. The symmetry group ®& of 7 5, is
infinite dimensional. Its structure is similar to that of the
BMS group B, in that it is a semidirect product of the
Abelian group S of supertranslations with a finite dimen-
sional group. However, while B = Sx&, where & is the
Lorentz group, & = Sx®; where & is a trivial central
extension of the Lorentz group: &, = R x &. In presence
of a positive A, this extension has a crucial role. As we saw
in the examples considered in Sec. III, the time-translation
isometry (singled out by the source) is precisely the “extra”

element k0¢ in ®, added to the Lorentz group; it is
missing in the BMS group B. In the Schwarzschild—de
Sitter space-time, we could take the limit A — 0. In this
limit, Killing vector 7 of the Schwarzschild—de Sitter
space-time on M. tends to the time-translation Killing
field of the Schwarzschild space-time in the asymptotic
region outside the horizon. The restriction of this 7% to Z¢

o%a .
is precisely the extra element kvZ in .
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Remarks.—

ey

@

3)

Recall that in the case of the BMS group 3B, since the
Lorentz group R arises as the quotient = B/S,
there are “as many” Lorentz subgroups of B as there
are supertranslations: the group S of supertransla-
tions acts simply and transitively on the space SL of
all Lorentz subgroups of 8. But S also acts simply
and transitively on the space SC of all cross sections
of Z;,. Therefore the two spaces, SC and SL, are
isomorphic. In fact there is a natural isomorphism:
Each cross section C in SC is left invariant by one
and only one Lorentz subgroup & of 8. What is the
situation at Zy,? Here, ®; arose as the quotient
®, = ©/S of the full symmetry group ® by its
subgroup S of supertranslations, whence S acts
simply and transitively on the space S®; of all
®, subgroups of & that are isomorphic with &/S
under the projection. But we also know that S acts
simply and transitively on the space SC of all cross
sections of Zp, (just as it does on Z, in the
asymptotically flat case). And again there is a
natural isomorphism between the two spaces,
S®, and SC, on each of which the supertranslation
group S acts simply and transitively: Each cross
section C in SC is left invariant precisely by one &,
subgroup in §G;.

In Sec. III A, we considered a linearized source on a
de Sitter background. In this case, we found that 7
(as well as the upper Poincaré patch My) is left
invariant by a seven dimensional subgroup of the de
Sitter group. Let us call it G;. In this section we
encountered another seven dimensional group ®. In
terms of the full symmetry group ® on Z,,, the two
groups have the following roles. G5 is the subgroup
of & that arises in de Sitter space-time and is

generated there by: (i) the time-translation %zfa;
(ii) three space-translations Ylmz,”a; and, (iii) three
rotations. While the time-translation and the three
rotations leave one cross section, if ., of Zp,
invariant, the three space-translations do not leave
any cross section of Z, invariant. By contrast, in
general space-times in the class CX; under consid-
eration, the group &, arises as the quotient
®, = ®/S; it is not a canonical subgroup of ®.
As we noted above in Remark 1, given a cross
section C of Zy, we can naturally embed & into &;
but by construction that subgroup leaves the chosen
cross section invariant while G, leaves no cross
section of 7, invariant.

There is a discussion of symmetry groups also in the
literature on quasilocal horizons [21,35,36] where
these groups were found to be finite dimensional.
However, that analysis referred to symmetries of
specific WIHs. The vector fields were required

to preserve not just the universal structure but
certain physical fields, in particular the physical
(degenerate) metric ¢q,;, and the rotational 1-form on
the given WIH. In the present paper, on the other
hand, the focus is on symmetries of Z, of all space-
times in our collection C% ;. Therefore, we were led
to introduce the universal structure shared by all
(geodesically complete) NEHs and consider as
infinitesimal symmetries all vector fields on Zy
that leave this universal structure invariant. Since
this is a much weaker requirement, the Lie algebra of
symmetry vector fields turned out to be infinite
dimensional. 1If a specific space-time in our class
C{:ol were to admit a Killing vector, not only would it
belong to the infinite dimensional g but its action
would also leave the geometrical fields on Zg,
invariant. Therefore, it would also be a symmetry
in the stronger sense considered in the quasilocal
horizon literature.

C. i{ ,. and symmetry reduction: Symmetries of Z .

As we saw in Sec. IV B, given a cross section C of Z¢,

o °a
we can set the affine parameter v of £ to be zero on C and
then obtain a natural foliation of Zy, by the v = const

o

surfaces. This foliation refers to the entire class [fa] of
vector fields that Z;, is endowed with. Under

}a — :”/ = cZ”a, the labeling of the leaves of the foliation

changes via v = (1/ c);), but the leaves of the foliation
remain the same. Let us use this foliation in the decom-
position (4.6) of &4 into vertical and horizontal parts.
Then, each part is individually left unchanged under

oq oy °oq
¢ — ¢ =ct . In particular, we have K’ = K. As we
vary symmetry vector fields £¢, we obtain different hori-
zontal vector fields K¢ and together, they constitute a

Lorentz subalgebra £ of g. Thus, the foliation v = const
selects a specific Lorentz-subgroup & of the symmetry
group ©.

What happens under a change of the initial cross section
that serves as the “origin” of the affine parameter? If

C — C' then we have v — v = v, 4 a(0, ¢) where a is
any function on Zp, satisfying E;a = 0. Now the new

foliation o' = const is distinct, related to the original one

v = const by a supertranslation. Therefore the decompo-
sition of symmetry vector fields £ changes:

K= K= K= (Lza(0.9))C";  (4.38)
The vector fields K’ that are tangential to the v’ = const
cross sections constitute another Lorentz Lie-algebra L'
of g.
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Now suppose we add to our universal structure the cross
section if . at which Z,__ intersects Zg,;. Then we acquire a
preferred foliation of 7, and hence a preferred Lorentz
subgroup. Furthermore, as we recalled in Sec. II B, there is
a 1-1 correspondence between cross sections of any
complete NEH and nonextremal WIH structures thereon:
Given any C, the corresponding nonextremal null normals
[£%] vanish on that C. What is the canonical nonextremal
WIH structure [#] induced on Zg,, by the cross section

o%a
if,.? It is given by [£“] = [cv ]. Thus, each of these
preferred nonextremal normals is indeed a symmetry vector
field in g. Note that these symmetries also leave invariant

if o> and the foliation v = const. An inspection of the form
(4.6) of general symmetry vector fields £ shows that the
symmetry vector fields that leave if .—and the associated

family of cross sections v = const—invariant are precisely
linear combinations of the preferred nonextremal null
normals #“ € [¢“], and the horizontal vector fields K“ that
are tangential to the preferred foliation selected by [£“]:

Eho = kv, + K= 244 K

for some ¢* € [¢] = [;)fa] (4.9)
They constitute a seven dimensional sub-Lie-algebra,
isomorphic to g; = g/8. That is, because we fixed a cross
section if . of 7y ;, we are able to find a canonical lift of the
quotient g/8 into g. Recall that &, is the trivial central
extension of the Lorentz group: &, = R x &. Motivated by
examples discussed in Sec. III and Appendix A, we will
refer to the R part, “the 1-dimensional group of time-
translations,” and label it by 7. Its induced action on a
suitable phase space will lead us to a Hamiltonian that we
will identify with energy. Similarly the induced action of &
will lead us to the notion of angular momentum.

To summarize, the addition of the 2-sphere cross section
if o to the universal structure reduces the infinite dimen-
sional symmetry group & of Z;,, to a seven dimensional
subgroup ;. Its generators are given by (4.9). This
reduction has several interesting features that bring out a
nontrivial confluence of ideas and structures from: (i) the
theory of WIHs, (ii) specific examples we discussed in
detail in Sec. IIT and Appendix A; and, (iii) our strategy of
using Z ., and Z . as the appropriate analogs of 7, in the
asymptotically flat case. These features can be summarized
as follows.

(1) The reduced symmetry group ®; preserves Zj .
because the reduction gets rid of the supertranslation
subgroup S—rprecisely the elements of the full
symmetry group & that fail to leave if ,—and hence
11 ,.—invariant.

(2) The affine parameter v of every preferred nonex-
tremal null-normal 7* € [¢“] selected by i{ . runs
from —oo (at i7) to co (at if ). Thus, each of these

3

“

&)
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nonextremal null normals is a future directed and
complete vector field on Z .. (It is also a complete
vector field on the complement Tre\Zioc Of I, but
there it is past-directed.) In examples discussed in
Sec. III and Appendix A, the preferred nonextremal
null normals #¢ are all restrictions to Zy, of a time-
translation Killing vector field, which are future
directed and timelike in a neighborhood of 7. in

M . The affine parameter of vof ‘ corresponds to
the Kruskal coordinate V, while the affine parameter
v of £ corresponds to the Eddington-Finkelstein
coordinate, which was also denoted by v.

Recall from Sec. II B that each nonextremal horizon
admits a canonical foliation on which the pull-back
@, of the rotational 1-form w is divergence-free.
Therefore, it would appear that we have two pre-
ferred foliations of Z .: one provided by the
nonextremal null normals [¢¢], and another provided

o . .
by the v = const cross sections, which serve as

o

a
affine parameters of the extremal null normals [£ ],

with v = 0 at if .. However, the first family actually

coincides with the second. This can be seen as
follows. The pull-back @, to the v, = const cross

© oa . .
sections of the rotation 1-form w, of £ is diver-
gencefree, by the very definition of the canonical

o

a o°a .
[¢]. Now, since £% = kv¢ , and the rotation 1-form
w, of the nonextremal ¢ is given by w, = w,+

D, Inkv. Since the pull-back of the second term to
the v, = const 2-spheres vanishes, it follows that

@, = @,. Hence the canonical foliation on nonex-
tremal WIHs determined by the condition that @, be
divergencefree on each leaf of the foliation is

satisfied by the v = const foliation. Thus, there is
a pleasing coming together of: (i) the canonical

extremal null normals [fu],the canonical foliation
associated with the nonextremal null normals [£“]
selected by any cross section of 7y, and, (iii) the
symmetry vector fields &4 in g;.

Since v = In v is an affine parameter for £ = vf it
follows that the canonical foliation can be labeled

el’

either by v = const or by v = const. This foliation
provides us with a family of good cuts of Z7 .. As
we saw, the reduction from the infinite dimensional
G to its 7-dimensional subgroup &, occurs if we add
this 1-parameter family to our universal structure.

It is instructive to compare the situation at the past
null infinity Z, of asymptotically flat space-times.
There, if we work with Bondi conformal frames,
we obtain a preferred 4-parameter family of null-
normals. Motions along these null normals generate
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the 4-dimensional subgroup 7" of BMS translations
of B. Therefore, if we are given a cross section C of
T, one obtains a 4-parameter family of cross
sections, related to the initial C by elements of 7.

On 1y, by contrast we have a 1-parameter family of
preferred null normals [zfa]. Therefore, if we fix a

cross section C on Zy,, we obtain a /-parameter
family of cross sections. In particular, then, by fixing
i{,c» We obtain a rest frame on Iy . Such a
frame is not available at 7, of asymptotically flat
space-times.

(6) Symmetry reduction from ®& to ®; is analogous to
what happens at Z, of asymptotically flat space-
times of isolated systems. To begin with, the
symmetry group of Z, is the infinite dimensional
BMS group B. However, because the Bondi-news
tensor vanishes on Z,, we obtain a canonical
4-parameter family of good cuts [4,12,23]. As we
noted in the beginning of Sec. IV, if we add this
family to the universal structure of Z,, then B
reduces to a 10 dimensional Poincaré subgroup P
thereof. Note that, while in the Poincaré group there
is no preferred time-translation, &, admits a pre-
ferred 1-parameter family—in fact this is the only
time-translation subgroup in &,. This difference is
directly related to the presence of a canonical rest
frame on 7.

We conclude by noting that the main considerations of

this section hold if we add to the universal structure any

cross section C (which then provides, via our canonical
extremal null normals [fa], a l-parameter family of cross
sections). Our use of if . for C was motivated by the special
role it plays in examples. More generally, if the past horizon
E~ (i) is long-enough to intersect Zg,,, we have available
three notions— 77, i¢ . and 7| .—that are analogous to
Z},i° and 7, in the A = 0 case (see footnote 3).

V. PHYSICAL FIELDS AND
CONSERVED CHARGES

This section is divided into two parts. In the first we
collect the “leading order” physical fields that are available
at 7y, and Z1 . of any space-time representing an isolated
system in our class C2 . In the second, we use these fields
together with symmetries at Z1 . to introduce the notion of
total mass and angular momentum of the system from the
perspective of the local space-time Mp,.. It would be
interesting to investigate how our notions of symmetries
and conserved quantities are related to those introduced in
[37] on general null boundaries.

A. Physical fields at the past boundary

Fields on Zy,, are of two types: (i) the “universal ones”

that are common to all space-times in our class C2, that

were discussed in Sec. IVA; and, (ii) fields that vary from
space-time to space-time, some of which were mentioned
in Sec. IL. In this subsection, we will gather the geometric
structures and fields on Z,, from Secs. II-IV. This succinct
list will help us streamline the discussion of conserved
quantities in the next subsection. (For proofs and deriva-
tions, see [19,20].)

Let us fix a space-time (Mg, g,,) in our class and
examine the structures that are induced on Zg, by the
space-time metric g,;,. First, the past boundary Z ¢, of Mg,

comes with a preferred equivalence class [fa] of null
normals, which are complete, affinely parametrized geo-
o o o/, o
desics with respect to g,,. Here ¢ e [fa] and 7 € [fa] if
°la °a
and only if £ = ¢/ for some positive constant c¢. These
null geodesics provide a ruling of 7, and the quotient, Tre»
is topologically S?. However, because surface gravity Koy

o

expansion ©: and shear o, all vanish for every £ € [£], there

is no simple way to remove the rescaling freedom in ¢ and

extract a preferred null normal ¢ in the equivalence class.
As we will see in Appendix B, this fact has an important
consequence. The second field is ¢, the pull-back of g, to
IRe- qap s a degenerate metric of signature (0, +, +),

satisfying qah}a =0 and E;}qah = 0. Thus, g, is the pull-

back to 7, of a metric g,, on the base space 7 rel- The third
field on Z,, an area 2-form ¢, the pullback to 7y, of the
area 2-form €&, compatible with the metric g,, on fﬁel.
These are the zeroth order fields on Iy, in the sense that
they are directly induced by the space-time metric itself.
The first order field is a (torsion-free) intrinsic derivative
operator D on I, induced by the (torsionfree) space-time
derivative operator V on My, compatible with g,,. Since D
is the pull-back of V, it follows immediately that it satisfies
D,q,. = 0 and D e, = 0. Next, given any null normal £¢
to Zxy» We acquire a 1-form @, on Zg,, through D,¢* =
w,¢" (since D,¢" is necessarily proportional to #” in any
NEH). As we explained in Sec. II B, the 1-form w,, is tied to
the null normal #* and under £ — £'* = f£, we have
w, = o, = w, + D,In f. But for notational simplicity we
will not attach a label ¢ to w,. The 1-form w,, in turn leads
to several interesting structures that will play an important
role for us:
(1) The component k, = w,¢* of the 1-form w, is the
surface gravity of ¢°. If x, = 0, the null normal £
to Iy, is said to be extremal; if k, # 0, it is said to be

nonextremal. The natural null normals ¢ € [fa} on

Ige are all extremal.

(2) Given a nonextremal WIH structure [£“] on Zg,,, one
acquires a unique foliation of Z¢_, by a 1-parameter
family of 2-spheres [20]. The defining property of this
foliation is that the pull-back @, of w, is divergence-
free on each leaf of the foliation: §*’D,@;, = 0,
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where g“® is the natural metric on the leaves of the
foliation and D the derivative operator compatible
with it. The 1-parameter family of diffeomorphisms
generated by any £“ € [¢“] leaves this foliation
invariant. In particular, for each £ one obtains a
unique affine parameter v, up to the shift of origin,
i.e., up to v — v + const.

(3) Given a cross section C of Zg,, there is a unique
nonextremal equivalence class [£“] that endows Zg,,
with the structure of a WIH. Each £ in [¢“] vanishes
on the cross section C (and nowhere else on Zg,)).
The converse is also true: every nonextremal WIH
structure [£“] on Zg, determines a unique cross
section C on which each #“ € [¢“] vanishes.

(4) Ifthe past event horizon E~ (i) is long enough so as
to intersect Z¢; in a cross section (which we labeled
by if,.), then because of property 3, we acquire a
preferred nonextremal WIH structure [£¢] on Zg,.
In this case, the portion of Zg,, joining i~ to i,

defines 7 .—which can be regarded as local Z~—and
the portion of E~(i") joining it to i . defined
7, ..~which can be regarded as local Z.

(5) The null normals #“ on Zj, generate the 1-
dimensional time-translation subgroup 7, of the
symmetry group &;. Because of property 2, Z1 . is
equipped with a preferred foliation, defining a
rest frame.

(6) Under a constant rescaling of a null normal,
£ — ' = ¢, we have k» = ck. Therefore, given
a nonextremal WIH structure [¢“], one can select a
preferred null normal #¢ in the equivalence class [¢“]
by specifying a (nonzero) value of surface gravity.
This is in stark contrast with the preferred family

o

[fa] of null normals on Z,, which are extremal.
These properties, together with the interplay between
physics and geometry in de Sitter, Schwarzschild—de Sitter
and Kerr—de Sitter space-times (discussed in Sec. II and
Appendix A), will lead us to a natural strategy to define the
mass of a general space-time in our class C2 . In these
examples, E~(i1) is indeed long enough to provide us with
if ... Furthermore, the WIH structure provided by the
resulting [£“] is induced on Z¢,, by a Killing vector field
t* which is null on Z,, and vanishes on if . (and nowhere
else).” This Killing field #“ is a time-translation in the sense
that it is timelike in a (large) neighborhood of Zi ., with
orbits that are topologically R. Furthermore, in these space-
times ¢ is the unique Killing field, up to a constant
rescaling, with these properties. Now, since in the limit
A — 0, the Z1 . of these space-times becomes the 7, of
Minkowski, Schwarzschild and Kerr space-times, we can
fix this rescaling freedom in #“ by requiring that it approach

"In Sec. 11, this Killing field is denoted by 7“ and in
Appendix A, by t

the unit time-translation Killing field of these space-times
in a neighborhood of their 7. Interestingly, this normali-
zation can be directly transferred to general space-times of
interest using property 5 above. More precisely, in all
examples, the correctly normalized time-translation Killing
field t* has the property that its restriction £ to Z1 . has a
specific surface gravity: x, = (1/2R())(1 — 3(R%c> /E%)).
This will lead us to associate mass M of a general space-
time with that null normal £“ in the equivalence class [£“],
selected by if ., which has surface gravity x,.

This concludes our discussion of the “first order struc-
ture” at 7, made available by the derivative operator D.

The second order structure at Ly, is induced by space-
time curvature. The fact that 7y, is an NEH immediately
leads to constraints on the Ricci tensor R, of the space-
time metric g,;,, evaluated on Z;:

R,¢°XP =0 V X9tangential to Zz,,
which in particular implies R,,,£*¢” = 0.

(5.1)
In the Newman-Penrose notation these conditions translate
to the vanishing of 4 components, ®(, and ®; of the Ricci
tensor. For the Weyl tensor, we have

CopeaX§X5X5¢4 =0, YV X¢,X4, X4 tangential to T,

(5.2)

which, in the Newman-Penrose notation implies that 4
components, ¥, and ¥, of the Weyl tensor must also
vanish on Zz,. (Recall that in the A = 0 case, ¥§ is the
radiation field on Z; and both W§ and W{ vanish if the
Bondi news vanishes on 7 .)
As we already remarked in Sec. II B, the one-form o,
serves as a potential to Im¥, on Zg,:
211'1'1‘}‘2 = €“bD[awb]. (53)
We will see that the angular momentum at Zy,—which
represents the total angular momentum of space-time—is
determined by ImW¥,. The mass, on the other hand, is
encoded in Re¥W, which is related by Eq. (2.4) to the scalar
curvature of the 2-metric g, on any cross section C of Z;:

_ 2 1
"R = —4Re¥) + A + 876G (2ﬂn”Tab +3 T) - (54)

where £ is any null normal to the NEH, n* the other null
normal to C such that g,,7°n® = —1, and T is the trace of
the stress energy tensor. (For a proof, see Appendix B.)

B. Conserved charges

This subsection is divided into three parts. In the first, we
introduce the notion of mass M using a physical thought
experiment involving tidal acceleration. In the second, we
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obtain an expression for energy as the Hamiltonian gen-
erating time-translations 7, € &, and discuss its relation to
M. In the third, we discuss angular momentum as the
Hamiltonian generating Lorentz transformations £ € ;.

1. Mass at Ly,

Already in the A = 0 case, we had to develop intuition as
to what constitutes mass in general relativity. The early
analysis by Arnowitt, Deser, and Misner and others [38] of
the structure of the gravitational field at spatial infinity and
by Bondi, Sachs, Penrose and others [2—4] at null infinity
led us to precise notions of mass in the two regimes. As a
result, we habitually identify the parameter m in the Kerr
family as the ADM or the Bondi mass of the space-time.
But as Appendix A shows, this identification is no longer
tenable for Kerr-de Sitter metrics: the notion of mass is
more complicated even for this special, explicitly known
family. Therefore, to define mass at 7| . for general space-
times, we need further guidance. In this section we will
begin by introducing some physical considerations as
motivation, then define mass on 7|, and finally discuss
properties of this notion of mass.

Motivation.—Since 17 . is analogous to Z, of isolated
systems in the A = 0 case, let us begin by recalling the
notion of the Bondi mass in that case. Fix an asymptotically
flat space-time (M, g2,,). We will work in a neighborhood
of 7, where T,, = 0. Let us introduce Bondi coordinates
(v, 1,0, ) such that 0, is the asymptotic time-translation in
the asymptotic rest frame of the system. In these coor-
dinates, the 3-surfaces v = const are portions of ingoing
null cones. Let us fix one, say v = v,, and foliate it by a
family of 2-spheres R = const, where R is the area-radius
of the 2-spheres. Denote these 2-spheres by Cy. As R
increases, the 2-spheres Cy approach a cross section C of
T, . Next, introduce a Newman-Penrose null tetrad adapted
to this foliation of the v = v, surface: Let n“ be a (future
directed) null normal to the » = v, 3-surface, and let £¢
be the other (future pointing) null normal to the R = R,
v = v, 2-spheres, with n*Z, = —1. Then, using the no-
incoming radiation condition on Z,, the Bondi mass can be
defined by the following limiting procedure:

MBondi = 121 \% RReT2d2 (55)

4ﬂG Cr

Here ReW; = 3 Cpeqn®c?n¢? is the component of the
Weyl tensor that falls off as 1/r® in asymptotically flat
space-times [4], capturing the “Coulombic aspect” of the
asymptotic gravitational field. (Note that ¥, is insensitive
to the rescaling of the initial choice of n¢.) Because of the
no-incoming radiation condition, Mp,,q; equals the ADM
mass and thus represents the total mass of the system.
While in the post-Newtonian limit one finds an explan-
ation of how mass can be identified, e.g., using geodesics of

test particles in standard textbooks, somewhat surprisingly
it appears that a similar physical “justification” as to why
the right side of (5.5) should represent the mass at Z, does
not exist in the literature. Therefore we will first present
such a justification and then use it to motivate the definition
of mass at 7| in the A > 0 case. Let us begin with an
isolated system in Newtonian gravity. So the matter density
has compact spatial support and the Newtonian potential is
givenby ® = —GM/r + O(1/r?). In full general relativity,
it is the tidal force V,V,® that has a clean counterpart in
terms of curvature. So, let us express mass M in terms of the
tidal force. For this, we can consider a large 2-sphere of
radius r surrounding the matter source, and a nearby
concentric 2-sphere of radius r — 6. Let us now consider
a shell of (massive) test particles at rest on each of these two
2-spheres. Let us drop them at = 0. Then, to the leading
order, the 2-spheres will continue to remain 2-spheres but
their separation will increase because of tidal effects
associated with the inhomogeneity of the field because
particles on the inner 2-sphere will experience a slightly
greater acceleration than those on the outer 2-sphere,
whence 6 will increase in time. To the leading order, we
have:

2GM

430D, D, ® (5.6)

where D, is just the 3-dimensional derivative operator of
the Euclidean space. This equation leads to an expression
of mass of the isolated system in terms of the tidal
acceleration, as a limit of a 2-sphere integral

1
M = lim

G r## D, D, ®d*V.
77: r0—>00

To

(5.7)

We can now carry over this physical idea to general
relativity by replacing the Newtonian tidal acceleration
with the appropriate component of curvature that features
in the geodesic deviation equation. Let us consider an
isolated system in general relativity (with A = 0) repre-
sented by an asymptotically flat space-time as in our
discussion that led to Eq. (5.5). We can consider two
concentric spheres R =R, and R =R, — d on the v = v,
surface in the asymptotic region, where R denotes the area
radius. Using the null vector fields £ and n?, let us define a
unit timelike vector field 7% and a spacelike (radial) vector
field 74, both orthogonal to the family Cp of 2-spheres:
1= (1/v/2)(¢* +n%) and ? = (1/3/2)(n® —¢%). We
again consider a shell of (massive) test particles on each
of the two shells with 4-velocities aligned with 7 at the
initial time and let them freely fall, i.e., follow geodesic
orbits. Then, by the standard geodesic deviation equation,
at the initial time we have:
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a(39) = —(8)5 (PR pca)

= —(S)nntEPEIC 1oy = —2(5)ReW,  (5.8)

where in the second equality we have used the fact that
the test particles are all in the asymptotic, sourcefree
region where the Ricci tensor of g9, vanishes, and in the
third step we have used the definition of the component
ReW, of the Weyl tensor. The thought experiment sug-
gested by Newtonian considerations leads us to replace the
Newtonian tidal acceleration 77’ D,D,® by —2ReW¥, and
think of the resulting integral

1

—— ¢ RReWdV
476G Jo, 2

(5.9)

as the “mass contained in the 2-sphere C.” Now, in general
relativity gravity itself gravitates. Therefore, even if the
matter source is confined to some spatially compact region,
to obtain the fofal mass we have to take a limit as R — oo
i.e. the family of 2-spheres Cj tend to the cross section C
of Z,. When this is done, we recover precisely the
expression (5.5).

Remark.—Since the displacement vector 6r? is initially
orthogonal to 7¢, it continues to remain orthogonal since
L7 =0,7V,i, = 0,and i, = —1. Therefore (67)" has
components only along 7 and angular directions 71 and
we have: (67)" = —2(6)[Re¥,7* + ReW m“] in the
Newman-Penrose notation (see Appendix B). However,
because of the no-incoming radiation condition at Z, the
contribution from ¥, vanishes in the limit and only the term
ReW, survives; i.e., in the limit the vector (67¢)" becomes
just 67 and the analogy with the Newtonian expression
becomes even closer.

A > 0: Definition of mass and its properties.—The strategy
is to carry over this physical idea to the A > 0 case.
However, there is a new conceptual subtlety: now the
Ricci tensor is nonzero outside matter sources, given by
R, = Agyy,, and this part of the curvature also contributes to
the geodesic deviation. In particular, while there is no
geodesic deviation in Minkowski space-time, there is non-
trivial geodesic deviation in de Sitter space just due to
cosmic expansion. Thus, there is a part of geodesic deviation
that has nothing to do with the presence of physical mass in
the space-time and we have to subtract it out to obtain the
mass of the isolated system under consideration. Fortunately
this can be done rather easily because the Riemann tensor
neatly decomposes into the Weyl and the Ricci parts.

Let us then consider the same thought experiment,
replacing the asymptotically flat space-time (M,, g%,) by
a space-time (M, g,;) in our class. Furthermore, since Z; .
is now “‘at a finite distance” we need not consider a limiting
procedure, but simply start by considering a shell of
(massive) test particles of area radius R = R, that lies

on Z7__, and another shell of radius R = R<c> — 6. Then, the

Loc>

geodesic deviation equation for (massive) test particles on
these two 2-spheres now yields;

(679)" = —(8)7 (1R,

JU 2
= —(6)71"1 [Cabcd + 25‘1 [cgd]b:|

1 A 1
= (5) |:z 74— Cabcdlbncfd:| = (6) |:ﬁ - 2Re"P2:| 7

(5.10)

where in the last step we have used the fact (noted above in
the Remark) that (67)" is orthogonal to 7 and W, vanishes
onZj,..

The first term in the last step can be directly identified as
the contribution to the geodesic deviation due to the
cosmological constant. It is nonzero already in de Sitter
space, where the separation & between the shells will
increase just because of the accelerated expansion of the
universe, even though there is no physical mass in the
space-time. The second term vanishes in de Sitter space-
time and represents the geodesic deviation over and above
the contribution due to the cosmic accelerated expansion. It
is then natural to attribute this part to the presence of the
mass within the 2-sphere C. These considerations lead us
to define the mass at Z7 . as:

1
M= R(Re¥,d?V,

- 5.11
4drnG C ( )

where C is any cross section of Z7 . and R(.) is the area-
radius of Z1 .. Thus, the mass M is completely determined
by the following physical fields on Z,: the area radius R,
the component ¥, of the Weyl tensor, and the area 2-form
€qp 0N Ty, that defines the volume element d*V on C. Note
that in the right side of (5.11) we can use any cross section
C of I, and any (nonvanishing) null normals ¢, n“ to C.
Because ¥, = ¥ = 0 on the entire 7, it follows that ¥,
is insensitive to these choices. Finally, M is conserved
because LR =0 and L,(Re'¥,) =0 on Z.
This notion of mass has several interesting properties.
(1) The identity (5.4) relates ReW, with the scalar
curvature >R of the 2-metric g, on the (base space
TToc of) Zi,., the cosmological constant A and the
trace T of the stress energy tensor of matter fields at
11, For simplicity, let us suppose that the stress-
energy tensor of matter at 7, if any, is tracefree
(e.g., a Maxwell or Yang-Mills field). Then, since by

the Gauss theorem §.*Rd*V = 8x, Eq. (5.4) implies

R R?
M=_(1__ )
2G 72

The right side vanishes if and only if R =7,
which is achieved in de Sitter space-time. Physically,
one might expect that “due to the attractive nature of

(5.12)
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3

“4)

gravity,” the cosmological horizon is, so to say,
“pulled in” by the presence of a mass in the interior.
This expectation is borne out in the Schwarzschild—
de Sitter family, where R(.) < ¢ and equals ¢ only
for the de Sitter solution. Therefore the right side is
always positive, and reaches its maximum M, =

f/\/§ For

the Schwarzschild—de Sitter famlly, then, M equals
the parameter m that enters the solution.

This is no longer the case for the Kerr-de Sitter
family. Nonetheless, M is again positive and numeri-
cal calculations of R show that the maximum

value of M is again Mg, = \/-f For this 3-

3 \/—f in the Nariai solution, when R

parameter family, we can focus on a neighborhood
N of Ip,. UZ{, . within M, and take the limit
A — 0, keeping m and a fixed. In the limit, the
space-time geometry in N tends to the space-time
geometry of a neighborhood of Z, U Z} of the Kerr
family and M of Eq. (5.11) tends to the Bondi mass
on Z7 of the A = 0 null infinity. We expect that this
will be the case for all space-times in our class CA
for which there is a physically well-motivated
procedure to take the A — O limit. An example of
such a procedure would be to consider a double null-
surface framework to solve source free Einstein’s
equations in a neighborhood of Zp . U Z{, within
M., using Z7 . for one of the two null surfaces.
One could use a power series expansion of the
solution away from Z . as in [39,40], and then take
the limit A — O in that expansion.

In this discussion of mass, we focused on ILOC
because for A > 0, it is the natural analog of Z in
the asymptotically flat case. However, from the strict
A > 0 perspective, we could have worked with 7,

as well, and used an extremal null normal fa toZ (in
place of the nonextremal null normal #“ adapted to
) in the expressions (5 11) of M without

Loc
changing the result. Since f is nowhere vanishing

on the entire Z,,, the other null-normal n to any
cross section C of Z, is also well defined, and we
can use any 2-sphere cross section of 7, to evaluate
the integral. Thus the mass M is really associated
with the entire 7, not just with Z .

Since M is conserved, we can also think of it as
being associated with the point i at spatial infinity,
or the point i~ at past timelike infinity, of My, (see,
e.g., Fig. 1). We have other definitions of mass at
both these points. The one at i’ uses spacelike
surfaces (such as the cosmological slices in the de
Sitter space-time) that extend to i’ (see, e.g.,
[41,42]). The one at i~ is obtained by working with
(the spacelike) Z~, and imposing the no-incoming
radiation condition by requiring that the magnetic

part of the (appropriately conformally rescaled)
Weyl tensor vanishes there (see, e.g., [1]). It is
likely that these definitions agree with (5.12) under
appropriate conditions. However, to establish these
results one would need to understand the precise
relation between limits of various physical fields as
one approaches i’ along 7, and along spacelike
surfaces, and i~ along Z~ and along 7.

2. The Hamiltonian framework, energy
and the first law

In Sec. VB 1 we arrived at a definition of the total
mass of the space-time (M, g,5) using physical consid-
erations involving the motion of appropriately chosen test
particles near Z .. In the A = O case, these considerations
do yield the correct definition of mass at 7, [2-4] as well at
spatial infinity i [38,43]. However, in that case we also
have conserved charges that arise as Hamiltonians gen-
erating the action of asymptotic symmetries on a suitably
defined phase space. In particular, using the 4-dimensional
group of asymptotic translations, one can define the ADM
and the Bondi 4-momentum of the system. For A > 0, the
symmetry group of Z7 . is ®,, and elements of the Lie

algebra g; have the form: & = Kkt + K4=¢*+ K¢
[see Eq. (4.9)]. The vertical vector fields #¢ generate the
I-dimensional time-translation subgroup 7; of .
Therefore, we are led to ask:

(i) Are there charges O, associated with the generators
% of the 7, ? If so,
What is the relation between those charges and the
mass M defined in (5.12)?
Do these charges serve as Hamiltonians generating
canonical transformations corresponding to these
symmetries on an appropriate phase space, tailored
to Iy or Ip,..? and,
Since, in addition to being the analog of 7 in
asymptotically flat space-times, Z . is also a non-
extremal WIH, do the charges associated with the
time-translation symmetry of Z; . satisfy a first law
of horizon mechanics? In this subsection we will
show that the answer to these questions is in the
affirmative. Charges associated with the Lorentz
generators K¢ will be discussed in the next sub-
section. Together, they provide charges associated
with the symmetry Lie algebra g; on Z .. On full

(i)
(iif)

@iv)

0c*

T .- We also have supertranslations &4 = f(6, g{))fa
that belong to g. The corresponding charges will be
discussed in Appendix B.

Let us then begin with the 1-dimensional time-translation
subgroup 7 ;. The existing literature on WIHs [19,21,35]
spells out a procedure to construct a covariant phase space
"¢,y from solutions to Einstein’s equations admitting a WIH
boundary. We can apply that procedure because our
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solutions g,;, on Mj,. do admit a WIH horizon—namely
Z{,.—as a boundary. Given any null normal, £, generating
7T, on Ip,., we can extend it to a neighborhood of 7.
within My, by a timelike vector field #* and consider the
1-parameter family of transformations induced on our I'c,
by the diffeomorphisms generated by this #¢. It turns out that
this induced action is Hamiltonian if and only if the first law
holds, i.e., if and only if there is a function E, on I'c,, such
that [19]

SE, = k,0A (5.13)

for any vector field 6 on I'c,,, where A is the area of any
cross section of Zy,, and k, is the surface gravity of the null
normal Z we began with. If this condition is satisfied, then E,
is the Hamiltonian function on I'c,, generating the canonical
transformation. Note that this condition refers only to the
boundary value £ of #* and not to the details of our
extension of £¢ away from Z1 . (whence we could have used
the symbol E, in place of E,).

Now, Z . is endowed with a canonical null normal £¢
with surface gravity k, = (1/2R))(1 — BR%C) /£?), where,
as before R, is the area radius of any cross section of the
cosmological horizon Z7 .. Every ¢ that generates a time-
translation symmetry is proportional to £4: ¢ = k£ where
k is a positive constant. Therefore, one can easily integrate
(5.13) on I'c,, to obtain

E — Ko 1—R%C> = kM
! 2G £? '

(5.14)

where in the last step we have used Eq. (5.12). Thanks to
the expression (5.11) of M, this function E, on I,
provides an explicit linear map from the space of time-
translations ¢ on Z . to R via

1
7' — E, = _Sﬂ_GféR(c)Cabpql Bbbﬂpgq’

v = _k

R, ReW,d?V
472G f @R

(5.15)
where n,, is any future pointing null vector field on Z
satisfying £“n, = —1. Thus, the numerical value of the
Hamiltonian E, generating the time-translation ¢ is M
precisely if t“|1Eoc = [, the preferred null normal. As
discussed in the Appendix A, in the Kerr—de Sitter space-
time, £¢ is the restriction to Z1 . of the unigue Killing field t*
with the following key properties: (i) It is timelike in a
neighborhood of Zp,. U Zj . within My, and (ii) is so
normalized that in the limit A — 0, its norm with respect to
the physical metric tends to —1 as one approaches Z; U Z ;.
Thus, near Z1,. U Z7 ., the Killing field t* in Kerr—de Sitter
space-time is the precise analog of the properly normalized
time-translation Killing vector field in Kerr space-time near
Ty UZ;. That fact led us to a “correctly normalized”

generator £“ of time-translations in 7; for all space-times
in ['c,y. We have now found that the energy associated with
these time-translations by Hamiltonian considerations is
precisely the mass M we obtained from the “tidal accel-
eration” considerations in Sec. VB 1.

To summarize, there is a Hamiltonian framework
that lets us define energy E, for each generator 7“ of the
time-translation subgroup 7 ; of the symmetry group &. If
the generator is so normalized as to correspond to the unit
time-translation 7 in the Kerr family, then the energy equals
mass: E, = M. For the Kerr family the energy is positive
and heuristics motivated by the “attractive nature of gravity”
suggest that the energy and (hence also the mass) on Z1 .
should be positive in general. Note that, in contrast to the
asymptotically flat case, we do not have a notion of 3-
momentum (or, alternatively, the 3-momentum vanishes)
because the available structure naturally leads us to a
preferred rest frame, reflected in the fact that the translation
subgroup is one dimensional and, furthermore, there is only
1-parameter family of good cuts of 71 .. By contrast, in the
asymptotically flat case we have a 4-dimensional translation
subgroup on Z, and absence of radiation leads us to a
4-parameter family of good cuts. Different 1-parameter
subfamilies define different rest frames, whence we are
led to the (Bondi) 4-momentum.

3. Angular momentum

Recall from Sec. IVC that Z7 . admits a natural
foliation, and its symmetry group &, admits a canonical
Lorentz subgroup & whose action leaves each leaf of this
foliation invariant. As before let us denote the vector fields
generating & by K¢; these are the “horizontal” vector fields
in g;. The WIH framework provides a natural strategy to
define charges Qg associated with each of these vector
fields. Let us extend these vector fields in a neighborhood
of Zr,. UZ{,, within My, and denote the extension also
by K¢ Then diffeomorphisms generated by any one K¢
induce a 1-parameter family of canonical transformations
on I'c,, and Qg are precisely the corresponding
Hamiltonians [21,35]. As we noted in Sec. II, on any
WIH these angular momentum charges can be expressed

using the “rotational 1-form” @, defined by D,#* = w,¢":

- Ked*v
872G J.“

Ok = (5.16)

where C is a leaf of the preferred foliation on the

nonextremal WIH Zp,, with » = v for some constant .
Since K“ is tangential to these 2-spheres, it can be
expanded as

Ka = éabl_)hf + qahbhg (517)
where g,;, and €, are the pull-backs to the leaves of the
foliation of the physical metric g, and the area 2-form ¢,
on Z7 .. Recall that the defining property of the preferred

Loc*®
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foliation v = v,, is that the pull-back @, of w, is diver-
gencefree on each leaf with respect to the induced physical
metric q,,: §°*D,w, = 0. Therefore we can simplify the
expression of Qg:

Ok = w, (€D f + g*Dyg)d*V

872G Jo

1 b
=— e’ D@, d*V
87‘[G7€f€ bWy

1
——— ¢ fImw,@v,
MGifmz

where in the second step we have carried out an integration
by parts and in the third step used (5.3). There are some
noteworthy aspects of the final expression.

(1) While energy E, is determined by ReY,, [see
Eq. (5.15)], the angular momentum charges are
governed by ImW%W,. This in line with the fact that
while 2ReW, = K . ,£“n’¢“n? is a scalar, 2Im¥, =
*K apeat®nb¢°n? is a pseudoscalar. In the asymp-
totically flat case, the situation at i is completely
analogous: The ADM energy is defined using Re',
while angular momentum is contained in Im¥, [43].

() If f=0,ie., K= g*"D,g, we have Qx = 0. So in
place of the “relativistic angular momentum” asso-
ciated with the full 6-dimensional Lorentz-group, we
have an angular momentum 3-vector associated with
a SO(3) subgroup of &. This is in line with the fact
that, whereas 7 in the A = 0 case is endowed with
a 4-parameter family of (relatively boosted) ‘good
cuts,” 7. is endowed with a I-parameter family of
good cuts. The angular momentum 3-vector refers to
the rest frame selected by [£“] and the “center of
mass world-line” selected by the 1-parameter family
of good cuts.®

(3) Note, however, that the decomposition (5.17) of K¢
into a “rotation part” é*D,f and a “boost part”
g** D, g depends on the physical metric g,;, on Zr,.,
and thus varies from one space-time to another in the
covariant phase space I'c,,. Therefore, as we move
from one space-time to another, the SO(3) subgroup
of R that defines the angular momentum 3-vector
changes. As a consequence, given any K in the Lie

(5.18)

¥Recall from special relativity that the angular momentum
tensor M, of a system/field in Minkowski space-time refers to a
Lorentz group, selected by choosing an origin. If we are also
given a rest frame, i.e., a preferred time translation Killing field
t“, one can further decompose the Lorentz Lie algebra into a
rotation part and a boost part. One can always select a world-
line passing through the given origin—called the center of
mass world-line—along which the boost angular momentum
vanishes—i.e. M ,,t* = 0. On I the choice of a cross section is
analogous to the choice of an origin in Minkowski space, the
canonical time translation provides a rest frame, and the
I-parameter family of preferred cross sections is the analog of
the center of mass world line.

algebra of &, there is a space-time in I'¢,, for which
Qg is nonzero. Therefore, from the Hamiltonian
perspective, none of these diffeomorphisms corre-
sponds to gauge transformation in I'c,,; they are all
physical symmetries.

(4) Suppose the space-time admits a rotational Killing
field @“. Then we can also calculate the Komar
integral associated with ¢@“. Even though we now
have R,, = Ag,, # 0 outside sources, the Komar
integral is conserved in the following sense: Its values
evaluated on 2-spheres S; and S, in the sourcefree
region agree if there is a 3-surface *—with S| and S,
as boundaries—to which ¢“ is everywhere tangential.
Therefore, the Komar integral is an interesting quan-
tity. When correctly normalized, its value agrees with
the component of the angular momentum Q, ob-
tained by setting K¢ = ¢ [35]. This provides an
additional support for the definition of Q. Note,
incidentally, that if we have a space-time that admits a
time-translation Killing field 7, the corresponding
Komar integral is not as interesting if A # 0 because
it is generically not possible to find a 3-manifold X
that joins a 2-sphere S; in the interior (but still outside
sources) and S, on Z;7 . or Z~ and, in addition, ¢ is
tangential to it.

Loc

VI. DISCUSSION

Although Einstein [9] showed that general relativity
admits gravitational waves in the linear approximation
around Minkowski space already in 1916, there was much
confusion about the reality of gravitational waves in full
general relativity for several subsequent decades [44].
Strange as this state of affairs may seem, especially in
light of the recent discoveries by the LIGO-Virgo collabo-
ration, the confusion was not due to some trivial mis-
understanding. Rather, it was rooted in the fact that, when
space-time geometry is itself dynamical, it is quite subtle to
separate gravitational radiation from coordinate effects in
the full, nonlinear theory. The issue was fully resolved only
in the early 1960s by the careful work by Bondi et al’ As
was natural at the time, the work assumed that the
cosmological constant A is zero, and therefore modeled

%“Wave propagation” was discussed already in the 1952
seminal work on the Cauchy problem by Choquet-Bruhat
[45]. However, those considerations were local, and one cannot
decide locally if there is radiation carrying energy, momentum,
etc. For example, the c-metric [46]—an exact solution discovered
by Levi-Civita in 1918—admits a Killing vector that is timelike in
large patches. Therefore it was often thought that the solution has
no gravitational radiation. It is only in 1981 that a detailed
analysis of its asymptotic structure at Z,; became available in full
general relativity and established that it does carry gravitational
radiation [47] (emitted by two eternally accelerated black holes).
This could not have been dome using local considerations; the
Bondi, Sachs, Penrose et al. framework was essential.
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isolated systems by asymptotically flat space-times. In this
case space-time curvature decays as we move away from
sources, giving rise to several simplifications. In presence
of a positive A on the other had, space-time curvature does
not decay no matter how far you move away from sources.
Therefore, it is now much more difficult to distinguish
ripples in space-time geometry representing genuine gravi-
tational waves from gauge artifacts. To capture the notion
of an isolated system, on the other hand, one needs to
provide a gauge invariant criterion to ensure that there are
no physical gravitational radiation incident on the system
from infinity. In this paper, we have addressed this problem
by introducing the notions of 73, and 7.

Recall that already in the first discussions of conformal
completions of space-times, Penrose [4] considered the
possibility of a cosmological constant and showed that for
A > 0, the boundaries Z= of the conformal completion are
spacelike. In the asymptotically flat case, one specifies the
no-incoming radiation condition by requiring that the
gauge invariant Bondi news tensor N, should vanish on
the past boundary Z,. Why did we not simply repeat that
strategy at the spacelike past boundary Z~ in the A > 0
case? As we pointed out in Sec. I, we do not yet have the
analog of N,, on Z% in the A > 0 case. Why not take
recourse to the notion of the radiation field ¥§ on Z, (and
W§ on Z7) that is routinely used in numerical simulations of
binary black hole simulations to calculate the wave forms?
In the A = 0 case, Z are null and their normals provide the
null vector that is needed to define W3 (and ¥{). For A > 0,
I+ are spacelike and we no longer have a canonical null
direction to extract ¥ on Z (or W3 on Z7) in a gauge
invariant manner [5,6]. There are two further conceptual
obstacles associated with Z~ that are naturally overcome if
one uses Iy, and 7. instead. First, consider gravitational
collapse of a star depicted in the left panel of Fig. 2. If we
use the boundaries Z+, then, in contrast to the A = 0 case,
the space-time diagram continues to the right because the
analytical continuation of the Schwarzschild de Sitter
metric goes on ad infinitum. If on the other hand we focus
just on the relevant part My, of space-time, this problem
disappears since the part of space-time to the right of 7, is
simply not relevant. Second, already in the Kerr-de Sitter
space-time, in the limit A — O the part of space-time near
7~ disappears. Therefore, if we imposed the no-incoming
radiation condition on Z~ and extracted physical informa-
tion from fields thereon, it would not be directly related to
the physical information extracted from structures at 7 of
the A = O theory.

Our strategy of using Zy, or Z . as the past boundary in
place of 7~ led to a rich structure. First, we saw that in the
standard examples discussed in Sec. III and Appendix A,
1IRe does have all the structure we introduced to impose the
no-incoming radiation condition, to discuss symmetry
groups and to define conserved charges. In particular we
saw that, in these examples:

(i) Zzg is geodesically complete;

(i) Z;,. is long enough to intersect Zz, in a

2-sphere if ;

(iii) via a general construction, the 2-sphere if . endows
11, with a specific weakly isolated horizon (WIH)
structure. This structure is also the natural one from
the perspective of individual examples and their
isometries. For example, in the Schwarzschild—de
Sitter space-time, this is precisely the WIH structure
induced on the cosmological horizon by the standard
“static” Killing field T¢;

(iv) in the region M. of the Kerr-de Sitter space-time,
the Killing field selected by the WIH null normals
[¢9] is very similar in its structure to the standard
stationary Killing field #* in the asymptotic region of
Kerr space-time. The Vaidya solution depicting
“evaporation” of a Schwarzschild—de Sitter black
hole to de Sitter space-time also provides support for
our framework. It is somewhat more interesting
because it is dynamical [1] but we chose not to
discuss it in detail because the discussion of exam-
ples is already quite long. These examples together
with the results on linearized gravitational waves on
de Sitter background [7,8] provide some concrete
evidence in favor of the boundary conditions intro-
duced in Sec. IIC. It is interesting to note in
retrospect that in the A = 0 case concrete evidence
in favor of the boundary conditions was the same
when Bondi, Sachs, Penrose and others [2—4] first
introduced them.

However, since then there have been significant
advances in approximation methods, numerical simulations
and geometric analysis. They can all be used to create
additional evidence for or against the conditions introduced
in Sec. II. For example, one can use approximation
methods to analyze radiating solutions “near” Kerr—de
Sitter by making an order by order expansion along the
lines of [39,40], but now in a neighborhood of the
cosmological horizon Zgy,, rather than the black hole
horizon. On the numerical side, the framework is supported
by simulations of collapse of gravitational waves [48], and
head-on collisions of black holes [49]. Finally, on the
geometric analysis side, as we pointed out in footnote 3,
there are interesting results [25] on nonlinear perturbations
of the Schwarzschild—de Sitter solution (which allow the
angular momentum to change). Those results suggest—but
do not establish—that there is a large class of examples
with gravitational radiation in which Z7_ is “sufficiently
long.” These solutions asymptotically approach Kerr—de
Sitter geometry near (T in the shaded region of the
right panel of Fig. 2. Similarly, there are results [50]
suggesting that there exists a nonlinear neighborhood of
the Schwarzschild-de Sitter space-time in which Z;. and
Trea\Z 1o are sufficiently long, and Z* admits radiation.
Interestingly, in these space-times, the asymptotic geometry
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near Z will not be that of Kerr-de Sitter because the

magnetic part of the Weyl tensor will not vanish there
[1,50]. Thus, the first steps needed to establish that the class
CA, of space-times introduced in Sec. IIC admits an
infinite dimensional family of radiating solutions have
been taken. It would be very helpful to use the techniques
already developed to solve the characteristic initial value
problem to establish global existence (for small data) in the
future light cone of i~ of the right panel of Fig. 2. The
characteristic initial data would be specified on the null
boundary of this region, such that it is trivial on I, and
nontrivial on the rest of the boundary (that consists of the
white and black hole horizons). Triviality on Zz, will
ensure that Zg, will continue to serve as the relevant
scri-minus also for the radiating solution, and the nontrivial
data on the rest of the null boundary will mimic the
radiation that would be emitted by a more realistic compact
binary in the shaded portion of the right panel of Fig. 2. To
summarize, the setup introduced in Sec. IIC suggests
generalizations of analytical approximation methods along
the lines of [39,40], more numerical simulations along the
lines of [48,49], and geometric analysis investigations to
extend results of [25,50].

In Sec. IV we found that the symmetry group ® of T, is
analogous to the BMS group B at 7, in asymptotically flat
space-times: both are semidirect products of an Abelian
group S of supertranslations with a finite dimensional
group. However, there is also an interesting twist that
captures an essential signature of a positive A. While on 7,
the finite dimensional group is just the 6 dimensional
Lorentz group &, on 7, the finite dimensional group is the
7 dimensional ®;, which is a (trivial) central extension of
R:®; =T, @ L The extra one dimensional subgroup 7 ;
of & is the time-translation group selected by the canoni-
cal nonextremal WIH structure on I, which has no
analog on Z,. We compared and contrasted in detail the
structures of Z;; and Zg_;, and of the BMS group 3B and the
symmetry group &. The no-incoming radiation condition
endows Z, with a 4 parameter family of preferred cross
sections, called the good cuts. By contrast, Zy,, is endowed
with a l-parameter family of good cuts. Thus in contrast
with 7, we have a preferred rest frame on Z . (which
extends to Zz,). Finally, while ®&; initially arises as the
quotient, ®; = ®/S, there is a canonical embedding of &,
into & that leaves every good cut of 7| . invariant. By
contrast, in the A = 0 case, there is no Lorentz subgroup &
of the BMS group B that leaves any 1-parameter family of
good cuts on 7, invariant.

Subsequently, in the main text we focused on Z . and
this canonical ¢, subgroup of ®, leaving the further dis-
cussion of the supertranslation subgroup S to Appendix B.
In Sec. V we discussed the notion of mass M of Z,; and of
charges E, and Qg associated with the time-translation
subgroup 7| and the Lorentz subgroup & of G,. The
definition of mass was motivated by a thought experiment

that extracted M from the (tidal acceleration or) geodesic
deviation of a suitable set of test particles. The definition
of charges was arrived at using a covariant phase space
I'coy tailored to Zj,.. Specifically the charges are the
Hamiltonians that generate canonical transformations on
I'cyy, induced by the action of time-translation and Lorentz
vector fields in the Lie algebra g; of &,. Thus, the mass M
and the charge E, associated with the time-translation
symmetry group 7 ; were arrived at from entirely different
considerations, whence their initial expressions appear
completely unrelated: M arises as the integral of a compo-
nent of the Weyl curvature over a 2-sphere cross section of
o> While E, arises as a function of the area-radius of this
cross section. Yet, because of a differential geometric
identity, and the WIH structure of Z7 ., the two seemingly
unrelated expressions are equal to each other. In Kerr—de
Sitter space-times, not only is the mass M positive, but it is
also bounded above. From general physical considerations,
we would expect that M would be positive for all space-
times under consideration. One approach to establishing
positivity in the case when the only past boundary of M .
is Z;,. would be to use a spinorial argument a la
Witten [51].

Perhaps the most striking difference from the past
boundary Z, in the A = 0 case is the dual role played
by 71, (and Z,)). On the one hand Z7 is analogous to Z,
and in fact goes over to Z, as A — 0 in examples where
there is a clear-cut limiting procedure. On the other hand it
is also a nonextremal WIH." Thanks to this dual role
of Z; .., we could go back and forth between the two
seemingly different sets of structures. For example, the
symmetry group & resulted by examining the structure of
Zge from the perspective of 7, while the preferred
foliation and the symmetry group &; on Z . arose from,
the structure Z . inherits from being a nonextremal WIH.
Similarly, we treated Z1 . as the analog of Z, to fix the
normalization of the time-translation in 7; and also to
introduce the definition (5.11) of the mass M in terms of
ReW,. On the other hand, we used the fact that it is a
nonextremal WIH to define horizon charges—energy E;
and angular momentum Q x—and express M and E, using
the area radius R through Eqs (5.12) and (5.14); these
expressions are simply not available at 7.

Indeed, because Iy, and Z7 . lie, so to say, “in the
middle of space-time” rather than at an infinite separation
from sources, a priori it was not clear that it would have
any of the structures that are needed to extract physics of
the isolated system in a gauge invariant fashion. The fact
that this is possible can be traced back directly to the fact
that 7y, and Z[ . have the structure of nonexpanding

horizons. Finally, let us consider Z|" .. First results reported

1OBy contrast, 7, is an extremal WIH, and that too from the
perspective of the conformally completed space-time, not the
physical one.
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in [24] indicate that Z;" . will also have a dual structure.
To describe properties of gravitational radiation across
Z/.., one can emphasize its similarity with Z, while to
speak of symmetries and corresponding charges, one can
endow it with a “fiducial” structure of a WIH that is
“dragged” from i{ .. Thus, constructions introduced in this
paper and the results that they led to serve as points of
departure to obtain a gauge invariant characterization of
gravitational waves at I{OC (and/or ZT), and to study their
properties.
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APPENDIX A: THE KERR-DE SITTER
SPACE-TIME

In this Appendix we will summarize the relevant
geometrical structures of the Kerr—de Sitter space-time
and their relation to our discussion of symmetries and
conserved quantities in Secs. [Vand V. We will find that the
geometry is much more intricate than in the two examples
discussed in Sec. III. In particular, there is an unforeseen
complication: it is no longer transparent which of the
2-parameter family of Killing fields should be identified as
the time-translation symmetry—the analog of 7¢ in the
Schwarzschild—de Sitter space-time.

The Kerr—de Sitter metric is generally written in the
Boyer-Lindquist coordinates as [52,53]:

aq.b 2 2ein2 a dr?
Japdx?dx” = ds* = |a*sin“0( 1 +—cos°0 | — A(r) ( =

+2 [A(r) —(r* +a?) <1 + gcosza)]

r? + a%cos?0
A(r)

(12

i [<r2 +a?)? (1 +ﬁcos29> - aZSiHZQA(V)]

where

4

2
A(r) = —%+ (1 —%) P —2Gmr +d*.  (A2)

Since A(r) is a polynomial of order 4, it has four roots. The
Boyer-Lindquist chart fails at the three positive roots r, 7.
(with r_ < r, <r.) of A(r) (the fourth root is negative).
These correspond, respectively, to the inner black hole (or,
the Cauchy) horizon, the outer black hole (or, the event)
horizon, and the cosmological horizon, shown in Fig. 3.
Since the cosmological constant A is positive, space-time
boundaries Z in the Penrose conformal completion are of
course spacelike. Z,,, shown as a (blue) bold-faced line, is
the future event horizon of i~ that connects i~ on Z~ with i“
on Z* (exactly as in Figs. 1 and 2). It is again a
nonexpanding horizon, ruled by complete null geodesics.
For the single, rotating black hole under consideration, the
relevant portion My, of space-time is the causal future of
i~. This structure implies that Kerr-de Sitter space-time

, r*+a*cos’d

1+ %cosze

r? 4 a*cos*0) (1 + %)?
asin’@dtde
(r* + a*cos?0)(1 + %)2

de?

sin0dg?
(r? + a*cos?0)(1 + %)2 ’

(A1)

belongs to the class Ci, of space-times introduced in
Sec. IIC. The local region My, of space-time is inter-
section of the causal future of i~ with the causal past of i,
depicted in the figure by the shaded region, bounded by
Ti. and r =r, in the past and r = r, and Z . in the
future.

In the A = 0 case, Kerr black holes are characterized
just by the two parameters m, a with m > 0 and |a| < Gm;
and we have the extremal Kerr solution at Gm = |a| for
which the inner and outer black hole horizons coincide
and the surface gravity vanishes. With A > 0 the situation
is much more complicated because now the solution
carries three parameters, m,a,? and three horizons. All
three coincide if Gm = 47((2/\/3) —1)*? ~0.24¢ and
a=(2-+/3)¢~0.27¢. Note that in this case Gm < a.
Next, we have the possibility that only two of the three
horizons coincide: the two black hole horizons can coincide
(as in the extremal Kerr for A = 0), the cosmological
horizon remaining distinct, lying outside the common black

024042-29



ABHAY ASHTEKAR and SINA BAHRAMI

PHYS. REV. D 100, 024042 (2019)

FIG. 3. Kerr-de Sitter space-time. The future and past boun-
daries, ZF, of the asymptotic region are spacelike because we
have a positive A. The future event horizon Zy,, of i~ intersects
the past cosmological horizon of i* in a 2-sphere i{ . just as in
Figs 1 and 2. The vertical wiggly lines depict the singularities. We
now have three horizons separating the singularity from the
asymptotic regions near Z*: the inner black hole horizon r = r_,
the outer black hole horizon r = r, and the cosmological r = r..
As in Figs. 1 and 2, black hole and cosmological horizons serve
as the past and the future boundaries of the (shaded) local space-
time region M, the intersection of the causal future of i~ with
the causal past of i ™. The full past boundary Zg,, is the extension
of Ir,. all the way to spatial infinity i°, the “right end” of Z+.

hole horizon; or, the outer black hole horizon can coincide
with the cosmological horizon, leaving the inner horizon

distinct. The parameter values at which these possibilities
are realized involve rather complicated relations between
m,a,t M

As in the A =0 case, it is clear from inspection of
Eq. (A1) that the space-time admits two commuting Killing
fields 1 and ¢“. They lead us to the physical notions of
mass and angular momentum. From the perspective of 7|
developed in Secs. III-V, the relevant symmetry to define
the mass at Z1 . (or Zz,) is generated by the Killing field
thatis: (i) a null normal £¢ to Zy, (ii) vanishes at zLOC, and,
(iii) normalized such that the surface gravity x, is given by

ke = (1/2R))(1 - 3R%c)/f2). (See Remark 1 at the end of
Sec. Il B.) Here R, is the area-radius of the cosmological
horizon Zg,:

"+

— (A3)
+)

HEor example, for there to be three distinct horizons, we
must have m_ <m < m, where my are functions of a,Z,
YA (A, +4B.) with A, = (8a222)/(£* - a*+

8,2
- 12a2f2) and B, = G VA it 0 12a2f2.

given by m =

JE=@

Therefore, we are led to seek the linear combination of
the two Killing fields that coincides with £ on Zg.
Now, motions generated by both Killing fields leave the
local region My . of the Kerr space-time invariant, whence
they leave Z ., 7. and i . invariant. Hence condition
(ii) is satisfied by every linear combination of #* and ¢®. In
the Schwarzschild—de Sitter case, the restriction of ¢ to
71, is null, whence it satisfies condition (i) and we only
had to rescale it so it has the desired surface gravity on 7
to define mass. However, if a # 0, the vector field 7 is
spacelike on Zg,,. The vector field which is proportional to
£ is given by the following linear combination of the two
Killing fields

t* = K(t° + Q.¢%) with

a 2 R?C)
Q. = (f2+a2)(1+ ()(1—/2>>, (A4)

where K is a nonzero constant that, as remarked above, can
vary from one Kerr—de Sitter solution to another, i.e., can
depend on m and a. The Killing field t* has two interesting
properties:

(1) It is timelike in a (large) neighborhood of 7.
within M .; up to constant rescalings, it is the only
Killing field in the Kerr—de Sitter space-time with
this property.

(2) TIrrespective of the choice of the constant K, its
surface gravity on Zy,, is nonzero. Therefore, the
equivalence class [t*] endows Zg,, with the structure
of a nonextremal WIH structure. It then follows that
[t*] must vanish on one and only one cross section of

rel- That cross section turns out to be precisely if ..
This implies that, irrespective of the choice of the
nonzero constant K, the affine parameter v of the
restriction of t* to Z¢, runs from —co to co on Z
as well as on Iffoc

Since surface gravity is nonzero, we can simply fix the

constant K such that the surface gravity of t* has the desired
value k.. With this choice, t* satisfies all three desired

conditions. Note that t* is the precise analog of the
standard time-translation Killing vector t* in Kerr
space-time in the following sense. First, t* isnullon Z . U
I/ justasthe #isonZ, U Z;.Second, Iy, and Z;_ are
both complete with respect to the affine parameter of t%, just
as Z, and Z} are complete with respect to the affine
parameter of ¢ in the A = 0 case. Finally, the neighbor-
hood of Z7, U Z{. in which t* is timelike is completely
analogous to the neighborhood of Z, U Z in which #* is
timelike—both extend up to the ergoregion that surround
the black hole horizons.

Since t* is the Killing field that defines the mass in
Kerr space-time with A = 0 case, it is natural to use £¢
to define mass at Z . in the A > O case. This is exactly
what our general procedure of Sec. V leads us to do.
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The resulting mass (determined by ¥, on ZT . as in Sec. V)
is then given by:

M

(AS)

. e (1+4-2)
(© (1 “‘>>Em 7R |
(1

= — —_ 5 P
2G 4 + 7?)2

In the Schwarzschild—de Sitter space-time, we have 0 <
M = m < (£/3V/3). In Kerr—de Sitter space-time, on the
other hand, M < m if a #0, and for a given value of
the parameter m, the mass M decreases as a increases.
For the full Kerr—de Sitter family we again have
0<M<?/(3 \/5), the minimum value, M = 0, is reached
for de Sitter space-time m = a = 0, and numerical eval-
uations show that the maximum value M = #/(3+/3) is
again reached at the Nariai solution.

Results of Sec. V also enable us to calculate the angular
momentum. Recall first that the rotational Killing fields are
normalized by asking that their affine parameter should run
in the interval [0, 27). Therefore, the presence of a positive
cosmological constant does not introduce any complica-
tions in identifying the Killing field with which to associate
angular momentum: It is just ¢“. The angular momentum
J,, given by setting K* = ¢ in Eq. (5.18), can now be
expressed as:

Ma ma
”:_1 c_2V (1492
(vi-g) 002
In the Schwarzschild—de Sitter space-time we have a = 0
whence J,, vanishes, as it must. For the full Kerr-de Sitter
family, in the limit A — 0 we have £ — oo and R(.) — oo,
whence we obtain J, — —Ma, as in the Kerr space-time
with A = 0. Thus, both the mass M and angular momentum
J,, reduce to the expected results in the two independent
limits, @ — 0 and A — 0. For the full Kerr—de Sitter family,
Egs. (AS5) and (A6) are simply the evaluations of
Hamiltonians, discussed in Sec. V, that generate motions
along t* and ¢ for all permissible values of m, a,?.

We will conclude with a discussion of how these notions
of mass and angular momentum are related to those defined
at Z*. In the A = O case, the Killing vector field 7 becomes
unit and hypersurface orthogonal at infinity. Since it defines
a time-translation in an asymptotically nonrotating frame, we
associate mass with 7*. But in the A > 0O case, the physical
norm of the Killing field * diverges at infinity and it fails to
be hypersurface orthogonal even asymptotically. The com-
bination of these two facts create an unforeseen complication
in defining mass of Kerr—de Sitter space-time at Z*.

More precisely, we have the following. In the
Schwarzschild—de Sitter space-time (which can again be
obtained by setting the parameter a = 0 in the metric), 1 is
hypersurface orthogonal. Therefore, in the Schwarzschild
de Sitter space-time, motions along “ can be regarded as
time-translations in the asymptotic frame that is nonrotating

(A6)

and we can use it to define mass [1].12 In the Kerr-de Sitter
case, 1“ is not hypersurface orthogonal but one may hope
that it would become hyperspace orthogonal asymptoti-
cally, as in the Kerr solution. To investigate if this happens,
let us carry out a conformal completion of the Kerr-de Sitter
space-time using Q = 1/r as the conformal factor. Then the
conformally rescaled metric §,, = Q2g,;, is smooth at the
boundaries Z*. The intrinsic 3-metric §,;, on the spacelike
boundaries Z* of the conformally completed space-time is
given by [1]:

1 2asin?6
E]abdxadxb = 22 - asnlz 2 tde
(1+%) (1+%)
2 %sin20
A+ g, (AT)
1+ ‘l’—zcosze 1+4

Thus, ¢ fails to be hypersurface orthogonal even on Z+.
There is a Killing field, unique up to constant rescalings,
that is hypersurface orthogonal at Z*, but it is given by a
(constant) linear combination of * and ¢“:

”t‘a_ ta-‘r- a a |\.
n a2+f2(p ’

It is this 7 that generates time-translations (in the generalized
sense of footnote 12) in the frame that is nonrotating at
infinity. In the A = 0O case, one fixes the rescaling freedom in
the analog of 7 by requiring that the norm of the vector field
(with respect to the physical metric) should tend to —1 at
infinity. In the A > 0 case, the norm diverges as one
approaches 7 +. Therefore, without a new, extra input, we
cannot eliminate the freedom to rescale 7 by a constant, and
furthermore this constant can depend on m and a, i.e., can
vary from one phase space point to another. As far as we
know the issue of finding the “correct” normalization has not
been discussed in the Kerr—de Sitter case. However, in the
case of Kerr anti—de Sitter space-times, this freedom is
generally fixed by requiring that the first law of black hole
mechanics should hold (see, e.g., [54]). Although there are
no cosmological horizons in Kerr anti—de Sitter space-time,
the main ideas can be carried over also to the cosmological
horizon Z7 . in the Kerr—de Sitter family. The required

Loc
rescaling leads us to rescale 7 as:

(A8)

2
7 = <1 +%>?“, so that 7% =1 4+ Q ¢

A R?.
with Q. = -5 (1 - ;j),
©

(A9)

">This interpretation holds only in a generalized sense, since 1
is spacelike on 7 rather than timelike as in the A = 0 case. But
this generalization is inescapable because Z* are themselves
spacelike, and every space-time Killing field must be tangential to
I*, whence spacelike.
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is a null normal to Z .. Thus, the “correct” expression of
energy is given by the “charge” associated with the time-
translation Killing field, 7¢; it is now the A > 0 analog of
in the A = 0 case. One can use the structure at Z* to define
this charge Q7, and angular momentum Q,, associated with
@® for the Kerr—de Sitter family[1]:

m M
or T0+Le (jie_e) and
A (1)
ma
Qo =~yap =" o
14

(These are direct analogs of the mass and angular momen-

tum used in the discussion of the first law in Kerr anti—de

Sitter space-time [54].) Then we have the familiar-looking

first law: Q. = (1/87G)k,6A — QéQq,, where k. is the

surface gravity of the null normal #¢ and A, the area of any
2-sphere cross section of Z1 ..
This discussion brings out the fact that the parameters m,

a that enter the metric are not as directly related to the mass

and angular momentum as they are in the A =0 case,

irrespective of whether one defines the mass—or, the
charge associated with the time-translation symmetry—
using structures available at Z; ., as in our main text, or
at 7+,
Remarks.—
(1) As we saw in Sec. V, a first law of horizon
mechanics holds on Zy,. for the entire class C2
of space-times considered in this paper: oM =
(1/87G)k,6A where A is again the area of any
2-sphere cross section of Z1 .. In particular, the law
holds for our Kerr—de Sitter family and, as we saw,
M is associated with the time-translation generated
by the Killing field t* that coincides with 74 on Z7 .
As we just discussed, in the Kerr—de Sitter family,
one can use the Killing vectors, define charges
associated with them using structures at Z*, and
arrive at another first law, with a more familiar
form, 6Q; = (1/8zG)k,6A — Q50Q,,.

(2) The emergence of two distinct first laws may seem
surprising at first. But this is in fact a general feature
of the WIH framework, where we have an infinite
family of first laws, each associated with a (so-called
“permissible”) vector field that generates horizon
symmetries [19-21]. Furthermore, there is an inter-
esting interplay with the Hamiltonian theory: a first
law emerges if and only if the 1-parameter family of
diffeomorphisms generated by these vector fields
induces a Hamiltonian flow on the covariant phase
space (of all solutions to field equations that admit a
WIH as a boundary).

The salient differences in the two distinct first
laws we discussed are the following: (i) the null

Loc»

normal £“ used in the first version is distinct from

the null normal 7 used in the second. They are

proportional to each other on Z[ . and they both

vanish on if, .. However, the proportionality factor

varies from one Kerr—de Sitter space-time to another,

whence k, # k.. (ii) In the first version, mass M is

the charge associated with t* (which is null on Z7 )

and evaluated using fields at Z7 .. In the second
version, the charge Q;. is associated with the vector
field 7 (which is spacelike on Z7,.) and evaluated
using fields on Z* [1]. (iii) Finally, the angular
velocities—Q,. in the first version and QC in the
second version—are also different.

(3) General space-times in the class C; considered in
this paper do not admit any Killing field. Yet, as we
saw in section V, structure naturally available on
11, enables us to introduce a notion of mass (and an
angular momentum vector) because 77, is analo-

gous to 7 in the asymptotically flat case. The fact

that there is also a first law is an added bonus arising

from the fact that, 77 . is also a WIH.

APPENDIX B: MISCELLANEOUS ISSUES

In this Appendix we introduce the Newman-Penrose
tetrads and specify the corresponding components of
various geometric fields used in the main text; prove a
key identity (5.4) used in Sec. V; and discuss conserved
charges associated with the generators of the symmetry
group .

1. The Newman-Penrose tetrads

Let #¢ denote a null normal to Zy,,. Then, given any
2-sphere cross section C of Z,; we introduce three vector
fields n%, m“ and m“ on C to obtain a Newman Penrose
null tetrad: n¢ is the other null normal to C satisfying
Gap??n® = —1; m® is a complex null vector field tan-
gential to C; and m“, its complex conjugate, such that
gapm®m? = 1. Thus, the only nonzero scalar products
between these tetrad vectors are #“n, and m“m,.
Generally we need these tetrad vectors only on C but they
can also be extended away from C by demanding that they
be parallel transported along £¢. Occasionally we special-
ize £ so that it belongs to the canonical equivalence class

of normals [fa] onZg, (where £~ it = et where

c is a positive constant), or to the canonical null normal £¢
on 7., selected by the cross section if,. and the
normalization condition (motivated by the Kerr-de Sitter
solution).

Geometrical fields we used that refer to this null tetrad
are: the intrinsic 2-metric and the area 2-form on C:
(B1)

Z]ub = 2m<an_1b> and éab = 2m[arhb];
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the expansion and the shear of #¢ and n®

O = §*"V, (= —2p); and
®(n) = qabvanb< = 2/")’ <B2)
¢ I S _
oty = <qaqi = 58w |Vela(= = omam,);
n ~C 7 1 ~C
ol = (quqi‘,’ =34 d) Veng(=:dmgmy); (B3)
and six components of the Weyl tensor, given by
LPO = Cabcdf“mbfcmd LI}I = Cabcdf“mbfcnd,
and le abcdf“m mcnd <B4)

In Eqgs. (B2) and (B3) the scalars (p, u, o, 1) in parenthesis
refer to the commonly used Newman-Penrose notation for
spin coefficients. Finally, because 7, is a nonexpanding
horizon (NEH), ¥, and ¥, vanish identically and the real
and imaginary parts of ¥,,

1
RC\PQ = = Cabcdf”nbz,“nd

1
ImY¥, = 3 *Capeal n?tn?

and

\S]

(BS)

are insensitive to the choice of the null normal 74 and n¢ to
the cross section C.

2. Derivation of Eq. (5.4)

Fix a space-time (M, g,;,) and a 2-dimensional spacelike
submanifold S in M. Denote by g, the intrinsic metric on
S. There is a general identity that relates the 4-dimensional
curvature R ., of g, to the intrinsic curvature of S which
is completely determined by its scalar curvature >R.. This is
the 2 4 2 analog of the more familiar Gauss equation that
relates curvature of g,;, with that of the induced metric on a
3-dimensional submanifold, which leads to the familiar
Hamiltonian constraint of general relativity.

Let V* be a vector field in M that is tangential to S. Then,
the action of the intrinsic (torsionfree) derivative operator
D, on S, compatible with g,, is related to the action
of the (torsionfree) derivative operator V, on M, com-
patible with g,, via: D,V, = qq};V,,V,. Using this
fact and the definition of the curvature tensor, we can
relate the Riemann tensor *R ;.4 of G,, With the Riemann
tensor R, of g,, and the extrinsic curvatures of S in M.
These extrinsic curvatures can be expressed conveniently
using any two null normals Z¢ and n“ to § such that
Gap??n® = —1. Then the extrinsic curvature terms can be
expressed in terms of the shear and expansion of the null
vectors ¢ and n* and one obtains:

qacqbdRabcd — ZR + ®(n)®( 0~ zagb)d( >qac qhd (B6)
We can now decompose the 4-dimensional Riemann tensor
in terms of its Weyl and Ricci parts to simplify the left side:

1
3“G"'Rupea = =2Capeat "¢ n? +2G 0 n® — gR

(B7)

where as usual G, denotes the Einstein tensor. The last two
equations are just differential geometric identities that hold
on any spacelike 2-manifold S in any 4-dimensional space-
time (M, g,;). Let us now use Einstein’s equation G, +
Ag,, = 8nGT,, to arrive at an equation that relates the
intrinsic curvature *R of g,, to Re¥,, A, T,, and the
extrinsic curvatures:

2 1
2R = —4ReV¥, + gA + 872G <2Tabz,”“n” +3 T)

+ 2051;))6( )quL qhd

03O ). (B3)
Note that the right side is insensitive to the choice of null
normals #¢ and n® to S so long as they satisfy #n’g,, =—1.
This local equality holds for any 2-dimensional spacelike
surface S in a solution to Einstein’s equation with a
cosmological constant A. Let us now restrict S to be a cross
section of Zg,. Because 7y, is an NEH, ©() =0 and

agi) = 0. Hence the last two terms in (B8) vanish and we

obtain Eq (5.4) used in the main text.

3. The symmetry group ® on Z¢,,
and conserved charges

In Secs. I and IV we considered My, as well as M . as
portions of space-time of interest. Their past boundaries are
IRe and 7, respectively. The symmetry group & of Zy,
is 1nﬁn1te dimensional. However, that of the portion
TIi,—or its complement, 7g \Z ,.—is just a seven
d1mens1onal subgroup &, of . In order to make contact
with 7, in the asymptotically flat case, in Sec. V we
focused on 7. and introduced the charges E, correspond-
ing to the time-translation subgroup 7, of ®&,, and Qg
corresponding to the Lorentz subgroup &. They arose as
Hamiltonians generating the action of these groups on the
covariant phase space I, tailored to the natural WIH
structure induced on Z . by the null normals [£“] (selected
by i7,.). We will now return to Zg, and seek charges Q;
associated with the generators £ of .

Recall from Eq. (4.6) that, if we choose a fiducial null
normal £ in the equivalence class [fa] that 7, is naturally

equipped with, and an affine parameter v of this L”a, then
any £ in the Lie algebra g of & can be expressed as
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& = [f(0.9) +xi)" + K" =V K% (B)

Here, in the first step, « is a constant, and K¢ is tangential to
the v, = const cross sections and a conformal Killing field

of the round 2-sphere metrics g,, thereon, and in the
second step we have simply grouped together the first two
vector fields which are vertical. Recall that on Z7 ., we
have a canonical foliation. If we choose the affine param-
eter v so that v = const 2-spheres used in (B9) are the

leaves of this preferred foliation, then the vector fields

(Kf})fﬂ + K span a sub-Lie-algebra g of g that we used to
obtain the charges E, and Qg (in Secs. VB 2 and V B 3).
We will now introduce a natural extension of that procedure
to general £ of the form (B9).

Because we are now interested in Z¢,; as a whole, let us
drop reference to i . (and therefore to Z,.) and let the

foliation be general. Consider the rotation 1-form ci)a
defined by Da}h = é)az;b (which is associated with the
full equivalence class [:”a] since it is insensitive to constant
rescalings of ;a). Since :”a provides an extremal WIH

o ©a )
structure on Zy,, we have: w,/ =0 and L-w, = 0.
Rel a pa

Therefore @, is the pull-back to Igq of a 1-form c%a on
the space Zg, of integral curves of £ By the very

°a o ~
definition of Z , the 1-form @, is divergencefree on Zg,
(with respect to the metric g, thereon). Hence, the pull-

back @, of ci)a to the leaves of our foliation is also
divergencefree. Therefore we repeat the procedure used
in Sec. V B 3 to define Q. We first note that, being a vector

field tangential to the 2-spheres v = const, we can expand
K¢ as

K*=e"D,f + 3Dy (B10)

for some functions f(, ¢) and (6, ¢), where g,, and &,
are the pull-backs to the leaves of the foliation of the
physical metric g,, and the area 2-form ¢,, on Iﬁel.n
Following the procedure used in Sec. VB3 we are led
to express Qx as an integral over a leaf C of the foliation:

PNote that each & admits a natural prOJeCthH K* to the
2-sphere S of generators of Zg,, since £- 5” IS f The natural

diffeomorphism between S and any v = const 2- sphere sends K¢
to K? and vice versa. Therefore we can express K® as
K* = e“bDbf+q D, g, and use pull-backs of f and § as f
and gin (B10). Then we have £-f = 0 and L. g 0, whence f, g

are functions only of (6, ¢).

[ Kad2V
Ok = "8 w

S”G]{fe“bD wbd2

= Im¥
471G7£fm 24V,

(B11)
where in the second step we have used (B10) and carried
out an integration by parts, and in the third step used (5.3).
Although we have expressed Qx as an integral over a
2-sphere v = v,, the final result is independent of this
choice. Indeed, since £ projects down unambiguously to
the base space S, Qi can be expressed entirely using an
integral on the base space S without reference to any
foliation at all. The angular momentum charges on Z,, are
the same as those we obtained in Sec. VB3 on 7.

Let us next consider the vertical part V¢ = (f(0, ¢) +

K%)/ of &, To begin with let us suppose that « is nonzero.
Since V“ is a null normal to Zy,, with surface gravity «,
from now on we will replace ¥ with xy. Since ky is a
nonzero constant, it follows that V¢ endows Zy, with
the structure of a nonextremal WIH. (As expected, V*
vanishes precisely at one cross section of Zy, given by

—(1/ky)f(0,¢); it is a complete vector field on either
side of this cross section; and is future directed on one side
and past directed on the other.) Therefore, we can use the
covariant phase space I',, that is available for space-times
admitting a nonextremal WIH as a boundary [19]. The
issue then is whether the diffeomorphism generated by a
space-time vector field preserves the symplectic structure;
if it does, the Hamiltonian generating the corresponding
canonical transformation would provide the charge Qy .
However, as has been explained in detail in the literature,
there is a subtlety: we need to specify what we mean by the
“same” vector field in different solutions of Einstein’s
equations that constitute I',,. This step can be carried out
by specifying the surface gravity of the vector field V¢ as a
function of the horizon area. Indeed, we used this strategy
on Zi,. by encoding in surface gravity the “correct
normalization” (which in turn was determined by taking
the A — 0 of the Kerr family). One can argue that the same
strategy should be used in the general case. Then, the same
arguments that were used in Sec. VB2 lead us to the
Hamiltonian

b
8nG C

— Ky 2
=- %R‘R‘PdV
4nGry Jo o T2

E, =— R () Cuppgl®n®Vrnid>v

(B12)

where, as before x, = (1/2R(;))(1 = 3(R7,,/£%)). (The
only difference between (5.15) of Sec. VB2 and (B12)
is that ¢ is now replaced by V%)
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So far we have restricted ourselves to the vertical
vector fields V¢ for which xy, # 0. However, because the
charge Ey is a linear map from the space of vertical
vector fields V to R, E, of (B12) admits a unique

extension to all V. Suppose V¢ = (f(0, ) —I—K%)fa and

"= (f"(6, ) +K101)fa, we have Ey = Ey, with k # 0.
Then the above prescription can be applied to both V¢ and
V' whence by linearity we arrive at a rather surprising

result that Ey, =0 if V* :f(Q,gb)fa, ie., if V? is any
supertranslation. Therefore, from the above Hamiltonian
perspective, supertranslations have to be regarded as
“gauge transformations” and the space of genuine sym-
metries is then the quotient /S = &.

This perspective is natural from the WIH framework
where the Hamiltonian framework is based on nonextremal
WIH structures. On the other hand, Iy, is naturally
endowed with an extremal WIH structure through its

equivalence class of null normals [fa] and there may well
be other perspectives that emphasize the extremal WIH
structures. Indeed, as pointed out in Remark 3 at the end of
section V B 1, the notion of mass M can be introduced
using these extremal null normals. The first equality in
(B12) suggests a natural strategy to define supermomenta.

Suppose we could select a preferred za € [fa] Then, given

°a
a supertranslation S = f(0, )¢
motivation we could set

, using Eq. (B12) as

1
877.'G

e 7{ 0.9
— fc £(0. )RV, V.,

Qs = R(C) £ i srntdey

abpg&

abqu n f nqd2

(B13)

so that f(0,¢) serves as a weighting function in the last
step. Indeed, this is precisely how supermomentum is
defined on Z, in the asymptotically flat context (in absence
of incoming radiation): Given any Bondi conformal frame,

we obtain a preferred null normal fa (rather than an

equivalence class [éa]) and supermomentum is defined
precisely as the limit of (B13) as C approaches a cross

°a
section of Z,. (This £ 1is the limit to Z, of a unit time-
translation.) Thus, if there were a physically motivated and/
or mathematically natural procedure to select a preferred

fa, on Iy, we would at least have a candidate expression.
We could then investigate if it arises as a Hamiltonian
generating the canonical transformation induced by the
supertranslation S¢. But for this strategy to work, we do

°a °a
need a preferred £ € [¢ . For, under a constant rescaling

¢ k', we have 1= (1/k)n" and f(60.¢) —
(1/k)f(@,¢), whence the right hand side of (B13) would
be multiplied by 1/k, giving us a different value of Q¢ on
the same 7. Now, in the nonextremal case, we could
select a canonical £ € [£“] by fixing its surface gravity.
In the extremal case, this avenue is not available because

k= 0 for all £ e [:”a] And the shear and expansion of

°a
each ¢ also vanish because Z,, is an NEH. Thus, it seems

difficult to select a canonical £ € [fa], i.e. to write down
an unambiguous candidate expression for supermomentum
on Ig,.

There is also a deeper conceptual obstruction to selecting

a preferred Ea S [Za] What principle would one use to

“correctly normalize” fu on Zp,? On Iy . we chose the
“correctly” normalized £ by making appeal to the A — 0
limit, in which a neighborhood of Z1 . of the Kerr—de Sitter
family becomes a neighborhood of Z, of the Kerr solution,
and we know what the correct normalization is for the time-
translation Killing field in the Kerr space-time. As we saw
in Sec. III B, already for the Schwarzschild—de Sitter
farmly, full Ige does not have a well-defined limit as

A—0! Consequently, there is no guidance as to what the

correct normalization of f should be. Indeed, if super-
translations S were to be regarded as genuine symmetries
of Iz, at least in the Kerr—de Sitter family one would
expect them to tend to a symmetry of Z in the limit A — 0.
But this does not seems possible because: (i) for each
A > 0 the supertranslations fail to leave Z7 . invariant;
(i1) the expression of S“ makes no reference to A; and
(iii) Z; is the limit of Z7

Loc*

14Following considerations suggest that this will happen more
generally. In the A =0 case, the asymptotic region of the
physical space-time is the intersection of the causal past of i*
with the causal future of i~. In the A > 0 case, this intersection is
just M., whose past outer boundary is Z . and future outer
boundary is Z;.. In the limit A — 0, they will tend to Z; and Z}
respectively. Thus, as in de Sitter space-time discussed in Sec. 11
A and Schwarzschild—de Sitter space-time discussed in Sec. III B,
Tra\Z 1o Will simply disappear in the limit.
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