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Abstract

We provide an algorithm to estimate the divergence degree of the Lorentzian 
EPRL-FK spin foam amplitudes for arbitrary 2-complexes. We focus on the 
‘self-energy’ and ‘vertex renormalization’ diagrams and find an upper bound 
estimate. We argue that our upper bound must be close to the actual value, and 
explain what numerical improvements are needed to verify this numerically. 
For the self-energy, this turns out to be significantly more divergent than the 
lower bound estimate present in the literature. We support the validity of our 
algorithm using 3-stranded versions of the amplitudes (corresponding to a toy 
3d model) for which our estimates are confirmed numerically. We also apply 
our methods to the simplified EPRLs model, finding an utterly convergent 
behavior, and to BF theory, independently recovering the divergent estimates 
present in the literature.

Keywords: spin foam, divergences, renormalization, bubble, self energy, 
vertex renormalization

(Some figures may appear in colour only in the online journal)

1. Introduction

The spin foam formalism is an attempt to define the dynamics of loop quantum gravity in a 
background independent and Lorentz covariant way [1, 2]. It defines transition amplitudes 
for spin network states of the canonical theory in a form of a sum (or equivalently a refine-
ment [3]) over all the possible two-complexes having the chosen (projected) spin networks 
as boundary. This is equivalent to a sum over histories of quantum geometries providing in 
this way a regularised version of the quantum gravity path integral. The state of the art is the 
model proposed by Engle, Pereira, Rovelli and Livine (EPRL) [4–6] and independently by 
Freidel and Krasnov (-FK) [7] and its extension to arbitrary spin network states [8, 9]. The 
model admits a quantum group deformation conjectured to describe the case of non-vanishing 
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cosmological constant [10, 11] and notably, the large spin asymptotics of the 4-simplex vertex 
amplitude contains exponentials of the Regge action [12, 13]. The model is free of ultravio-
let divergences because there are no trans-Planckian degrees of freedom, however, there are 
potential large-volume infrared divergences.

The presence of divergences may require some sort of renormalization procedure, and in 
general, their study and understanding is important in the definition of the continuum limit. 
This has been the subject of many studies and can be achieved in many ways: via refining of 
the 2-complex as proposed in [14–16], or via a resummation, defined for instance using group 
field theory/random tensor models as proposed in [17–20]. The properties of these diver-
gences have been studied in the context of the Ponzano–Regge model of 3d quantum gravity 
and discrete BF theory [21], group field theory [22] and EPRL model: with both Euclidean 
[23, 24] and Lorentzian signature [25].

In particular [25] is, to our knowledge, the only analytic estimate of divergences in the 
Lorentzian EPRL model. It considers the ‘self energy’ (see figure 1(c)), finding a logarith-
mic divergence as a lower bound. The computation is rather involved and relies on the tech-
niques developed for the asymptotic analysis of the vertex amplitude of the model [13]. This 
approach requires an independent study of each geometrical sector: crucially, the logarith-
mic divergence is obtained by looking at the non-degenerate geometries, resulting in a lower 
bound estimate only. Our results suggest that this lower bound is close to 9 powers short. 
Moreover, even if in principle the same technique of [25] applies to any spin foam diagram, 
doing it is a very challenging task. On the other hand, the various estimates provided in [23] 
for the Euclidean model of both the ‘self-energy’ diagram and the ‘vertex renormalization’ 
diagram, (see figures 1(c) and (D)) just rely on the scaling for large spins of SU(2) invariants, 
and they are easily applicable to any spin foam diagram. Nevertheless, the extension of this 
technique to the Lorentzian model is not at all straightforward, due to the non-compactness 
of the Lorentz group.

In this work, we develop a simple algorithm to systematically determine the potential diver-
gence of all spin foam diagrams within the EPRL model. Instead of approaching it directly 
in its generality we proceed by increasing complexity a bit at a time: we will introduce our 
algorithm first for SU(2) BF theory, moving to a simplified version of the EPRL model and 
concluding with the full quantum gravity model. We review the three transition amplitudes 
and their relation in section 2. In section 3 we introduce the four diagrams in analysis. Again, 
we opted to increase complexity gradually: before approaching the four stranded diagrams 
corresponding to a four dimensional triangulation (each four stranded edge is dual to a tetra-
hedron) we warm up with the analog three stranded diagrams corresponding to a three dimen-
sional triangulation (each edge is dual to a triangle). Three dimensional spin foam diagrams 
are simpler than their four dimensional counterpart for the absence of edge intertwiners and 
the overall smaller number of internal faces. We will consider both three and four dimensional 
bubble and ball diagrams. In sections 4–6 we proceed with the study of the divergence of the 
diagrams one by one in order of complexity. We then conclude summarizing the algorithm 
and the results obtained. Let us for the impatient reader comment here the results. We estimate 
both the bubble and the ball amplitudes in the four dimensional EPRL model to be divergent 
with the same power of the cutoff of the analog diagrams for SU(2) BF model. Furthermore, 
we also find convergence for all the diagrams in the simplified EPRL model and the three 
dimensional ones for the EPRL model.
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2. The EPRL model and its connection with BF theory

We assume that the reader is familiar with the EPRL-FK1 model, and refer to the original lit-
erature [4–7] and existing reviews (e.g. [1, 2]) for motivations, details and its relation to loop 
quantum gravity. In the following, we will use an unconventional notation for the partition 
function which was recently developed in [26].

Given a closed 2-complex C the partition function is a state sum over SU(2) spins jf and 
intertwiners ie, associated respectively with faces f and edges e:

ZC =
∑
jf ,ie

∏
f

Af ( jf )
∏

e

(2ie + 1)
∏

v

Av ( jf , ie) .
 (1)

We denoted with Af ( jf ) the face weights: the requirement that the path integral at fixed bound-
ary graph compose correctly under convolution fixes the face weight to be Af ( j) ≡ 2j + 1 
[27] but to compare to various other models present in the literature we will use a gener-
alized face weight Af ( j) ≡ (2j + 1) μ (i.e. μ = 1 correspond to the choice made in the BF 
SU(2) model and the EPRL model, μ = 2 correspond to the BF SO(4) model). To have more 

Figure 1. We represent here the two-complex of the four diagrams we will study in 
the paper. The two diagrams on the top have three stranded edges. On the contrary, 
the diagrams on the bottom have four stranded edges and we will call them four 
dimensional, each edge is dual to a tetrahedron. We will refer to the diagrams on the left 
as bubble diagrams and to the diagrams on the right as ball diagrams. In each picture, 
we highlight in red an internal face and in green an external one. (a) 3D bubble diagram. 
(b) 3D ball diagram. (c) 4D bubble diagram. (d) 4D ball diagram.

1 From now on we will call it just EPRL for notation convenience.
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symmetric expressions we will also take the dimensions of the intertwiners on the edges to be 
(2ie + 1) → (2ie + 1) μ. The main goal of this paper is to find a systematic way to study the 
convergence of the multidimensional infinite sum 

∑
jf ,ie.

To each vertex v of the two-complex a vertex amplitude is associated:

Av ( jf , ie) =
∑
lfv,kev

(∏
ev

(2kev + 1)Bnev( jfv, lfv; iev, kev)

)
{3nj}v(lfv, kev), (2)

it is defined as a superposition of SU(2) invariants {3nj}2 weighted by one booster functions 
Bnev per edge ev touching the vertex v, with nev the valency of the edge ev. The sums run over 
a set of auxiliary spins lfv3 associated to each face fv  containing the vertex v, with lfv � jfv, 
and a set of auxiliary intertwiners kev for each edge ev connected to the vertex v. Notice that 
the formulas for the partition function (1) and (2) are extendable to generalized spin foams 
with 2-complexes dual to arbitrary tesselations done with polyhedra being careful of using the 
appropriate dimension of the intertwiner space instead of 2ie  +  1 and 2kev + 1 (i.e. for three 
valent edges the intertwiner space associated to each edge is trivial and ie = kev = 0 on those 
edges; for five valent edges the intertwiner space associated to each edge is determined by two 
spins and the proper dimension to use is (2ie1 + 1) (2ie2 + 1)).

The booster functions encode all the details of the EPRL model, they are defined in the 
following way:

Bn( ja, la; i, k) =
1

4π

∑
pa

(
ja
pa

)(i)
(∫ ∞

0
dr sinh2 r

n∏
a=1

d(γja,ja)
jalapa

(r)

)(
la
pa

)(k)

,

 

(3)

where the boost matrix elements d(ρ,k)(r) for γ-simple irreducible representation of SL(2,C) 
in the principal series, γ is the Immirzi parameter and the (njm) symbols are reported in 
appendix A. We are using the notations used in [26]. On one hand, the introduction of booster 
functions simplifies a lot the computation of spin foam transition amplitudes because it trades 
the problem of dealing with many high oscillatory integrals with the study a family of one 
dimensional integrals, which are easier to handle and manipulate. Analytical and numerical 
properties of these functions are work in progress [26, 28–30]. On the other hand, the explicit 
evaluation of booster functions in spite of their rather simple form is still a very involved task: 
For n  =  3 we employ an expression for (3) in terms of finite sums of Γ functions, for details 
see [26, 32]; for n � 4 a similar formula exists but features an integration over virtual labels4, 
and in the end we found it less time consuming to numerically integrate directly the boost 
integrals. A C numerical code for the virtual irreps formula has been recently developed in 
[31]. The asymptotic behavior for large spins is still unknown: the properties we will need for 
our analysis will be inferred from numerical analysis.

As suggested in [26], we introduce here a simplified version of the EPRL model, we will 
denote it EPRLs where s stays for simplified. The reformulation of the EPRL amplitude as in 
(2) traded the major complexity of multiple integrals over the non-compact group SL(2,C) 
with multiple infinite sums over the auxiliary spins l. We can for the moment put aside the 
proliferation of spin labels and fix all the new spins lfv to their minimal values jfv:

2 The specific invariant depend on the details of the vertex, if the vertex is dual to a 4-simplex the invariant is the 15j 
symbol.
3 That are effectively magnetic indices respect the group SL(2,C).
4 See equation (41) of [26].
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Av ( jf , ie) =
∑
kev

(∏
ev

(2kev + 1)Bnev( jfv, jfv; iev, kev)

)
{3nj}v( jfv, kev) . (4)

We can also try to give a geometrical interpretation to this model. By removing the sums we 
fix the areas of the polyhedra on the edges the be fixed to the minimal ones, on the other hand, 
the shapes (associated to the intertwiners) are still allowed to be boosted from a vertex to the 
other. This is a dramatic simplification and it is not clear if this model can capture any feature 
of the full one, nevertheless it is a useful playground to study some properties in a simplified 
environment. There are some indications that the vertex amplitude of this model is dominated 
by Euclidean four dimensional geometries [30].

Furthermore, notice that with the additional simplification (2kev + 1)Bnev

( jf , jf ; ie, kev) → δie,kev the vertex amplitude reduces to the one of the BF spin foam model:

Av ( jf , ie) = {3nj}v( jfv, iev) . (5)

In the following, we will study the divergences of these three models starting from the 
simpler one, BF model, for which the computation of the divergence of any diagram is also 
possible analytically, moving to the more complex EPRLs and finishing with the physically 
relevant EPRL.

3. The diagrams

In this section, we will describe the four diagrams we will focus on in the rest of the paper. 
In spin foam models divergences turn out to be associated with bubbles in the triangulation. 
A bubble is a collection of faces in the cellular complex forming a closed 2-surface. Here we 
study the most elementary of such bubbles, and the potential divergences they give rise to, 
leaving the detailed characterization of all divergences of the whole theory to future works.

We will focus on two classes of those diagrams represented in figure 1: the bubble dia-
gram (or to use the Feynman diagrams’ language the self-energy), and the ball diagram (or 
vertex renormalization). The divergence of these two classes of diagrams can be viewed as 
the divergence on particularly simple triangulations with boundaries or more in general as the 
divergence arising from a sub-triangulations of a larger triangulation.

Even if the physical implication of the three stranded diagrams on the top of (1) is not clear, 
we will look at them as a simpler prototype of the four stranded ones where is easier to test our 
algorithm and some of the assumptions we will make. We will refer to them as three dimen-
sional because we can imagine the dual to the three stranded edge to be a triangle.

3.1. 3D bubble diagram

The two-complex associated to the 3D bubble (figure 1(a)) is composed by two vertices, three 
edges, three internal faces (one per couple of edges) and three external faces (one per edge). 
The dual triangulation is formed by two tetrahedra joined by three triangles and its boundary 
is formed by two triangles joined by all their sides. Therefore, the boundary graph consists of 
two three valent nodes joined by all their links.

We will in the following use a general convention denoting with ks the boundary spins, js 
the face spins, ts the boundary intertwiners and is the edge intertwiners. In this specific case, 
the boundary graph is completely determined by the three spins of the boundary links ka, 
a = 1, . . . , 3. One spin is also associated to each internal face jf, f = 1, . . . , 3.

P Donà Class. Quantum Grav.  ( ) 175019
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3.2. 3D ball diagram

The two-complex associated to the 3D ball (figure 1(b)) is composed by four vertices, six 
edges, four internal faces (one per triple of vertices) and six external faces (one per internal 
edge). It can be interpreted as a tetrahedron expanded with a 1-4 Pachner move. The boundary 
of the dual triangulation is formed by four triangles joined to form a tetrahedron. Therefore, 
the boundary graph consists of four three-valent nodes joined in a complete graph. We asso-
ciate a spin ka, where a = 1, . . . , 6, to each link of the boundary graph and a spin jf with 
f = 1, . . . , 4 to each internal face.

3.3. 4D bubble diagram

The two-complex associated to the 4D bubble (figure 1(c)) is composed by two vertices, four 
edges, six internal faces (one per couple of edges) and four external faces (one per edge). 
The dual triangulation is formed by two 4-simplices joined by four tetrahedra. The boundary 
of the dual triangulation is formed by two tetrahedra joined by all their four faces, therefore 
the boundary graph is formed by two four valent nodes joined by all the links. Therefore, the 
boundary graph consists of two four valent node joined by all their links. We denote with ka, 
where a = 1, . . . , 4 the spins of the boundary graph links and t1 and t2 the intertwiners at the 
two nodes in the recoupling base (k1, k2). We attach a spin jf with f = 1, . . . , 6 to each face 
and an intertwiner ie with e = 1, . . . , 4 to each edge.

3.4. 4D ball diagram

Finally, the two-complex associated to the 4D ball (figure 1(d)) is composed by five vertices, 
ten edges, ten internal faces (one per triple of vertices) and ten external faces (one per inter-
nal edge). It can be interpreted as a 4-simplex expanded with a 1–5 Pachner move into five 
4-simplices. Such graph corresponds to a triangulation of a 3-ball with five 4-simplices and 
its divergence can be associated to the vertex renormalization of a simplicial spinfoam model. 
The boundary of the dual triangulation is formed by five tetrahedra joined in a 4-simplex. 
Therefore, the boundary graph consists of five four-valent nodes connected in a complete 
graph. We denote with ka, where a = 1, . . . , 10 the spins of the boundary graph links and tn 
with n = 1, . . . , 5 the intertwiners of the five nodes, we will not specify the base choice for 
the moment. We attach a spin jf with f = 1, . . . , 10 to each face and an intertwiner ie with 
e = 1, . . . , 10 to each edge.

4. Divergences estimation in SU(2) BF spin foam model

We warm up by testing our techniques with the simplest of the three models we are going to 
look at: the SU(2) BF spin foam model. For this model is possible to compute any diagram 
analytically, we refer to appendix B for the analytic evaluation of the diagrams considered in 
this section. The vertex amplitude (5) for three stranded edges spin foams is a {6j} symbol 
while for four stranded edges spin foams is a {15j} symbol.

P Donà Class. Quantum Grav.  ( ) 175019
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4.1. 3D bubble diagram—self-energy

The transition amplitude for the 3D bubble diagram (figure 1(a)) is:

WBF 3D
bubble =

∑
j1,j2,j3

3∏
f=1

(2jf + 1)μ
{

k1 k2 k3
j1 j2 j3

}2

. (6)

Not all the sums are unbounded, to isolate them is useful to make a change of variable: 
λ1 = j1, λ2 = j2 − j1, λ3 = j3 − j1. Triangular inequalities implies that the sums over 
|λ2| = | j2 − j1| � k3 and |λ3| = | j3 − j1| � k2 are bounded. We can rewrite (6) in terms of 
these new variables and obtain

WBF 3D
bubble =

∑
λ1, λ2, λ3

(2λ1 + 1)μ (2λ1 + 2λ2 + 1)μ (2λ1 + 2λ3 + 1)μ
{

k1 k2 k3
λ1 λ1 + λ2 λ1 + λ3

}2

 (7)

≈
∑

λ1, λ2, λ3

(2λ1)
3μ

{
k1 k2 k3
λ1 λ1 λ1

}2

≈
∑
λ1

(λ1)
3μ

{
k1 k2 k3
λ1 λ1 λ1

}2

.

 

(8)

Our final goal is to study the convergence of the infinite sum over the face spins. With that 
scope in mind we can assume that λ1 is arbitrarily large and drop any contribution small 
respect to λ1. At this stage the summand does not depend anymore on the bounded vari-
ables λ2 and λ3, so we can perform the sum explicitly and then omit the multiplicative factor 
8μ (2k2 + 1) (2k3 + 1) that is irrelevant for our purposes and cumbersome to keep track of. We 
use the symbol  ≈  to indicate this equivalence. The asymptotic behavior of the {6j} symbol 
with 3 small spins and 3 large spins is well known [33]:{

k1 k2 k3
λ1 λ1 λ1

}
∝ λ

−1/2
1 , (9)

where we are ignoring an irrelevant multiplicative factor. If we introduce a cutoff Λ to the sum 
over λ1 and use the asymptotic expression (9) we obtain an estimate for the divergence of the 
amplitude:

WBF 3D
bubble (Λ) ≈

Λ∑
λ1

(λ1)
3μ

(
λ
−1/2
1

)2
≈ Λ3μ . (10)

For a trivial face amplitude μ = 1 we reproduce the divergence Λ3 we can compute analyti-
cally (see appendix B for more details).

4.2. 3D ball diagram—vertex renormalization

By carefully placing the internal and external spins, the transition amplitude for the 3D ball 
diagram (figure 1(b)) is:

WBF 3D
ball =

∑
j1,j2,
j3,j4

⎛
⎝ 4∏

f=1

(2jf + 1)μ

⎞
⎠{

k1 k2 k3
j4 j1 j3

}{
k3 k4 k5
j2 j4 j1

}{
k2 k5 k6
j2 j3 j4

}{
k1 k4 k6
j2 j3 j1

}
.

 (11)
We follow closely the discussion of section 4.1, the first step is to identify and isolate the 
unbounded sums performing the following change of variables λ1 = j1, λ2 = j2 − j1, 
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λ3 = j3 − j1 and λ4 = j4 − j1. Triangular inequalities implies that the sums over the new vari-
ables |λ2| = | j2 − j1| � k4, |λ3| = | j3 − j1| � k1 and |λ4| = | j4 − j1| � k3 are bounded, tighter 
bounds are possible but they are not relevant for our analysis. In terms of this new variables 
we can rewrite the amplitude as:

WBF 3D
ball =

∑
λ1,λ2,
λ3,λ4

(2λ1 + 1)μ (2λ1 + 2λ2 + 1)μ (2λ1 + 2λ3 + 1)μ (2λ1 + 2λ4 + 1)μ

 

(12)

{
k1 k2 k3

λ1 + λ4 λ1 λ1 + λ3

}{
k3 k4 k5

λ1 + λ2 λ1 + λ4 λ1

}
 (13)

{
k2 k5 k6

λ1 + λ2 λ1 + λ3 λ1 + λ4

}{
k1 k4 k6

λ1 + λ2 λ1 + λ3 λ1

}
. (14)

Neglecting all the small contributions respect to λ1, the variable of the only unbounded sum, 
and neglecting irrelevant multiplicative factors we obtain:

WBF 3D
ball ≈

∑
λ1

(λ1)
4μ

{
k1 k2 k3
λ1 λ1 λ1

}{
k3 k4 k5
λ1 λ1 λ1

}{
k2 k5 k6
λ1 λ1 λ1

}{
k1 k4 k6
λ1 λ1 λ1

}
.

 (15)
We put a cutoff on the sum over λ1 and we approximate the {6j} symbol with its large spin 
expression (9) to get the estimate:

WBF 3D
ball (Λ) ≈

Λ∑
λ1

(λ1)
4μ

(
λ
−1/2
1

)4
≈ Λ4μ−1 . (16)

Setting a trivial face amplitude (μ = 1) our estimate agrees with the analytical computation Λ3 
(see appendix B for more details).

4.3. 4D bubble diagram—self-energy

The transition amplitude for the 4D bubble diagram (figure 1(c)) is:

WBF 4D
bubble =

∑
jf ,ie

6∏
f=1

(2jf + 1)μ
4∏

e=1

(2ie + 1)μ {15j}1 {15j}2 , (17)

where the specification of the {15j} symbol depends on the choice of intertwiner base of each 
spin foam edge. Even if the full amplitude is independent of this choice, it is convenient to 
choose the intertwiner bases that lead to a reducible {15j} symbols, as already noted in [34], 
to easily derive the scaling for large spins of the {15j} symbol:

{15j}v =

{
tv k1 k2

j1 i2 i1

}{
tv k3 k4

j2 i3 i4

}⎧⎨
⎩

i1 i2 tv
j6 j5 i3
j3 j4 i4

⎫⎬
⎭ . (18)

Each edge carries a boundary spin, three face spins and an intertwiner. Triangular inequalities 
constrain the intertwiner to assume values in an interval centered on a face spin, implying that 
the sums over these intertwiners are bounded. In analogy to the three dimensional case it is use-
ful to perform a change of variables to make it manifest. We define new variables for the spin 
faces λf = jf  for f = 1, . . . , 6 and for the intertwiners ι1 = i1 − j1, ι2 = i2 − j1, ι3 = i3 − j2, 
ι4 = i4 − j2. The sums over the intertwiners ιe are in fact bounded: |ι1| � k1, |ι2| � k2, |ι3| � k4 
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and |ι4| � k3. The sums over the λf  are all unbounded contrary to the three dimensional case. 
The {15j} symbol (18) can be rewritten in terms of this new variables and the large spins 
asymptotic can be found in the literature [33, 35–38]:

{15j}v ≈
{

tv k1 k2

λ1 λ1 + ι2 λ1 + ι1

}{
tv k3 k4

λ2 λ2 + ι3 λ2 + ι4

}⎧⎨
⎩
λ1 + ι1 λ1 + ι2 tv
λ6 λ5 λ2 + ι3

λ3 λ4 λ2 + ι4

⎫⎬
⎭

 (19)

≈ 1
λ1

1
λ2

1√
V(λf )

, (20)

where V(λf ) is the volume of a Euclidean tetrahedron having for sides ≈ λf  with f = 1, . . . , 6. 
We are ignoring the oscillatory behavior of the 9j symbol: since the summand is proportional 
to the square of this oscillation, disruptive interference between terms is not possible and we 
expect the leading order of the divergence to be unaffected.

Notice that this formula is not valid for values of the spins such that V = 0. In these cases, 
the semiclassical approximation used to derive the asymptotic formula for the 9j symbol in 
(19) needs to be modified [37]. The set of spins for which this happens form a measure zero set 
in the bigger set of face spins, so we expect they will not affect the divergence. For this reason, 
we ignore those points completely in the following analysis.

We can rewrite the whole amplitude in the new variables and expand at the leading order 
in λf :

WBF 4D
bubble =

∑
jf ,ie

⎛
⎝ 6∏

f=1

(2λf + 1)μ

⎞
⎠ (2ι1 + 2λ1 + 1)μ (2ι2 + 2λ1 + 1)μ (2ι3 + 2λ2 + 1)μ (21)

(2ι4 + 2λ2 + 1)μ {15j}1 {15j}2 (22)

≈
∑
λf

⎛
⎝ 6∏

f=1

(λf )
μ

⎞
⎠ (λ1)

2μ
(λ2)

2μ

(
1
λ1

1
λ2

1√
V(λf )

)2

. (23)

To proceed with the estimate we will assume that the only kind of relevant divergence, if any, 
comes from the radial direction of the sum and will neglect any angular contribution. The 
divergence of this diagram can be computed analytically and has been extensively studied in 
the literature [39], we will use these results to test our assumption. We wanted to stress that 
this hypothesis is not new: all the other computation of divergences within the EPRL model in 
the literature also assume it [23, 25].

Calling λ this radial coordinate and introducing a factor λ5 as measure volume element and 
a cutoff Λ:

WBF 4D
bubble ≈

Λ∑
λ

λ5λ10μ
(
λ−7/2

)2
≈ Λ10μ−1 . (24)

For trivial face amplitude (μ = 1) we can compare our estimate with the analytical evalu-
ation (see appendix B for more details). We find perfect agreement, this corroborates our 
hypothesis that the divergence gets contribution mainly from the radial direction of the sum. 
This assumption will be also used in the estimates of the divergences of amplitudes in the 
EPRL model where, unfortunately, any alternative computation or checks are not possible.
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4.4. 4D ball diagram—vertex renormalization

The transition amplitude for the 4D ball diagram (figure 1(d)) is:

WBF 4D
ball =

∑
jf ,ie

10∏
f=1

(2jf + 1)μ
10∏

e=1

(2ie + 1)μ
5∏

v=1

{15j}v . (25)

We choose the intertwiner basis of the ten edges in order to get the following {15j} symbols:

{15j}1 =

{
t1 k1 k2

j1 i2 i1

}{
t1 k4 k3

j6 i3 i4

}⎧⎨
⎩

i4 i3 t1
j5 j4 i2
j3 j2 i1

⎫⎬
⎭ , (26)

{15j}2 =

{
t2 k1 k5

j1 i5 i1

}{
i1 i6 i7
j9 j3 j2

}⎧⎨
⎩

k7 k6 t2
i7 i6 i1
j8 j7 i5

⎫⎬
⎭ , (27)

{15j}3 =

{
t3 k5 k2

j1 i2 i5

}{
i8 i9 i2
j5 j4 j10

}⎧⎨
⎩

k9 k8 t3
i9 i8 i2
j8 j7 i5

⎫⎬
⎭ , (28)

{15j}4 =

{
t4 k3 k10

j6 i10 i3

}{
t4 k8 k6

j7 i6 i8

}⎧⎨
⎩

i3 i10 t4
j5 j10 i8
j2 j9 i6

⎫⎬
⎭ , (29)

{15j}5 =

{
t5 k9 k7

j8 i7 i9

}{
t5 k10 k4

j6 i4 i10

}⎧⎨
⎩

i4 i10 t5
j5 j10 i9
j3 j9 i7

⎫⎬
⎭ . (30)

Analougusly to the analysis performed in the previous section we define new variables for the 
spin faces λf = jf  for f = 1, . . . , 10 and for the edge intertwiners:

ι1 = i1 − j1 ι2 = i2 − j1 ι3 = i3 − j6 ι4 = i4 − j6 ι5 = i5 − j1
ι6 = i6 − j7 ι7 = i7 − j8 ι8 = i8 − j7 ι9 = i9 − j8 ι10 = i10 − j6.

In terms of these new variables all sums over ιe are manifestly bounded, while the sums over 
λf  are all unbounded. Even if the invariants in (26) do not have the small spins in the same 
places their large spin scaling, omitting again the oscillations, are similar:

{15j}1 ≈ 1
λ1

1
λ6

1√
V(λfv1)

{15j}2 ≈ 1
λ1

1√
λ7

1√
λ8

1√
V(λfv2)

{15j}3 ≈ 1
λ1

1√
λ7

1√
λ8

1√
V(λfv3)

{15j}4 ≈ 1
λ6

1
λ7

1√
V(λfv4)

{15j}5 ≈ 1
λ6

1
λ8

1√
V(λfv5)

 

(31)

where λfvn are all the face spins entering in the nth vertex, i.e. for the 4th vertex 
fv4 = 2, 5, 6, 7, 9, 10.

We assume also in this case that there is no angular contribution to the divergence and we 
change to radial coordinates. Imposing a cutoff Λ to the radial summation
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WBF 4D
bubble ≈

Λ∑
λ

λ9λ20μ
(
λ−7/2

)5
≈ Λ20μ−15/2. (32)

If we set a trivial face amplitude μ = 1 we do not reproduce the divergence obtained with 
analytical methods (see appendix B for more details). We stress that all our estimate are upper 
bounds since we are neglecting any oscillations. Even if we are overestimating the divergence, 
neglecting the interference between the terms of the sum, we still get a result very close to the 
analytic evaluation.

5. Divergences estimation in the simplified EPRL model

Before trying to estimate divergences in the full EPRL model, it is useful to test our technique 
on the simpler EPRLs model we introduced at the end of section 2. The vertex amplitude of 
the EPRLs model (4) differs from the SU(2) BF one in the introduction of the booster func-
tions and in the extra summations over a set of auxiliary ‘boosted’ intertwiners per vertex. 
While the latter requires minimal modification in the logic described in the previous sections, 
how to deal with the booster functions will be the main novelty of this section.

The main ingredient of the recipe we will describe in the following is the large spins scaling 
of both the B3 and B4 booster functions, where a spin is kept small and the others become large 
uniformly. The analytic study of the booster functions is very difficult and it is still work in 
progress [29]. This forces us to employ numerical methods to extract the scaling we are look-
ing for. A similar property is already been investigated in [28] and we independently confirm 
it here. We infer from our numerics the following scaling for the booster functions (refer to 
figure 2 and appendix D for more details):

B3 (k1, j2 + λ, j3 + λ) ≈ λ−1, (33)

B4 (k1, j2 + λ, j3 + λ, j4 + λ; i + λ, i′ + λ) ≈ λ− 5
2 , (34)

with λ � k1, j2, j3, j4 and i or i′. To keep the expressions compact, we employed, and we 
will employ in the rest of the paper, a short-hand notation for the booster functions:

B3( j1, j2, j3) ≡ B3( j1, j2, j3; j1, j2, j3), (35)

B4( j1, j2, j3, j4; i, i′) ≡ B4( j1, j2, j3, j4; j1, j2, j3, j4; i, i′) . (36)

5.1. 3D bubble diagram—self-energy

The transition amplitude associated to this diagram in the EPRLs model is the following:

WEPRLs 3D
bubble =

∑
j1,j2,j3

3∏
f=1

(2jf + 1)μ
({

k1 k2 k3
j1 j2 j3

}
B3(k1, j2, j3)B3( j1, k2, j3)B3( j1, j2, k3)

)2

.

 (37)
We can estimate the divergence of this diagram following the strategy used in section 4.1. We 
proceed by performing the same change of variable to isolate the unbounded summations and 
we drop all the irrelevant multiplicative terms:
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WEPRLs 3D
bubble ≈

∑
λ1

(λ1)
3μ

({
k1 k2 k3
λ1 λ1 λ1

}
B3(k1,λ1,λ1)B3(λ1, k2,λ1)B3(λ1,λ1, k3)

)2

. (38)

We introduce a cutoff Λ in the unbounded sum over λ1 and we approximate the summand with 
its asymptotic behavior obtained combining the large spin scaling of the {6j} symbol (9) and 
of the booster functions (33):

WEPRLs 3D
bubble (Λ) ≈

Λ∑
λ1

(λ1)
3μ

(
λ
−1/2
1 λ−3

1

)2
≈ Λ3μ−6 . (39)

Notice that for the standard choice of face weight μ = 1 the amplitude is convergent, where 
for the SU(2) BF model it was cubically divergent.

We do not have in this case an analytical computation to compare to, but the system is sim-
ple enough to allow us to evaluate numerically the amplitude (37) as a function of the cutoff 
Λ. We show the numerical result in figure 3, we see a remarkable agreement with our estimate. 
To have a better comparison we artificially make the amplitude divergent by setting μ = 3.

One can wonder where and if there is any dependence in the Immirzi parameter. Our analy-
sis is not sensitive to it since it mainly focuses on the power of the cutoff. It will for sure play 
a role in the multiplicative factor that we ignored.

5.2. 3D ball diagram—vertex renormalization

The transition amplitude associated to the 3D ball diagram in the EPRLs model is the following:

WEPRLs 3D
ball =

∑
j1,j2,
j3,j4

⎛
⎝ 4∏

f=1

(2jf + 1)μ

⎞
⎠ 4∏

v=1

Av

 (40)

Figure 2. Numerical scaling of booster functions. Left panel: non-isotropic scaling of 
the booster function B3 ( j1, j2 + λ, j3 + λ) compared with the best fit f (λ) = 2.6λ−1. 
We rescaled the booster function by its λ = 0 value. Right panel: non-isotropic scaling 
of the booster function B4 ( j1, j2 + λ, j3 + λ, j4 + λ; i + λ, k + λ) compared with the 
best fit f (λ) = 5.012 λ−2.38. We rescaled the booster function by its λ = 0 value. The 
difference in the range is due to additional resources needed to compute the B4 respect 
to the B3. We also expect, comparing with the behavior of the B3s, that the proper 
asymptotic region for the B4 boosters functions is reached for larger spins of the one 
plotted. To give an idea to the reader while we were able to compute all the points in the 
left panel on a normal laptop, the plot on the right required 64 cores in a cluster working 
for approximately 80 hours of walltime.
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where

A1 =

{
k1 k2 k3
j4 j1 j3

}
B3(k1, j1, j3)B3( j4, k2, j3)B3( j4, j1, k3),

A2 =

{
k3 k4 k5
j2 j4 j1

}
B3(k3, j4, j1)B3( j2, k4, j1)B3( j2, j4, k5),

A3 =

{
k2 k5 k6
j2 j3 j4

}
B3(k2, j3, j4)B3( j2, k5, j4)B3( j2, j3, k6),

A4 =

{
k1 k4 k6
j2 j3 j1

}
B3(k1, j3, j1)B3( j2, k4, j1)B3( j2, j3, k6) .

We proceed by performing the same change of variable of section 4.2 to isolate the unbounded 
summations and we drop all the irrelevant multiplicative terms:

A1 ≈
{

k1 k2 k3
λ1 λ1 λ1

}
B3(k1,λ1,λ1)B3(λ1, k2,λ1)B3(λ1,λ1, k3),

A2 ≈
{

k3 k4 k5
λ1 λ1 λ1

}
B3(k3,λ1,λ1)B3(λ1, k4,λ1)B3(λ1,λ1, k5),

A3 ≈
{

k2 k5 k6
λ1 λ1 λ1

}
B3(k2,λ1,λ1)B3(λ1, k5λ1)B3(λ1,λ1, k6),

A4 ≈
{

k1 k4 k6
λ1 λ1 λ1

}
B3(k1,λ1,λ1)B3(λ1, k4,λ1)B3(λ1,λ1, k6) .

As we did in the previous section we introduce a cutoff Λ in the unbounded sum over λ1 and 
we approximate the summand with its asymptotic behavior obtained combining the large spin 
scaling of the {6j} symbol (9) and of the booster functions (33):

WEPRLs 3D
ball (Λ) ≈

Λ∑
λ1

(λ1)
4μ

(
λ
−1/2
1 λ−3

1

)4
≈ Λ4μ−13. (41)

The amplitude is convergent for the standard choice of face weight μ = 1 while is cubically 
divergent for μ = 4. The amplitude (40) is also simple enough to allow us to evaluate it exactly 

Figure 3. Numerical evaluation of the transition amplitude (37) as a function of 
the cutoff in logarithmic scale. We choose the external spins to be k1  =  1, k2  =  2, 
k3  =  3, Immirzi parameter γ = 1.2. Left panel: for face weight μ = 1 the amplitude 
is convergent to the best fit W = 9.513 · 10−8 in red. The plot is rescaled to allow a 
clearer reading. Right panel: for face weight μ = 3, the amplitude diverge cubically. We 
plot for comparison the best fit function 3.385 · 10−7 Λ3 in red.
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as a function of the cutoff Λ. The results are shown in figure 4 and we see an excellent agree-
ment with our estimate for both μ = 1 and μ = 4.

5.3. 4D bubble diagram—self-energy

The transition amplitude associated to the 4D bubble diagram (figure 1(d)) in the EPRLs 
model is:

WEPRLs 4D
bubble =

∑
jf ,ie

6∏
f=1

(2jf + 1)μ
4∏

e=1

(2ie + 1)μ A1 · A2

 (42)
where

Av =
∑
i(v)
e

(
4∏

e=1

(2i(v)
e + 1)

)
{15j}vB4(k1, j1, j3, j6; i1, i(v)

1 )B4(k2, j1, j4, j5; i2, i(v)
2 )

B4(k4, j2, j5, j6; i3, i(v)
3 )B4(k3, j2, j3, j4; i4, i(v)

4 )

where the {15j}v symbols are the one defined in (18) with the substitution ie → i(v)
e . Once 

again, we perform the same change of variable of section 4.3 to isolate the unbounded sum-
mations. The main difference is that we have to deal with two additional summations over two 
sets of intertwiners i(1)

e  and i(2)
e , with that purpose we define some ι(v)

e  such that

ι
(v)
1 = i(v)

1 − j1, ι
(v)
2 = i(v)

2 − j1, ι
(v)
3 = i(v)

3 − j2, ι
(v)
4 = i(v)

4 − j2,

for each vertex v. The booster functions are nonvanishing only if the auxiliary intertwiners 
satisfy the same triangular inequality as the normal ones. As a direct consequence the summa-
tions over both ι(v) variables are bounded by a boundary spin. Expanding at the leading order 
in λf  and dropping all the irrelevant multiplicative terms, the vertex amplitudes read:

Figure 4. Numerical evaluation of the transition amplitude (40) as a function of the 
cutoff in logarithmic scale. We choose the external spins to be k1  =  1, k2  =  2, k3  =  1, 
k4  =  2, k5  =  1, k6  =  1 and the Immirzi parameter is set to γ = 1.2. Left panel: for 
face weight μ = 1 the amplitude is convergent to the best fit W = 1.032 · 10−17 
in red. The plot is rescaled to allow a clearer reading. Right panel: for face weight 
μ = 4 the amplitude diverge cubically. We plot for comparison the best fit function 
6.811 · 10−15 Λ3 in red.
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Av ≈ λ2
1λ

2
2{15j} (λf ) B4(k1,λ1,λ3,λ6;λ1,λ1)B4(k2,λ1,λ4,λ5;λ1,λ1)

B4(k4,λ2,λ5,λ6;λ2,λ2)B4(k3,λ2,λ3,λ4;λ2,λ2),
 

(43)

where {15j} (λf ) is the same (19) where all the ι(v)
e  variables have been ignored since they are 

small respect to the λf . We introduce a radial coordinate λ in the λf  sum and we assume that 
there is no contribution to the divergence coming from the angular summation. In terms of the 
radial coordinate the vertex amplitudes A1 and A2 become:

Av ≈ λ4 {15j} (λ) B4(k1,λ,λ,λ;λ,λ)B4(k2,λ,λ,λ;λ,λ)
B4(k4,λ,λ,λ;λ,λ)B4(k3,λ,λ,λ;λ,λ) .

We substitute to the {15j} symbol and to the boosters functions their asymptotic expressions 
(19) and (34).

Av ≈ λ4λ− 7
2

(
λ− 5

2

)4
.

We introduce a factor λ5 as volume element and we put a cutoff Λ, the amplitude (42) reads:

WEPRLs 4D
bubble (Λ) ≈

Λ∑
λ

λ5λ10μ
(
λ4λ− 7

2

(
λ− 5

2

)4
)2

≈ Λ10μ−13. (44)

We notice that for trivial face weight μ = 1 the amplitude result convergent. At present time 
there are no analytical or numerical checks to verify this estimate. We are not aware of any 
code or technique able to compute the booster functions and the sum over the six faces fast 
enough to be able to compute (42) exactly in a reasonable amount of computational time. A 
lot of work is being done in this direction at the moment [30, 40]: we believe we will be able 
to evaluate numerically this amplitude in a not so distant future.

5.4. 4D ball diagram—vertex renormalization

The transition amplitude for the 4D ball diagram (figure 1(d)) in the EPRLs model is:

WBF 4D
ball =

∑
jf ,ie

10∏
f=1

(2jf + 1)μ
10∏

e=1

(2ie + 1)μ
5∏

v=1

Av,

 (45)
where we used the same intertwiner basis of section 4.4. To not distract the reader we will 
focus exclusively on just the first vertex amplitude, we treat the others in an analogous way, in 
the end, they will contribute in the same way to the divergence, and we write them explicitly 
in appendix C.1:

A1 =
∑
i(1)
ev

(∏
ev

(2i(1)
ev + 1)

)
{15j}1 B4(k1, j1, j3, j2; i1, i(1)

1 )B4(k2, j1, j5, j4; i2, i(1)
2 )

B4(k3, j6, j2, j4; i3, i(1)
3 )B4(k4, j6, j3, j5; i4, i(1)

4 ) .
 

(46)

We denoted with {15j}v the same symbols defined in (26) with the substitution ie → i(v)
e . The 

summation over the auxiliary intertwiners i(v)
ev , a set of four per vertex (v), is carried over the 

edges connected to the vertex v (i.e. in the 1st vertex e1 = 1, 2, 3, 4). To manifestly identify 
the bounded sums and unbounded sums we make the same change of variables on jf and ie of 
section 4.4 and in addition
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A1 : ι
(1)
1 = i(1)

1 − j1, ι
(1)
2 = i(1)

2 − j1, ι
(1)
3 = i(1)

3 − j6, ι
(1)
4 = i(1)

4 − j6 .

In terms of these new variables all sums over ιe and ι(v)
e  are bounded, while the sums over λf  

are all unbounded. Expanding at the leading order in λf , the vertex amplitudes A1, …, A5 are 
recasted in the following form:

A1 ≈ λ2
1λ

2
6 {15j}1 B4(k1,λ1,λ3,λ2;λ1,λ1)B4(k2,λ1,λ5,λ4;λ1,λ1)

B4(k3,λ6,λ2,λ4;λ6,λ6)B4(k4,λ6,λ3,λ5;λ6,λ6) .

We introduce a radial coordinate λ in the λf  sum and assume that there is no contribution to the 
divergence coming from the angular summation in the λf  space. If we substitute to the {15j} 
symbol and to the boosters functions their asymptotic expressions (19) and (34) each vertex 
amplitude gives the same contribution. Introducing a factor λ5 as volume element and a cutoff 
Λ in the radial sum, the amplitude (45) reads:

WEPRLs 4D
ball (Λ) ≈

Λ∑
λ

λ9λ10μλ10μ
(
λ4λ− 7

2

(
λ− 5

2

)4
)5

≈ Λ20μ− 75
2 . (47)

For trivial face weight μ = 1 the amplitude is convergent. Similarly to the 4D bubble, we hope 
to be able to numerically check this result soon.

6. Divergences estimation in the full EPRL model

Finally, in this section, we will compute the divergence of the transition amplitudes of the four 
diagrams in figure 1 in the full EPRL model. The additional complication in the EPRL vertex 
amplitude compared to the EPRLs vertex amplitude is the presence of additional sums over 
the auxiliary spins lfv, one per face including the vertex v in consideration. The way we will 
deal with these additional sums will be explained in details in the various examples.

From now on we will write the lfv variables in the vertex amplitude (2), taking values from 
jfv to infinity, as lfv = jf +Δlfv  where Δlfv  takes values from 0 to infinity.

In the following, we will need the large Δls scaling of both the B3 and B4 booster func-
tions, we will infer it from a numerical analysis. This particular kind of scaling has not been 
explored before, we summarize our findings here and in figure 5:

B3 (k1, j2 +Δl, j3 +Δl) ≈ (Δl)−
1
2 , (48)

B4 (k1, j2 +Δl, j3 +Δl, j4 +Δl; i, i′ +Δl) ≈ (Δl)−2 , (49)

for Δl � k1, j2, j3, j4 and i or i′. To keep the expressions compact, we employed, and we will 
employ in the rest of this paper, a short-hand notation for the booster functions:

B3( j1 +Δl1, j2 +Δl2, j3 +Δl3) ≡ B3( j1, j2, j3; j1 +Δl1, j2 +Δl2, j3 +Δl3),
 

(50)

B4( j1 +Δl1, j2 +Δl2, j3 +Δl3, j4 +Δl4; i, i′) ≡ B4( j1, j2, j3, j4; j1 +Δl1, j2 +Δl2, j3 +Δl3, j4 +Δl4; i, i′) .
 (51)

We will refer to this short hand notation only if any Δl  is written explicitely, to not make con-
fusion with the one introduced in the previous section. However, notice that when all the Δl  
variables vanishes (50) reduces to (35).
Combining the scalings we obtained in (33) and (48) we infer that for λ � k and Δl � k
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B3 (k,λ+Δl,λ+Δl) ≈ (λ)
− 1

2 (λ+Δl)−
1
2 (52)

B4 (k,λ+Δl,λ+Δl,λ+Δl;λ+Δl,λ+Δl) ≈ (λ)
− 1

2 (λ+Δl)−2 . (53)

Notice the oscillatory behavior of the booster functions in figure 5. In our estimates for 
the scaling of the booster (52) these oscillations are neglected, corresponding to the scaling 
of the maximum of the oscillations. The consequence is that the estimates we will do have to 
be interpreted as an upper bound on the degree of divergence of the diagram. In fact, for the 
amplitude of any diagram we can write the following inequalities:

Wdiagram �

∣∣∣∣∣∣
∑
jf ,ie

∏
f

(2jf + 1)μ
∏

e

(2ie + 1)μ
∏

v

Av ( jf , ie)

∣∣∣∣∣∣
�

∑
jf ,ie

∏
f

(2jf + 1)μ
∏

e

(2ie + 1)μ
∣∣∣∣∣
∏

v

Av ( jf , ie)

∣∣∣∣∣
�

∑
jf ,ie

∏
f

(2jf + 1)μ
∏

e

(2ie + 1)μ
∏

v

Ascal
v ( jf , ie)

where Ascal
v  is the quantity we estimated using (52).

6.1. 3D bubble diagram—self-energy

The amplitude associated to this diagram in the EPRL model is the following:

WEPRL 3D
bubble =

∑
j1,j2,j3

3∏
f=1

(2jf + 1)μ A1A2, (54)

Figure 5. Numerical scaling of booster as a function of the magnetic spins ls. Left 
panel: non-isotropic scaling of the booster function B3 ( j1, j2 +Δl, j3 +Δl) in the 
auxiliary spins Δl  compared with the curve f (Δl) = 4.2Δl−1/2. We rescaled the booster 
function by its Δl = 0 value. Right panel: non-isotropic scaling of the booster function 
B4 ( j1, j2 +Δl, j3 +Δl, j4 +Δl; i, k +Δl) compared with the curve f (Δl) = 9.5Δl−2. 
We rescaled the booster function by its λ = 0 value. We would prefer to accumulate 
more point to have a more definite estimate since by comparing with the plot on the left 
the asymptotic region is reached at larger spins, unfortunately our software needs to be 
improved to treat boosters with spins larger than 100 with sufficient precision. Luckily 
the analysis we are going to perform is not very sensitive to the value of this coefficient.
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where

Av =
∑

Δl1,Δl2,Δl3

{
k1 k2 k3

j1 +Δl1 j2 +Δl2 j3 +Δl3

}
B3(k1, j2 +Δl2, j3 +Δl3)

 (55)

B3( j1 +Δl1, k2, j3 +Δl3)B3( j1 +Δl1, j2 +Δl2, k3) . (56)

We proceed by changing variables like we did for the other models λ1 = j1, λ2 = j2 − j1, λ3 = j3 − j1 
and analogously we also define the variables δ1 = Δl1, δ2 = Δl2 −Δl1, δ3 = Δl3 −Δl1. 
Triangular inequalities imply that the sums over |λ2| = | j2 − j1| � k3 and |λ3| = | j3 − j1| � k2 
are bounded as expected, analogously the sums over δ2 and δ3 are also bounded. In fact:

|δ2| = |Δl2 −Δl1| = |Δl2 − j2 −Δl1 + j1 + j2 − j1| � |Δl2 − j2 −Δl1 + j1|+ |j2 − j1| � 2k3,
 (57)

|δ3| = |Δl3 −Δl1| = |Δl3 − j3 −Δl1 + j1 + j3 − j1| � |Δl3 − j3 −Δl1 + j1|+ |j3 − j1| � 2k2 .
 (58)

We can eliminate the variable jf and Δlf  from (54) in favor of λf  and δf . We expand the sum-
mand at the first order in λ1 and δ1 and drop all the subleading terms and multiplicative fac-
tors5 to obtain:

Av ≈
∑
δ1

{
k1 k2 k3

λ1 + δ1 λ1 + δ1 λ1 + δ1

}
B3(k1,λ1 + δ1,λ1 + δ1)B3(λ1 + δ1, k2,λ1 + δ1)B3(λ1 + δ1,λ1 + δ1, k3).

If we replace the booster functions and the {6j} symbol with their large spin scaling (52) and 
(9) the vertex amplitude reduces to

Av ≈
∑
δ1

(λ1 + δ1)
− 1

2 (λ1)
− 3

2 (λ1 + δ1)
− 3

2 . (59)

The summation over δ1, from a lower bound big enough to justify the asymptotic expan-
sion, is convergent and, at leading order in λ1, it does not depend on the choice of the lower 

bound and it gives a contribution λ
− 5

2
1 .

Moreover, notice that the result of the summation over δ1 does not depend on the details of 
the scaling (52) as long as it is convergent and the scaling of the booster functions in λ1 and δ1 
is power law. In particular we will obtain the exact same result if

B3 (k,λ+ δ,λ+ δ) ≈ (λ)
−α

(λ+ δ)
−β with β >

1
4

and α+ β = −1, (60)

where the requirement α+ β = −1 is necessary to be compatible with the scaling in the sim-
plified model (33). The effect in the scaling in λ of the summation over δ is to add one power 
per unbounded sum over the auxiliary spins lfv per vertex. This step is the key to dealing with 
these summations that are typical of the EPRL model and were the major obstacle in all the 
previous attempts to similar computations.

Finally introducing a cutoff Λ in the sum over λ1 the transition amplitude (54) reduces to

WEPRL 3D
bubble (Λ) ≈

∑
λ1

λ3μ
1

(
(λ1)

− 3
2 (λ1)

−1
)2

≈ Λ3μ−4. (61)

5 Remember that we are only interested in the divergent part of the amplitude so we can choose the lower bound of 
the sums in λ1 and δ1 arbitrarily large.
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Independent analytical confirmations for this estimate are not available but, similarly to 
what we did for the EPRLs model, we are able to evaluate the amplitude(54) numerically 
almost exactly. ‘Almost’ because we need to truncate the sums over Δlf  in the vertex ampl-
itudes at a certain value. These sums are convergent so we arbitrarily decided to truncate them 
at Δlf ≈ 50, checking a posteriori that adding one additional term change the value of the 
sum by a relative factor of order 10−9 (for more details about the numerical errors see appen-
dix D). Our estimate is extremely accurate as reported in figure 6: for a face weight μ = 1 the 
amplitude is, in fact, convergent, while for a face weight μ = 2 diverge quadratically.

6.2. 3D ball diagram—vertex renormalization

The amplitude associated to this diagram in the EPRL model is the following:

WEPRL 3D
ball =

∑
j1,j2,
j3,j4

⎛
⎝ 4∏

f=1

(2jf + 1)μ

⎞
⎠A1A2A3A4 . (62)

To not distract the reader we will focus exclusively on just the first vertex amplitude, we treat 
the others in an analogous way, in the end they will contribute in the same way to the diver-
gence, and we write them explicitly in appendix C.2:

A1 =
∑

Δl(1)
1 ,Δl(1)

3 ,Δl(1)
4

{
k1 k2 k3

j4 +Δl(1)
4 j1 +Δl(1)

1 j3 +Δl(1)
3

}
B3(k1, j1 +Δl(1)

1 , j3 +Δl(1)
3 )

B3( j4 +Δl(1)
4 , k2, j3 +Δl(1)

3 )B3( j4 +Δl(1)
4 , j1 +Δl(1)

1 , k3) .

 

(63)

Notice the triple sum over the auxiliary spins Δl(v)
f  at each vertex v. We perform a change 

of variable similar to the one in section 5.2: we introduce a a new variable for the face spins 
λ1 = j1, λ2 = j2 − j1, λ3 = j3 − j1 and λ4 = j4 − j1 and analogously a set of δs for each vertex, 
for the first vertex:

A1 : δ
(1)
1 = Δl(1)

1 δ
(1)
3 = Δl(1)

3 −Δl(1)
1 δ

(1)
4 = Δl(1)

4 −Δl(1)
1 .

Figure 6. Numerical evaluation of the transition amplitude (54) as a function of 
the cutoff in logarithmic scale. The external spins are k1  =  2, k2  =  3, k3  =  4 and the 
Immirzi parameter is set to γ = 1.2. Left panel: for face weight μ = 1 the amplitude 
is convergent to the best fit W = 3.199 · 10−10. The plot is rescaled to allow a clearer 
reading. Right panel: for face weight μ = 2 the amplitude diverge quadratically. We 
plot for comparison the best fit function 5.60 · 10−10 Λ2 in red.
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The sums over λ2, λ3, λ4 are bounded as lengthly discussed in the previous sections. Triangular 

inequalities force the sums over δ(1)
3 , δ(1)

4 , and analogously a couple of Δl(v) for the other verti-
ces, to be bounded. Each vertex then has only one unbounded sum. We expand at leading order 
in the unbounded variables and we drop the irrelevant multiplicative factors to obtain (we drop 
the (1) to improve readability):

A1 ≈
∑
δ1

{
k1 k2 k3

λ1 + δ1 λ1 + δ1 λ1 + δ1

}
B3(k1,λ1 + δ1,λ1 + δ1)B3(λ1 + δ1, k2,λ1 + δ1)B3(λ1 + δ1,λ1 + δ1, k3) .

If we use the large spin scaling for both the booster functions (52) and the {6j} symbol (9) all 
the vertex amplitudes give the same contribution:

Av ≈
(∑

δ1

(λ1 + δ1)
− 1

2 (λ1)
− 3

2 (λ1 + δ1)
− 3

2

)
.

The sum over δ1 is convergent and, at the leading order in λ1, it contributes with a factor λ
− 5

2
1  

to the main sum over the face spins. Introducing a cutoff Λ in the sum over λ1 we are left with

WEPRL 3D
ball (Λ) ≈

Λ∑
λ1

λ4μ
1

(
λ
− 5

2
1

)4
≈ Λ4μ−9. (64)

Independent analytical estimates of the divergence of this diagram, to our knowledge, do 
not exist but, similarly to what we did for the EPRLs model, we are able to evaluate (62) 
numerically. With a truncation of the sum over Δls our estimate is very accurate as reported in 
figure 7: for a face weight μ = 1 the amplitude is, in fact, convergent, while for a face weight 
μ = 3 diverge cubically.

6.3. 4D bubble diagram—self-energy

The transition amplitude for the 4D bubble diagram (figure 1(c)) in the EPRL model is

WEPRL 4D
bubble =

∑
jf ,ie

6∏
f=1

(2jf + 1)μ
4∏

e=1

(2ie + 1)μ A1A2, (65)

where the vertex amplitudes are

Av =
∑

Δl(v)
f ,i(v)

e

(
4∏

e=1

(
2i(v)

e + 1
))

{15j}v B4(k1, j1 +Δl(v)
1 , j3 +Δl(v)

3 , j6 +Δl(v)
6 ; i1, i(v)

1 )

B4(k2, j1 +Δl(v)
1 , j4 +Δl(v)

4 , j5 +Δl(v)
5 ; i2, i(v)

2 )

B4(k4, j2 +Δl(v)
2 , j5 +Δl(v)

5 , j6 +Δl(v)
6 ; i3, i(v)

3 )

B4(k3, j2 +Δl(v)
2 , j3 +Δl(v)

3 , j4 +Δl(v)
4 ; i4, i(v)

4 ),

with the {15j}v symbols defined in (18) with the substitution ie → i(v)
e  and jf → jf +Δl(v)

f . We 
perform a change of variable on the face spins jf, edge intertwiners ie, auxiliary spins Δl(v)

f  and 

auxiliary intertwiners i(v)
e  to identify and isolate the independent bounded sums. For the spins 

we take λf = jf  and δ(v)
f = Δl(v)

f  while for the intertwiners:

ι1 = i1 − j1, ι2 = i2 − j1, ι3 = i3 − j2, ι4 = i4 − j2,

ι
(v)
1 = i(v)

1 − j1 −Δl(v)
1 , ι

(v)
2 = i(v)

2 − j1 −Δl(v)
1 , ι

(v)
3 = i(v)

3 − j2 −Δl(v)
2 , ι

(v)
4 = i(v)

4 − j2 −Δl(v)
2 .
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Using all the triangular inequalities encoded in the booster functions it is possible to show that 
all the sums over the intertwiners ιe, ι′e, ι

′′
e  are bounded by the boundary spins. Performing this 

change of variable, expanding first order in λf , δf  and δ′f  and dropping irrelevant multiplicative 
factors the vertex amplitudes reduce to:

Av ≈
∑
δ
(v)
f

(
λ1 + δ

(v)
1

)2 (
λ2 + δ

(v)
2

)2
{15j}vB4(k1,λ1 + δ

(v)
1 ,λ3 + δ

(v)
3 ,λ6 + δ

(v)
6 ;λ1,λ1 + δ

(v)
1 )

B4(k2,λ1 + δ
(v)
1 ,λ4 + δ

(v)
4 ,λ5 + δ

(v)
5 ;λ1,λ1 + δ

(v)
1 )

B4(k4,λ2 + δ
(v)
2 ,λ5 + δ

(v)
5 ,λ6 + δ

(v)
6 ;λ2,λ2 + δ

(v)
2 )

B4(k3,λ2 + δ
(v)
2 ,λ3 + δ

(v)
3 ,λ4 + δ

(v)
4 ;λ2,λ2 + δ

(v)
2 ) .

The sums over the auxiliary spins δ(v)
f  are now six dimensional. To estimate their behavior we 

will assume that there are no angular contribution to the divergence, then all the face spins and 
auxiliary spins in the radial direction scale uniformly:

λf ∝ λ, δ
(v)
f ∝ δ(v) . (66)

In doing so we can rewrite the vertex amplitudes as a sum over the radial direction by taking 
into account the proper measure element:

Av ≈
∑
δ

(
δ(v)

)5 (
λ+ δ(v)

)4
{15j}vB4(k1,λ+ δ(v),λ+ δ(v),λ+ δ(v);λ,λ+ δ(v))

B4(k2,λ+ δ(v),λ+ δ(v),λ+ δ(v);λ,λ+ δ(v))

B4(k4,λ+ δ(v),λ+ δ(v),λ+ δ(v);λ,λ+ δ(v))

B4(k3,λ+ δ(v),λ+ δ(v),λ+ δ(v);λ,λ+ δ(v)) .

We can substitute to the {15j}v symbol and to the booster functions their asymptotic expan-
sions (19) and (49). The two vertex amplitudes gives than the same contribution at leading 
order in λ:

Av ≈
∑
δ(v)

(
δ(v)

)5 (
λ+ δ(v)

)4 (
λ+ δ(v)

)− 7
2
(
(λ)

− 1
2

(
λ+ δ(v)

)−2
)4

≈ λ− 7
2 .

 

(67)

Figure 7. Numerical evaluation of the transition amplitude (62) as a function of the 
cutoff in logarithmic scale. We choose the external spins to be k1  =  2, k2  =  3, k3  =  4, 
k4  =  2 and Immirzi parameter γ = 1.2. Left panel: for face weight μ = 1 the amplitude 
is convergent to the best fit W = 3.527 · 10−24. The plot is rescaled to allow a clearer 
reading. Right panel: for face weight μ = 3 the amplitude diverge cubically. We plot for 
comparison the best fit function 4.52 · 10−24 Λ3 in red.
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We introduce a factor λ5 as volume element and we put a cutoff Λ, the amplitude (65) reads:

WEPRL 4D
bubble (Λ) ≈

Λ∑
λ

λ5 (λ)
10μ

(
λ− 7

2

)2
≈ (Λ)

10μ−4 . (68)

For trivial face weight μ = 1 the amplitude is divergent with the same power of the cutoff as 
the SU(2) BF model. This estimate is compatible with the only alternative computation in the 
literature [25] since as the authors points out they are providing a lower bound of the diver-
gence. To be honest we need to stress that our result is just an upper bound to the divergence, 
but in all the cases where we were able to perform independent computations (analytical or 
numerical) our estimate was extremely accurate.

6.4. 4D ball diagram—vertex renormalization

The transition amplitude for 4D ball diagram (figure 1(d)) in the EPRL model is:

WBF 4D
ball =

∑
jf ,ie

10∏
f=1

(2jf + 1)μ
10∏

e=1

(2ie + 1)μ
5∏

v=1

Av, (69)

where we used the same intertwiner basis of section 4.4. To not distract the reader we will 
focus exclusively on just the first vertex amplitude, we treat the others in an analogous way, in 
the end they will contribute at the same way to the divergence, and we write them explicitely 
in appendix C.2:

A1 =
∑

Δl(1)
fv ,i(1)

ev

(∏
ev

(2i(1)
ev + 1)

)
{15j}1 B4(k1, j1 +Δl(1)

1 , j3 +Δl(1)
3 , j2 +Δl(1)

2 ; i1, i(1)
1 ) (70)

B4(k2, j1 +Δl(1)
1 , j5 +Δl(1)

5 , j4 +Δl(1)
4 ; i2, i(1)

2 ) (71)

B4(k3, j6 +Δl(1)
6 , j2 +Δl(1)

2 , j4 +Δl(1)
4 ; i3, i(1)

3 ) (72)

B4(k4, j6 +Δl(1)
6 , j3 +Δl(1)

3 , j5 +Δl(1)
5 ; i4, i(1)

4 ) . (73)

We denoted with {15j}v the same symbols defined in (26) with the substitution ie → i(v)
e  and 

jf → jf +Δl(v)
f . The summation over the auxiliary intertwiners i(v)

ev , a set of four per vertex 

(v), is carried over the edges that are attached to the vertex v (i.e. v = 1 implies ev = 1, 2, 3, 4). 

The summation over the auxiliary spins Δl(v)
fv , a set of six per vertex (v), is carried over the 

faces that contain the vertex v (i.e. v = 1 implies fv = 1, 2, 3, 4, 5, 6). To make the bounded 
sums and unbounded sums manifest we make the same change of variables on jf and ie of sec-

tion 4.4 and in addition Δl(v)
fv = δ

(v)
fv ,

A1 : ι
(1)
1 = i(1)

1 − j1 −Δl(1)
1 , ι

(1)
2 = i(1)

2 − j1 −Δl(1)
1 , ι

(1)
3 = i(1)

3 − j6 −Δl(1)
6 , ι

(1)
4 = i(1)

4 − j6 −Δl(1)
6 .

In terms of these new variables all sums over ιe and ι(v)
e  are bounded, while the sums over λf  

and δ(v)
fv  are all unbounded. Expanding the vertex amplitudes at the first order in λf , δ

(v)
fv  and 

dropping irrelevant multiplicative factors the vertex amplitudes reduce to:
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A1 ≈
∑
δ
(1)
fv

(
λ1 + δ

(1)
1

)2 (
λ6 + δ

(1)
6

)2
{15j}1 B4(k1,λ1 + δ

(1)
1 ,λ3 + δ

(1)
3 ,λ2 + δ

(1)
2 ;λ1,λ1 + δ

(1)
1 )

B4(k2,λ1 + δ
(1)
1 ,λ5 + δ

(1)
5 ,λ4 + δ

(1)
4 ;λ1,λ1 + δ

(1)
1 )

B4(k3,λ6 + δ
(1)
6 ,λ2 + δ

(1)
2 ,λ4 + δ

(1)
4 ;λ6,λ6 + δ

(1)
6 )

B4(k4,λ6 + δ
(1)
6 ,λ3 + δ

(1)
3 ,λ5 + δ

(1)
5 ;λ6,λ6 + δ

(1)
6 ) .

The sums over the auxiliary spins δ(v)
f  are now six dimensional. To estimate their behavior we 

will assume that there are no angular contribution to the divergence, than all the face spins and 
the auxiliary spins in the radial direction scale uniformly:

λf ∝ λ, δ
(v)
fv ∝ δ(v) . (74)

In doing so we can rewrite the vertex amplitudes as a sum over the radial direction by taking 
into account the proper measure element. We subtitute to the {15j} symbol and to the boosters 
functions their asymptotic expressions (19) and (34). Each vertex amplitude gives the same 
contribution at leading order in λ

Av ≈
∑
δ(v)

(
δ(v)

)5 (
λ+ δ(v)

)4 (
λ+ δ(v)

)− 7
2
(
(λ)

− 1
2

(
λ+ δ(v)

)−2
)4

≈ λ− 7
2 .

 (75)
We introduce a factor λ5 as volume element and we put a cutoff Λ, the amplitude (69) reads:

WEPRL 4D
ball (Λ) ≈

Λ∑
λ

λ9λ10μλ10μ
(
λ− 7

2

)5
≈ Λ20μ− 17

2 . (76)

For trivial face weight μ = 1 the amplitude is divergent with the same power of the cutoff 
as the SU(2) BF model. To our knowledge this is the first estimate in the literature of this 
divergence.

7. Conclusions

In this paper, we estimated the large volume divergence of the bubble and ball diagrams in 
three and four dimensions in the EPRL model at fixed boundary states. This is formally done 
with the artificial insertion of a uniform cut-off Λ on all the spins associated with the faces 
of the spin foam diagrams. As a collateral product, we were able to estimate the divergence 
of the same diagrams in the EPRLs model and in the SU(2) BF model. Two assumptions are 
made in the computation:

 1.  the main contribution to the divergence comes from the uniform scaling of all the spins; 
 2.  there is no interference between various terms of the sum.

The first assumption is the one we have the least control over, nevertheless, we can test this 
hypothesis in the SU(2) BF model, where analytical computations are possible, and it seems 
to be verified. We also note that the same supposition is also made in similar works in the lit-
erature like [23] and [25]. The second assumption can be freely relaxed if we interpret our esti-
mate as an upper bound on the divergence of the diagram as we already discussed at the end of 
section 6. The first assumption is crucial for the success of the algorithm. This hypothesis has 
an enlightening analog in the study of convergence at infinity of multi-dimensional integrals. 
There we can perform a radial coordinate change and immediately see that, if the angular 
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integration is regular, the only source of divergence is the radial asymptotic behavior of the 
integrand. If this is not the case, the divergence will be in general of higher order. Similarly in 
our case, if the assumption 1 is not verified we should expect a divergence of higher order then 
the one we estimate. Nevertheless, in the simpler models we considered, like the BF SU(2) 
models, this hypothesis can be explicitly checked and happens to be satisfied.

Using some examples, we proposed a general algorithm to estimate the divergence of any 
spin foam transition amplitude. We summarize it in the following:

First, we determine the scaling of each vertex amplitude (2) in a uniform face amplitude 
rescaling:

 1.  Find the unbounded sums over the auxiliary spins and intertwiners at that vertex using 
edge triangular inequalities.

 2.  Combine the scaling of the SU(2) invariant at the vertex with the scaling of the booster 
functions attached to the vertex and the dimensions of the auxiliary intertwiners.

 3.  The so obtained scaling is raised by one power for each unbounded sum found in point 1.

Then we determine the scaling of the whole amplitude (1):

 4.  Find the unbounded sums over the face spins and intertwiners using again edge triangular 
inequalities.

 5.  Combine the scaling of each vertex amplitude with the face amplitude and the dimension 
of the intertwiners on the edges.

 6.  The divergence of the diagram as a function of a cutoff is the scaling just obtained raised 
by a power for each unbounded sum found in point 4.

This being said, the estimate of the divergences of the four diagrams in the various models we 
considered are summarized in the following table:

To facilitate the reading of the table  we highlighted in green the diagrams that for the 
standard choice of face amplitude μ = 1 have a convergent amplitude and in red the divergent 
one. All the transition amplitude we considered diverge in the SU(2) BF model. The degree 
of divergence we compute is in excellent agreement with the analytical evaluation of the 
diagram. Moreover, all the considered transition amplitude in the EPRLs model are conv-
ergent. Even if analytical evaluations are not possible for the three dimensional diagrams we 
were able to evaluate the amplitude numerically without any approximations, finding perfect 
agreement with our estimate and growing confidence on the validity of our work hypothesis. 
We believe that, with the development of more performant numerical methods to treat the 
booster functions, we will be able in the future to evaluate also the amplitudes of the four 
dimensional diagrams. The transition amplitudes of the three dimensional diagrams in the 
EPRL model are convergent. We are able to evaluate the sum almost exactly (some trunca-
tions are needed but the numerics is not very sensible on them) showing that our estimates 
are very accurate. The amplitudes of both the four dimensional diagrams in the EPRL model 
are divergent. Our result, even if not directly comparable with the computation done in [25] 
because of the different techniques, it is still compatible since they provide effectively a lower 
bound for the divergence (logarithmic in the cutoff) while we provide an upper bound. For the 
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simpler 3-stranded amplitudes we found a precise numerical confirmation. This suggests that 
the 4-stranded divergences are also close to the upper bound we estimate. A possible source 
for a value close to but not exactly at the bound comes from the fact that the oscillations 
present in the B4 functions could give rise to destructive interference. The ongoing work on 
improving the understanding of booster asymptotics and numerical codes should allow us to 
settle this question in the near future.

We should also comment that a non-vanishing cosmological constant can be incorporated 
in the theory with a conjectured quantum group deformation studied in [10, 11]. The diver-
gences we studied are likely to be effectively regulated in this formulation in terms of the 
quantum group. This is consistent with the fact that q-deformed amplitudes are suppressed 
for large spins, correspondingly to the fact that the presence of a cosmological constant sets 
a maximal distance.
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Appendix A. SU(2) symbols and boosters

In the following, we implicitly assume that the Clebsch–Gordan triangular inequalities are 
satisfied, else the evaluations vanish. We use the definition for the Wigner’s (3jm) symbol 
reported in [33] with the following orthogonality properties

∑
m1,m2

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 l3
m1 m2 n3

)
=

δj3l3δm3n3

2j3 + 1
,

implying they are normalized to one. We define the (4jm) symbol as the contraction of two 
(3jm) symbol via an intertwiner i(

j1 j2 j3 j4
m1 m2 m3 m4

)(i)

≡
∑

mi

(−1)i−mi

(
j1 j2 i
m1 m2 mi

)(
i j3 j4

−mi m3 m4

)
,

respecting the following orthogonality relations

∑
m1,m2,m3

(
j1 j2 j3 j4
m1 m2 m3 m4

)(i1) ( j1 j2 j3 l4
m1 m2 m3 n4

)(i2)

=
δi1i2

2i1 + 1
δj4l4δm4n4

2j4 + 1
,

normalized to 
δi1 i2

2i1+1 . In section 2 we used a short-hand notation for the general (njm) symbol:
(

ja
pa

)(i)

=

(
j1 j2 · · · jn
m1 m2 · · · mn

)(i1, i2, ··· ,in−3)

=
∑
mis

(−1)

n−3∑

s=1
(is−mis )

(
j1 j2 i1
m1 m2 mi1

)(
i1 j3 i2

−mi1 m3 mi2

)
· · ·

(
in−3 jn−1 jn

−min−3 mn−1 mn

)
.

 (A.1)
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The explicit z-boost matrix elements can be found in the literature in its general form [26, 
41–43], here we just report the explicit form of z-boost matrix elements for simple irreducible 
representation:

d(γj,j)
jlp (r) =(−1)

j−l
2

Γ ( j + iγj + 1)
|Γ ( j + iγj + 1)|

Γ (l − iγj + 1)
|Γ (l − iγj + 1)|

√
2j + 1

√
2l + 1

( j + l + 1)!

[
(2j)!(l + j)!(l − j)!

(l + p)!(l − p)!
( j + p)!( j − p)!

]1/2

× e−( j−iγj+p+1)r
∑

s

(−1)s e−2sr

s!(l − j − s)! 2F1[l + 1 − iγj, j + p + 1 + s, j + l + 2, 1 − e−2r] .

We refer to [26] for a more in depth definition of the booster functions.

Appendix B. Divergences of SU(2) BF

For SU(2) BF spin foams is possible to compute the divergence of the various diagrams ana-
lytically by using the representation of the Dirac delta over the group in terms of characters

δ (U) =
∑

j

(2j + 1)χ j (U) .

The Dirac delta computed at the identity is divergent if we place a cutoff Λ in the sum over the 
SU(2) irreducible representations we can see that the delta diverge cubically in it.

δΛ (1) =
Λ∑
j

(2j + 1)χ j (1) =
Λ∑
j

(2j + 1)2 =
1
6
(1 + 2Λ) (2 + 2Λ) (3 + 4Λ) ≈ Λ3 . (B.1)

Let us consider the spin foam amplitude (6) with face weight μ = 1 first. One integral per 
edge is redundant and can be eliminated by a trivial change of variables. We are left with three 
integrals over copies of SU(2):

W3D
bubble =

∫ (
3∏

l=1

dgl

)
E (g1, g2, g3) δ

(
g1g−1

3

)
δ
(
g2g−1

1

)
δ
(
g3g−1

2

)
 (B.2)

where we indicated with E (g1, g2, g3) the tensor product of the Wigner matrices of the exter-
nal faces. If we denote with im1m2m3 the tensor in the trivial three valent intertwiner space

E (g1, g2, g3) = im1m2m3 D(k1)
m1n1

(g1)D(k2)
m2n2

(g2)D(k3)
m3n3

(g3) in1n2n3 .

We can perform the integrals by using the definition of the Dirac delta over the group

W3D
bubble =

∫ (
2∏

l=1

dgl

)
E (g1, g2, g1) δ

(
g2g−1

1

)
δ
(
g1g−1

2

)

=

∫
dg1E (g1, g1, g1) δΛ (1) ≈ Λ3.

The computation of the spin foam amplitude (17) with face weight μ = 1 is very similar. 
In terms of SU(2) integrals reads
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Wbubble4D =

∫ (
4∏

l=1

dgl

)
E (g1, g2, g3, g4) δ

(
g1g−1

4

)
δ
(
g2g−1

1

)
δ
(
g3g−1

1

)
δ
(
g2g−1

3

)
δ
(
g4g−1

2

)
δ
(
g3g−1

4

)
 (B.3)

where we indicated with E (g1, g2, g3, g4) the tensor product of the Wigner matrices of the 
external faces. If we denote with im1m2m3m4

(t1)
 the tensor in the four valent intertwiner space in the 

recoupling basis (k1, k2) identified with the spin t1:

E (g1, g2, g3, g4) = im1m2m3m4
(t1)

D(k1)
m1n1

(g1)D(k2)
m2n2

(g2)D(k3)
m3n3

(g3)D(k3)
m3n3

(g4) in1n2n3n4
(t2)

.

Performing the integrations over the group using the definition of the Dirac delta over the 
group we obtain

Wbubble4D =

∫
dg1E (g1, g1, g1, g1) δΛ (1)

3 ≈ δt1t2Λ
9.

For completeness, we also consider the two ball divergences of BF spin foam diagrams we 
studied in sections 4.1 and 4.3.

W3D
ball =

∫ (
6∏

l=1

dgl

)
E (g1, g2, g3, g4, g5, g6) δ

(
g1g−1

3 g−1
2

)
δ
(
g3g−1

5 g6
)
δ
(
g4g6g−1

2

)
δ
(
g1g−1

5 g−1
4

)

=

∫
dg1dg2dg4 E

(
g1, g2, g1g−1

2 , g4, g4g−1
2 , g4g−1

1

)
δλ (1) ≈

{
k1 k4 k2
k5 k3 k6

}
Λ3.

 (B.4)
Where

E (g1, g2, g3, g4, g5, g6) =im1m2m4
1 in1n3n6

2 io2o3o5
3 i p4p5p6

4

D(k1)
m1n1

(g−1
1 )D(k2)

m2o2
(g−1

2 )D(k3)
o3n3

(g3)D(k4)
p4m4

(g4)D(k5)
p5o5

(g5)D(k6)
p6n6

(g6).

And finally for the four dimensional ball, omitting for simplicity the boundary representation 
matrices

W4D
ball =

∫ 10∏
l=1

dgl E(ge) δ
(
g1g5g−1

2

)
δ
(
g1g6g−1

3

)
δ
(
g1g7g−1

4

)
δ
(
g2g8g−1

3

)
δ
(
g2g9g−1

4

)
δ
(
g3g10g−1

4

)
δ
(
g5g8g−1

6

)
δ
(
g5g9g−1

7

)
δ
(
g6g10g−1

7

)
δ
(
g8g10g−1

9

)
=

∫
dg4dg5dg6dg7 E(g4, g5, g6, g7) δΛ (1)

4 ≈ Λ12.

Appendix C. Vertex amplitudes of the 4D Ball diagrams

C.1. EPRLs model

C.1.1. 4D Ball. Here we write the five vertex amplitudes as a complement to equation (46)
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A1 =
∑
i(1)
ev

(∏
ev

(2i(1)
ev + 1)

)
{15j}1 B4(k1, j1, j3, j2; i1, i(1)

1 )B4(k2, j1, j5, j4; i2, i(1)
2 )

B4(k3, j6, j2, j4; i3, i(1)
3 )B4(k4, j6, j3, j5; i4, i(1)

4 ),

A2 =
∑
i(2)
ev

(∏
ev

(2i(2)
ev + 1)

)
{15j}2 B4(k1, j1, j3, j2; i1, i(2)

1 )B4(k5, j1, j8, j7; i5, i(2)
5 )

B4(k6, j7, j2, j6; i6, i(2)
6 )B4(k7, j8, j3, j9; i7, i(2)

7 ),

A3 =
∑
i(3)
ev

(∏
ev

(2i(3)
ev + 1)

)
{15j}3 B4(k2, j1, j5, j4; i2, i(3)

2 )B4(k5, j1, j8, j7; i5, i(3)
5 )

B4(k8, j7, j4, j10; i8, i(3)
8 )B4(k9, j8, j5, j10; i9, i(3)

9 ),

A4 =
∑
i(4)
ev

(∏
ev

(2i(4)
ev + 1)

)
{15j}4 B4(k3, j6, j2, j4; i3, i(4)

3 )B4(k6, j7, j2, j6; i6, i(4)
6 )

B4(k8, j7, j4, j10; i8, i(4)
8 )B4(k10, j6, j9, j10; i10, i(4)

10 ),

A5 =
∑
i(5)
ev

(∏
ev

(2i(5)
ev + 1)

)
{15j}5 B4(k1, j6, j3, j5; i4, i(5)

4 )B4(k7, j8, j3, j9; i7, i(5)
7 )

B4(k9, j8, j5, j10; i9, i(5)
9 )B4(k10, j6, j9, j10; i10, i(5)

10 ) .

The full change of variables on all the auxiliary intertwiners is the following:

A1 : ι
(1)
1 = i(1)

1 − j1 ι
(1)
2 = i(1)

2 − j1 ι
(1)
3 = i(1)

3 − j6 ι
(1)
4 = i(1)

4 − j6
A2 : ι

(2)
1 = i(2)

1 − j1 ι
(2)
5 = i(2)

5 − j1 ι
(2)
6 = i(2)

6 − j7 ι
(2)
7 = i(2)

7 − j8
A3 : ι

(3)
2 = i(3)

2 − j1 ι
(3)
5 = i(3)

5 − j1 ι
(3)
8 = i(3)

8 − j7 ι
(3)
9 = i(3)

9 − j8
A4 : ι

(4)
3 = i(4)

3 − j6 ι
(4)
6 = i(4)

6 − j7 ι
(4)
8 = i(4)

8 − j7 ι
(4)
10 = i(4)

10 − j6
A5 : ι

(5)
4 = i(5)

4 − j6 ι
(5)
7 = i(5)

7 − j8 ι
(5)
9 = i(5)

9 − j8 ι
(5)
10 = i(5)

10 − j6.

In terms of which expanding at the first order in λf  the amplitudes read:

A1 ≈ λ2
1λ

2
6 {15j}1 B4(k1,λ1,λ3,λ2;λ1,λ1)B4(k2,λ1,λ5,λ4;λ1,λ1)

B4(k3,λ6,λ2,λ4;λ6,λ6)B4(k4,λ6,λ3,λ5;λ6,λ6),

A2 ≈ λ2
1λ6λ8 {15j}2 B4(k1,λ1,λ3,λ2;λ1,λ1)B4(k5,λ1,λ8,λ7;λ1,λ1)

B4(k6,λ7,λ2,λ6;λ7,λ7)B4(k7,λ8,λ3,λ9;λ8,λ8),

A3 ≈ λ2
1λ7λ8 {15j}3 B4(k2,λ1,λ5,λ4;λ1,λ1)B4(k5,λ1,λ8,λ7;λ1,λ1)

B4(k8,λ7,λ4,λ10;λ7,λ7)B4(k9,λ8,λ5,λ10;λ8,λ8),

A4 ≈ λ2
6λ

2
7 {15j}4 B4(k3,λ6,λ2,λ4;λ6,λ6)B4(k6,λ7,λ2,λ6;λ7,λ7)

B4(k8,λ7,λ4,λ10;λ7,λ7)B4(k10,λ6,λ9,λ10;λ6,λ6),

A5 ≈ λ2
6λ

2
8 {15j}5 B4(k1,λ6,λ3,λ5;λ6,λ6)B4(k7,λ8,λ3,λ9;λ8,λ8)

B4(k9,λ8,λ5,λ10;λ8,λ8)B4(k10,λ6,λ9,λ10;λ6,λ6) .
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C.2. EPRL model

C.2.1. 3D Ball. Here we write the four vertex amplitudes as a complement to equation (63)

A1 =
∑

Δl(1)
1 ,Δl(1)

3 ,Δl(1)
4

{
k1 k2 k3

j4 +Δl(1)
4 j1 +Δl(1)

1 j3 +Δl(1)
3

}
B3(k1, j1 +Δl(1)

1 , j3 +Δl(1)
3 )

B3( j4 +Δl(1)
4 , k2, j3 +Δl(1)

3 )B3( j4 +Δl(1)
4 , j1 +Δl(1)

1 , k3),

A2 =
∑

Δl(2)
1 ,Δl(2)

2 ,Δl(2)
4

{
k3 k4 k5

j2 +Δl(2)
2 j4 +Δl(2)

4 j1 +Δl(2)
1

}
B3(k3, j4 +Δl(2)

4 , j1 +Δl(2)
1 )

B3( j2 +Δl(2)
2 , k4, j1 +Δl(2)

1 )B3( j2 +Δl(2)
2 , j4 +Δl(2)

4 , k5),

A3 =
∑

Δl(3)
2 ,Δl(3)

3 ,Δl(3)
4

{
k2 k5 k6

j2 +Δl(3)
2 j3 +Δl(3)

3 j4 +Δl(3)
4

}
B3(k2, j3 +Δl(3)

3 , j4 +Δl(3)
4 )

B3( j2 +Δl(3)
2 , k5, j4 +Δl(3)

4 )B3( j2 +Δl(3)
2 , j3 +Δl(3)

3 , k6),

A4 =
∑

Δl(4)
1 ,Δl(4)

2 ,Δl(4)
3

{
k1 k4 k6

j2 +Δl(4)
2 j3 +Δl(4)

3 j1 +Δl(4)
1

}
B3(k1, j3 +Δl(4)

3 , j1 +Δl(4)
1 )

B3( j2 +Δl(4)
2 , k4, j1 +Δl(4)

1 )B3( j2 +Δl(4)
2 , j3 +Δl(4)

3 , k6) .

The full change of variables on all the auxiliary spins is the following:

A1 : δ
(1)
1 = Δl(1)

1 δ
(1)
3 = Δl(1)

3 −Δl(1)
1 δ

(1)
4 = Δl(1)

4 −Δl(1)
1

A2 : δ
(2)
1 = Δl(2)

1 δ
(2)
2 = Δl(2)

2 −Δl(2)
1 δ

(2)
4 = Δl(2)

4 −Δl(2)
1

A3 : δ
(3)
2 = Δl(3)

2 δ
(3)
3 = Δl(3)

3 −Δl(3)
2 δ

(3)
4 = Δl(3)

4 −Δl(3)
2

A4 : δ
(4)
1 = Δl(4)

1 δ
(4)
2 = Δl(4)

2 −Δl(4)
1 δ

(4)
3 = Δl(4)

3 −Δl(4)
1 .

In terms of which expanding at the first order in λ1 and the umbounded variable δ(v)
f  the ampl-

itudes read:

A1 ≈
∑
δ
(1)
1

{
k1 k2 k3

λ1 + δ
(1)
1 λ1 + δ

(1)
1 λ1 + δ

(1)
1

}
B3(k1,λ1 + δ

(1)
1 ,λ1 + δ

(1)
1 )B3(λ1 + δ

(1)
1 , k2,λ1 + δ

(1)
1 )B3(λ1 + δ

(1)
1 ,λ1 + δ

(1)
1 , k3),

A2 ≈
∑
δ
(2)
1

{
k3 k4 k5

λ1 + δ
(2)
1 λ1 + δ

(2)
1 λ1 + δ

(2)
1

}
B3(k3,λ1 + δ

(2)
1 ,λ1 + δ

(2)
1 )B3(λ1 + δ

(2)
1 , k4,λ1 + δ

(2)
1 )B3(λ1 + δ

(2)
1 ,λ1 + δ

(2)
1 , k5),

A3 ≈
∑
δ
(3)
2

{
k2 k5 k6

λ1 + δ
(3)
2 λ1 + δ

(3)
2 λ1 + δ

(3)
2

}
B3(k2,λ1 + δ

(3)
2 ,λ1 + δ

(3)
2 )B3(λ1 + δ

(3)
2 , k5,λ1 + δ

(3)
2 )B3(λ1 + δ

(3)
2 ,λ1 + δ

(3)
2 , k6),

A4 ≈
∑
δ
(4)
1

{
k1 k4 k6

λ1 + δ
(4)
1 λ1 + δ

(4)
1 λ1 + δ

(4)
1

}
B3(k1,λ1 + δ

(4)
1 ,λ1 + δ

(4)
1 )B3(λ1 + δ

(4)
1 , k4,λ1 + δ

(4)
1 )B3(λ1 + δ

(4)
1 ,λ1 + δ

(4)
1 , k6) .
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C.2.2. 4D Ball. Here we write the five vertex amplitudes as a complement to equation (70)

A1 =
∑

Δl(1)
fv ,i(1)

ev

(∏
ev

(2i(1)
ev + 1)

)
{15j}1 B4(k1, j1 +Δl(1)

1 , j3 +Δl(1)
3 , j2 +Δl(1)

2 ; i1, i(1)
1 )

B4(k2, j1 +Δl(1)
1 , j5 +Δl(1)

5 , j4 +Δl(1)
4 ; i2, i(1)

2 )

B4(k3, j6 +Δl(1)
6 , j2 +Δl(1)

2 , j4 +Δl(1)
4 ; i3, i(1)

3 )

B4(k4, j6 +Δl(1)
6 , j3 +Δl(1)

3 , j5 +Δl(1)
5 ; i4, i(1)

4 ),

A2 =
∑

Δl(2)
fv ,i(2)

ev

(∏
ev

(2i(2)
ev + 1)

)
{15j}2 B4(k1, j1 +Δl(2)

1 , j3 +Δl(2)
3 , j2 +Δl(2)

2 ; i1, i(2)
1 )

B4(k5, j1 +Δl(2)
1 , j8 +Δl(2)

8 , j7 +Δl(2)
7 ; i5, i(2)

5 )

B4(k6, j7 +Δl(2)
7 , j2 +Δl(2)

2 , j6 +Δl(2)
6 ; i6, i(2)

6 )

B4(k7, j8 +Δl(2)
8 , j3 +Δl(2)

3 , j9 +Δl(2)
9 ; i7, i(2)

7 ),

A3 =
∑

Δl(3)
fv ,i(3)

ev

(∏
ev

(2i(3)
ev + 1)

)
{15j}3 B4(k2, j1 +Δl(3)

1 , j5 +Δl(3)
5 , j4 +Δl(3)

4 ; i2, i(3)
2 )

B4(k5, j1 +Δl(3)
1 , j8 +Δl(3)

8 , j7 +Δl(3)
7 ; i5, i(3)

5 )

B4(k8, j7 +Δl(3)
7 , j4 +Δl(3)

4 , j10 +Δl(3)
10 ; i8, i(3)

8 )

B4(k9, j8 +Δl(3)
8 , j5 +Δl(3)

5 , j10 +Δl(3)
10 ; i9, i(3)

9 ),

A4 =
∑

Δl(4)
fv ,i(4)

ev

(∏
ev

(2i(4)
ev + 1)

)
{15j}4 B4(k3, j6 +Δl(4)

6 , j2 +Δl(4)
2 , j4 +Δl(4)

4 ; i3, i(4)
3 )

B4(k6, j7 +Δl(4)
7 , j2 +Δl(4)

2 , j6 +Δl(4)
6 ; i6, i(4)

6 )

B4(k8, j7 +Δl(4)
7 , j4 +Δl(4)

4 , j10 +Δl(4)
10 ; i8, i(4)

8 )

B4(k10, j6 +Δl(4)
6 , j9 +Δl(4)

9 , j10 +Δl(4)
10 ; i10, i(4)

10 ),

A5 =
∑

Δl(5)
fv ,i(5)

ev

(∏
ev

(2i(5)
ev + 1)

)
{15j}5 B4(k1, j6 +Δl(5)

6 , j3 +Δl(5)
3 , j5 +Δl(5)

5 ; i4, i(5)
4 )

B4(k7, j8 +Δl(5)
8 , j3 +Δl(5)

3 , j9 +Δl(5)
9 ; i7, i(5)

7 )

B4(k9, j8 +Δl(5)
8 , j5 +Δl(5)

5 , j10 +Δl(5)
10 ; i9, i(5)

9 )

B4(k10, j6 +Δl(5)
6 , j9 +Δl(5)

9 , j10 +Δl(5)
10 ; i10, i(5)

10 ) .

The full change of variables on all the auxiliary intertwiners and auxiliary face spins is the 
following:

A1 : ι
(1)
1 = i(1)

1 − j1 −Δl(1)
1 ι

(1)
2 = i(1)

2 − j1 −Δl(1)
1 ι

(1)
3 = i(1)

3 − j6 −Δl(1)
6 ι

(1)
4 = i(1)

4 − j6 −Δl(1)
6

A2 : ι
(2)
1 = i(2)

1 − j1 −Δl(2)
1 ι

(2)
5 = i(2)

5 − j1 −Δl(2)
1 ι

(2)
6 = i(2)

6 − j7 −Δl(2)
7 ι

(2)
7 = i(2)

7 − j8 −Δl(2)
8

A3 : ι
(3)
2 = i(3)

2 − j1 −Δl(3)
1 ι

(3)
5 = i(3)

5 − j1 −Δl(3)
1 ι

(3)
8 = i(3)

8 − j7 −Δl(3)
7 ι

(3)
9 = i(3)

9 − j8 −Δl(3)
8

A4 : ι
(4)
3 = i(4)

3 − j6 −Δl(4)
6 ι

(4)
6 = i(4)

6 − j7 −Δl(4)
7 ι

(4)
8 = i(4)

8 − j7 −Δl(4)
7 ι

(4)
10 = i(4)

10 − j6 −Δl(4)
6

A5 : ι
(5)
4 = i(5)

4 − j6 −Δl(5)
6 ι

(5)
7 = i(5)

7 − j8 −Δl(5)
8 ι

(5)
9 = i(5)

9 − j8 −Δl(5)
8 ι

(5)
10 = i(5)

10 − j6 −Δl(5)
6 .
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In terms of which expanding at the first order in λf  and δ(v)
f  the amplitudes read:

A1 ≈
∑
δ
(1)
fv

(
λ1 + δ

(1)
1

)2 (
λ6 + δ

(1)
6

)2
{15j}1 B4(k1,λ1 + δ

(1)
1 ,λ3 + δ

(1)
3 ,λ2 + δ

(1)
2 ;λ1,λ1 + δ

(1)
1 )

B4(k2,λ1 + δ
(1)
1 ,λ5 + δ

(1)
5 ,λ4 + δ

(1)
4 ;λ1,λ1 + δ

(1)
1 )

B4(k3,λ6 + δ
(1)
6 ,λ2 + δ

(1)
2 ,λ4 + δ

(1)
4 ;λ6,λ6 + δ

(1)
6 )

B4(k4,λ6 + δ
(1)
6 ,λ3 + δ

(1)
3 ,λ5 + δ

(1)
5 ;λ6,λ6 + δ

(1)
6 ),

A2 ≈
∑
δ
(2)
fv

(
λ1 + δ

(2)
1

)2 (
λ6 + δ

(2)
6

)(
λ8 + δ

(1)
8

)
{15j}2 B4(k1,λ1 + δ

(2)
1 ,λ3 + δ

(2)
3 ,λ2 + δ

(2)
2 ;λ1,λ1 + δ

(2)
1 )

B4(k5,λ1 + δ
(2)
1 ,λ8 + δ

(2)
8 ,λ7 + δ

(2)
7 ;λ1,λ1 + δ

(2)
1 )

B4(k6,λ7 + δ
(2)
7 ,λ2 + δ

(2)
2 ,λ6 + δ

(2)
6 ;λ7,λ7 + δ

(2)
7 )

B4(k7,λ8 + δ
(2)
8 ,λ3 + δ

(2)
3 ,λ9 + δ

(2)
9 ;λ8,λ8 + δ

(2)
8 ),

A3 ≈
∑
δ
(3)
fv

(
λ1 + δ

(3)
1

)2 (
λ7 + δ

(3)
7

)(
λ8 + δ
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Appendix D. Details of the numeric analysis

All the computation are done with Wolfram Mathematica and a C++ code. The computa-
tion of the B3 booster functions use the formula in terms of SL(2,C) Clebsch–Gordan coef-
ficients reported in [26]. The computation of the B4 booster functions use the formula (3) and 
the integral over the rapidity is done numerically using arbitrary precision artimetic libraries 
GMP [44], MPFR [45] and MPC [46]. The details on how the code works and what kind of 
techniques are used will be illustrated in a future work [40].

To be sure that the summation over the virtual spins in (55) we picked a ‘large’ number 
ΔL = 50 and trucate the sum over the Δlf  at that value. We then go back and check that for 
each configuration of face spins jf the sum Av  ‘converged’. Numerically we decided to be 
satisfied with the truncation if the sum chaged only by a 0.0001% (we choose this number 
arbitrarly). The convergence of those sum is quite fast, to be concrete we plot in figure D1 the 
values of of the vertex amplitude Av  as a function of the truncation ΔL the configuration with 
the slowest convergence.
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