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Abstract

We provide an algorithm to estimate the divergence degree of the Lorentzian
EPRL-FK spin foam amplitudes for arbitrary 2-complexes. We focus on the
‘self-energy’ and ‘vertex renormalization’ diagrams and find an upper bound
estimate. We argue that our upper bound must be close to the actual value, and
explain what numerical improvements are needed to verify this numerically.
For the self-energy, this turns out to be significantly more divergent than the
lower bound estimate present in the literature. We support the validity of our
algorithm using 3-stranded versions of the amplitudes (corresponding to a toy
3d model) for which our estimates are confirmed numerically. We also apply
our methods to the simplified EPRLs model, finding an utterly convergent
behavior, and to BF theory, independently recovering the divergent estimates
present in the literature.

Keywords: spin foam, divergences, renormalization, bubble, self energy,
vertex renormalization

(Some figures may appear in colour only in the online journal)

1. Introduction

The spin foam formalism is an attempt to define the dynamics of loop quantum gravity in a
background independent and Lorentz covariant way [1, 2]. It defines transition amplitudes
for spin network states of the canonical theory in a form of a sum (or equivalently a refine-
ment [3]) over all the possible two-complexes having the chosen (projected) spin networks
as boundary. This is equivalent to a sum over histories of quantum geometries providing in
this way a regularised version of the quantum gravity path integral. The state of the art is the
model proposed by Engle, Pereira, Rovelli and Livine (EPRL) [4-6] and independently by
Freidel and Krasnov (-FK) [7] and its extension to arbitrary spin network states [8, 9]. The
model admits a quantum group deformation conjectured to describe the case of non-vanishing
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cosmological constant [ 10, 11] and notably, the large spin asymptotics of the 4-simplex vertex
amplitude contains exponentials of the Regge action [12, 13]. The model is free of ultravio-
let divergences because there are no trans-Planckian degrees of freedom, however, there are
potential large-volume infrared divergences.

The presence of divergences may require some sort of renormalization procedure, and in
general, their study and understanding is important in the definition of the continuum limit.
This has been the subject of many studies and can be achieved in many ways: via refining of
the 2-complex as proposed in [14—16], or via a resummation, defined for instance using group
field theory/random tensor models as proposed in [17-20]. The properties of these diver-
gences have been studied in the context of the Ponzano—Regge model of 3d quantum gravity
and discrete BF theory [21], group field theory [22] and EPRL model: with both Euclidean
[23, 24] and Lorentzian signature [25].

In particular [25] is, to our knowledge, the only analytic estimate of divergences in the
Lorentzian EPRL model. It considers the ‘self energy’ (see figure 1(c)), finding a logarith-
mic divergence as a lower bound. The computation is rather involved and relies on the tech-
niques developed for the asymptotic analysis of the vertex amplitude of the model [13]. This
approach requires an independent study of each geometrical sector: crucially, the logarith-
mic divergence is obtained by looking at the non-degenerate geometries, resulting in a lower
bound estimate only. Our results suggest that this lower bound is close to 9 powers short.
Moreover, even if in principle the same technique of [25] applies to any spin foam diagram,
doing it is a very challenging task. On the other hand, the various estimates provided in [23]
for the Euclidean model of both the ‘self-energy’ diagram and the ‘vertex renormalization’
diagram, (see figures 1(c) and (D)) just rely on the scaling for large spins of SU(2) invariants,
and they are easily applicable to any spin foam diagram. Nevertheless, the extension of this
technique to the Lorentzian model is not at all straightforward, due to the non-compactness
of the Lorentz group.

In this work, we develop a simple algorithm to systematically determine the potential diver-
gence of all spin foam diagrams within the EPRL model. Instead of approaching it directly
in its generality we proceed by increasing complexity a bit at a time: we will introduce our
algorithm first for SU(2) BF theory, moving to a simplified version of the EPRL model and
concluding with the full quantum gravity model. We review the three transition amplitudes
and their relation in section 2. In section 3 we introduce the four diagrams in analysis. Again,
we opted to increase complexity gradually: before approaching the four stranded diagrams
corresponding to a four dimensional triangulation (each four stranded edge is dual to a tetra-
hedron) we warm up with the analog three stranded diagrams corresponding to a three dimen-
sional triangulation (each edge is dual to a triangle). Three dimensional spin foam diagrams
are simpler than their four dimensional counterpart for the absence of edge intertwiners and
the overall smaller number of internal faces. We will consider both three and four dimensional
bubble and ball diagrams. In sections 4—6 we proceed with the study of the divergence of the
diagrams one by one in order of complexity. We then conclude summarizing the algorithm
and the results obtained. Let us for the impatient reader comment here the results. We estimate
both the bubble and the ball amplitudes in the four dimensional EPRL model to be divergent
with the same power of the cutoff of the analog diagrams for SU(2) BF model. Furthermore,
we also find convergence for all the diagrams in the simplified EPRL model and the three
dimensional ones for the EPRL model.
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(a) (b)

(c) (d)

Figure 1. We represent here the two-complex of the four diagrams we will study in
the paper. The two diagrams on the top have three stranded edges. On the contrary,
the diagrams on the bottom have four stranded edges and we will call them four
dimensional, each edge is dual to a tetrahedron. We will refer to the diagrams on the left
as bubble diagrams and to the diagrams on the right as ball diagrams. In each picture,
we highlight in red an internal face and in green an external one. (a) 3D bubble diagram.
(b) 3D ball diagram. (c) 4D bubble diagram. (d) 4D ball diagram.

2. The EPRL model and its connection with BF theory

We assume that the reader is familiar with the EPRL-FK! model, and refer to the original lit-
erature [4—7] and existing reviews (e.g. [, 2]) for motivations, details and its relation to loop
quantum gravity. In the following, we will use an unconventional notation for the partition
function which was recently developed in [26].

Given a closed 2-complex C the partition function is a state sum over SU(2) spins j; and
intertwiners i,, associated respectively with faces fand edges e:

Ze =Y TIArGn) [T + D T A Girs de) - "
e f e v

We denoted with As( j¢) the face weights: the requirement that the path integral at fixed bound-

ary graph compose correctly under convolution fixes the face weight to be As(j) =2j+ 1

[27] but to compare to various other models present in the literature we will use a gener-

alized face weight A¢(j) = (2/+ 1)* (i.e. = 1 correspond to the choice made in the BF
SU(2) model and the EPRL model, ;& = 2 correspond to the BF SO(4) model). To have more

! From now on we will call it just EPRL for notation convenience.

3



Class. Quantum Grav. 35 (2018) 175019 P Dona

symmetric expressions we will also take the dimensions of the intertwiners on the edges to be
(2i, + 1) — (2i, + 1) . The main goal of this paper is to find a systematic way to study the
convergence of the multidimensional infinite sum Zj,,i;

To each vertex v of the two-complex a vertex amplitude is associated:

A, (jf’ ie) = Z <H (Zkev + 1) an(jfv, lfv; Loy, kev)) {3nj}v(lfvs kev)7 (2)

lpke \ ev

it is defined as a superposition of SU(2) invariants {3nj}> weighted by one booster functions
B,,, per edge ev touching the vertex v, with n,, the valency of the edge ev. The sums run over
a set of auxiliary spins lfv3 associated to each face fv containing the vertex v, with I, > jj,
and a set of auxiliary intertwiners k., for each edge ev connected to the vertex v. Notice that
the formulas for the partition function (1) and (2) are extendable to generalized spin foams
with 2-complexes dual to arbitrary tesselations done with polyhedra being careful of using the
appropriate dimension of the intertwiner space instead of 2i, 4+ 1 and 2k, + 1 (i.e. for three
valent edges the intertwiner space associated to each edge is trivial and i, = k., = 0 on those
edges; for five valent edges the intertwiner space associated to each edge is determined by two
spins and the proper dimension to use is (2i,, + 1) (2i,, + 1)).

The booster functions encode all the details of the EPRL model, they are defined in the
following way:

I AN 2 T i) 1\
By(ja»lus i k) = g Z (ﬂ ) / drsinh” r chjujj;j“ (r) Cj ) . 3)
Pa @ 0 a=1 @

where the boost matrix elements d**) (r) for ~-simple irreducible representation of SL(2, C)
in the principal series, 7 is the Immirzi parameter and the (njm) symbols are reported in
appendix A. We are using the notations used in [26]. On one hand, the introduction of booster
functions simplifies a lot the computation of spin foam transition amplitudes because it trades
the problem of dealing with many high oscillatory integrals with the study a family of one
dimensional integrals, which are easier to handle and manipulate. Analytical and numerical
properties of these functions are work in progress [26, 28-30]. On the other hand, the explicit
evaluation of booster functions in spite of their rather simple form is still a very involved task:
For n = 3 we employ an expression for (3) in terms of finite sums of I" functions, for details
see [26, 32]; for n > 4 a similar formula exists but features an integration over virtual labels®,
and in the end we found it less time consuming to numerically integrate directly the boost
integrals. A C numerical code for the virtual irreps formula has been recently developed in
[31]. The asymptotic behavior for large spins is still unknown: the properties we will need for
our analysis will be inferred from numerical analysis.

As suggested in [26], we introduce here a simplified version of the EPRL model, we will
denote it EPRLs where s stays for simplified. The reformulation of the EPRL amplitude as in
(2) traded the major complexity of multiple integrals over the non-compact group SL(2,C)
with multiple infinite sums over the auxiliary spins /. We can for the moment put aside the
proliferation of spin labels and fix all the new spins [, to their minimal values jz:

2 The specific invariant depend on the details of the vertex, if the vertex is dual to a 4-simplex the invariant is the 15;
symbol.

3 That are effectively magnetic indices respect the group SL(2, C).

4See equation (41) of [26].
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A, (Jf’ ie) = Z (H (Zkev + 1) Bng\r(jfwjfv; iev,ke\»)> {S’lj}V(]'fv’ kEV) . “4)

key ey

We can also try to give a geometrical interpretation to this model. By removing the sums we
fix the areas of the polyhedra on the edges the be fixed to the minimal ones, on the other hand,
the shapes (associated to the intertwiners) are still allowed to be boosted from a vertex to the
other. This is a dramatic simplification and it is not clear if this model can capture any feature
of the full one, nevertheless it is a useful playground to study some properties in a simplified
environment. There are some indications that the vertex amplitude of this model is dominated
by Euclidean four dimensional geometries [30].

Furthermore, notice that with the additional simplification (2k., + 1) B,
(JfsJrs Ges kev) = i, ,, the vertex amplitude reduces to the one of the BF spin foam model:

Ay e 1) = (307} e ). .

In the following, we will study the divergences of these three models starting from the
simpler one, BF model, for which the computation of the divergence of any diagram is also
possible analytically, moving to the more complex EPRLs and finishing with the physically
relevant EPRL.

3. The diagrams

In this section, we will describe the four diagrams we will focus on in the rest of the paper.
In spin foam models divergences turn out to be associated with bubbles in the triangulation.
A bubble is a collection of faces in the cellular complex forming a closed 2-surface. Here we
study the most elementary of such bubbles, and the potential divergences they give rise to,
leaving the detailed characterization of all divergences of the whole theory to future works.

We will focus on two classes of those diagrams represented in figure 1: the bubble dia-
gram (or to use the Feynman diagrams’ language the self-energy), and the ball diagram (or
vertex renormalization). The divergence of these two classes of diagrams can be viewed as
the divergence on particularly simple triangulations with boundaries or more in general as the
divergence arising from a sub-triangulations of a larger triangulation.

Even if the physical implication of the three stranded diagrams on the top of (1) is not clear,
we will look at them as a simpler prototype of the four stranded ones where is easier to test our
algorithm and some of the assumptions we will make. We will refer to them as three dimen-
sional because we can imagine the dual to the three stranded edge to be a triangle.

3.1. 3D bubble diagram

The two-complex associated to the 3D bubble (figure 1(a)) is composed by two vertices, three
edges, three internal faces (one per couple of edges) and three external faces (one per edge).
The dual triangulation is formed by two tetrahedra joined by three triangles and its boundary
is formed by two triangles joined by all their sides. Therefore, the boundary graph consists of
two three valent nodes joined by all their links.

We will in the following use a general convention denoting with ks the boundary spins, js
the face spins, fs the boundary intertwiners and is the edge intertwiners. In this specific case,
the boundary graph is completely determined by the three spins of the boundary links k,,
a=1,...,3. One spin is also associated to each internal face j, f =1,...,3.
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3.2. 3D ball diagram

The two-complex associated to the 3D ball (figure 1(b)) is composed by four vertices, six
edges, four internal faces (one per triple of vertices) and six external faces (one per internal
edge). It can be interpreted as a tetrahedron expanded with a 1-4 Pachner move. The boundary
of the dual triangulation is formed by four triangles joined to form a tetrahedron. Therefore,
the boundary graph consists of four three-valent nodes joined in a complete graph. We asso-
ciate a spin k,, where a = 1,...,6, to each link of the boundary graph and a spin j; with
f =1,...,4toeach internal face.

3.3. 4D bubble diagram

The two-complex associated to the 4D bubble (figure 1(c)) is composed by two vertices, four
edges, six internal faces (one per couple of edges) and four external faces (one per edge).
The dual triangulation is formed by two 4-simplices joined by four tetrahedra. The boundary
of the dual triangulation is formed by two tetrahedra joined by all their four faces, therefore
the boundary graph is formed by two four valent nodes joined by all the links. Therefore, the
boundary graph consists of two four valent node joined by all their links. We denote with k,,

where a = 1, .. .,4 the spins of the boundary graph links and #; and #, the intertwiners at the
two nodes in the recoupling base (k, k;). We attach a spin Jrwith f=1,...,6 to each face
and an intertwiner i, with e = 1,...,4 to each edge.

3.4. 4D ball diagram

Finally, the two-complex associated to the 4D ball (figure 1(d)) is composed by five vertices,
ten edges, ten internal faces (one per triple of vertices) and ten external faces (one per inter-
nal edge). It can be interpreted as a 4-simplex expanded with a 1-5 Pachner move into five
4-simplices. Such graph corresponds to a triangulation of a 3-ball with five 4-simplices and
its divergence can be associated to the vertex renormalization of a simplicial spinfoam model.
The boundary of the dual triangulation is formed by five tetrahedra joined in a 4-simplex.
Therefore, the boundary graph consists of five four-valent nodes connected in a complete
graph. We denote with k,, where a = 1, ..., 10 the spins of the boundary graph links and #,
with n = 1,...,5 the intertwiners of the five nodes, we will not specify the base choice for
the moment. We attach a spin jr with f = 1,...,10 to each face and an intertwiner i, with
e=1,...,10 to each edge.

4. Divergences estimation in SU(2) BF spin foam model

We warm up by testing our techniques with the simplest of the three models we are going to
look at: the SU(2) BF spin foam model. For this model is possible to compute any diagram
analytically, we refer to appendix B for the analytic evaluation of the diagrams considered in
this section. The vertex amplitude (5) for three stranded edges spin foams is a {6} symbol
while for four stranded edges spin foams is a {15;} symbol.



Class. Quantum Grav. 35 (2018) 175019 P Dona

4.1. 3D bubble diagram—self-energy

The transition amplitude for the 3D bubble diagram (figure 1(a)) is:

: ko ok ks |
3 . 1 K2 K3
EHED B0 | RNV S ©
— Ju J2 J3
Jivad3 f=1
Not all the sums are unbounded, to isolate them is useful to make a change of variable:
Al =J1, A2 =j2»—Jji, A3 =j3 —ji. Triangular inequalities implies that the sums over
[XA2| = |j2 —ji| < ks and |\3] = |j3 —Jji1| < ko are bounded. We can rewrite (6) in terms of
these new variables and obtain

2
Wb = > (2)\14—1)“(2)\1+2>\2+1)”(2/\1+2)\3+1)“{ ﬁ‘l M’jf& AIEA,;}
Al A2, A3 (7)
- Z (2>\)3u{k1 ky ks }ZQZ(A)M{]‘] ky ks }2
Nt ! AMOANN - ! AMOAN N ' ®)

Our final goal is to study the convergence of the infinite sum over the face spins. With that
scope in mind we can assume that \; is arbitrarily large and drop any contribution small
respect to Aj. At this stage the summand does not depend anymore on the bounded vari-
ables A, and A3, so we can perform the sum explicitly and then omit the multiplicative factor
84 (2ky + 1) (2ks + 1) that is irrelevant for our purposes and cumbersome to keep track of. We
use the symbol ~ to indicate this equivalence. The asymptotic behavior of the {6j} symbol
with 3 small spins and 3 large spins is well known [33]:

ki ky ks ~1/2
{A] A )\1}0()‘1 ’ ®

where we are ignoring an irrelevant multiplicative factor. If we introduce a cutoff A to the sum
over A\ and use the asymptotic expression (9) we obtain an estimate for the divergence of the
amplitude:

A
_ 2
WanaR () ~ 30 ™ (A1) At (10)
Al

For a trivial face amplitude ; = 1 we reproduce the divergence A we can compute analyti-
cally (see appendix B for more details).

4.2. 3D ball diagram—vertex renormalization

By carefully placing the internal and external spins, the transition amplitude for the 3D ball
diagram (figure 1(b)) is:

4
ki ky k ky ks k ky ks K ki ks K
JWBF3D _ 2t ) ok ks 5 ks ks o ks ke o keoks |
pall Z H(Jf+ ) Ja Qo J3 B2 Ji B2 J3 s 2 g

i \f=1

(1
We follow closely the discussion of section 4.1, the first step is to identify and isolate the
unbounded sums performing the following change of variables A\ =j;, Ay =j, —jI,
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A3 = j3 —ji1and Ay = js — j;. Triangular inequalities implies that the sums over the new vari-
ables|\a| = |jo —Jji1| < ks | N3] = |j3 —j1| < kyand|\s| = |j4 — j1| < k3 are bounded, tighter
bounds are possible but they are not relevant for our analysis. In terms of this new variables
we can rewrite the amplitude as:

WEI = 7 2\ 4+ DM (20 + 20 + D (20 + 225 + DF (2A1 + 20 + 1)* (12)
e

ki ko k3 k3 ky ks 13

A+ AL A+ M+ A+ A (13)

kz k5 kﬁ kl k4 k6 14

AM+X A+ A+ N AM+X A+ N (14

Neglecting all the small contributions respect to \j, the variable of the only unbounded sum,
and neglecting irrelevant multiplicative factors we obtain:

BF3D _ awf ki ko ks ks ks ks ky ks ke ki ks ke
Woai ”;(Al) {A, AN }{)\1 YRSV IS VD VRS VI & IS VD VRS VI o

15)
We put a cutoff on the sum over A\ and we approximate the {6/} symbol with its large spin
expression (9) to get the estimate:

A
— 4 _
WERP () ~ 3 O (A7) = At (16)
Al

Setting a trivial face amplitude (1 = 1) our estimate agrees with the analytical computation A3
(see appendix B for more details).

4.3. 4D bubble diagram—self-energy

The transition amplitude for the 4D bubble diagram (figure 1(c)) is:

6 4
Woiwe = > TT @i + D" JT @ie + 1" {15}, {157}, (17)
Jrile f=1 e=1
where the specification of the {157} symbol depends on the choice of intertwiner base of each
spin foam edge. Even if the full amplitude is independent of this choice, it is convenient to
choose the intertwiner bases that lead to a reducible {15/} symbols, as already noted in [34],
to easily derive the scaling for large spins of the {155} symbol:

i1 I
. t, ki kz} {lv k3 k4} s
15, =4. . . S i3 0 .
{157}, {11 b i) U2 B3 i ].6 ].5 N (13)
J3 J4 U4

Each edge carries a boundary spin, three face spins and an intertwiner. Triangular inequalities
constrain the intertwiner to assume values in an interval centered on a face spin, implying that
the sums over these intertwiners are bounded. In analogy to the three dimensional case it is use-
ful to perform a change of variables to make it manifest. We define new variables for the spin
faces A\ = jr for f =1,...,6 and for the intertwiners ¢; = i; — ji, to = i» — j1, 13 = i3 — o,
t4 = iy — jp. The sums over the intertwiners ¢, are in fact bounded: |¢1| < k1, |e2| < ko, |t3| < kg

8
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and |t4| < k3. The sums over the ); are all unbounded contrary to the three dimensional case.
The {15} symbol (18) can be rewritten in terms of this new variables and the large spins
asymptotic can be found in the literature [33, 35-38]:

{15/} ki k2 b k4 Al/\ﬂ1 AIAHZ A t+
v = L
J )\1 A+ AN+ M Atz At 6 > 2 3

A3 A4 Ao+ 1y
19)

IORLEE
M A2 /V(N)

where V() is the volume of a Euclidean tetrahedron having for sides ~ As with f = 1,...,6.
We are ignoring the oscillatory behavior of the 97 symbol: since the summand is proportional
to the square of this oscillation, disruptive interference between terms is not possible and we
expect the leading order of the divergence to be unaffected.

Notice that this formula is not valid for values of the spins such that V = 0. In these cases,
the semiclassical approximation used to derive the asymptotic formula for the 9j symbol in
(19) needs to be modified [37]. The set of spins for which this happens form a measure zero set
in the bigger set of face spins, so we expect they will not affect the divergence. For this reason,
we ignore those points completely in the following analysis.

We can rewrite the whole amplitude in the new variables and expand at the leading order
in )\fﬁ

(20)

6
Wb = > HzAf+ (201 + 201 4+ D™ (200 + 271 + D" (203 4+ 200 + 1* 1)
Jpile f=1
(2u4 + 200 + D" {155}, {15}, (22)
111 ’
2 m
~ ) AD™ (A () : (23)
; fl—[l At A2 /V(N)

To proceed with the estimate we will assume that the only kind of relevant divergence, if any,
comes from the radial direction of the sum and will neglect any angular contribution. The
divergence of this diagram can be computed analytically and has been extensively studied in
the literature [39], we will use these results to test our assumption. We wanted to stress that
this hypothesis is not new: all the other computation of divergences within the EPRL model in
the literature also assume it [23, 25].

Calling X this radial coordinate and introducing a factor A\ as measure volume element and
a cutoff A:

2
g}igg ~ Z)\s)\lou ( 7/2) ~ A1O—1 (24)

For trivial face amplitude (1© = 1) we can compare our estimate with the analytical evalu-
ation (see appendix B for more details). We find perfect agreement, this corroborates our
hypothesis that the divergence gets contribution mainly from the radial direction of the sum.
This assumption will be also used in the estimates of the divergences of amplitudes in the
EPRL model where, unfortunately, any alternative computation or checks are not possible.
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4.4. 4D ball diagram—vertex renormalization

The transition amplitude for the 4D ball diagram (figure 1(d)) is:

5
WERPD = ZH 2Jf+1"H (2i + D" [T{15}, - (25)
v=1

Jpste f=1
We choose the intertwiner basis of the ten edges in order to get the following {15/} symbols:
iy I3 h
ok kz} {ll ky k3} L
15 . . o, 26
¢ J}l {Jl I Jo 13 14 ].5 ].4 .2 (26)
J3 J2 4
. ky ke 1
. t ki ks} {ll i 17} S
15}, =9, . . L i7 lg 11 g, 27
{ ]}2 {]1 s I Jo I3 )2 .7 .6 .1 27)
J8 J1 15
. ko ks 83
3 ks kz} {ls iy I } o
15 S L lg 13 120, 28
{3} = {Jl i isf Us s ) ). 07 (28)
Jg8 J1 15
ty ks kio)| [ta ks ke R
15/}, =¢. .7 . . is ] ig ¢, 29
{ J}4 {]6 o 13 } {J7 6 ls} J.S J.IO .8 (29)
J2Jo e
ts ko ki) [t5 kio ks AR
15 . . . . s ] i .
{ ]}5 {Js 7 l9} {]6 2] 110} J.S ].10 .9 (30)
J3 Jo

Analougusly to the analysis performed in the previous section we define new variables for the
spin faces A\s = jr for f = 1,...,10 and for the edge intertwiners:

L =1 —Ji ly =iy — i 13 =13 — Jjo ta =4 — Jjo s =I5 — i

6 =i — J7 17 =17 —Js g =iy — J7 Lo =1l9 — Js Lo = fo — Je-
In terms of these new variables all sums over ¢, are manifestly bounded, while the sums over

As are all unbounded. Even if the invariants in (26) do not have the small spins in the same
places their large spin scaling, omitting again the oscillations, are similar:

. 1 I 1 1 1

{15}, ~ - A] " Yol W5 U8 U )
| . 11 1

{19, ~ Aff o e

155
{ ] }5 )\ )\ \/T (31)
where \; are all the face spins entering in the nth vertex, i.e. for the 4th vertex
fiu=2,5,6,7,9,10.
We assume also in this case that there is no angular contribution to the divergence and we
change to radial coordinates. Imposing a cutoff A to the radial summation

10
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A
5
WEBEAD Z 29 \201 <)ﬁ7/2) o \201—15/2 (32)
X

If we set a trivial face amplitude ;1 = 1 we do not reproduce the divergence obtained with
analytical methods (see appendix B for more details). We stress that all our estimate are upper
bounds since we are neglecting any oscillations. Even if we are overestimating the divergence,
neglecting the interference between the terms of the sum, we still get a result very close to the
analytic evaluation.

5. Divergences estimation in the simplified EPRL model

Before trying to estimate divergences in the full EPRL model, it is useful to test our technique
on the simpler EPRLs model we introduced at the end of section 2. The vertex amplitude of
the EPRLs model (4) differs from the SU(2) BF one in the introduction of the booster func-
tions and in the extra summations over a set of auxiliary ‘boosted’ intertwiners per vertex.
While the latter requires minimal modification in the logic described in the previous sections,
how to deal with the booster functions will be the main novelty of this section.

The main ingredient of the recipe we will describe in the following is the large spins scaling
of both the B3 and B4 booster functions, where a spin is kept small and the others become large
uniformly. The analytic study of the booster functions is very difficult and it is still work in
progress [29]. This forces us to employ numerical methods to extract the scaling we are look-
ing for. A similar property is already been investigated in [28] and we independently confirm
it here. We infer from our numerics the following scaling for the booster functions (refer to
figure 2 and appendix D for more details):

By (ki jo + Ajs +A) = A7, (33)

Ba (ki + Ajs + Mja 4+ N+ A7+ A) ~ AT, (34)

with A > ki, Jo, j3, j4 and i or i'. To keep the expressions compact, we employed, and we
will employ in the rest of the paper, a short-hand notation for the booster functions:

B3(ji,j2.3) = B3(J1.J2.J3:J1:J25J3), (35)

Ba(J1sjosj3sdas i) = Ba(j1sjasjzsjasisosjzejasisi') - (36)

5.1. 3D bubble diagram—self-energy
The transition amplitude associated to this diagram in the EPRLs model is the following:
2 ko ke k ?
Womnie > = > [T @ + 1" ({ jll j22 jj }B3(k1,j2,j3)B3(j1,k2,j3)33(j1,j2,k3)> ,
Jri2is f=1 )
37)

We can estimate the divergence of this diagram following the strategy used in section 4.1. We
proceed by performing the same change of variable to isolate the unbounded summations and
we drop all the irrelevant multiplicative terms:

1
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Bi(ji,jo+ A da+ A+ X+ Nk + )

y=12
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Figure 2. Numerical scaling of booster functions. Left panel: non-isotropic scaling of
the booster function Bj (ji,j> + A,jz + A) compared with the best fit f(\) = 2.6A~"
We rescaled the booster function by its A = 0 value. Right panel: non-isotropic scaling
of the booster function By (ji,j2 + A, j3 + AJja + Aji + A,k + \) compared with the
best fit £(\) = 5.012 A=238 We rescaled the booster function by its A = 0 value. The
difference in the range is due to additional resources needed to compute the By respect
to the B;. We also expect, comparing with the behavior of the Bss, that the proper
asymptotic region for the B4 boosters functions is reached for larger spins of the one
plotted. To give an idea to the reader while we were able to compute all the points in the
left panel on a normal laptop, the plot on the right required 64 cores in a cluster working
for approximately 80 hours of walltime.

2
. Kk k
W&ﬁ,ﬁ;m%Z(M)w <{ )\11 )\21 )\31 }B3(k1,)\1,>\1)B3()\1,k2,)\1)33(/\1,)\1,/@)) - (38)
A1

We introduce a cutoff A in the unbounded sum over \; and we approximate the summand with
its asymptotic behavior obtained combining the large spin scaling of the {6/} symbol (9) and
of the booster functions (33):

A
WRE® () % 30 0 (A1) ate )
Al

Notice that for the standard choice of face weight ;& = 1 the amplitude is convergent, where
for the SU(2) BF model it was cubically divergent.

We do not have in this case an analytical computation to compare to, but the system is sim-
ple enough to allow us to evaluate numerically the amplitude (37) as a function of the cutoff
A. We show the numerical result in figure 3, we see a remarkable agreement with our estimate.
To have a better comparison we artificially make the amplitude divergent by setting ;1 = 3.

One can wonder where and if there is any dependence in the Immirzi parameter. Our analy-
sis is not sensitive to it since it mainly focuses on the power of the cutoff. It will for sure play
a role in the multiplicative factor that we ignored.

5.2. 3D ball diagram—vertex renormalization

The transition amplitude associated to the 3D ball diagram in the EPRLs model is the following:

4 4
w3 (T @i+ 0 | 1A
v=1

lzlz’zi /= (40)
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Figure 3. Numerical evaluation of the transition amplitude (37) as a function of
the cutoff in logarithmic scale. We choose the external spins to be k; =1, ky =2,
k3 = 3, Immirzi parameter v = 1.2. Left panel: for face weight ;= 1 the amplitude
is convergent to the best fit W = 9.513 - 10~% in red. The plot is rescaled to allow a
clearer reading. Right panel: for face weight ;1 = 3, the amplitude diverge cubically. We
plot for comparison the best fit function 3.385 - 1077 A% in red.

where

ki k k

Ay :{ R }Bz (ki,j1,j3)B3(Jja, k2, j3)B3(jas j1, k3),
Ja 1 J3
ks ks k

Ay :{ s }33 (k3,ja,j1)B3(j2s kas j1)B3( j2, jas ks),
J2J4J1
ky ks k

As —{ 20T } (k2. j3,j4)B3(j2, ks, ja)B3(j2.J3, ke ),
J2 J3 J4

ki ks k .. . . ..
Ay :{ ot e }Ba(kl,J3,Jl)B3(Jz,k4,]1)B3(]2,]3,k6) .
J2 I3 1

We proceed by performing the same change of variable of section 4.2 to isolate the unbounded
summations and we drop all the irrelevant multiplicative terms:

A= ki ke ks Bs(k1, A1, A1)B3 (A1, ko, A1)B3 (A1, ArL k3),
AL A

ky ks k
Az’%{ P 51}33(k3,>\1,)\1)B3()\1,k4,)\1)33()\1,/\1,/65),

Az

Q

{kz ks kﬁl }B3(k2,/\1,/\1)33(/\1,/(5)\1)33()\1,)\l,ke),

ki ks k
A4%{ b 61 }BS(kl,)\I»AI)B3<)\lvk4’)\l)BS()\l>)\1,]%)'

As we did in the previous section we introduce a cutoff A in the unbounded sum over \; and
we approximate the summand with its asymptotic behavior obtained combining the large spin
scaling of the {6/} symbol (9) and of the booster functions (33):

A
4
WEPRLS3D (A} Z ()\1)4M ()\1*1/2 )\1—3> ~ 413 @l
Al

The amplitude is convergent for the standard choice of face weight ;o = 1 while is cubically
divergent for ;n = 4. The amplitude (40) is also simple enough to allow us to evaluate it exactly

13
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Figure 4. Numerical evaluation of the transition amplitude (40) as a function of the
cutoff in logarithmic scale. We choose the external spins to be ky =1, k, =2, k3 =1,
ks =72, ks=1, k¢ =1 and the Immirzi parameter is set to v = 1.2. Left panel: for
face weight 4 = | the amplitude is convergent to the best fit W = 1.032-10~"
in red. The plot is rescaled to allow a clearer reading. Right panel: for face weight
/=4 the amplitude diverge cubically. We plot for comparison the best fit function
6.811- 1075 A in red.

as a function of the cutoff A. The results are shown in figure 4 and we see an excellent agree-
ment with our estimate for both = 1 and p = 4.

5.3. 4D bubble diagram—self-energy

The transition amplitude associated to the 4D bubble diagram (figure 1(d)) in the EPRLs
model is:

WEPRLs 4D _ ZH 2 + 1) H(zie+1)“A1 Ay
Jpste f=1 (42)
where

e=1

4
A=Y (H(zigﬂ + 1)) {15}, Ba(ki.jr.js.es iv2 i) Ba(kaujit.jusjsi iz, )
i

Ba(ka, ja,Js:J65 13, igv))34(k3,j2,j3,j4; i, iiv))
where the {15/}, symbols are the one defined in (18) with the substitution i, — 12 ") Once
again, we perform the same change of variable of section 4.3 to isolate the unbounded sum-
mations. The main difference is that we have to deal with two additional summations over two

sets of intertwiners igl) and igz), with that purpose we define some LE") such that

Lg\/) _ ig»') i, L§V) _ igv) — i L§V) _ lg v) s (V) ( ) i
for each vertex v. The booster functions are nonvanishing only if the auxiliary intertwiners
satisfy the same triangular inequality as the normal ones. As a direct consequence the summa-
tions over both +(*) variables are bounded by a boundary spin. Expanding at the leading order
in )\ and dropping all the irrelevant multiplicative terms, the vertex amplitudes read:

14
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Ay = MA{15} () Ba(kis A1, Azy Aes A1y M) Ba(kay Aty Mgy As3 A, Ap)
Bu(kay A2y Ass A6 Aoy A2)Ba(ks, Aoy Az, Aas Ao, A2),  (43)

where {15} (\) is the same (19) where all the 1. variables have been ignored since they are
small respect to the )\;. We introduce a radial coordinate A in the A\ sum and we assume that
there is no contribution to the divergence coming from the angular summation. In terms of the
radial coordinate the vertex amplitudes A; and A, become:

Ay~ X157} (A) Balki, M A 0 A)Ba(ka, A A A A A
Bu(kas A\ A A5 A M) By (ks A A A A A)

We substitute to the {15/} symbol and to the boosters functions their asymptotic expressions
(19) and (34).

A, ~ A (A’%)4.

We introduce a factor A’ as volume element and we put a cutoff A, the amplitude (42) reads:
A ) 4\ 2
Wiioie ™ (M) & >~ XA (/\4)\2 (A*f) ) A~ AW, (44)
A

We notice that for trivial face weight p« = 1 the amplitude result convergent. At present time
there are no analytical or numerical checks to verify this estimate. We are not aware of any
code or technique able to compute the booster functions and the sum over the six faces fast
enough to be able to compute (42) exactly in a reasonable amount of computational time. A
lot of work is being done in this direction at the moment [30, 40]: we believe we will be able
to evaluate numerically this amplitude in a not so distant future.

5.4. 4D ball diagram—vertex renormalization

The transition amplitude for the 4D ball diagram (figure 1(d)) in the EPRLs model is:

10 10 5
Wl]?al;14D = Z H (2jr + n* H (2i + 1)" HAV’

Jpode f=1 e=1 v=1 (45)
where we used the same intertwiner basis of section 4.4. To not distract the reader we will
focus exclusively on just the first vertex amplitude, we treat the others in an analogous way, in
the end, they will contribute in the same way to the divergence, and we write them explicitly
in appendix C.1:

1= Ioy j 11 Ba 1,j1,j3,j2;i1,i1] 4 2,j1,j5,j4;i2,i21
A (i) +1) | {15/}, Ba(k DBy (k (1)

(1)

ev
Loy

By(ks3, josj2,Ja3 i35 i;l))B4(k4,j6,j3,j5; ig, lﬁl)) . (46)

We denoted with {15/}, the same symbols defined in (26) with the substitution i, — iS’). The
summation over the auxiliary intertwiners ig), a set of four per vertex (v), is carried over the
edges connected to the vertex v (i.e. in the 1st vertex el = 1,2,3,4). To manifestly identify
the bounded sums and unbounded sums we make the same change of variables on jrand 7, of
section 4.4 and in addition

15



Class. Quantum Grav. 35 (2018) 175019 P Dona

S T C N N B R I

J6 -
In terms of these new variables all sums over ¢, and Lgv) are bounded, while the sums over )\
are all unbounded. Expanding at the leading order in ), the vertex amplitudes Ay, ..., As are

recasted in the following form:

Ay = NNZ{157}, Ba(ki, Aty Azy Aas Aru A1) Ba(kay Aty Asy Aas Ar, Ay)
Ba(ks, Aoy A2y A3 A6, A6)Ba(kay Noy Az, Ass Xes o)

We introduce a radial coordinate \ in the Ar sum and assume that there is no contribution to the
divergence coming from the angular summation in the \; space. If we substitute to the {15/}
symbol and to the boosters functions their asymptotic expressions (19) and (34) each vertex
amplitude gives the same contribution. Introducing a factor > as volume element and a cutoff
A in the radial sum, the amplitude (45) reads:

A ; s\ 4 3 75
WE;TFLS4D (A) ~ Z AgA]O/L}\lO/L ()\4A_2 ()\—§> ) ~ AZO/L—T . (47)
A

For trivial face weight © = 1 the amplitude is convergent. Similarly to the 4D bubble, we hope
to be able to numerically check this result soon.

6. Divergences estimation in the full EPRL model

Finally, in this section, we will compute the divergence of the transition amplitudes of the four
diagrams in figure 1 in the full EPRL model. The additional complication in the EPRL vertex
amplitude compared to the EPRLs vertex amplitude is the presence of additional sums over
the auxiliary spins /g, one per face including the vertex v in consideration. The way we will
deal with these additional sums will be explained in details in the various examples.

From now on we will write the /4 variables in the vertex amplitude (2), taking values from
Jp to infinity, as I, = jr + Al where Aly, takes values from O to infinity.

In the following, we will need the large Als scaling of both the B3 and B4 booster func-
tions, we will infer it from a numerical analysis. This particular kind of scaling has not been
explored before, we summarize our findings here and in figure 5:

Bs (ki,jo + AL js + Al) ~ (A2, (48)

By (ki.jo + ALjs + Aljy + AL i i’ + Al) ~ (Al) 77, (49)

for Al > ki, jo, J3, jaandiori’. To keep the expressions compact, we employed, and we will
employ in the rest of this paper, a short-hand notation for the booster functions:

B3(ji + Ali,jo + Ab, jz + A) = B3 (i, j2.j35J1 + Al ja + Ab, jz + Als), (50)

By(ji + Alijo + Ab,js + Al js + Aly i, i) = Ba(jroja.janjasit + Alija + Ay, js + Al js + Al 2’5)1.)
We will refer to this short hand notation only if any A/ is written explicitely, to not make con-
fusion with the one introduced in the previous section. However, notice that when all the A/
variables vanishes (50) reduces to (35).

Combining the scalings we obtained in (33) and (48) we infer that for A > k and Al > k
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Figure 5. Numerical scaling of booster as a function of the magnetic spins /s. Left
panel: non-isotropic scaling of the booster function Bs (ji,j2 + Al jz + Al) in the
auxiliary spins Al compared with the curve f(Al) = 4.2A1~'/2 We rescaled the booster
function by its Al = 0 value. Right panel: non-isotropic scaling of the booster function
By (ji.j2 + AL js + Al jy + Al i,k + Al) compared with the curve f(Al) = 9.5A172.
We rescaled the booster function by its A = 0 value. We would prefer to accumulate
more point to have a more definite estimate since by comparing with the plot on the left
the asymptotic region is reached at larger spins, unfortunately our software needs to be
improved to treat boosters with spins larger than 100 with sufficient precision. Luckily
the analysis we are going to perform is not very sensitive to the value of this coefficient.

1

By (ko A+ ALX+ Al ~ (V)2 (A + A2 (52)

By (kA + ALX+ AL+ AEN+ ALAEAD ~ (\) P (A+AD2. (53)

Notice the oscillatory behavior of the booster functions in figure 5. In our estimates for
the scaling of the booster (52) these oscillations are neglected, corresponding to the scaling
of the maximum of the oscillations. The consequence is that the estimates we will do have to
be interpreted as an upper bound on the degree of divergence of the diagram. In fact, for the
amplitude of any diagram we can write the following inequalities:

Wdiagram S Z H 2.]f + 1 K H Zle )N HAV (]fvle)

Jfste

ZH2]f+ “Hzl +1 ic)
Jpie v

Z H 2jp + 1" H 2 + 1)* HA}Yfml (Jr»ie)
jf ie v

where A% is the quantity we estimated using (52).

6.1. 3D bubble diagram—self-energy

The amplitude associated to this diagram in the EPRL model is the following:

Wbl = ZH (2jr + 1" A1A,, (54)

Jiv2d3 f=1
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where
ky ko k3 . )
Ay = Z { i ; ; }33(/61,/2 + Ab,j3 + Ab)
Al ABAL J1+ Al[ J2+ Alz 3+ Alg
(55)
B3(ji + Al ko, j3 + Al)Bs(ji + Al jo + Ab, k3) . (56)

Weproceedbychangingvariableslikewedidfortheothermodels A\; = jj,\s = jo — ji,A\3 =Jj3 — ji
and analogously we also define the variables 6; = Aly, 9, = Al — Aly, 63 = Al — Al
Triangular inequalities imply that the sums over | \2| = |j2 — ji| < ksand|\3] = |jz —Jji| < k2
are bounded as expected, analogously the sums over d, and d; are also bounded. In fact:

|02 = [AL — AL = [Al — jo — Al 4+ j1 4+ jo — ji| < |AL —jo — AL +j1] + |2 — ji] < 2/8’7)

03] = |AL = AL | = [AL —j3 — Al +j1 4 j5 —ji| < [AL —j3 — AL +j1| + [z —ji] < 21(%8)

We can eliminate the variable jrand Aly from (54) in favor of As and ;. We expand the sum-
mand at the first order in A\; and §; and drop all the subleading terms and multiplicative fac-
tors® to obtain:

k. k -
A, = Z{ \ +61 \ j[s] A j&, }Bz(kh/\l + 01, AL+ 01)B3(A1 4+ 01, ko, A+ 01)B3 (A1 + 01, A + 01, k3).

If we replace the booster functions and the {6/} symbol with their large spin scaling (52) and
(9) the vertex amplitude reduces to

ANZ M +6)" 2 ) T +8)2 . 59

W

The summation over ¢, from a lower bound big enough to justify the asymptotic expan-
sion, is convergent and, at leading order in )\, it does not depend on the choice of the lower

bound and it gives a contribution A, 2

Moreover, notice that the result of the summation over J; does not depend on the details of
the scaling (52) as long as it is convergent and the scaling of the booster functions in A; and ¢,
is power law. In particular we will obtain the exact same result if

1
By (ko A+ 0, A+68) ~ (N *A\+6)"" with 3 > ganda+f=—1(60)

where the requirement o + 3 = —1is necessary to be compatible with the scaling in the sim-
plified model (33). The effect in the scaling in \ of the summation over ¢ is to add one power
per unbounded sum over the auxiliary spins [, per vertex. This step is the key to dealing with
these summations that are typical of the EPRL model and were the major obstacle in all the
previous attempts to similar computations.

Finally introducing a cutoff A in the sum over A, the transition amplitude (54) reduces to

lli]r;)ll(){g3D Z)\w ( -3 O\ )_1)2 ~ A4 61)

3 Remember that we are only interested in the divergent part of the amplitude so we can choose the lower bound of
the sums in A\ and J, arbitrarily large.
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Figure 6. Numerical evaluation of the transition amplitude (54) as a function of
the cutoff in logarithmic scale. The external spins are k; = 2, k, = 3, k3 = 4 and the
Immirzi parameter is set to v = 1.2. Left panel: for face weight ;# = 1 the amplitude
is convergent to the best fit W = 3.199 - 10~'°, The plot is rescaled to allow a clearer
reading. Right panel: for face weight 1+ = 2 the amplitude diverge quadratically. We
plot for comparison the best fit function 5.60 - 107'9 A% in red.

Independent analytical confirmations for this estimate are not available but, similarly to
what we did for the EPRLs model, we are able to evaluate the amplitude(54) numerically
almost exactly. ‘Almost’ because we need to truncate the sums over Al; in the vertex ampl-
itudes at a certain value. These sums are convergent so we arbitrarily decided to truncate them
at Al; ~ 50, checking a posteriori that adding one additional term change the value of the
sum by a relative factor of order 1079 (for more details about the numerical errors see appen-
dix D). Our estimate is extremely accurate as reported in figure 6: for a face weight . = 1 the
amplitude is, in fact, convergent, while for a face weight ;+ = 2 diverge quadratically.

6.2. 3D ball diagram—vertex renormalization

The amplitude associated to this diagram in the EPRL model is the following:

4

WEPRL3D _ Z H (2 + D! | A1A24A5A, . (62)
Jri2e \f=1
J3J4

To not distract the reader we will focus exclusively on just the first vertex amplitude, we treat

the others in an analogous way, in the end they will contribute in the same way to the diver-
gence, and we write them explicitly in appendix C.2:

ki ko ks

A= . . . Bs(kyji + ALY i+ ALY
l mz(% <1>{J4+Al§‘) ji+ ALY 13+Al§')} gt AUTJs + AL
Al ALY AL
Bs(ju+ ALY ko js + AEBs (s + ALY iy + ALY ks) . (63)

Notice the triple sum over the auxiliary spins Al;v) at each vertex v. We perform a change

of variable similar to the one in section 5.2: we introduce a a new variable for the face spins
Al =J1 A2 =J» —J1, A3 = j3 —j1and Ay = j4 — j; and analogously a set of és for each vertex,
for the first vertex:

P GO N G NN VIR GV G 1)
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The sums over Ay, A3, A4 are bounded as lengthly discussed in the previous sections. Triangular
inequalities force the sums over (53(1), 6§l), and analogously a couple of AI®) for the other verti-

ces, to be bounded. Each vertex then has only one unbounded sum. We expand at leading order
in the unbounded variables and we drop the irrelevant multiplicative factors to obtain (we drop
the ) to improve readability):

k k
A]NZ{ /\1+51 )\lj(sl /\1j51 }33(](1’/\1+5l’>\1+51)B3()\1+51,k2,)\|+§1)B3()\|+5|,)\|+5|,k3).

If we use the large spin scaling for both the booster functions (52) and the {6/} symbol (9) all
the vertex amplitudes give the same contribution:

Avm<§jgl+m)%( )3Q1+&)2>.

41

W

_s
The sum over §; is convergent and, at the leading order in A, it contributes with a factor A, *
to the main sum over the face spins. Introducing a cutoff A in the sum over A\ we are left with

A
_s5\4
WERRLP () = S A (A7) A%, (64)
Al

Independent analytical estimates of the divergence of this diagram, to our knowledge, do
not exist but, similarly to what we did for the EPRLs model, we are able to evaluate (62)
numerically. With a truncation of the sum over A/s our estimate is very accurate as reported in
figure 7: for a face weight ;1 = 1 the amplitude is, in fact, convergent, while for a face weight
1 = 3 diverge cubically.

6.3. 4D bubble diagram—self-energy
The transition amplitude for the 4D bubble diagram (figure 1(c)) in the EPRL model is

wErs = S T i+ 1 [ @i+ 1) s, ()

Jsde f=1 e=1

where the vertex amplitudes are

2 (f[ (27 + 1)) {157}, B,

ki 4+ ALY s + ALY o + ALY iy, il
A \e=1 B, (

( )
(kaoji + ALY iy + ALY s + AL iy, i)
By(karjo + AL js + AL o + AL 15, i)
By(ks, jo + Al(v),h + Al(L JJa+ Al(v) i, lé(lv)),

with the {155}, symbols defined in (18) with the substitution i, — 15 ") and Jr—Jjr + Al
perform a change of variable on the face spins jy, edge intertwiners i,, auxiliary spins Al( ) and
auxiliary intertwiners zg to identify and isolate the independent bounded sums. For the spins
we take Ay = jy and 6f = Alf(-v) while for the intertwiners:

L =11 —Ji, Ly =1y — i 13 =13 — Ja, 4 =g — J2,
R C RN C R C R C RN G C RIS VR I CRRV C )
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Figure 7. Numerical evaluation of the transition amplitude (62) as a function of the
cutoff in logarithmic scale. We choose the external spins to be k; = 2, k, = 3, k3 = 4,
ks = 2 and Immirzi parameter v = 1.2. Left panel: for face weight ;t = 1 the amplitude
is convergent to the best fit VW = 3.527 - 10~2*, The plot is rescaled to allow a clearer
reading. Right panel: for face weight ;¢ = 3 the amplitude diverge cubically. We plot for
comparison the best fit function 4.52 - 1072* A3in red.

Using all the triangular inequalities encoded in the booster functions it is possible to show that

all the sums over the intertwiners ¢,, ¢,, ¢/ are bounded by the boundary spins. Performing this

change of variable, expanding first order in s, 6y and 5; and dropping irrelevant multiplicative
factors the vertex amplitudes reduce to:

AVQ:EZ(Al+5$Q2(A2+5QQ2{1ﬁhﬁ4mhAl+5$%A3+5y%A6+6§%AhA1+5YU
5" Balka, M+ 60 0 4657, A5 + 68 0, A 4 6)
Ba(ka g + 607, As 4 687, A6 + 685 0, A + 687)

Balks, Mo+ 680 A5 4 67, Mg 4 657 A, Ay + 637

The sums over the auxiliary spins 5J‘(-v) are now six dimensional. To estimate their behavior we
will assume that there are no angular contribution to the divergence, then all the face spins and

auxiliary spins in the radial direction scale uniformly:
Moch 8 o™ (66)

In doing so we can rewrite the vertex amplitudes as a sum over the radial direction by taking
into account the proper measure element:

A, ~ @Mf(A+Mﬂ4gyhm@hx+&%A+M%A+&%xx+&%
o By(ka, A+ 6D N+ 600 A 4+ 60, 4, A +60)
By(kgs A+ 6D N+ 600 X4+ 60, 0, A +60)

By(ks, A+ 6 N+ 60 X+ 600 0,4 + 60

We can substitute to the {155}, symbol and to the booster functions their asymptotic expan-
sions (19) and (49). The two vertex amplitudes gives than the same contribution at leading
order in \:

4

AV%EZ(Mﬁf(A+$WY(A+$”)g(Q)Q(A+5M)4) ~AE (67)

sM
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We introduce a factor A° as volume element and we put a cutoff A, the amplitude (65) reads:
A
2
WERLP (4) = S0 (0! (A1) = ()" (68)
A

For trivial face weight ;o = 1 the amplitude is divergent with the same power of the cutoff as
the SU(2) BF model. This estimate is compatible with the only alternative computation in the
literature [25] since as the authors points out they are providing a lower bound of the diver-
gence. To be honest we need to stress that our result is just an upper bound to the divergence,
but in all the cases where we were able to perform independent computations (analytical or
numerical) our estimate was extremely accurate.

6.4. 4D ball diagram—vertex renormalization

The transition amplitude for 4D ball diagram (figure 1(d)) in the EPRL model is:

10 5

10
weit® = S TT @i+ 10 I @ie+ 0" T A 9

Jpste f=1 e=1 v=1

where we used the same intertwiner basis of section 4.4. To not distract the reader we will
focus exclusively on just the first vertex amplitude, we treat the others in an analogous way, in
the end they will contribute at the same way to the divergence, and we write them explicitely
in appendix C.2:

A=Y <H(2i§],> + 1)) {15/}, Balkioji + ALY js + ALY o + AL iy, 1)) (70)
Al(,]),ig,!) ev
! Ba(kaojir + ALY s+ ALY jy + ALV i, i) (71)

By(ksrjo + ALY jo + ALYy + ALY 15,0y (72)

Ba(kajo + AL js + ALY s + ALY i i) . (73)

We denoted with {15/} the same symbols defined in (26) with the substitution i, — it") and
Jr —Jjr + Al}v). The summation over the auxiliary intertwiners igﬁ), a set of four per vertex
(v), is carried over the edges that are attached to the vertex v (i.e. v = limplies ev = 1,2,3,4).
The summation over the auxiliary spins Al("), a set of six per vertex (v), is carried over the

faces that contain the vertex v (i.e. v = 1 implies fv = 1,2,3,4,5,6). To make the bounded
sums and unbounded sums manifest we make the same change of variables on jrand i, of sec-

tion 4.4 and in addition AI;VV) = 6;:),

A D =i i DA ) D AR, D 0 A, 0 = e A
In terms of these new variables all sums over ¢, and Lév) are bounded, while the sums over A
and (5f(vv) are all unbounded. Expanding the vertex amplitudes at the first order in Ay, 5f(vv) and
dropping irrelevant multiplicative factors the vertex amplitudes reduce to:
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Ay (n+ 5§‘>)2 (x+ 5§‘))2{15j}, Balk A+ 0 0 + 680 0 + 600 +60)
5 Ba(kas A + 6, As + 680, Mg + 6805 A, A+ 60D)
By(ks ho + 657, Mg + 687, Mg + 6875 New Ao + 68)

Ba(ka Mo + 000 A5 4+ 680 As 4+ 68: Xy Ao + 60V)

The sums over the auxiliary spins (5f(v) are now six dimensional. To estimate their behavior we

will assume that there are no angular contribution to the divergence, than all the face spins and
the auxiliary spins in the radial direction scale uniformly:

doch 0 oo (74)

In doing so we can rewrite the vertex amplitudes as a sum over the radial direction by taking
into account the proper measure element. We subtitute to the {15/} symbol and to the boosters
functions their asymptotic expressions (19) and (34). Each vertex amplitude gives the same
contribution at leading order in A

5 4 -1 _1 -2\
A Y (69) (A +60) (A +60) <(/\) F(A+60) ) ~ AT

s

(S

(75)
We introduce a factor A’ as volume element and we put a cutoff A, the amplitude (69) reads:

A 7 5 17
WERRLAD () 2 7 NAIAI0 (A~E ) e 200 (76)
A

For trivial face weight ©+ = 1 the amplitude is divergent with the same power of the cutoff
as the SU(2) BF model. To our knowledge this is the first estimate in the literature of this
divergence.

7. Conclusions

In this paper, we estimated the large volume divergence of the bubble and ball diagrams in
three and four dimensions in the EPRL model at fixed boundary states. This is formally done
with the artificial insertion of a uniform cut-off A on all the spins associated with the faces
of the spin foam diagrams. As a collateral product, we were able to estimate the divergence
of the same diagrams in the EPRLs model and in the SU(2) BF model. Two assumptions are
made in the computation:

1. the main contribution to the divergence comes from the uniform scaling of all the spins;
2. there is no interference between various terms of the sum.

The first assumption is the one we have the least control over, nevertheless, we can test this
hypothesis in the SU(2) BF model, where analytical computations are possible, and it seems
to be verified. We also note that the same supposition is also made in similar works in the lit-
erature like [23] and [25]. The second assumption can be freely relaxed if we interpret our esti-
mate as an upper bound on the divergence of the diagram as we already discussed at the end of
section 6. The first assumption is crucial for the success of the algorithm. This hypothesis has
an enlightening analog in the study of convergence at infinity of multi-dimensional integrals.
There we can perform a radial coordinate change and immediately see that, if the angular
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integration is regular, the only source of divergence is the radial asymptotic behavior of the
integrand. If this is not the case, the divergence will be in general of higher order. Similarly in
our case, if the assumption 1 is not verified we should expect a divergence of higher order then
the one we estimate. Nevertheless, in the simpler models we considered, like the BF SU(2)
models, this hypothesis can be explicitly checked and happens to be satisfied.

Using some examples, we proposed a general algorithm to estimate the divergence of any
spin foam transition amplitude. We summarize it in the following:

First, we determine the scaling of each vertex amplitude (2) in a uniform face amplitude
rescaling:

1. Find the unbounded sums over the auxiliary spins and intertwiners at that vertex using
edge triangular inequalities.

2. Combine the scaling of the SU(2) invariant at the vertex with the scaling of the booster
functions attached to the vertex and the dimensions of the auxiliary intertwiners.

3. The so obtained scaling is raised by one power for each unbounded sum found in point 1.

Then we determine the scaling of the whole amplitude (1):

4. Find the unbounded sums over the face spins and intertwiners using again edge triangular
inequalities.

5. Combine the scaling of each vertex amplitude with the face amplitude and the dimension
of the intertwiners on the edges.

6. The divergence of the diagram as a function of a cutoff is the scaling just obtained raised
by a power for each unbounded sum found in point 4.

This being said, the estimate of the divergences of the four diagrams in the various models we
considered are summarized in the following table:

bubble 3D | ball 3D | bubble 4D ball 4D

BF ABp, A4u71 Al()pfl ‘XZUH*IS/Q

EPRLs A6 Ade—13 | AL0p—13 | A20u-75/2
EPRL =2 A4n—9 AlOp—1 A20u—15/2

To facilitate the reading of the table we highlighted in green the diagrams that for the
standard choice of face amplitude ;+ = 1 have a convergent amplitude and in red the divergent
one. All the transition amplitude we considered diverge in the SU(2) BF model. The degree
of divergence we compute is in excellent agreement with the analytical evaluation of the
diagram. Moreover, all the considered transition amplitude in the EPRLs model are conv-
ergent. Even if analytical evaluations are not possible for the three dimensional diagrams we
were able to evaluate the amplitude numerically without any approximations, finding perfect
agreement with our estimate and growing confidence on the validity of our work hypothesis.
We believe that, with the development of more performant numerical methods to treat the
booster functions, we will be able in the future to evaluate also the amplitudes of the four
dimensional diagrams. The transition amplitudes of the three dimensional diagrams in the
EPRL model are convergent. We are able to evaluate the sum almost exactly (some trunca-
tions are needed but the numerics is not very sensible on them) showing that our estimates
are very accurate. The amplitudes of both the four dimensional diagrams in the EPRL model
are divergent. Our result, even if not directly comparable with the computation done in [25]
because of the different techniques, it is still compatible since they provide effectively a lower
bound for the divergence (logarithmic in the cutoff) while we provide an upper bound. For the
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simpler 3-stranded amplitudes we found a precise numerical confirmation. This suggests that
the 4-stranded divergences are also close to the upper bound we estimate. A possible source
for a value close to but not exactly at the bound comes from the fact that the oscillations
present in the By functions could give rise to destructive interference. The ongoing work on
improving the understanding of booster asymptotics and numerical codes should allow us to
settle this question in the near future.

We should also comment that a non-vanishing cosmological constant can be incorporated
in the theory with a conjectured quantum group deformation studied in [10, 11]. The diver-
gences we studied are likely to be effectively regulated in this formulation in terms of the
quantum group. This is consistent with the fact that gq-deformed amplitudes are suppressed
for large spins, correspondingly to the fact that the presence of a cosmological constant sets
a maximal distance.
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Appendix A. SU(2) symbols and boosters

In the following, we implicitly assume that the Clebsch—Gordan triangular inequalities are
satisfied, else the evaluations vanish. We use the definition for the Wigner’s (3jm) symbol
reported in [33] with the following orthogonality properties

Z J1 2 J3 J1 J2 k3 _ 5]3/36”13'13
my my m3 my  nmp N3 23+1°
my,nmz

implying they are normalized to one. We define the (4jm) symbol as the contraction of two
(3jm) symbol via an intertwiner i

; ; ; NG . ) . . . ;
JuooJ2 )3 J4 — Z(f])i—m, Ju 2 l ! J3 U4
my my mz  my L m, my m; —m; m3 my )’
respecting the following orthogonality relations
N (i2) F Y P,
Z J1 J2 J3 J4 J1 J2 J3 l4 _ iiy isly Omyny
i \ I MMy mp mp mz N4 2ip+1 2j4+1°

iy i
2i+1°

LN\ () . . . (1 TR
Ja\ F R AR )
a B my mpy s My

n—3

:Z(il)‘;("‘_m’\) g2 i P R - S N A P N M R
mp my m —m;,  mz m;, =M,y My my )

mig

normalized to In section 2 we used a short-hand notation for the general (njm) symbol:
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The explicit z-boost matrix elements can be found in the literature in its general form [26,
41-43], here we just report the explicit form of z-boost matrix elements for simple irreducible
representation:

T(j+ij+1) TU—iy+1) v+ VAT
TG+iy+ DT =i+ D] (G+I+1)!
(
s!

L 1) —2sr
x e” Uit Ery = ﬁ SR+ 1 —iyjj+p+ltsj+i+2.1—e ],

(+pli—p)]'"?
(+p)!J—p)!

d(’YiJ)(r) :(71)%'

iip I+ DI =)

We refer to [26] for a more in depth definition of the booster functions.

Appendix B. Divergences of SU(2) BF

For SU(2) BF spin foams is possible to compute the divergence of the various diagrams ana-
Iytically by using the representation of the Dirac delta over the group in terms of characters

S(U)=> 2+ 1)x/ (U) .

J

The Dirac delta computed at the identity is divergent if we place a cutoff A in the sum over the
SU(2) irreducible representations we can see that the delta diverge cubically in it.

A A

Sa() =) (Z+1xX ()= (2j+1)=

J i

(142A) (24+2A) (3+4A) ~ A (B.1)

=

Let us consider the spin foam amplitude (6) with face weight 1 = 1 first. One integral per
edge is redundant and can be eliminated by a trivial change of variables. We are left with three
integrals over copies of SU(2):

3
Wﬁﬂme/(Hdgz>E(gl,gz,gs)é(glgg‘l)5(gzg1‘1)5(g3g;1) (B.2)
=1

where we indicated with E (g1, g2, g3) the tensor product of the Wigner matrices of the exter-
nal faces. If we denote with /""" the tensor in the trivial three valent intertwiner space

E (81.82,83) = i""™"™D{j1) (81) D), (82) Dy, (g3) ™™

min; mony msns

We can perform the integrals by using the definition of the Dirac delta over the group

2
Wonbie =/ (Hdgl> E(g1.82.81)0 (287") 6 (2185 ")
=1

Z/dglE(gl,gl,gl)fSA (1) ~ A°.

The computation of the spin foam amplitude (17) with face weight ;+ = 1 is very similar.
In terms of SU(2) integrals reads
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4
Whoubble> = / (H dgl> E(g1.82,83.84)0 (glgil) g (gzgfl) g (838f1) 9 (gzggl) g (g4g;1) 9 (83811)
S \i=1

(B.3)
where we indicated with E (g1, g2, g3, 84) the tensor product of the Wigner matrices of the
external faces. If we denote with ;'™ the tensor in the four valent intertwiner space in the
recoupling basis (ki, k) identified with the spin #;:

E (21,82, 884) = i(} ™" D1} (g1) D3, (82) DY), (83) D), (a) {(13™".

Performing the integrations over the group using the definition of the Dirac delta over the
group we obtain

Whoubbler = /dglE(gl,gl,gl,gl) oA (1)3 ~ 5t1tzA9-

For completeness, we also consider the two ball divergences of BF spin foam diagrams we
studied in sections 4.1 and 4.3.

6
Woal =/ (Hdgz> E(81,82,83,84-85:86) 0 (2185 '8, ") 6 (8385 '26) 6 (842627 ") 6 (8185 25 )
1=1

_ _ _ ki ks k
:/dgldgzdg4E(g1,gz,g1g2',g4,g4g2',g4g1 ") ox (]l)'fv{ k; kj ki }A3.
(B.4)
Where

E (81,82, 83, 84, 85, g6) =iy """ {51116 320305 [ PaPsPe
1 _
D) (87 )D) (g5 1)D) (83)D%) (84)DS%) (g5)DL) (g6).

And finally for the four dimensional ball, omitting for simplicity the boundary representation
matrices

10
Woall = / [1de E(se) 6 (212585 ") 6 (212685 ") 6 (218785 ") 6 (228585 ") 0 (228985 ")
=1

6 (8381085 ") 0 (858585 ') 0 (258987 ") 0 (2681087 ") 0 (8381085 ')

= / dgadgsdgedgy E(ga, g5, 86,87) Oa (1)* = A2,

Appendix C. Vertex amplitudes of the 4D Ball diagrams

C.1. EPRLs model

C.1.1. 4D Ball. Here we write the five vertex amplitudes as a complement to equation (46)
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A1—§:<[Uw9+n>UthAMmJ&mnﬁ”wAbmJ&maé%

ity By (k3. jesj20j4s i35 igl))B4(k4,j6,j3,j5; 4, 1}(11)),

MzzﬁmeOmmmmmwm%(mmmm%

i&y Ba(ke, j1:josJs3 6> 15 ) Ba k7, jigs oo o3 7, 1570

ey

ev
s

Az = Z (H(Ziéi) + 1)) (15} Balkaujt.js.jas ia, S )Ba ks, 1. jss jrs s, 05

i N 4(k8,]7,]4,110,ls,l§ ))34(/(9,]8,]5,]10,19, i ))

5

Ay = Z (H(Zigi) + 1)) {15/}, Ba(ks, josj2, jas 3, i§4))B4(k6,j7,]'2,j6; i6,ié4))
i B4(k8,j7,j4,j10;is,i§4))34(k10,j6,j9,j10;ilo,igé)),
As=) (H(Zig) + 1)) {157}s Ba(ki.jo.jseisiisnis ) Ba(knjsjaujoi ir. i)

G .. S5 S5
i) Ba(ko, J3,js.J103 i, lé ))34(/610,]6,]9,]10; i10, z§0)) .

ev

The full change of variables on all the auxiliary intertwiners is the following:

A A =i S =iV ) =i — s A0 =i e
Ay P =i =i D =i~y S =i
As: =i =i, W =i —jy ) =il — s
PO T I
As: ) =i s S =i g W =il — g &) =i — .

In terms of which expanding at the first order in \s the amplitudes read:
Ay 2 M55}, Ba(ki, Aty Az, Aas Aty A1) Ba(kay Aty As, Aas Ar, Ap)
By(k, A6> A2, Aas Aes A6)Ba(ka, Ao, Az, As; A6, Ae),
As 2 A6 As {157}, Ba(ki, Aty A3, Aoz Aty A1) Ba(ks, A, Agy Az A, Ar)
By (kes A7, A2y A6y A7, A7) Ba(ka, Ag, Az, Aos Ag, Ag),
As ~ N Aghs {157} Balkas At As. Aa Aty A Ba(ks, At Ags Azi Ar Ar)
Bu(kg, A7, Aas A10s A7, A7)Ba(ko, Ag, As, Ao As, Ag),
Ag 2 NN {155}, Ba(ks, Aoy Aoy Aas A6y A6)Ba (Koy A7, Aoy Ags A7, A7)
Ba(ks, A7, Aay A0 A7, A7) Ba(k10, A6y Aoy A10; Aes X6 )
As 2 NG {157 }5 Ba(ki, Aoy A3y Ass Aoy A6 )Ba (K7, A, Az, Ao Ag, Ag)
By (ko, Mg, As, Aio; Ass Ag)Ba(k10, A6 Ao, A1o; Ags Ag) -
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C.2. EPRL model

C.2.1. 3D Ball. Here we write the four vertex amplitudes as a complement to equation (63)

k k k

Ay (1) ) (n)
A AT A0 © T HALT AL js AL
1 Rl Ry

Bs(js + ALY ky.js + AXYBs (s + ALY jy + ALY, k),

k3 ky ks } : )
Ar — 2 : . , ] Bs(ks, ju + AL, +Al

’ @) @D A { Jo+ Aléz) Ja+ Alftz) Ji+ AZEZ) slhanda /i )
AP AP AR

By(jo + ALY kyoji + ALYBs (o + AL iy + AL ks),

ko ks ke . G) . 3)
Az = E { . 3. 3. 3y ¢ Bslka,js + Al ja 4+ AL)
o o e L + Alg A Alg ) i+ Alfx ) 3 4
y Rl LAl

Bs(jo + ALY ks, ju + AL)Bs (o + ALY, js + ALY k),

ki ky ke . (%) o
Ay = { . 4. 4. 4 }33(k1,]3+Al Ji+ ALY
1 2 3

Bs(jo + ALY kasji + AI)Bs (o + ALY j3 + ALY, ks) .

The full change of variables on all the auxiliary spins is the following:

A s = Ar) s = Al — i) s =AY — Al)
Ay : 5<2 Az<2> 5<2 Al(2 AP 5§ ) = Asz) — ALY
As: 5§3> = Azg” 5§3> = Azg” SN & = ALY — Al
Ay §Y = Al 59 = ALY — Al 5 = ALY — AlY.

In terms of which expanding at the first order in A and the umbounded variable 5f(v) the ampl-
itudes read:

ka S(1) S(1) ) m m m
AIN;{ A +5<‘) A+ ,\.+<>“) }83 ki X+ 010 A By (A 401 ke A+ 610)Bs (A 8 A+ 61 k),

ney

(2)

ks

o 0(0 O +5(7) Bs(ks, A1 + 652),)\1 + 552))33()\1 + 5,(2),/(4./\1 +5fz>)33(/\1 +5§2),/\1 +5§2)J<5),
1

& A1+5<” A+ 68 A1+5“>

k4

Al +5<4> PYREF DY +5<4>

k
A NZ{ ’ }Bgucz A4 0 A+ 6By (A + 08 ks, A + 85 Bs(\ 4 69, A + 68 k),
{ }Bz(kl A4 69 A+ 6By (A 4+ 0™, ks A+ 8 Bs (A + 60, A + 69 ko) .
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C.2.2. 4D Ball. Here we write the five vertex amplitudes as a complement to equation (70)

A=Y (H(zigy + 1)) {157}, Ba(kyoji + ALY s+ ALY o + ALY 4y, i)
ALY N Bu(kaoji + ALY js + ALY iy + ALY iy, i)
Balks.jo + A jo + ALY ja+ ALY i, 15))

By (ks jo + Alél),js + Algl),js + Al(l) iy, lz(tl))’

A=Y (H(2i§5> + 1)) {15}, Ba(ky,ji + AL js + AL o + AL iy, i)
AR N Ba(ks,j1 + Al§ ) js + Aléz),ﬁ n Al(z) 15,152))
Ba(ke,jz + ALY jo + ALY, jis + Aléz), i, léz))

By(k7,js + Alé”,j; + Al o+ ALY i, i (2)),

ev

A=Y (H(zigg> + 1)) {157}, Balkaoji + ALY js + AL jy + ALY iy, i)
ALY Baks.jr + A1 g + A j + A i5,i)
By(ks, j7 + AZ(S),M + Al( ) jio + Allo ; 18, lg(;3))

(

By(ko.js + ALY js + ALY jig + A1) g, i),

A= (H(zigﬁ + 1)) {15}, Ba(ks,jo + AIY jo + ALY jy + ALY i5,i$Y)
AZ;‘,"),igf) v B4(k6,j7 + Al( ),jz + Al(4),j6 + Al(4) i, il ))
B4(k ,j7 -+ Al(4) ]4 —+ Al(4),]10 + Al%), 1g, lé4))

By(kio.je + Al@ 2Jo + Al ,Jj10 + Al,o 110, zﬁo))

As= Y (H(Zig) + 1)) {(15/}5 Balkn,jo + AL js + ALY js + AL i, i)
ALY N By(k7,j3 + Al J3 AI(S),Jg + AL, 155))
Ba(ko,js + AL js + AL, jio + ALY o, i)

By(kio,jo + Alé ),j9 + Al( ),]10 + Al( ) i, 150))

The full change of variables on all the auxiliary intertwiners and auxiliary face spins is the
following:

A Lgl) (1) —j Al(l) Lgl) _ ig” —ji- Alsl) Lgl) (1) —je— Al(l) Lgl) (1) —je— Al(l)
Ay P = < i A,m N < i A,m 0 < i A,m
Aj: /é}) = l( ) —J1 Al(3) LS) = i§3) —j1— Al?) L§3) = l< ) —Jj7 Al(3) LS) = l< ) —Js Al(3)
Ay Lg4) = ( ) —J6 Al(4) Lé4) = ié4) —j7 — Al§4) Lé (4) —j71— Al(4) L%) = t%) —J6 Al(4)
As : LES) = z( ) —Je Al(s) Lgs) = igs) —Jjs — AléS) Lés) = l( ) —Js Al(s) ng) = lgg) —Jjo — AlS),
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In terms of which expanding at the first order in \r and 5;V) the amplitudes read:

Ay (h+ 5}”)2 (% + 6é”)2 {157}, Baki, A+ 67, A + 657 2 + 6805 a0, 0 4 60)
5" Ba(kau Ay + 605 + 60, A 4+ 85 A, A+ 6)
Ba(ks, Ae + 087, 0 + 657, Mg + 655 A6, A + 687)

Ba(kas Mo + 087, s + 657, As + 685 A6, Ag + 687,

Arm Y0 (i 00) (602 (hs07) (1573, Ballr A1 +82% + 0200 4+ 08 A0, + )
5 Balks, At + 02, 2 + 6, A7 + 65 A\ +62)
Ba(kes A+ 07, 00 + 8 X6 + 6573 A0, g + 08

Ba(kz, Mg + 62, s + 687, Xo + 6875 Mg, Ag + 687,

Ay (M+ 553))2 (v 687) (s +88) 15743 Balhos M + 85745 + 08 2+ 30, 1 + 01
5 Ba(ks, At + 6 g + 8, 07 + 68 AL A +61))
By(ks, A + 050, A + 650, Mo + 605 M, A7+ 68)
By(ko, As + 00, As + 65, Mo + 605 s, Ag + 68),

50 Balke, A + 057, 00 + 659 X + 6575 00, A 4 08)
Balks, A + 057 A + 059 Mo + 605 0, a5 + 68Y)
Ba(kio, Ao + 05, Xo + 05, Ao + 6185 Xes A + 65),

2 2
s~ Y (M +60) (A +007) {15} Balhki ds + 087 X + 687 2 + 873 6, g + 887
50 ) ) ). )
o By(kq, /\g+(5 )\3+5 )\9+§ )\g,/\g+(5 )
Bako, As + 000, As + 680, Mo + 605 Mg, As + 68))

(

(

(

(

(

(

(

(
A} (Af» + 5§4))2 (Av + 554))2 (157}, Balkss Ao + 6.7 A + 657, M+ 8505 Mg Ag + 60

(

(

(

(

(

(
Ba(kio. A + 5( "+ ‘)SS)s Ao + 510 D 5(55)) .

Appendix D. Details of the numeric analysis

All the computation are done with Wolfram Mathematica and a C++4- code. The computa-
tion of the B; booster functions use the formula in terms of SL(2, C) Clebsch—Gordan coef-
ficients reported in [26]. The computation of the B, booster functions use the formula (3) and
the integral over the rapidity is done numerically using arbitrary precision artimetic libraries
GMP [44], MPFR [45] and MPC [46]. The details on how the code works and what kind of
techniques are used will be illustrated in a future work [40].

To be sure that the summation over the virtual spins in (55) we picked a ‘large’ number
AL = 50 and trucate the sum over the Al at that value. We then go back and check that for
each configuration of face spins jr the sum A, ‘converged’. Numerically we decided to be
satisfied with the truncation if the sum chaged only by a 0.0001% (we choose this number
arbitrarly). The convergence of those sum is quite fast, to be concrete we plot in figure D1 the
values of of the vertex amplitude A, as a function of the truncation AL the configuration with
the slowest convergence.
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Figure D1. Convergence of the sum over the virtual spins of the vertex amplitude
Ay = Ay = A, for face spins j; = 40, j, = 39, j3 = 38. We plot A, as a function of
the cutoff AL imposed uniformly on the three virtual Al; < AL for f =1,2,3. For
readability we also rescale the plot such that A,(50) = 1.
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