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Abstract
Vehicle-to-pedestrian communication could significantly improve pedestrian safety at signalized intersections. However, it is
unlikely that pedestrians will typically be carrying a low latency communication-enabled device with an activated pedestrian
safety application in their hand-held device all the time. Because of this, multiple traffic cameras at a signalized intersection
could be used to accurately detect and locate pedestrians using deep learning, and broadcast safety alerts related to
pedestrians to warn connected and automated vehicles around signalized intersections. However, the unavailability of high-
performance roadside computing infrastructure and the limited network bandwidth between traffic cameras and the comput-
ing infrastructure limits the ability of real-time data streaming and processing for pedestrian detection. In this paper, we
describe an edge computing-based real-time pedestrian detection strategy that combines a pedestrian detection algorithm
using deep learning and an efficient data communication approach to reduce bandwidth requirements while maintaining high
pedestrian detection accuracy. We utilize a lossy compression technique on traffic camera data to determine the tradeoff
between the reduction of the communication bandwidth requirements and a defined pedestrian detection accuracy. The per-
formance of the pedestrian detection strategy is measured in relation to pedestrian classification accuracy with varying peak
signal-to-noise ratios. The analyses reveal that we detect pedestrians by maintaining a defined detection accuracy with a peak
signal-to-noise ratio 43 dB while reducing the communication bandwidth from 9.82 Mbits/sec to 0.31 Mbits/sec, a 313
reduction.

According to National Highway Traffic Safety
Administration, pedestrian fatalities are increasing in the
United States every year. Pedestrians account for 14% of
U.S. road fatalities with over 5,376 annual fatalities in
2015 (based on the latest statistics related to pedestrian
fatalities) (1). Moreover, on average, 69,000 pedestrians
are injured annually on U.S. roadways. However, recent
research shows that enabling dedicated short-range com-
munication (DSRC), which is a low latency data com-
munication medium for safety applications, in a
pedestrian hand-held device can increase pedestrian
safety significantly through vehicle-to-pedestrian (V2P)
communications (2). The DSRC-enabled V2P system
gives a 360� view for which both the driver and the
pedestrian are warned of a possible collision using
DSRC-based safety alerts. However, it is very unlikely
that all pedestrians will always be carrying a DSRC-
enabled device with an activated pedestrian safety appli-
cation. In addition, the current cellular communication
network is not applicable for pedestrian safety applica-
tions because of its high data exchange latency (3).

Videos and images are commonly used in traffic mon-
itoring of roadways and object detection applications in
intelligent transportation systems (ITS) (4, 5). Multiple
traffic cameras at a signalized intersection could be used
to accurately detect and locate pedestrians instead of a
DSRC-enabled pedestrian hand-held device. Computing
infrastructure can be used to process video data and
detect pedestrians from the video data using the camera
feed and then broadcast safety alerts about pedestrians
to warn vehicles around a signalized intersection. In a
typical ITS deployment, one or more transportation sen-
sors (e.g., traffic cameras, roadway sensors) transmits
sensing data (e.g., image, numerical, text sensor data)
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over a network to an ITS processing location (ITS center,
such as a traffic management center) with substantially
more processing capability. However, a centralized com-
puting service cannot support real-time connected vehicle
(CV) applications, such as a pedestrian safety application,
owing to the often unpredictable network latency, high
data loss rate, and expensive bandwidth, especially in a
mobile environment like the CV environment (4, 6).

Edge computing is a new computing concept that
enables data analysis near the source of the data for real-
time safety applications (7, 8). Edge computing pushes
the frontier of computing applications, data, and services
away from centralized computing infrastructures to the
edges. For example, a roadside data infrastructure
located in the next immediate edge layer (e.g., roadside
transportation infrastructure) from the associated CVs
can offer computational ability to support CV safety
applications.

However, network bandwidth between bandwidth-
hungry roadside surveillance devices, especially from
traffic cameras, and computing infrastructure limits the
ability of real-time data streaming and processing for ITS
applications. More efficient use of the bandwidth would
allow for the deployment of real-time vision-based object
detection using deep learning algorithms. Understanding
this constraint will enable us to build systems that can be
widely deployed. Lossy compression (LC) of data can
significantly reduce data storage requirements for mas-
sive data volumes and decrease data transmission time in
the communication network of an ITS system. Lossy
compressed video data degrades the image quality and
eventually reduces the chances of object detection, how-
ever, it does allow for a more efficient use of the band-
width. Though the computation ability of some devices is
currently limited, as is communication, it is possible they
will be substantially improved in the near future. As the
quality of communication and computation increases,
LC will still be an effective technique to reduce band-
width requirements (9). Reducing bandwidth require-
ments would allow use of less expensive components,
lowering the price of deployment (10).

In this study, we developed an edge computing-based
real-time pedestrian detection strategy that combined a
deep learning-based pedestrian detection application and
an efficient data communication approach to reduce
bandwidth requirements while maintaining high object
detection accuracy. We used LC techniques on video
data to maximize bandwidth and increase its resiliency
for data transmission between video surveillance and
computing infrastructure. We then determined the trade-
off between the reduction in the communication band-
width requirements and the defined object detection
accuracy with traffic camera data collected from signa-
lized intersections in Clemson, SC.

The remainder of this paper is structured as follows.
The Related Studies section describes related work on
vision-based object detection models and LC for traffic
camera data. The Research Method section presents the
strategy for determining the compressibility of traffic
camera data using a vision-based pedestrian detection
algorithm. An analysis of an LC-based pedestrian detec-
tion strategy is then presented. The final section provides
a concluding discussion.

Related Studies

There is limited work evaluating the performance of LC
to problems in the ITS domain. The use of LC for video
data requires a definition of correctness, and in the con-
text of real-time object detection using vision-based tech-
niques, the correctness metric is the classification
precision and recall of the object detection model.
Although lossless compression reduces the size of data
and incurs no information loss, it results in low compres-
sion ratios and compression/decompression bandwidths
(11). LC, however, significantly reduces the size of videos
by introducing noise when representing each frame with
fewer bits (12). Error-bounded LC allows for limiting the
amount of loss via a user-defined error bound. The per-
formance of LC is typically faster than lossless compres-
sion and results in large compression ratios (i.e., smaller
files) (13). Because error-bounded LC allows user control
of the accuracy level, the tolerance can be dynamically
modified to ensure quality of service. The achievable
compression bandwidth is therefore dependent on the
magnitude of the LC’s induced noise/error (14). LC tech-
niques for video data are commonly used in online
streaming platforms such as Netflix and YouTube (15)
but have yet to be investigated in the ITS domain.
Because of its novelty in this domain, there are several
open questions about what is required from LC with
respect to the compression ratio, the compression band-
width, what constitutes an acceptable amount of noise,
and where it is deployed in the ITS infrastructure. If LC
is carried out, error accumulation that further degrades
video quality is possible. To date, the impact of error
accumulation resulting from multiple LC operations
remains unstudied.

There are several video compression formats in com-
mon use, for example, H.262, H.264, high efficiency
video coding (HEVC) (16). H.262 compresses each frame
of a video by applying a discrete cosine transform to sub-
blocks of the image and encoding the coefficients or
using the previous and next frames and compressing the
difference between the common sub-blocks (17). H.264
compresses similarly to H.262 but uses a lower bit rate to
achieve the same level of quality (18). HEVC, like H.262
and H.264, identifies inter- and intra-frame regions of
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similarity, but is further optimized to lower the bit rate
while keeping the same quality level. HEVC is intended
for use with high-resolution videos: 1080p, 4K, and 8K
resolution (19). To create a video file, a video compres-
sion format is combined with an audio compression for-
mat into container format (video file) such as AVI, MP4,
or FLV. It is often useful to convert video files between
various formats, or for further improving the compres-
sion ratio for transmission or long-term storage. FFmpeg
is a powerful cross-platform multimedia framework
capable of decoding, encoding, transcoding, and filtering
most audio and video formats (20). In this study, we used
FFmpeg to investigate the tradeoff between LC of video
data and pedestrian detection accuracy using a deep
learning model.

For traffic operational analysis, different types of
algorithms, such as embedded algorithms for loop detec-
tor systems, computer vision-based algorithms, and
machine learning-based algorithms have been used for
solving traffic-related problems (21–24). Machine
learning-based algorithms improve the accuracy of traf-
fic operational analyses compared with statistical meth-
ods, as they can learn from previous experiences of
similar roadway conditions. To detect an object, machine
learning systems take a classifier for that object and eval-
uate it at various locations and scales in a test image.
Systems such as deformable parts models use a sliding
window approach in which the classifier is run at evenly
spaced locations over the entire image (25). More recent
approaches like the Region-Convolutional Neural
Network (R-CNN) use region proposal methods to first
generate potential bounding boxes in an image and then
run a classifier on these proposed boxes. After classifica-
tion, post-processing is used to refine the bounding
boxes, eliminate duplicate detections, and rescore the
boxes based on other objects in the scene (26). These
complex pipelines are slow and hard to optimize because
each individual component must be trained separately.
Recently, Redmon et al. developed an object detection
model, You Only Look Once (YOLO), to detect objects
in real-time (27). This model can detect an object with a

single network evaluation, unlike systems like R-CNN,
which require thousands of evaluations for a single
image. Because of this mechanism, YOLO is 1,000 times
faster than R-CNN and 100 times faster than Fast R-
CNN. Thus, it is applicable for real-time pedestrian
detection in a connected transportation system.

Research Method

Figure 1 presents the general framework for the real-time
pedestrian detection using the YOLOv3 (YOLO: version
3) deep learning model combined with LC of data. We
extracted video data from roadside traffic monitoring
cameras and used it as the input for the LC data algo-
rithm. Following compression, we transferred the data to
the edge-computing infrastructure and used a pre-trained
and calibrated YOLOv3 model to detect pedestrians.
From the YOLOv3 model, we found pedestrians detected
every tenth of a second. Using the field-collected video
data, we prepared the ground truth data by manually
labeling pedestrians in the images to evaluate the pedes-
trian detection accuracy. Then, using the YOLOv3 model
output and ground truth data, we evaluated the pedes-
trian detection accuracy.

Edge Computing

Edge computing is a new computing concept that enables
data analytics at source for real-time safety applications
(7, 8). Edge computing pushes the frontiers of computing
applications, data, and services away from centralized
computing infrastructures to the edges. For example, a
roadside data infrastructure located in the next immedi-
ate edge layer (e.g., roadside transportation infrastruc-
ture) from the associated CVs can offer computational
ability to support CV safety applications. In general, an
edge-centric CV systems consist of three edge layers (at
least): i)mobile edge (e.g., CVs); ii) fixed edge (e.g., road-
side infrastructures); and iii) system edge (e.g., backend
server at a traffic management center) (28).

Figure 1. Edge computing-based pedestrian detection strategy using a lossy data compression technique.

Rahman et al 131



The CVs participating in our system act as mobile
edges, and were equipped with a DSRC-based on-board
unit. A fixed edge includes a data processing unit, such as
an Intel� NUC device, which has a similar processing
capability to that used in our experiments, and a DSRC-
based roadside unit (RSU) that communicates with CVs.
A fixed edge can communicate with the mobile edges using
DSRC and with a system edge using optical fiber/Wi-Fi.
A system edge is a single end-point for a cluster of fixed
edges. A fixed edge can be extended to support a video
camera and other sensing devices, such as weather sensors
and GPS. Fixed edges are connected to a system edge that
can effectively serve as a backend resource. In our CV
environment, the video camera installed at the intersection
sent video data to the fixed edge (i.e., roadside infrastruc-
ture) and the pedestrian detection model was implemented
in an RSU that included a data processing unit that ran
the pedestrian detection model and a DSRC-based RSU
that communicated with the CVs (as shown in Figure 2).

Lossy Video Compression Strategy

We utilized a commonly used LC format, H.264, on the
videos originating from a signalized intersection in

Clemson, SC, to quantify the impact of LC in an ITS
environment. To compress video data, we used the
FFmpeg multimedia tool, specifically, the Windows 64-
bit binary release (N-82324-g872b358) (29). FFmpeg is a
versatile tool supporting operations on a wide variety of
video formats and containers. FFmpeg provides an
extensive command line interface for video transcoding,
filtering, and streaming of video, images, and audio.

YOLO Model for Pedestrian Detection

YOLOv3 Model. The YOLOv3 model (27) divides an
image into regions and predicts bounding boxes and
probabilities for each region. These bounding boxes are
weighted by the predicted probabilities. The model looks
at the whole image at the test time so its predictions are
informed by the global context in the image. The net-
work architecture of the YOLOv3 model was inspired by
the GoogLeNet model for image classification (24). The
YOLOv3 network has 24 convolutional layers followed
by two fully connected layers. The YOLOv3 model uses
1 3 1 reduction layers followed by 3 3 3 convolutional
layers (30). Figure 3 presents the YOLOv3 model for

Figure 2. Edge-computing infrastructure for pedestrian detection.
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pedestrian detection using field-collected video input. To
process video images, this model resizes the input image
to 448 3 448p and normalizes the image at the prepro-
cessing layer. In this study, the size of our input image
was 1280 3 720p.

YOLOv3 Model Calibration. Initially, we use pre-trained
YOLOv3 weights for pedestrian detection providing 81%
accuracy, which is not sufficient for a pedestrian safety
application. To improve the pedestrian detection accuracy
of the YOLOv3, we calibrated the model using the video
data collected from traffic cameras. To train the YOLOv3
model, we extracted 10 frames per second (fps) from the
video. Next, we annotated each extracted frame to gener-
ate an annotated image file in the standard Pascal Visual
Object Class format (31). In total, we collected 1,300
images from two different intersections: (i) data collected
for a signalized intersection with a small number of pedes-
trians and during sunny weather; and (ii) data collected for
a signalized intersection with a large number of pedestrians
and during cloudy weather, both located in Clemson, SC.
We used 900 images for training and 400 images for vali-
dation of the YOLOv3 model. However, after training the
model, we found that it predicted multiple overlapping
bounding boxes for a single pedestrian, which significantly
reduced pedestrian detection accuracy. To remove the
overlapping bounding boxes and to improve the pedes-
trian detection accuracy, we implemented a non-max

suppression method (32). The non-max suppression
method takes a bounding box with a high confidence score
and removes the overlapping regions using an intersection
of union (IoU) value larger than 0.6. The IoU is calculated
using the following formulation:

IoUi, j =
Oi, j

Ui, j

where
IoUi, j = the IoU value of bounding boxes i and j,
Oi, j = the overlapped area of bounding boxes i and j,

and
Ui, j = the area of the union of bounding boxes i and j.

Using the re-trained YOLOv3 model and non-max sup-
pression method, the performance of pedestrian detection
rose to 98% without any video compression.

Performance Measurements

To evaluate the accuracy of our vision-based pedestrian
detection strategy, we measured the pedestrian classifica-
tion accuracy at different video compression ratios.
Accuracy refers to the percentage of video frames in
which pedestrians are detected correctly. Manually
labeled images were considered the ground truth values.
For this binary classification problem, the classification
accuracy was measured using the following formula for
each test data set:

Figure 3. Integration of YOLOv3 model with compressed video data for pedestrian detection.
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A=
x

n
�100

where
A = the percentage of pedestrian detection accuracy,
x = the number of frames where pedestrians are cor-

rectly classified, and
n = the total number of frames for pedestrian detec-

tion events.

Analysis and Results

Data Description

We collected video data for two different scenarios: (1)
Scenario 1: data collected for a signalized intersection
with a small number of pedestrians and during sunny
weather; and (2) Scenario 2: data collected for a signa-
lized intersection with a large number of pedestrians and
during cloudy weather. For Scenario 1, we collected
video data from the Perimeter Road and Avenue of
Champions intersection, which is a three-legged signa-
lized intersection. We collected video data from three
directions. For each direction, we collected video data
for 30 min from 5:30 to 6:00 p.m. The size of each video
data was 2 GB. For Scenario 2, we collected video data
from College Avenue and Highway 93. We collected
data from one roadway direction that had a high number
of pedestrians; the data was collected between 4:30 and
5:00 p.m. For both scenarios, the raw video from the
cameras pass through a post-processing step that trans-
forms it from 30 fps to 10 fps. In a typical CV environ-
ment, we collect basic safety messages (BSMs) every
tenth of a second to develop real-time safety-related
applications. To mimic the standard for BSMs, we used
10 fps for detecting pedestrians and broadcasting safety
alerts to the surrounding vehicles. To evaluate the per-
formance of our detection model, we manually labeled
each frame of the resulting videos to produce our ground
truth data. The same 10 fps input video from the labeling
step formed the input to the YOLOv3 model. We used
calibrated pre-trained weights for this model of pedes-
trian detection as described in the previous section.

Lossy Video Compression Strategy

Using field-collected data, we compressed video for dif-
ferent constant rate factor (CRF) values to generate
video data with various compression levels. The range of
the CRF values was 0 to 51, where 0 indicates no com-
pression, and 51 is the highest compression level. After
that we calculated peak signal-to-noise ratio (PSNR) by
comparing the original and compressed video files.
PSNR is a well-known and widely used metric in digital
signal processing. Thus, CRF of FFmpeg was used to
compress the video. However, it was important to know

that the video quality was measured by the PSNR and
not CRF to ensure our results’ independence from the
FFmpeg tool. Thus, determining what PSNR values we
were using for a specific CRF value was necessary.
Table 1 provides a summary of average PSNR and CRF
values for several evaluation scenarios.

Figure 4 presents compressed images from the field-
collected video data after FFmpeg, yielding different
PSNR values. We observed that the quality of images
deteriorated with decreasing PSNR values. Thus, as the
video becomes more compressed, more noise is intro-
duced that deteriorates quality. As the range of the CRF
value was 0 to 51, we varied the CRF value within that
range and calculated a range of PSNR values from 30 to
56 dB. A decreasing PSNR makes identification of pedes-
trians more challenging and results in a lower probability
of detection.

Pedestrian Detection using YOLOv3 Model

Figure 5 presents a pedestrian detection output frame
from the YOLOv3 model using compressed field-
collected video data for Scenario 1 with varying PSNR
values. As Figure 5 shows, we found that the YOLOv3
model detects pedestrians accurately with PSNR values
of 39 dB or higher. However, a comprehensive evalua-
tion of the pedestrian detection model is required com-
pared with the ground truth data. For the comprehensive
evaluation, we evaluated the pedestrian detection accu-
racy for different values of PSNR. Figure 6 shows that
the maximum accuracy of pedestrian detection is 98%
with the calibrated pre-trained weights and no compres-
sion for both scenarios 1 and 2. For Scenario 1, for LC
video with PSNRs of 56 dB, 49 dB, and 43 dB, the detec-
tion accuracy remains constant at 98%. However, as the
video becomes more distorted as a result of high levels of
compression, the accuracy of the YOLOv3 model starts
to decrease. At the highest level of compression (PSNR
30 dB) the prediction accuracy is 60% for Scenario 1 and

Table 1. Video Constant Rate Factor and Peak Signal-to-Noise
Ratio

Evaluation
scenarios

Constant rate factor
value for video compression

Average peak
signal-to-noise ratio

1 10 56 dB
2 20 49 dB
3 30 43 dB
4 33 41 dB
5 35 40 dB
6 37 39 dB
7 40 37 dB
8 50 31 dB
9 51 30 dB
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55% for Scenario 2. This analysis shows that at a
PSNR compression threshold of 43 dB, acceptable
pedestrian detection accuracy is maintained. The
Scenario 2 evaluation yielded a similar PSNR pattern
for pedestrian detection accuracy. Therefore, the num-
ber of pedestrians does not affect detection accuracy
until a PSNR value of 43 (as shown in Figure 6).
However, it can be seen in Scenario 2 that after a
PSNR value of 43, accuracy decreases more rapidly.
Scenario 2’s environmental conditions were not as ideal
as Scenario 1’s. Bad weather and dark environments

have been shown to reduce video quality (33, 34). Since
we used error-bounded LC, we were able to dynami-
cally adapt the loss in the video based on environmen-
tal conditions. In the worst case, our scheme reverted
to using raw video footage from the camera. Another
alternative to improve detection accuracy is to apply
video processing techniques to improve quality by
removing noise, or to change the brightness/contrast.
We will address these issues in our future work. For
calculating bandwidth requirements for each PSNR
values, we used the following equation:

Figure 4. Compressed images from the field-collected data using increasing levels of video compression and different PSNR values.
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Required bandwidth=
S

T

where S is the size of the video (Mbits) and T is the dura-
tion of the video (s). Table 2 presents the bandwidth
requirements for different PSNR values. We calculated
the bandwidth requirements for PSNR values that did

not cause deterioration in the detection accuracy (56 dB,
49 dB, and 43 dB). For these configurations, the corre-
sponding bandwidth requirements were 4.98 Mbits/s,
1.63 Mbits/s, and 0.31 Mbits/s, respectively. Compared
with the original bandwidth requirements for the uncom-
pressed video (9.82 Mbits/s), we were able to achieve the

Figure 5. Pedestrian detection output from the YOLOv3 model using increasing levels of video compression and different CRF and
PSNR values.
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same pedestrian accuracy at only 0.31 Mbits/s. This
resulted in a 313 reduction in the bandwidth required
to send the video feed to a processing facility.

LC significantly reduces the storage and bandwidth
requirements to archive and transmit video for ITS appli-
cations (35). Reducing storage requirements allows for
more minutes of video to be stored or archived without
modification to the underlying hardware (36). Reducing
the bandwidth requirements for communicating video
allows for more concurrent video feeds to be sent given a
fixed bandwidth; therefore, more cameras can transmit
their feeds without needing upgrades to the network.
Provided the system can compress more frames per sec-
ond than the video feed creates, the video can be com-
pressed in real-time.

In our case study, false positive were found for PSNR
values less than 43 dB. However, as we are not recom-
mending PSNR values less than this for compressing
video data, this had no impact on our approach in the
operational environment. However, such false positives
can be eliminated by using a method such as the object
symmetry approach (37).

Contributions of the Paper

The primary contribution of our paper is the combina-
tion a vision-based pedestrian detection model, the
YOLOv3, with an LC for reducing data communication
bandwidth while maintaining a defined pedestrian detec-
tion accuracy. Our approach highlights the feasibility of
using LC to lower the bandwidth requirement for pedes-
trian detection. Error-bounded LC significantly reduces
the storage and bandwidth requirements to archive and
transmit the video. Reducing storage requirements
allows for more minutes of video to be stored or
archived with no modification to the underlying hard-
ware. Reducing the bandwidth requirement of the video
feed allows for more concurrent video feeds to be sent
given a fixed bandwidth; therefore, more cameras can
transmit their feeds with no upgrades to the network.
Thus, our approach directly contributes to a real-world
implementation of a pedestrian detection technique with
limited bandwidth and storage capacity, as computation
power and storage capacity will be limited by the edge
computing-based roadside infrastructure. In addition,
using PSNR as our compressed video quality metric will
allow other researchers to use PSNR values that yield an
acceptable combination of detection accuracy and a
reduction in the communication bandwidth requirements
for evaluating other video compression formats. In addi-
tion, acceptable PSNR values can form a starting point
for determining the optimal configuration for integration
into real-world deployment. Future ITS deployments in
CV environments will collect, analyze, and transmit mas-
sive amounts of data wirelessly from CVs, roadside
sensors, cell phones, and cameras to roadside edge-
computing devices. As the number of connected devices
increases, the need for reducing bandwidth requirements
will grow. This work provides an initial step in the explo-
ration and integration of techniques that reduce band-
width requirements without sacrificing system accuracy.

Conclusions

Edge computing enables analytics at the data source for
real-time safety applications. In this study, we developed
and evaluated an edge computing-based real-time pedes-
trian detection strategy combining a pedestrian detection
algorithm and an efficient data communication approach
to reduce bandwidth while maintaining high object detec-
tion accuracy. We utilize LC video data at different qual-
ity levels to determine the tradeoff between the reduction
of communication bandwidth requirements and a defined
object detection accuracy. The performance of the pedes-
trian detection strategy was measured in relation to
pedestrian classification accuracy with varying PSNRs.
The analyses revealed that we detected pedestrians by
maintaining a defined detection accuracy (98%) with a

Figure 6. Pedestrian detection accuracy for different PSNR
values and scenarios.

Table 2. Communication Bandwidth Requirement for Different
PSNR Values

CRF value PSNR value Required bandwidth (Mbits/s)

0 NA 9.82
10 56 dB 4.98
20 49 dB 1.63
30 43 dB 0.31

Note: CRF = constant rate factor; PSNR = peak signal-to-noise ratio.
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PSNR of 43 dB, while reducing the communication
bandwidth from 9.82 Mbits/s to 0.31 Mbits/s, 313
reduction in bandwidth. This strategy facilitates intelli-
gent uses of LC that will allow engineers to effectively
increase both bandwidth and storage capacity enabling
them to work with larger quantities of data. Our method
is applicable to detecting any external objects like vehi-
cles, bicycles, motorcycles, and so forth, which are not
equipped with CV devices. However, pedestrians are the
most vulnerable road users. Thus, our research focused
on improving intersection pedestrian safety to show the
applicability of our strategy. Future work will evaluate
our technique at other busier intersections under various
weather conditions and times of day to show the efficacy
of our approach for pedestrian detection. Future work
will also consider unexplored trade-offs important to
embedded transportation cyber-physical systems such as
energy efficiency, compression/decompression time varia-
tion, and effective bandwidth using error bound LC.
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