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Abstract—This paper introduces a deep neural network based method, i.e., DeepOrganNet, to generate and visualize fully high-fidelity
3D / 4D organ geometric models from single-view medical images with complicated background in real time. Traditional 3D / 4D
medical image reconstruction requires near hundreds of projections, which cost insufferable computational time and deliver undesirable
high imaging / radiation dose to human subjects. Moreover, it always needs further notorious processes to segment or extract the
accurate 3D organ models subsequently. The computational time and imaging dose can be reduced by decreasing the number of
projections, but the reconstructed image quality is degraded accordingly. To our knowledge, there is no method directly and explicitly
reconstructing multiple 3D organ meshes from a single 2D medical grayscale image on the fly. Given single-view 2D medical images,
e.g., 3D / 4D-CT projections or X-ray images, our end-to-end DeepOrganNet framework can efficiently and effectively reconstruct
3D / 4D lung models with a variety of geometric shapes by learning the smooth deformation fields from multiple templates based on
a trivariate tensor-product deformation technique, leveraging an informative latent descriptor extracted from input 2D images. The
proposed method can guarantee to generate high-quality and high-fidelity manifold meshes for 3D / 4D lung models; while, all current
deep learning based approaches on the shape reconstruction from a single image cannot. The major contributions of this work are to
accurately reconstruct the 3D organ shapes from 2D single-view projection, significantly improve the procedure time to allow on-the-fly
visualization, and dramatically reduce the imaging dose for human subjects. Experimental results are evaluated and compared with the
traditional reconstruction method and the state-of-the-art in deep learning, by using extensive 3D and 4D examples, including both
synthetic phantom and real patient datasets. The efficiency of the proposed method shows that it only needs several milliseconds to
generate organ meshes with 10K vertices, which has great potential to be used in real-time image guided radiation therapy (IGRT).

Index Terms—Deep deformation network, organ meshes, 3D / 4D shapes, 2D projections, single-view
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INTRODUCTION

Cone beam computed tomography (CBCT) has become increasing-
ly important in cancer radiotherapy for understanding the anatomical
structure of organs and pinpointing tumors during the treatments. Inte-
grated CBCT is an important and convenient tool for patient position-
ing, verification, and visualization in image guided radiation therapy
(IGRT). Traditional high-quality CBCT image reconstruction requires
near hundreds of projections, which consequently deliver undesired
high imaging / radiation dose to patients as well. The high imaging
dose to healthy organs in CBCT scans [23,25,46] is a crucial clinical
concern. Practically, the imaging dose in CBCT can be reduced by
reducing the number of X-ray projections and lowering tube voltage
setting. On the other hand, due to the limited number of projections, the
image quality is highly degraded in 3D-CBCT reconstructed by con-
ventional methods, such as Feldkamp-Davis-Kress (FDK) [16] (plenty
of artifacts and noises with lower accuracy). Several strategies have
been proposed to enhance the image quality of reconstructed CBCT.
One major kind of approaches is to use iterative image reconstruction
algorithms, such as simultaneous algebraic reconstruction technique
(SART) [1], total variation (TV) minimization [45], and prior image
constraint techniques [4,8]. Thus, the accuracy of subsequent 3D organ
modeling does highly depend on the quality of the reconstructed images.
Currently, the doctors and clinicians need to use some post-processing
methods / tools to segment, reconstruct, and visualize the 3D organ
models, which are quite time-consuming and cumbersome.

Recently, there is an emerging trend to generate 3D models by deep

 Yifan Wang, Zichun Zhong, and Jing Hua are with the Department of
Computer Science, Wayne State University, Detroit, MI 48202. E-mail:
{yifan.wang2,zichunzhong,jinghua} @wayne.edu.

 Corresponding author is Zichun Zhong.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

neural network in computer vision, computer graphics, and visual-
ization communities, in which the 3D shapes can be captured and
represented from the input raw data in different formats such as 3D
meshes, 3D point clouds, 3D volumes, multi-view 2D images, etc.
Among them, deriving the 3D shape from a single view is fundamental
and very challenging. Recently, deep learning techniques have been
developed to generate / reconstruct 3D shapes from a single RGB nat-
ural image (e.g., photograph) [9, 14,28, 50]. Their 3D shape outputs
from the neural network can be represented in different formats, such
as a volume [9], point loud [14, 28], or surface mesh [50]. However,
these methods either require complicated post-processing to generate
the surface models [9, 14], or have non-manifold and invalid surface
elements [50].

In order to build the bridge to directly generate the 3D shape meshes
from a single 2D medical grayscale image on the fly, in this work,
we present a deep neural network based method, i.e., DeepOrganNet,
to generate and visualize high-fidelity fully 3D / 4D organ geometric
models from single-view medical images, e.g., 3D / 4D-CBCT projec-
tions, by learning the smooth deformation fields based on a trivariate
tensor-product deformation technique. Experimental results are eval-
uated and compared with the traditional reconstruction method and
the state-of-the-art in deep learning, by using extensive 3D and 4D
examples, including both synthetic phantom and real patient datasets.
The key contributions of our work are as follows:

* It proposes an end-to-end deep learning method with a lightweight
but effective neural network to reconstruct multiple high-fidelity
3D organ meshes with a variety of geometric shapes from a single-
view medical image with complicated background and noises.

» The proposed organ reconstruction network simultaneously learn-
s the optimal selection and the best smooth deformation from
multiple templates via a trivariate tensor-product deformation
technique, i.e., free-form deformation (FFD), to match the query
2D image.

* To our knowledge, it is the first time using deep learning frame-
work to generate multiple 3D organ meshes (such as left and right
lungs in our application) from a single-view medical image.



e The application and user study on IGRT demonstrate that the
accurate on-the-fly tracking and reconstruction of 3D / 4D organ
shapes facilitated by our method have the potential in improving
the current IGRT procedure and practice.

2 RELATED WORK

In this section, we only review some most related work on 3D shape
reconstruction from single images in computer vision / graphics, visu-
alization, and medical imaging domains.

2.1 3D Shape from Single-View Image in Computer Vision

In computer vision, graphics, and visualization, 3D reconstruction is
the process of capturing the shape and appearance of real objects.

2.1.1

Hoiem et al. [20] and Saxena et al. [39] started to use statistic and
learning based approaches for 3D shape reconstruction from a single
image several decades ago. Recently, Kar et al. [26] proposed to learn
category-specific 3D shape models from object silhouettes and then
capture intra-class shape variation from a single image. Carreira et
al. [5] proposed a method to estimate the camera viewpoint using rigid
structure-from-motion and then reconstruct object shapes by optimizing
over visual hull proposals guided by loose within-class shape similarity
assumptions. Fouhey et al. [18] demonstrated to learn their proposed
primitives to infer 3D surface normals given a single image. Eigen
et al. [13] presented a method to estimate and find 3D depth relations
from a single stereo image by using a multi-scale deep network.

With the help of ShapeNet [7], a richly-annotated and large-scale
repository of 3D CAD models, there are several 3D reconstruction
approaches presented in the recent few years. For instances, Huang
et al. [22] proposed a joint analysis method for shape reconstruction
by estimating the camera pose, computing dense pixel-level correspon-
dences between image patches, and finally creating a 3D model for
each image by an optimization.

Traditional Learning Based Methods

2.1.2 Deep Learning Based Methods

Most recently, using deep learning methods to analyze and represent 3D
objects is becoming a popular trend, inspired by the successes of these
techniques in 2D images and 1D texts. Choy et al. [9] proposed a 3D
recurrent reconstruction neural network (3D-R2N2) to output a recon-
struction of the object with a 3D occupancy grid format, which cannot
well preserve the surface geometry of a 3D shape. In order to predict a
nicer surface space, Fan et al. [14] explored the generative networks
for 3D geometry based on a point cloud representation. Kuryenkov
et al. [28] proposed a DeformNet to achieve smooth geometric defor-
mations on point clouds for 3D shape reconstruction. However, it is
well-known that a 3D point cloud may not be as efficient and effective
in representing the underlying continuous 3D geometry as a 3D surface
mesh. It needs some non-trivial post-processings to generate the valid
surface meshes (to guarantee the manifold property).

Wang et al. [50] adopted a graph-based convolutional neural network
to produce the 3D geometry by progressively deforming an ellipsoid
with leveraging perceptual features extracted from an input image.
However, this method can only reconstruct a single genus-0 topology
shape, since the initial shapes are all deformed from an ellipsoid. An-
other limitation is that their deformation is defined on the surface space
with a linear transformation model, which is difficult for the network
to compute high-fidelity large deformation to accurately capture the
shape geometry and they need several regularization terms to control
the shape smoothness and local consistency. Smith et al. [44] extended
Wang et al.’s work [50] by using an adaptive face splitting strategy in
order to better capture the local surface geometry, but it still has the
problems of having non-manifold elements and topological constraint
(by using a sphere as the initial shape). The above methods are based on
surface deformation. However, one of the major limitations of surface
deformation, whose deformation field is directly defined on the shape
surface, is that its computational effort and numerical robustness are
highly related to the complexity and quality of the surface tessella-
tion [3]. In the presence of the degenerate or poor quality triangles,

the local transformations on these triangles are not well defined and
thus lead to topological or non-manifold errors [50], as shown in Sec. 5.
Even with quite some efforts for adding regularization terms, such as
Laplacian regularization, edge length regularization, etc. [44,50], it is
still difficult to fully guarantee the deformation consistency in the local
vertex neighborhood.

From the mathematical aspect, this problem can be avoided by space
deformation. The key idea is to deform the ambient space (i.e., 3D
volume space) enclosing the shapes, and thus implicitly deform the
embedded surface shape (i.e., 2-manifold) [3]. Compared with the
surface-based deformation methods, space deformation approaches
apply a trivariate deformation function to transform all the points of the
original surface. One major advantage of the space deformation is that
it does not depend on any particular surface representation, so that it can
be used to deform all kinds of explicit surface representations, such as
vertices of meshes or samples of point clouds [3]. Classical free-form
deformation (FFD) [40] represents the space deformation by a trivariate
tensor-product spline function. Pontes et al. [35] proposed a learning
framework (i.e., Image2Mesh) to reconstruct a single 3D object mesh
from a 2D natural image by first deforming a selected template using
the symmetric FFDs and then linearly combining a few more strongly
related templates. However, their method predominantly relies on
a complicated and pre-computed graph embedding of templates and
their framework is not end-to-end trainable. Jack et al. [24] proposed
a method to learn FFDs for multiple templates to infer a 3D shape
reconstruction from a single natural image with a plain background,
but their framework is also limited to generate a single object, without
considering multi-object scenario.

Besides that, all the aforementioned deep learning based methods
for 3D shape reconstruction from a single image are not designed and
applied to medical image reconstruction and visualization.

22 3D Volume (Shape) from Single-View
Medicine

Image in

In medical image, 3D reconstruction is the process of computing the
structure and tissue of real objects (not only the shape).

2.2.1

Li et al. [31,32] utilized a deformable image registration method to
compute deformation vector fields (DVFs) for the reference of a lung
motion model. Then, a principal component analysis (PCA) based lung
motion model has been applied to generate a motion vector field so as
to reconstruct a volumetric image and locate 3D tumor from a single
CBCT / X-ray projection. The algorithm was implemented on graphics
processing unit (GPU) to achieve real-time efficiency. However, there
are limitations of their method, such as a linear relationship between the
image intensity of the computed and measured projection images may
not be accurate. Some pre-processings for DVF computation are need-
ed. The framework settings are not fully automatical and practical for
clinical use. The single-view reconstruction suffers from an ill-posed
problem because only one angle data is used in the reconstruction. To
alleviate this issue, Liu et al. [33] tried a wavelet-based reconstruction
approach to the acquired singe-view measurements, but the reconstruc-
tion quality is still not satisfactory for clinical applications. Recently,
Henzler et al. [19] proposed a convolutional encoder-decoder network
to reconstruct a 3D volume from a 2D single-view cranial X-ray image.
The direct coarse output is then improved to the higher resolution by a
post fusion. The resulting 3D shape structure is still embedded in a 3D
volume and the 3D shape can only be shown by the volume rendering
with the manual-setting isosurface threshold.

Volumetric Image Reconstruction Methods

2.2.2 Shape Reconstruction Methods

There are few works on directly reconstructing the 3D shapes (meshes)
from medical images (grayscale pixels), since it is a cross-modality
problem, which is relatively challenging. The traditional solution is to
reconstruct the 3D volumetric images from multiple 2D view images at
first [1,4,8,16,45], and then use image segmentation methods to extract
the region of interest (ROI), such as organs or tumors; and finally
generate the 3D shape meshes (i.e., isosurface) by using Marching



Cubes algorithm [34]. For instance, iso2mesh [15] is an open-source
toolbox for generating 3D surficial and volumetric meshes from binary
and grayscale images, but it needs to undergo the tedious procedure
due to the complicated substeps.

Some researchers investigated to fill the gap to directly build the 3D
shape from a limited / sparse number of 2D medical images. Fleute
et al. [17] proposed to use a few X-ray images generated from a C-
Arm and to build the 3D shape of the patient bones or organs by
deforming a statistical 3D model to the contours segmented on the
X-ray views. Tang et al. [48] used a hybrid 3D atlas shape model
to reconstruct or deformably register the surface of an object from
two to four 2D X-ray projections of the object. Lamecker et al. [30]
presented a method to reconstruct 3D shapes from few digital X-ray
images on the basis of 3D-statistical shape models; however, there are
some empirical pre-processings needed, such as thickness of the shape
model, silhouette extraction, etc. Sadowsky et al. [38] presented a
method for volume rendering of unstructured grids, which was applied
in visualizing “2D-3D” deformable registration of anatomical models.
Ehlke et al. [12] proposed a novel GPU-based approach to render virtual
X-ray projections of deformable tetrahedral meshes, and applied the
method to improve the geometric reconstruction of 3D anatomy (e.g.,
pelvic bone) from few 2D X-ray images.

To our knowledge, there is no existing method to reconstruct the 3D
mesh models from a single-view 2D medical image, which is a very
challenging problem by using the traditional model-driven or statistical
techniques. In this paper, we propose a deep learning based data-driven
approach to solve this difficult but inspiring problem.

3 DEEPORGANNET

In this work, we propose an end-to-end deep neural network, named as
DeepOrganNet, to generate 3D / 4D surface meshes of multiple organs
from single-view medical image projections by learning the optimal
deformations upon the best-selected mesh templates. This strategy not
only prevents the poor quality of the reconstructed result with coarse
voxelization or non-manifold surface mesh (widely existing in previous
methods as discussed in Sec. 2.1.2), but also preserves fine and smooth
surface details for 3D shape generation and visualization. In this section,
we introduce main technique components of the DeepOrganNet model,
including dataset generation, free-form deformation (FFD) on mesh,
and organ reconstruction network with the loss functions.

3.1 Dataset Generation

3D object reconstruction is one of the most complicated tasks in com-
puter vision / graphics and visualization fields, compared with object
classification, segmentation, retrieval, etc., not to mention 3D object
reconstruction from a single-view image. Such work usually needs a
large-size dataset in support of the deep learning networks to learn the
correct mapping from the 2D projection image to the corresponding 3D
object. The current 3D shape reconstruction tasks mainly rely on some
public large-size and well-established synthetic 3D shape dataset, such
as ShapeNets [7], ModelNet10, and ModelNet40 [51]. Additionally, the
input image in most tasks is restricted to the 2D projection of a certain
object under an identical lighting condition with a uniform background
in order to filter out as much unrelated information as possible.

Challenges: Unlike such natural-image-to-3D-object tasks, the pro-
posed organ reconstruction from a single X-ray image (e.g., 3D / 4D-
CBCT projection) is more challenging due to following aspects. First,
the dataset of 3D organ shapes, such as human lungs (in this paper,
we use lung organs as illustrative examples), is very limited, and there
exists neither established synthetic dataset nor available clinical dataset
with a reasonable scale, which can be adopted in our task. Second, an
X-ray image is essentially different from a 2D natural image, which
contains obvious object profile and appearance (with the clear back-
ground in most previous works); instead the X-ray image contains the
structures and details inside the object or occluded from the viewpoint
(with the complicated background and noises). Third, the proposed
framework does reconstruct multiple objects simultaneously, such as
left and right lungs as an example. However, the previous existing
approaches could work on reconstructing only one object.

Generated Organ Meshes: Firstly, we address the limited dataset
challenge on both 3D lung models and the corresponding 2D medi-
cal image projections. We propose a feasible strategy to generate a
large number of synthetic 3D-CBCT projection images along with their
corresponding 3D two-lung (left and right lungs) surface meshes with
various geometric shapes by using a small amount of 3D /4D phantom
data. Given a 3D digital phantom (i.e., a volumetric image) I, we
first apply the Snakes segmentation method [27] to segment the 3D
lung mask images and then extract the isosurface mesh S from the
segmented lung mask image by Marching Cubes algorithm [34]. After
that, we employ a variety of shape deformations and spatial translations
on S to get a new mesh S’. For the organ shape deformation, we first
manipulate the coordinates by multiplying a scaling ratio to globally
stretch or compress the lung shape in S. The scaling ratios are either
constant or gradually change. We then semi-automatically apply local
distortions (e.g., dents / concaves, convexes, abnormal parts) on each
lung shape using Blender software tool. Both the above global and
local deformations are manipulated under the guidance of our collab-
orative doctors to resemble and cover the real lung shape variations.
All the procedures are performed based on 3D /4D phantoms within
different respiration phases to capture the real lung breathing motions.
For the organ spatial arrangement, we randomly disturb the distance
between each left / right lung’s bounding box center and origin within
a reasonable range based on the original lung positions in the phantom
to resemble various real lung shape cases, and the final new mesh is S’

Generated Volumetric Images: Once we have the deformed sur-
face mesh S’ along with the original 3D digital phantom image I, the
deformed 3D digital phantom image I’ can be computed. Then, we can
generate the corresponding single-view (e.g., front-view) 3D-CBCT
projections. It is noted that we can obtain the deformation vector field
(DVF) ADy of the mesh vertices from surface S to S’ as follows:

ADy =Vg — Vs, 6]

where Vg/, Vs € RY*3 are the positions of mesh vertices in S’ and
S and N is the number of mesh vertices. As a result, for each voxel a;
in I, we can estimate its deformation vector Ade,; by incorporating
the DVF of its k-nearest neighboring vertices on mesh .S. Such process
can be written as follows:

Adg, = Ha,Jo,ADy, )

where Jo, € RE XN s an one-hot encoding matrix for the indices of
the K neighbors (in this work, K is 4). He, € R¥ is a weight vector
in which:

if ||V — cul| < 1,
otherwise ,

=1
{hoci(ﬁ) K 3)

_ 1
hei(v) = RTvn—anT

where x € 1, ..., K and 1) is the norm of the maximum DVF of mesh
vertex in ADy,. We then can calculate the resulting " with all vox-
els” DVF using the reconstruction method with the deformation field
map [36,52].

Generated 2D Projection Images: Finally, we apply the Siddon
ray tracing algorithm [43] to generate the desired 2D front-view 3D /
4D-CBCT images of S’ by tracing the path of light through voxels in
the 3D volumetric image I’. To better simulate the realistic raw target
CBCT projections from the digital phantom data and test the sensitivity
of our method to the realistic complications, after the noise-free ray line
integrals are computed according to the above ray tracing method, the
noisy signal at each pixel on the CBCT projections is generated based
on the noise model with Poisson and normal distributions [29,49, 52].

In this way, we can generate as many 3D lung meshes and their
corresponding 3D / 4D-CBCT medical projections as possible, which
is quite crucial for our proposed data-driven deep learning framework.
Accordingly, we can cover various types of abnormalities caused by
lesions, injuries, or singularities through applying different kinds of
global and local deformations in the dataset generation and intentionally
increase the ratio of such abnormalities in the dataset to provide our
network with adequate prior knowledge to deal with potential unusual
cases. Fig. 1 demonstrates the flowchart of the dataset generation. More
detailed configuration is in the implementation section (Sec. 4).
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Fig. 1: The flowchart of dataset generation.

3.2 Free-Form Deformation (FFD) on Mesh

A 3D template mesh 2 = (V,F) consists of a set of N vertices
V = {vi,va,...,vn}and aset of M faces F = {fi,f>,....,fam}. A
high-quality 3D mesh object usually requires dense vertices to represent
fine details and thus it is computationally unfriendly, if one intends to
deform it pointwisely. Instead, FFD [40] deforms the 3D mesh object
through a small amount of control points. FFD introduces a 3D control
point grid of size (I+1) X (m+1) x (n+ 1), which encloses the target
3D mesh and performs the deformation in a trivariate tensor-product
spline function, where the position of each vertex on the target mesh
can be calculated:

l m n
V(s t,u) = > Bia(s)Bin(t) Bion (W)Pigk, @)
i=0 j=0 k=0

where v (s, t, ) is an arbitrary mesh vertex coordinate in the coordi-
nate system defined by three orthogonal axes s, ¢, and u. Bp q(x) =
(f; )(1 — x)? 927 is a binomial function called Bernstein polynomial
of degree ¢, and p;_;,x is the control point at the node (i, 7, k) on the
grid. From Eq. (4), we notice that the vertex placement of the tar-
get mesh is essentially a weighted sum of the control points. Denote
V € RV*3 as the matrix form of vertices on mesh €2, then the mesh
vertex representation can be converted:

V =BP, )
where B € RYV*"7 is the matrix form of the trivariate Bernstein tensor
for all N vertices, P € RY*? is the matrix form of control point
coordinates, and ¥ is the number of control points, i.e., ({ + 1) x (m +
1) x (n + 1). Suppose given the displacement of these control points
AP, the corresponding deformed mesh Q' = (V’, F) in which V' is:

V' =B(P + AP). (6)
As shown in Fig. 2, in this way, the objective of the proposed deep
learning network (DeepOrganNet) is to infer a AP such that the result-

ing mesh S’ best matches the shape of 3D lung organ surface according
to the input 2D X-ray image.

FFD

V' = B(P + AP)

Fig. 2: FFD process on a 3D lung shape: it is deformed according to
the displacement of the control points on a 4 x 4 X 4 grid.

3.3 Organ Reconstruction Network
3.3.1 Network Architecture Design

The pipeline of DeepOrganNet framework consists of three functional
components: feature encoder block, deformation block, and spatial
arrangement block. The overall architecture is shown in Fig. 3.

Given a single-view 3D / 4D-CBCT projection image, our network
first encodes it into a latent descriptor, which contains effective in-
formation for different purposes in the reconstruction stage. Due to
the dataset availability and the specific training objective, the image
encoder should be lightweight to alleviate the overfitting risk but still
quite efficient for the reconstruction task. Jack et al. [24] has justified
the adequate ability for MobileNets in the intra-class deformation, so
we apply and fine-tune the pre-trained MobileNets [21] to encode the
input medical image. MobileNets are compact and Inception style [47]
network, which factorizes a standard convolution into a depthwise con-
volution and a 1 X 1 pointwise convolution. In addition, MobileNets
introduce a width multiplier, which can reduce the width for each layer
by a constant ratio and thus give us more freedom to adjust our network
to best fit a relatively small amount of data in medical image scenarios.
In our work, we only adopt the convolution layers in MobileNets and
add a 1 x 1 convolutional layer after that to generate the image descrip-
tor with a reasonable dimension. The detailed network configuration is
shown in Fig. 3. Through our extensive experiments in Sec. 5, we find
that the lightweight MobileNets is sufficient and robust to extract the
informative features from a single-view medical image with complicat-
ed background and noises. Our input image is quite different from the
one in most of the current natural-image-to-3D-object tasks, since their
inputs are 2D images with clear object profile and boundary, which are
generated based on the light illumination and reflection; however, our
X-ray images are generated based on ray tracing technique to compute
the attenuation of the energy absorption. One of the advantages in
the X-ray-image-to-3D-object task is that the input X-ray images can
include some shape information, which is occluded by the natural 2D
images. It can make the viewer to see through the front shape sur-
face and thus alleviate the occlusions. We will show examples in the
experiment section (Sec. 5).

Furthermore, another advantage of our DeepOrganNet, compared
with current natural-image-to-3D-object tasks in which the prediction
is only designed for a single object, is that our task is essentially de-
signed for reconstruction of multiple separate objects, along with a
spatial arrangement between each other. As a result, we split different
branches from the whole image descriptor to reconstruct different or-
gans (i.e., different disconnected components), such as the left and right
lungs independently, instead of learning all the objects together. Based
on our observations and explorations, this scheme is more effective
for the network to learn discriminative features from different objects
than the one to learn everything together (such as using one branch
scheme with a set of different two-lung templates). Each branch is
responsible for the corresponding single lung generation by deforming
differently-geometric templates. In this work, we use left and right
lung organs as the testbed for our study, but the proposed framework
can be easily extended to multi-organ (more than two organs) scenarios.
Suppose we select n; left lung templates and n,. right lung templates
for corresponding branches, left lung branch learns a set of the defor-
mation parameters for all of the n; templates { AP, }\'L, according
to the left lung shapes from the input 2D image simultaneously, where
AP, € RY*3 is the deformation parameter (i.e., the control points’
displacements) for a single template L; = (V,,Fr,). The deformed
template L can be achieved by:

V' =By, (Pr, + APL,), @)

Fy, =Fy,, (®)

where By, and P, are the pre-computed transformation matrix and
control point position matrix for the template L;. The mesh connectivity
does not change during the deformation as shown in Eq. (8). In addition,
the left lung branch also learns a set of selection weights {wr, }*, for
each left lung template, which are determined along with the template
deformations as shown in Eq. (13) and Eq. (15). The final left lung
prediction is then selected by:

Lpr‘ed == L/ (9)

tmax?

where imq. = argmax {wr,},L,. Similarly, right lung branch ap-
plies the same procedure as the left lung branch to obtain the final right
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Fig. 3: The architecture of our DeepOrganNet. The DeepOrganNet first encodes the input image into a descriptor using MobileNets (without
fully-connected layers) followed by a 1 x 1 convolution layer (dimension reduction). DW refers to the depthwise separable convolution block
(two separable convolutional layers, functionally equivalent to a standard convolutional layer) and the numbers are output channel sizes (i.e.,
widths) of each layer / block. Every template in either left or right lung branch learns its own selection weight w and deformation parameters AP
through an independent fully-connected layer with dimension 193, including 192 for AP and 1 for w. The deformed templates with the highest
selection weights (e.g., templates L, and R; are selected in this example) in both branches are arranged according to the translation vector AT}
and AT, learned from another fully-connected layer to generate the final combined multi-organ meshes.

lung prediction R,,.q. By splitting two branches to extract the corre-
sponding effective information from the image descriptor, the learning
objectives become more specific and clearer. At this stage, the network
only focuses on how to deform the templates with respect to the lung
geometry from the input image. The spatial information, such as the
gap / distance and the relative positions between left and right lungs,
are reserved for the next stage.

As long as we have Lpreq and Ry,.q ready, the next step is to
combine them together so as to generate final left and right lung meshes
with the correct relative spatial arrangement according to the input
image. In order to achieve this, we learn two translation vectors ATy,
AT, from the image descriptor. Then the entire prediction of the new
organ meshes ' = (Vg,, Fg/ ) of both lungs is:

Vi ={V'i,,..+ 0T, Vg, +AT,},  (10)

Fo={Fr,..Fr,.}- (11)

3.3.2 Loss Functions

In this subsection, we define three kinds of losses in our network not
only to constrain the output shape results but also to optimize the
training process.

Deformation Loss: To ensure the deformation accuracy, we choose
Chamfer loss [14] to regulate the accuracy of the vertex locations on a
single lung prediction. The Chamfer loss is defined as:

C(P,Q) =3 min|p—al;+>_ min|p—als,

peP qeqQ

(12)

where p and q are points from two mesh vertex sets P and Q. Es-
sentially, for each point in P or Q, the Chamfer loss finds the nearest
vertex in the other point set and sums up all pair-wise distances. In our
framework, we apply weighted Chamfer loss for both lung branches as:

ny
Laeform = ZwLiC(V,Lp'r'ed’VLgi)—'_
ZwRiC(V/Rprsd’VRgt)7

=1

where Vi, and Vg, are the ground truth for left and right lung
meshes (aligned at the origin), respectively. In this way, the proposed
network is enforced to give the highest weight to the template, which
can be deformed best to match the ground truth. Now, we can select
the best template among all potential candidates in the datasets for
predicting each organ individually and automatically.

Translation Loss: The second loss term £¢,4ns is intended to learn
the translation vectors AT; and AT, It is defined as:

Tirans = ||ATy — ctry|)3 + || AT, — ctr, |2, (14)

where ctr; and ctr, are the ground truth translation vectors (i.e., two
global translation vectors between the origin and the bounding box
centers of left and right lungs in all ground truth meshes).

Regularization Loss: Our network deforms all templates according
to input 2D images. Sometimes, the reconstruction results are achieved
by tremendous deformations from a template that is not the closest one
in the template pool. We introduce a weight regularization term similar
to the one in [24] to encourage the network to give higher weight to the
template closer to the ground truth. In this way, the overall performance
of the network becomes more rational and intuitive:

ny 23
Lo :ZwLi HAPM”;"_Z"UR{, ||APRi||§7 1s)
i=1 i=1
where this loss is defined on the deformations of the control points.
The total loss is a weighted sum of all the above three kinds of

losses as follows:

fgtotal - Sdefo'rm + )\12t7'ans + )\22111, (16)

where A1 = 50 and A2 = 1 in experimental settings, which are deter-
mined based on the corresponding order of the magnitude and balanced
by the optimal network performance via our extensive experiments.

It is worth mentioning that through the strategy of integrating the
deformation weights in the loss function, the proposed DeepOrganNet
can automatically select the proper templates so that the network has
a good prior information to start with for each organ. The risk of non-
manifold issue in the reconstructed shape meshes, such as [14,44, 50],
is dramatically alleviated. In addition, FFD deforms the templates with
a small amount of control points compared with vertex-wise deforma-
tion, e.g., 64 vs 10K deformation parameters, which is quite efficient.



Furthermore, FFD can realize the high-order interpolation for the de-
formation computations, so that the mesh surface smoothness is well
maintained and no additional loss term as in [44,50] is required beyond
the Chamfer loss (fidelity term) to yield a good inference.

4 IMPLEMENTATION DETAILS

In this section, we introduce our dataset preparation and network train-
ing details followed by evaluation metrics which we use to measure the
experimental results.

Dataset Preparation: In order to evaluate the proposed DeepOr-
ganNet, we use following phantoms, patient studies in lung imaging
and motion datasets. There are two 3D / 4D digital phantoms, i.e., a
dynamic NURBS-based cardiac-torso (4D NCAT) phantom (4D images
and motions are provided) and 4D extended cardiac-torso (XCAT) [41],
being used as basis models to generate a reasonable number of 3D
lung surface meshes and corresponding 3D / 4D-CBCT projections.
They both have 10 breathing phases in 3D volumetric images (e.g.,
256 x 256 x 150 with voxel size of 1mm X 1lmm X 1mm). We
generate 542 pairs of (left and right) lungs with various shapes and
different spatial arrangements together with their corresponding 2D
single front-view CBCT projections (see Sec. 3.1). We use the first five
phases of NCAT and XCAT of 4D-CBCTs to build our training dataset
and leave the rest for testing evaluation purpose. All two-lung mod-
els are normalized along the sagittal axis and translated to the origin.
The bounding box size of all these models is within 1.35 x 1.25 x 1
along the transverse, coronal, and sagittal axes. We then compute the
bounding box centers of left and right lungs in the two-lung meshes
and translate them to the origin to form the ground truth for the two
deformation branches. The input 2D front-view CBCT projections are
grayscale images of size 192 x 256 with pixel size of Imm X 1mm.
In the experiments, we randomly split the dataset by 446 pairs for
training and 96 pairs for testing, respectively. We also test our model
performance on deformable image registration (DIR)-Lab (ten lung
cancer patient 4D-CT datasets with ten respiration phases each) [6],
Japanese Society of Radiological Technology (JSRT) database (247
chest X-ray images) [42] for lung shape reconstruction.

Training Details: Our task is to generate left and right lung shapes
from an image with noisy background and limited dataset, in order to
reach a good balance between the prediction accuracy and the network
overfitting risk. We set the MobileNets [21] (pre-trained on ImageNet
dataset [11]) width multiplier to be 0.25 and the width (i.e., channel
number) for each layer is shown in Fig. 3. For each lung branch
in the network, we have two single lung templates from XCAT and
NCAT, respectively. The 3D control point grids for every template
from two branches are set to be 4 x 4 X 4, which yields to 64 control
points per template. We train the network for 65K steps using Adam
optimizer with learning rate as 1 x 10~3. The batch size is 32. The
total training time is 4 hours on a single Nvidia GTX 1080 GPU with 8
GB GDDR5X.

Evaluation Metrics: Following the standard 3D shape reconstruc-
tion evaluation method, we use five different kinds of numeric metrics
to evaluate the performance of our model and compare it with the
existing state-of-the-art techniques.

Chamfer distance (CD) is applied in both training and testing pro-
cesses. The formal expression is shown in Eq. (12). It measures
bidirectional overall vertex-wise distance between two meshes.

Earth mover’s distance (EMD) [37] is designed to compute the min-
imal sum of distances over all possible one-to-one mappings between
points in P and points in Q, where P and Q are two point sets of the
same size. The EMD can be written as:

EMD(P,Q) = min > [[p—é(p)l,
peP
where ¢ is a bijection from P to Q.

Hausdorff distance (HD) is adopted to measure the largest inconsis-
tency between the reconstruction result and the ground truth. A lot of
previous 3D reconstruction works did not list it as their evaluation met-
ric because they mainly focused on point cloud reconstruction, which is
insensitive to small amount of outliers. In geometric modeling and com-
puter graphics, Hausdorff distance is a widely-used indicator to check

A7)

the reconstructed mesh quality since even small amount of outliers
may undermine the mesh surface consistency and quality, especially
for visualization and rendering. In our experiments, we measure the
Hausdorff distance between prediction and ground truth with respect
to both point clouds and surface meshes [10]. Suppose p and q are
the points sampled from point clouds (or surface meshes) of P and Q
accordingly, the HD in terms of point clouds (or surface meshes) can
be written as:
HD(®, Q) = max [ ma (mig Ip —all ) . mas (mig la—pl )|

F-score [50] is used as the harmonic mean of precision and re(cla%{
regarding how many points in prediction or ground truth can find the
nearest neighbor from the other within a threshold (¢). We set ¢ = 0.001
in our experiments.

Intersection over union (loU) is used to examine the volumetric
similarity between the voxelized prediction and ground truth. The IoU
is defined as: _Pnq

- PuQf
where P and Q are the voxelized 3D models.

Among the above five metrics, for CD, EMD and HD, the smaller
the better; while for F-score and IoU, the larger the better.

IoU(P, Q) 19)

5 EXPERIMENTS

In this section, we conduct extensive experiments of our model on the
3D and 4D synthetic data as well as real patient data. The results are
qualitatively and quantitatively compared with several state-of-the-art
in deep learning based 3D shape generation (from a single-view image)
methods and the traditional reconstruction method. It is noted that for
comparison experiments, best results in tables are shown in bold font.

5.1 3D Lung Shape Reconstruction from Synthetic Images

Fig. 4 shows the reconstruction results of 3D lungs with different shapes
based on the synthetic data. Our network is capable of dealing with
drastic variations (even though the real-world medical scenarios are far
less challenging). For each input image, our network is able to pick
the template which most resembles the ground truth model within the
corresponding branch, and predict the accurate spatial arrangement
between left and right lungs to generate the final high-fidelity 3D lung
shape pair. The reconstruction error (HD on mesh) is mapped into a
unified colormap range and it shows that the reconstruction results are
pretty good qualitatively and quantitatively.

Since our network learns the deformation parameters which are
essentially applied on the control points instead of directly on the
template model surface, one can generate the final 3D mesh models
with arbitrary resolutions in real-time (e.g., 1K vertices: 20 ms, 2.5K
vertices: 21 ms, SK vertices: 22 ms, 10K vertices: 25 ms) according to
the users’ needs without re-training the network.

5.2 Comparison with Deep Learning Based Methods

Comparison with Pixel2Mesh [50]: Intuitively, according to the Pix-
el2Mesh (P2M) experiment setting, we first use their network to predict
a single lung from a single-view input image. We train P2M on our
synthetic dataset following their training details. The quantitative eval-
uation result is shown in Tab. 1. We fairly set our output mesh vertex
number to be the same as the output of P2M network (i.e., 2466). The
CD and EMD are both computed between the uniformly sampled 1024
points from the prediction and ground truth such that the comparison
can be made not only between the single lung reconstruction from P2M
and our network, but also between the lung pair reconstruction (see
Tab. 2) and single lung reconstruction of our network. From Tab. 1, our
network outperforms P2M on all metrics.

We also present the qualitative comparison results in Fig. 5 and
Fig. 6. Both (P2M and our) networks yield predictions of smooth
surface but our model performs better in well preserving the mesh
surface geometry without non-manifold issue. The reason may be
that the input single-view 3D-CBCT projection image is essentially
different from a 2D natural input image. P2M has no mechanism to
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Fig. 4: Qualitative reconstruction and visualization results of some lung
shapes with drastic variations. The reconstruction error (HD on mesh)
is mapped into a unified colormap range (hotter colors indicate larger
errors and colder colors indicate smaller errors) and the mesh resolution
increases from top to bottom (e.g., 1K, 2.5K, 5K, 10K vertices).

Table 1: Quantitative comparison between P2M and our method on our
synthetic dataset.

[ Method [ CD | EMD [ F-score(e/1.5¢) [ ToU [ HD (Mesh) |
P2M (Left Lung) | 2.4609 | 76.2620 | 0.5983/0.7799 | 0.7190 0.1300
Ours (Left Lung) | 1.7018 | 57.0856 | 0.7293/0.8910 | 0.8352 0.0672

P2M (Right Lung) | 2.3399 | 69.7205 | 0.6111/0.8014 | 0.7661 0.1022
Ours (Right Lung) | 1.7300 | 59.9497 | 0.7293/0.8892 | 0.8423 0.0786

deal with the ambiguity caused by such ill-posed problem like PSGN.
However, our network have more specific templates to start with so
as to rule out some uncertainties or local minima, while the initial
ellipsoid template in P2M network is too general for this task; and how
to modify their network to fit for an initial lung shape is beyond the
scope of this work.

We also attempt to infer two lungs together with P2M network by
replacing the single ellipsoid with a pair of two ellipsoids. However, the
network tends to fuse two separate lungs as a single object. The original
weights for each regularization terms need to be further determined to
reach a good performance. It seems to be non-trivial to extend P2M
framework to multi-object reconstruction scenario.

Comparison with Point Set Generation Network [14]: We use
our synthetic dataset (i.e., 542 pairs of left and right lungs) with the
same training and testing splits to train the Point Set Generation Net-
work (PSGN) [14] as our model (discussed in Sec. 4) and generate
meshes from corresponding prediction point clouds using Ball Pivoting
Algorithm [2]. Since our model can generate meshes with arbitrary
densities, we set the output mesh vertex number as 1024 to fairly com-
pare HD with the mesh generated from PSGN predictions. The CD
and EMD are both computed between the prediction and uniformly
sampled 1024 points from the ground truth (denser isosurface meshes).

Tab. 2 shows the quantitative evaluation of six different metrics and
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Fig. 5: Qualitative comparison between P2M and our method on left
lung model. Our results generate meshes with no non-manifold issue,
while the results from P2M have self-intersections (highlighted in red).
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Fig. 6: Qualitative comparison between P2M and our method on right
lung model. Our results generate meshes with no non-manifold issue,
while the results from P2M have self-intersections (highlighted in red).

Fig. 7 provides the qualitative comparison. Our network outperforms
PSGN in most metrics. In terms of point-wise HD and F-score(e)
evaluation, PSGN tends to get slightly better numeric results since
the PSGN generates points independently, thus it has more degrees of
freedom. However, the EMD of PSGN is much larger since the point
cloud inference from PSGN is irregularly distributed, and sometimes
the points from one lung are much denser than those from the other.
Although PSGN has comparable performance in most of the point-wise
evaluation metrics, it does not guarantee a high-quality 3D surface
mesh. The mesh-based HD is nearly 50% higher than ours since there
are a lot of meshing failures (e.g., self-intersecting triangles, holes, non-
manifold triangles, etc.) and bumpy details in the generated surface
meshes. In addition, PSGN learns a lung pair as a single object, when
the gap between two lungs is small, the (post-processing) meshing
algorithm is difficult to separate them.

Table 2: Quantitative comparison between PSGN and our method on
our synthetic dataset.

[ Method[ CD | EMD [F-score (¢ /1.5¢) [HD (Point) | ToU [HD (Mesh) |

[ PSGN [3.0122] 1868821 | 0.4384/0.6377 | 0.0960 [0.8002] 0.1491 |
[ Ours [2.8955] 70.7083 | 0.437570.6650 | 0.0980 |0.8148] 0.1000 |
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Fig. 7: Qualitative comparison between PSGN and ours. Both point clouds and solid surface meshes are given. The failure parts (e.g.,
self-intersecting triangles, holes, non-manifold triangles, etc.) of PSGN meshes are red-cycled.

5.3 Comparison with Traditional Reconstruction Method

Before deep learning methods are applied to 3D reconstruction area, the
most common way to acquire 3D organ models from a patient is to first
reconstruct 3D-CBCT volumetric image from multiple 2D projections
from different views and then segment the organ models from the recon-
structed volumetric image. The segmentation quality heavily depends
on the number of projections. Very few views severely undermines the
reconstructed 3D-CBCT image accuracy, while increasing the views
impairs patient health due to a higher imaging dose as well as consumes
a longer computational time. Our network offers satisfiable 3D lung
shape models with only a single-view 3D-CBCT projection. Tab. 3
shows that the traditional Simultaneous Algebraic Reconstruction Tech-
niques (SART) [1] requires at least 10-view projections to reconstruct
the 3D lung mesh model and up to 50-view projections to reconstruct
the 3D-CBCT volumetric image so as to segment the clean, smooth,
and complete 3D lung models to reach the comparable result as ours.
Fig. 8 shows the qualitative comparison between two methods. It is
worth mentioning that in clinical studies (or during the therapy), it is
common to use hundreds of projections to reconstruct a high-quality
3D volumetric image and then process a good-quality 3D organ model.

Table 3: Quantitative comparison between SART (with different num-
bers of views) and our method.

[ Method | CD | EMD | F-score (¢/1.5¢) | ToU [ HD (Mesh) |
1-view N/A N/A N/A N/A N/A
5-view N/A N/A N/A N/A N/A
10-view | 3.3143 | 92.3019 0.3999/0.6381 0.7277 0.1888
20-view | 2.3458 | 66.1249 0.5107/0.7470 0.9099 0.1332
50-view | 1.6694 | 43.6351 0.6753/0.8423 0.9433 0.0593

Ours 2.2458 | 48.5677 0.4931/0.7567 0.8880 0.0662

5.4 Applications and User Study on Patient Datasets

To further evaluate the accuracy and usability of the proposed method,
our DeepOrganNet has been evaluated in the following studies by some
domain experts, including our collaborative radiation oncologists and
physicians. The efficiency and accuracy of our method demonstrate its
capabilities to explicitly track, reconstruct, and visualize 3D / 4D organ
shapes on the fly during the dynamic procedure and therefore it can be
employed in the real-time image guided radiation therapy (IGRT).

5.4.1 3D Lung Shape Reconstruction from Patient Images

We first use ten cases of 4D-CTs from DIR-LAB datasets to evaluate the
robustness of our method in real applications. For each case, we select
the phase-0 of 4D-CTs to compute the front-view CBCT projection
using the method in Sec. 3.1. All the generated front-view projections
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Fig. 8: Qualitative comparison between the traditional SART and our
method. The reconstructed 3D-CBCT images by SART from one and
five views are unable to be used to segment lungs. SART requires CBCT
projections from at least 50 views to reconstruct a good-quality 3D
volumetric image such that the corresponding segmented lung model is
comparable to our result. Failure parts (e.g., wrong connectivities and
not-good shape preserving parts) of SART-based meshes are red-cycled.

are histogram-equalized. We test our network directly on images of
all the cases without any fine-tuning. We also further test our model
on some single front-view X-ray images from JSRT database [42]
and some ill-positioned single-view CBCT projections from real lung
cancer patient datasets. We can see that our network is capable of
describing the shape geometric property and providing a reasonable
spatial arrangement in real case even though the images appear to be
different from synthetic inputs. Fig. 9 shows qualitative visualization
results of the above datasets, which are examined by domain experts.

5.4.2 4D Lung Shape Reconstruction

Instead of inferring the different 3D lung shapes, our network shows
potential capability to track and visualize lung shapes along with the



Fig. 9: Top: qualitative visualization results of 3D lung shape recon-
struction from single-view phase-0 projections of five cases in DIR-
LAB dataset. Bottom: qualitative visualization results of 3D lung shape
reconstruction from single-view real X-ray images in JSRT database
and real 3D-CBCT patient datasets. These sample results are picked
from the challenging cases with large variations of the lung shapes.

0 0.069

(a) Phase 6

Fig. 10: Three expiration phases of 4D NCAT phantom model. Maxi-
mal deformation can be traced according to the red dashed lines across
the input 2D images, and the corresponding deformations on the recon-
structed 3D mesh models are mapped into a unified colormap range
(hotter colors indicate larger deformations). The solid surface and
wireframe meshes show the front-view and occluded (diaphragm) de-
formations, respectively. The deformations of Phases 8 and 10 are
computed based on Phase 6 as the reference.

(b) Phasc 8 (c) Phase 10

dynamic process of breathing. It is extremely important for IGRT pro-
cedure to understand the anatomical changes and pinpoint the location
of the diseased regions on the fly. By sending a series of 2D front-view
4D-CBCT projections with different phases, our network is capable of
capturing the minor changes between phases to describe the breathing
tendency and maintaining the shape consistency simultaneously. It is
interesting to discover that even some occluded deformations (in the
natural images) in the diaphragm areas (bottom part of the lungs) can
be extracted and reconstructed from the input single-view X-ray or
4D-CBCT projections. To our knowledge, this is the first time that a
single-view reconstruction method can capture that. Fig. 10 and Fig. 11
show three expiration phases of a phantom case and a real case in DIR-
LAB dataset. The colormaps represent the deformation magnitudes
during the breathing. The solid surface meshes and wireframe meshes
are used to visualize the front-view and occluded (diaphragm) deforma-
tions, correspondingly. Furthermore, the proposed method only takes
about 22 milliseconds to generate 4D lung meshes with 5K vertices
at each phase, which has great potential to be used in an on-the-fly
targeting system on dynamic scenes in IGRT; however, there is no
current method, which can make it on-the-fly.

Since our proposed method outperforms the current methods, an of-
ficial clinical trial is under arrangement with our collaborative hospital.

0 0.036
(a) Phase 0 (b) Phase 1 (c) Phase 2
Fig. 11: Three expiration phases of Case 8 in 4D-CT DIR-LAB dataset.
Maximal deformation can be traced according to the red dashed line
across the input 2D images, and the corresponding deformations on
the reconstructed 3D mesh models are mapped into a unified colormap
range (hotter colors indicate larger deformations). The solid surface
and wireframe meshes show the front-view and occluded (diaphragm)
deformations, respectively. The deformations of Phases 1 and 2 are
computed based on Phase 0 as the reference.

6 CONCLUSION

In this work, we have proposed the DeepOrganNet, a deep neural
network, to generate and visualize high-fidelity 3D / 4D organ shape
geometry from single-view medical images in real time. DeepOrganNet
has three major components, i.e., feature encoder block, independent
deformation block, and spatial arrangement (translation) block. By
using the multi-organ template selection and the smooth FFD strate-
gies in the proposed framework, our method can generate high-quality
manifold meshing models, which outperforms the previous deep learn-
ing methods as well as the traditional method from the single-view
image reconstruction. In medical practice, this work can be used as the
key functions for real-time IGRT in order to accurately visualize the
patients’ organ shapes on the fly, significantly improve the procedure
time for patients and doctors, and dramatically reduce the imaging dose
during the treatment. Some further interactive techniques based on
DeepOrganNet will be developed in collaboration with domain experts.
Discussion and Future Work: In the current framework, the
lightweight MobileNets are computational efficient but limit the power
of feature extraction in the encoder block. In the future, we will explore
some more powerful deep neural networks for the encoder part and
collect more 4D lung cancer patient datasets to improve the diversity
and scalability of the training and testing for our DeepOrganNet. Al-
though the proposed DeepOrganNet aims to reconstruct multiple 3D
organs simultaneously, our current work does only implement for left
and right lung organs as an example for justifying the feasibility and
extendability of the proposed method. We will extend the framework
into more organ reconstructions, such as heart, liver, pancreas, etc.,
in order to build a real fully DeepOrganNet system at a complicated
3D / 4D scene-level reconstruction. As for 4D scenarios, we have
reconstructed each phase independently in the current system, and we
will consider to use recurrent neural network and attention-based mod-
els to construct a 4D dynamic organ shape reconstruction deep neural
network. It is worth mentioning that the quality of the reconstructed
shapes can be further improved by including 2D-view projections from
more viewpoints as the input to alleviate shape over- / under-estimation;
we will accordingly explore how to balance the computational time
(imaging dose) and reconstructed accuracy in the clinical study.
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