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ABSTRACT: We critically examine the classic endpoint method for particle mass determi-
nation, focusing on difficult corners of parameter space, where some of the measurements
are not independent, while others are adversely affected by the experimental resolution.
In such scenarios, mass differences can be measured relatively well, but the overall mass
scale remains poorly constrained. Using the example of the standard SUSY decay chain
qg— X9 — - %Y, we demonstrate that sensitivity to the remaining mass scale parameter
can be recovered by measuring the two-dimensional kinematical boundary in the relevant
three-dimensional phase space of invariant masses squared. We develop an algorithm for
detecting this boundary, which uses the geometric properties of the Voronoi tessellation
of the data, and in particular, the relative standard deviation (RSD) of the volumes of
the neighbors for each Voronoi cell in the tessellation. We propose a new observable, 3,
which is the average RSD per unit area, calculated over the hypothesized boundary. We
show that the location of the ¥ maximum correlates very well with the true values of the
new particle masses. Our approach represents the natural extension of the one-dimensional
kinematic endpoint method to the relevant three dimensions of invariant mass phase space.
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1 Introduction

The dark matter problem is currently our best experimental evidence for the existence
of new particles and interactions beyond the Standard Model (BSM). A great number
of ongoing experiments are trying to discover dark matter particles through direct [1] or
indirect detection [2]. In principle, dark matter particles could also be produced in high
energy collisions at the Large Hadron Collider (LHC) at CERN, providing a complementary
discovery probe in a controlled experimental environment [3].

Since the dark matter particles must be stable on cosmological timescales, in many
popular BSM models they carry some conserved quantum number. The simplest choice is
a Zso parity, which is known as R-parity in models with low energy supersymmetry (SUSY)
[4], Kaluza-Klein (KK) parity in models with universal extra dimensions (UED) [5], T-
parity in Little Higgs models [6], etc. As a result, the dark matter particles are necessarily
produced in pairs: either directly, or in the cascade decays of other, heavier BSM particles
[7]. The prototypical such cascade decay is shown in Fig. 1, in which a new particle D
undergoes a series of two-body decays, terminating in the dark matter candidate A, which
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Figure 1. The generic decay chain under consideration in this paper: D — jC' — jl, B — jl,{; A,
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escapes updetqetgy The ymssepcof the BSMupartigles agedenntehdy ey ie tHesh it eondyhe
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vmddng e dinmatigendpointdonmslar (2 4241 handrdelivesting theqelavent regions in the mass
parameter space (1.1) (see also eq. (2.3) and Fig. 2 below).
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Fig. 1 are two-body, i.e. we shall consider the mass hierarchy
e The presence of leptons among the SM decay products in Fig. 1 is theoretically not
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We note that in principle one can test this assumption experimentally, e.g. by constructing suitably
defined on-shell constrained M; variables corresponding to the competing event topologies [9], or by studying
the shapes and the correlations for the invariant mass variables considered below [10]. Such an exercise is
useful, but beyond the scope of this paper. -2 -



Second, the momentum of a lepton is measured much better than that of a jet,
therefore the masses (1.1) will be measured with a better precision in a leptonic
channel (as opposed to a purely jetty channel). Finally, if the SM decay products in
Fig. 1 were all jets, in light of the arising combinatorial problem [11-16], we would
have to resort to sorted invariant mass variables [17, 18], whose kinematic endpoints
are less pronounced and thus more difficult to measure over the SM backgrounds.

e From a historical perspective, the best motivation for considering the decay chain of
Fig. 1 is that it is ubiquitous in SUSY, where D represents a squark ¢, C' is a heavier
neutralino Y9, B is a charged slepton ¢ and A is the lightest neutralino x¥, which
escapes the detector and leads to missing transverse energy Fp. In the two most
popular frameworks of SUSY breaking, gravity-mediated and gauge-mediated, the
combination of (a) specific high scale boundary conditions, and (b) renormalization
group evolution of the soft SUSY parameters down to the weak scale, leads to just
the right mass hierarchy for the decay chain of Fig. 1 to occur. In the late 1990’s and
early 2000’s, this prompted a flurry of activity on the topic of mass determination in
such “SUSY-like” missing energy events. Soon afterwards, it was also realized that
the decay chain of Fig. 1 is not exclusive to supersymmetry, but the same final state
signature also appears in other models, e.g. minimal UED [19] and littlest Higgs [20].

To date, a large variety of mass measurement techniques for SUSY-like events have
been developed. Roughly speaking, they all can be divided into two categories.

o FEzxclusive methods. In this case, one takes advantage of the presence of two decay
chains in the event (they are often assumed identical) and the available Fp measure-
ment. Several approaches are then possible. For example, in the so-called “poly-
nomial methods” one attempts to solve explicitly for the momenta of the invisible
particles in a given event, possibly using additional information from prior measure-
ments of kinematic endpoints [21-35].2 Alternatively, utilizing information from both

3 variables whose distributions ex-

branches, one could introduce suitable transverse
hibit an upper kinematic endpoint indicative of the parent particle mass [48-63]. In
the latter case, one still retains a residual dependence on the unknown dark matter
particle mass m 4, which must be fixed by some other means, e.g. via the kink method
[64-71] or by performing a sufficient number of independent measurements [53, 57].
While they could be potentially quite sensitive, these exclusive methods are also less
robust, since they rely on the correct identification of all objects in the event, and
are thus prone to combinatorial ambiguities, the effects from E7 resolution, initial

and final state radiation, underlying event and pileup, etc.

2For long enough decay chains, the polynomial methods are able to solve for the invisible momenta, even
without additional experimental input and without a second decay chain in the event. If the decay chain of
Fig. 1 contained an additional two-body decay to a visible particle, just 5 events are sufficient for solving
the event kinematics [22, 27].

3Transversality is not strictly necessary, in fact it may even be beneficial to work with 3 + 1-dimensional
variants of those variables [36-47].



e Inclusive methods. In this case, one focuses on the decay chain from Fig. 1 itself,
disregarding what else is going on in the event. Using only the measured momenta
of the visible SM decay products, i.e., the jet and the two leptons, one could form all

4

possible invariant mass combinations®, namely mg, mje,, mj,, and mje, measure

their respective upper kinematic endpoints

{miges e mies mige (1.2)
and use them to solve for the four input parameters (1.1). As just described, this
approach is too naive, as it overlooks the remaining combinatorial problem involving
the two leptons ¢, and £;. Since “near” and “far” cannot be distinguished on an
event by event basis, the variables mj, and mj,, are ill defined. This is why it has

become customary to redefine the two jet-lepton invariant mass combinations as®
Mji(lo) = Min {mjln,mjlf} , (1.3)
Mj(hs) = Max {mjln,mjlf} . (1.4)

The distributions of the newly defined quantities (1.3) and (1.4) also exhibit upper

max
§l(lo)
use the new well-defined set of measurements

max

kinematic endpoints, m and My respectively. Then, instead of (1.2), one can

max max max max
{mu S o) mjl(hz’)} (1.5)

to invert and solve for the input mass parameters (1.1). This procedure constitutes
the classic kinematic endpoint method for mass measurements, which has been suc-
cessfully tested for several SUSY benchmark points [77-84].

However, despite its robustness and simplicity, the kinematic endpoint method still
has a couple of weaknesses. As we show below, taken together, they essentially lead to an
almost flat direction in the solution space, thus jeopardizing the uniqueness of the mass
determination. The first of these two problems is purely theoretical — it is well known
that in certain regions of the parameter space (1.1) the four measurements (1.5) are not
independent, but obey the relation [81]

2
(mi)® = (miisy)” + (migen)?. (1.6)

In practice, this means that the measurements (1.5) fix only three out of the four mass
parameters (1.1), leaving one degree of freedom undetermined. In what follows, we shall
choose to parametrize this “flat direction” with the mass m 4 of the lightest among the four
new particles D, C, B and A. One can then use, e.g., the first three of the measurements

4In general, one is not limited to Lorentz-invariant variables only, e.g., recently it was suggested to study
the peak of the energy distribution as a measure of the mass scale [72-75].

® A more recent alternative approach is to introduce new invariant mass variables which are symmetric
functions of mj,, and myye,, thus avoiding the need to distinguish £, from £; on an event per event basis
[76].



in (1.5) and solve uniquely for the three heavier masses mp, mc, and mp, leaving my4 as
a free parameter. We list the relevant inversion formulas in Appendix A. The obtained

one-parameter family of mass spectra
mp =mp (mAa mﬁlam7 m;'rlllam7 m;‘?&ﬁ))v
mc = mc (mAa mﬁlaz" m;rlllaz" m;?ll(alg))v (1 7)

mB — mB(mA, mZ’L(l(E max max )7

s 505 M5 (10)
ma

will satisfy the three measured kinematic endpoints m;"**, m/}**, and m’4%, by construc-
J Jl(lo)

tion. What is more, in parameter space regions where eq. (1.6) holds, the family (1.7) will
also obey the fourth measurement of M iy SO that the four measurements (1.5) will be
insufficient to lift the m 4 degeneracy in (1.7).

These considerations beg the following two questions, which will be addressed in this

paper.

1. In the remaining part of the parameter space, where (1.6) does not hold and mg’l‘g]fi)

provides an independent fourth measurement, how well is the m 4 degeneracy lifted
after all? With the explicit examples of Sections 3 and 4 below, we shall show that

although in theory the additional measurement of m?}(a}f;) determines the value of m 4,

in practice this may be difficult to achieve, since the effect is very small and will be
swamped by the experimental resolution.

2. In the region of parameter space in which (1.6) holds, what additional measurement
should be used, and how well does it lift the degeneracy? In the existing literature,
the standard approach is to consider the constrained® distribution mjue>x), which

exhibits a useful lower kinematic endpoint mﬁf{g>£) [85, 86]. In what follows, we
2

shall therefore always supplement the original set of 4 measurements (1.5) with the

additional measurement of m%(fg>£) to obtain the extended set
2

mazx mazx max min

{mﬂ"ba:c, mjll ) mjl(lo) 5 mjl(h’i) y mjll(9>g)} s (18)

so that in principle there is sufficient information to determine the four unknown
masses. Even then, we shall show that the sensitivity of the additional experimental

input m?;li(%bg) to the previously found flat direction (1.7) is very low. First of all, it is

min

already well appreciated that the measurement of Mo =)

is very challenging, since

5The distribution Mjie>1) is nothing but the usual mj ; distribution taken over a subset of the original
events, namely those which satisfy the additional dilepton mass constraint

m'lnllaz

V2
In the rest frame of particle B, this cut implies the following restriction on the opening angle 6 between
the two leptons [86]

<my < mﬁmz .

0>

I

o[

thus justifying the notation for Mji(>%)-



in the vicinity of its lower endpoint, the shape of the signal distribution is concave
downward, which makes it difficult to extract the endpoint with simple linear fitting,
and one has to use the whole shape of the Mjip>x) distribution [87]. Secondly, as

we shall show in the examples below, the variation of the value of m]”( ) along

0>z
the flat direction (1.7) can be numerically quite small, and therefore the sen31tivity

of the added fifth measurement along the flat direction (1.7) is not that great.

Fither way, we see that the known methods for lifting the degeneracy of the flat
direction (1.7) will face severe limitations once we take into account the experimental
resolution, finite statistics, backgrounds, etc. [88, 89] Thus the first goal of this paper will
be to illustrate the severity of the problem, i.e. to quantify the “flatness” of the family of
solutions (1.7). For this purpose, we shall reuse the study points from Ref. [89], which at
the time were meant to illustrate discrete ambiguities, i.e. cases where two distinct points
in mass parameter space (1.1) accidentally happen to give mathematically identical values
for all five measurements (1.8). Here we shall extend those study points to a family of
mass spectra (1.7) which give mathematically identical values for the first three” of the
measurements (1.8), and numerically very similar values for the remaining measurements.

Having identified the problem, the second goal of the paper is to propose a novel
solution to it and investigate its viability. Our starting point is the observation that the
signal events from the decay chain in Fig. 1 populate the interior of a compact region in the
(mje,, , Mo, Mije f) space, whose boundary is given by the surface S defined by the constraint
[17, 90, 91]

C

2
mp
52 52 52
S: ]Zf [\/mM mﬂn> + mi mﬂn (1 — ma)] s (19)
which, for convenience, is written in terms of the unit-normalized variables
e Mgy . Mty

A _ JEn _ i _
mje, = mmaz’ Mee = mmaz’ mjef - e’ (110)
7l 74 ey

We note that both the shape and the size of the surface S depend on the input mass
spectrum (1.1), i.e., S(ma, mp, mc, mp), and this dependence is precisely what we will be
targeting with our method to be described below.

In its traditional implementation, the kinematic endpoint method is essentially® using
the kinematic endpoints (1.2) of the one-dimensional projections of the signal population
onto each of the three axes mjy, , mg and mjy,, as well as onto the “radial” direction m;y =

\/m?% +m§£ +m?Ef. This approach is suboptimal because it ignores correlations and
misses endpoint features along the other possible projections. The only way to guarantee
that we are using the full available information in the data is to fit to the three-dimensional
boundary (1.9) itself [92, 93], which will be the approach advocated here. As previously

"And sometimes four, if we are in parts of parameter space where (1.6) holds.
8The fact that one has to use Mji10) and mjypy) in place of my,,, and mje¢, does not change the gist of
the argument.



observed in [92] (and extended to a broader class of event topologies in [94]), most of
the signal events are populated near the phase space boundary (1.9), on which the signal
number density ps formally becomes singular. This fact is rather fortuitous, since it implies
a relatively sharp change in the local number density as we move across the phase space
boundary, even in the presence of SM backgrounds (with some number density py,, which
is expected to be a relatively smooth function). Thus, we need to develop a suitable
method for identifying regions in phase space where the gradient of the total number
density p = pp + ps is relatively large, and then fit to them the analytical parametrization
(1.9) in order to obtain the best fit values for the four new particle masses (1.1).

The first step of this program was already accomplished in our earlier paper [93], build-
ing on the idea originally proposed in [95] for finding “edges” in two-dimensional stochastic
distributions of point data. Ref. [95] suggested that interesting features in the data, e.g.,
edge discontinuities, kinks, and so on, can be identified by analyzing the geometric prop-
erties of the Voronoi tessellation [96] of the data.” The volume v; of a given Voronoi cell
generated by a data point at some location 7; provides an estimate of the functional value
of the number density p at that location,

o) ~ . (1.11)

Vi
Therefore, in order to obtain an estimate of |Vp(7)|, we can construct variables which
compare the properties of the Voronoi cell and its direct neighbors. Among the different
options investigated in Refs. [95, 98], the relative standard deviation (RSD), a;, of the
volumes of neighboring cells, was identified as the most promising tagger of edge cells. The
RSD was defined as follows. Let IV; be the set of neighbors of the i-th Voronoi cell C;, with
volumes, {v;}, for j € N;. The RSD, 7, is now defined by

_ 1 (v — (v(N)))?

Gi=——— - LA (1.12)
(v(Ni) g]; |Ni| =1

where we have normalized by the average volume of the set of neighbors, N;, of the i-th

cell

WN)) = — 3 ;. (1.13)
INil =%,

Subsequently, in [93] we showed that this procedure for tagging edge cells can be readily
extended to three-dimensional point data, as is the case here. The end result of the method
was a set of Voronoi cells which have been tagged as “edge cell candidates” since their values
of a; were above the chosen threshold [93]. With the thus obtained set of edge cells in hand,
it appears that we are in a perfect position to perform a mass measurement, simply by
finding the set of values for {ma, mp, mc, mp} which maximize the overlap between our
tagged edge cells and the hypothesized surface S. We have checked that this approach

We note the existence of efficient codes for finding Voronoi tessellations in the form of the qHULL
algorithms [97]. Wrappers that allow the use of these algorithms in many frameworks also exist, and in this
work we use a private Python code to compute the geometric attributes of the Voronoi cells.



indeed works and gives a reasonable estimate of the true mass spectrum. However, here
we prefer to suggest a slightly modified alternative, which accomplishes the same goal, but
with somewhat better precision.

The problem with fitting to a subset of the original data set (namely the set of Voronoi
cells which happened to pass the &; cut) is that we are still throwing away useful infor-
mation, e.g., the Voronoi cells which barely failed the cut. In spite of formally failing,
those cells are nevertheless still quite likely to be edge cells. Thus, in order to retain the
full amount of information in our data, we prefer to abandon this “cut and fit” approach,
and instead design a global variable which is calculated over the full data set. The only
requirement is that the variable is maximized (or minimized, as the case may be) for the
true values of the masses {m4, mp, mc, mp}.

In order to motivate such a variable, consider for a moment the case when the function
p(7) is known analytically, then let us investigate the (normalized) surface integral

J da [V p(7)

fs(mmmsﬁlc,mD

(1.14)

fs(ﬁ%A,ﬁ%Bﬁ"chhD) da

119 values (4, mp,mc,mp) of the unknown masses (1.1). The

for some arbitrary tria
meaning of the quantity (1.14) is very simple: it is the average gradient of p(7) over the
chosen surface S. We expect the dominant contributions to the integral to come from
regions where the gradient is large, and we know that the gradient is largest on the true
phase space boundary S(ma, mp, mc,mp), defined in terms of the true values of the
particle masses. However, if our choice for (ma,mp, mc,mp) is wrong, the integration
surface S will be far from the true phase space boundary S, and those large contributions
will be missed. The only way to capture all of the large contributions to the integral is to
have S coincide with the true S, and this is only possible if in turn the trial masses are
exactly equal to the true particle masses. This suggests a method of mass measurement
whereby the true mass spectrum is obtained as the result of an optimization problem
involving the quantity (1.14).

Of course, in our case the analytical form of the integrand |V p()| is unknown, but we
can obtain a closely related quantity using the Voronoi tessellation of the data. Following
[93, 95], we shall utilize the RSD &; defined in (1.12), which has been shown to be a good
indicator of edge cells, and replace the integrand in (1.14) as

IV p(F)| — ¢(F) = &; for 7 € C. (1.15)

In other words, the gradient estimator!! function g(7) is defined so that it is equal to the
RSD &; of the Voronoi cell C; in which the point 7 happens to be. Egs. (1.14) and (1.15)

0Fyom here on trial values for the masses will carry a tilde to distinguish from the true values of the
masses which will have no tilde. Correspondingly, S stands for a hypothesized “trial” boundary surface
(1.9) obtained with trial values of the mass parameters.

"Note that g() is not supposed to be an approximation for |§p(77)|7 the crucial property for us is that
the two functions peak in the same location.



suggest that the variable which we should be maximizing is

> 574,05 g ) 94.9(T)
E(mA,ﬁ“LB,mC7mD) = fS(mmmB,mc,mD) _

(1.16)
f~(T~’lA7ﬁ’bB sMc,Mp)
It obviously depends on our choice of trial masses (m4, mp, mc,mp), and as argued above,
we expect the maximum of ¥ to occur for the correct choice (ma, mp, me, mp), i.e.

max _ X(ma,mp, Mo, mp) ~ N(ma, mp, mo, mp). (1.17)

ma,MB,Mc,Mp

This hypothesis will be tested and validated with explicit examples below in Sections 3
and 4.

The paper is organized as follows. In the next Section 2 we shall first review the
well known formulas for the one-dimensional kinematic endpoints (1.8) and introduce the
corresponding relevant partitioning of the mass parameter space into domain regions. In
the next two sections we shall concentrate on the two most troublesome regions, (3,2) and
(3,1), where the problematic relationship (1.6) holds. We shall pick one study point in
each region, then study how well our conjecture (1.17) is able to determine the true mass
spectrum. In principle, (1.17) involves optimization over 4 continuous variables, which is
very time consuming (additionally, we have to perform the integration in the numerator
of (1.16) by Monte Carlo). This is why for simplicity we choose to illustrate the power of
our method with a one-dimensional toy study along the problematic flat direction (1.7). In
particular, for each of our two study points we shall assume that the first three kinematic
endpoints my'**, m;'}lax, and m’ﬁ&ﬁ) are already measured, leaving us only the task of
determining the remaining degree of freedom m 4 along the flat direction defined in (1.7).
Correspondingly, we shall consider the whole family of mass spectra (1.7) which passes
through a given study point. This family will eventually take us into the neighboring
parameter space regions, including the third potentially problematic region, namely (2, 3),
in which (1.6) is satisfied. For each family, we shall perform the following investigations

e As a warm up, we shall first illustrate that for each of the three distributions, my,
mjy, and Mgy, the endpoint along the flat direction is the same (as expected by
construction).

e We shall then investigate the variation of the kinematic endpoint of the myj;) dis-
tribution along the flat direction (1.7). The endpoint value m;?}g}f;) is expected to be
constant in regions (3,2), (3,1) and (2, 3), so the main question will be, how much

does it vary in the remaining parameter space regions.

e We shall similarly investigate the variation of the lower kinematic endpoint m;.';;(’}bg)
2

along the flat direction (1.7). Together with the previous item, this will serve as an

illustration of the main weakness of the classic kinematic endpoint method for mass

measurements.

e Then we shall illustrate the distortion of the kinematic boundary surface (1.9) along
the flat direction (1.7). The size of the distortion will be indicative of the precision



with which one can hope to perform the mass measurement (1.17) using the kinematic
boundary surface in phase space.

e Finally, we shall perform the fitting (1.17) along the flat direction parameterized
by m4. We shall show results in two cases: (a) when the background events are
distributed uniformly in m? phase space, and (b) when the background is coming
from dilepton ¢t events.

We shall summarize and conclude in Section 5. Appendix A contains the inversion formulas
needed to define the flat direction (1.7).

2 Endpoint formulas and partitioning of parameter space

2.1 Notation and conventions

Following [89], we introduce for convenience some shorthand notation for the mass squared
ratios

If
m.sw ‘ S-Sw

: (2.1)

where 7,5 € {A, B,C, D}. Note that in (2.1) there are only three independent quantities,
which can be taken to be the set {Rap, Rpc, Rop}. To save writing, we will also introduce
convenient shorthand notation for the five kinematic endpoints as follows

o= (mme)2 b= (m?lzlam)2 . c= (m?}&ﬁ)>2 , d= (m?f&%)Q , e= (m;’;lz(%>%)>2 .
(2.2)

Note that these represent the kinematic endpoints of the mass squared distributions!?.

In the next two sections we shall use the three endpoint measurements my;'**, mZ,

and m}’l‘&fg) to fix mp, mc and mp, leaving m4 as a free parameter. Another way to
think about this procedure is to note that the parameter space (1.1) can be equivalently

parametrized as
{Rcp, Rpc, Rap,ma} . (2.3)

Then, the endpoint measurements of mj;'**, m;'lll“”” , and m;?(”;i) can be used to fix the ratios

Rep, Rpe and Rap (see Appendix A), leaving the overall mass scale undetermined and
parametrized by m 4.

2.2 Endpoint formulas

The kinematical endpoints are given by the following formulas:

a = (mj**)* =m% Rep (1 — Rpe) (1 — Rap); (2.4)

12Contrast to the notation of Ref. [81], which uses a, b, ¢, d to label the same endpoints, but for the linear

masses.
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m%(1— Rep)(1 — Rac), for Roep < Rac, case (1,—),
, m%(1 — Rpe)(1 — RapRep), for Rpe < RapRep, case (2, —),
b= (mjjf)" = (2.5)
mQD(l—RAB)(l—RBD), for Rap < Rpp, case (3,—),
m?, (1 — v Rap )2, otherwise, case (4, —);
2
(mﬁ?) , for (2— Rap)~' < Rpc <1, case (—, 1),
max 2 2 1
c= (mjl(lo)) = (mﬁ&%) , for Rap < Rpc < (2— Rup)™ ", case (—,2), (2.6)
2
(mﬁaef])) , for 0 < Rpc < Rup, case (—,3);
4 2 1
(m;’};“”) , for (2—Rap)™" < Rpc <1, case(—,1),
max 2 2
d= (mjl(hi)) = (m;’l‘;}w) , for Ryp < Rpc < (2— Rap)™*', case (—,2), (2.7)
2
| (mﬁg‘r) , for 0 < Rpc < Rap, case (—, 3);
where
(mfie)* = m} (1= Rep) (1 - Rpo), (2:8)
2
(mﬁ}w> =m} (1 - Rep) (1 — Rag), (2.9)
2
(m;?;gg;)) —m% (1 — Rep) (1 — Rag) (2 — Rap) . (2.10)

Finally, the endpoint m%(}bg) introduced earlier in the Introduction, is given by

. 2 1
e = (m;?lz(%>%)> = 4m%{(1 — Rap)(1 — Rpc)(1+ Rep) (2.11)

+2(1—Rac)(1— Rep) — (1 — RCD)\/(l + RAB)2(1 + RBC)2 — 16RA0}.

2.3 Partitioning of the mass parameter space

One can see that the formulas (2.5-2.7) are piecewise-defined: they are given in terms of
different expressions, depending on the parameter range for Rop, Rpo and Rap. This
divides the {Rcp, Rpo, Rap} parameter subspace from (2.3) into several distinct regions,
illustrated in Fig. 2. Following [81], we label those by a pair of integers (Njy, Nj;). As

already indicated in eqs. (2.5-2.7), the first integer N;;; identifies the relevant case for mﬁl“””,

while the second integer Nj; identifies the corresponding case for (mﬁ&i), mg’ll&fl)) One can

show that only 9 out of the 12 pairings (Nj;, INj;) are physical, and they are all exhibited
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Figure 2. A slice through the {Rcp, Rpo, Rap} parameter space at a fixed Rop = 0.3. The
(RBc, Rap) plane exhibits the nine definition domains (Nj;;, Nj;) of the set of equations (2.5-2.7).
For the purposes of this paper, only six of those regions will be in play, and we have color-coded
them as follows: region (3,1) in red, region (4,1) in blue, region (3,2) in cyan, region (4,2) in
yellow, region (4,3) in magenta, and region (2,3) in green.

within the unit square of Fig. 2. In what follows, an individual study point within a given
region (N il le) will be marked with corresponding subscripts as PN].” Nji-

Using (2.4), (2.5) and (2.7), it is easy to check that the “bad” relation (1.6), which can
be equivalently rewritten in the new notation as

b=a+d, (2.12)

is identically satisfied in regions (3,1), (3,2) and (2,3) of Fig. 2. Therefore, as already
discussed, in these regions one would necessarily have to rely on the additional information
provided by the measurement of the e endpoint (2.11).

Before concluding this rather short preliminary section, we direct the reader’s attention
to the color-coding in Fig. 2, where we have shaded in color six of the parameter space
regions: region (3,1) in red, region (4,1) in blue, region (3,2) in cyan, region (4,2) in
yellow, region (4,3) in magenta, and region (2,3) in green. It will turn out that the two
families of mass spectra considered in the next two sections will visit the six color-shaded
regions. For the benefit of the reader, in the remainder of the paper we shall strictly adhere
to this color scheme — for example, results obtained for a study point from a particular
region will always be plotted with the color of the respective region: study points in region
(3,1) are red, study points in region (4,1) are blue, etc.
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true branch auxilliary branch

Region

Study point
ma (GeV)
mp (GeV)
mc (GeV)
mp (GeV)

Rag

Rpc

Rep

m7ee (GeV)
mi =y (GeV)

mr (GeV) NG 144.91
m7e (GeV) Vb 256.90
miGe (GeV) Ve 122.47
Vd
Je

Table 1. Mass spectrum and expected kinematic endpoints for the study point P3; from region
(3,1) which was discussed in Ref. [89], together with three additional study points illustrating the

different regions from Fig. 2 encountered by the parameter space trajectories from Fig. 3. By

construction, all study points give identical values for the kinematic endpoints m;'**, mg’}l‘”’

m?}&f)). Furthermore, in accordance with (1.6), the two study points P31 and Pa3 from regions (3, 1)

and (2, 3) have identical values of mg’;(“,fz) The remaining two study points P,; and P,3, representing

regions (4,1) and (4,3), have essentially the same value for m7G% as well. The last row lists the

and

predicted values for m;‘?zi@>z)7 which are slightly different, and allow discriminating between the
2
four endpoints in theory, but not in practice.

3 A case study in region (3,1)

3.1 Kinematical properties along the flat direction

In this section we shall study the flat direction (1.7) in mass parameter space which is
generated by a study point P3; from region (3,1) (the same study point was used in [89]
for a slightly different purpose). Table 1 lists some relevant information for the study point
Ps1: the input mass spectrum (1.1), the corresponding mass squared ratios (2.1), and the
predicted kinematic endpoints (1.8), also reminding the reader of the alternative shorthand
notation (2.2). As discussed in the Introduction, starting from the point Ps;, we can follow
a one-dimensional trajectory (1.7) through the parameter space (2.3) so that everywhere
along the trajectory the prediction for the three endpoints a, b and ¢ is unchanged (see
Fig. 6 below). This trajectory is illustrated in Fig. 3, where we show its projections onto the
three planes (Rpc, Rap) (left panel), (Rap, Rop) (middle panel) and (Rpc, Rep) (right
panel). The lines in Fig. 3 are parametrized by the continuous test mass parameter m4.
For any given fixed value of my4, the trajectory in Fig. 3 predicts the test values for the
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Figure 3. The two trajectories in mass parameter space leading to the same endpoints a, b and c.
The lines are colored in accordance with the coloring convention for the regions depicted in Fig. 2.
The red square marks the original study point Ps; from Table 1, while the circles denote the other
three study points from Table 1: Py in region (4,1) (blue circle), Py3 in region (4,3) (magenta
circle), and Py3 in region (2,3) (green circle).

100 10! 10% 10°% 10
ma (GeV)

Figure 4. Mass spectra along the flat direction specified by the study point P3;. As a function of
ma, we plot the mass differences mp — my4 (solid lines), mc — M4 (dashed lines), and mp — ma
(dotted lines), which would preserve the values for the three kinematic endpoints a, b and c.

other three mass parameters, namely mp, m¢ and mp. This is shown more explicitly in
Fig. 4, where we plot the mass differences mp — m 4 (solid lines), m¢o — m 4 (dashed lines),
and mp —m4 (dotted lines), as a function of m 4. All lines in Figs. 3 and 4 are color-coded
using the same color conventions as for the parameter space regions in Fig. 2. Initially, as
we move away from point P3; (marked with the red square in Fig. 3), we are still within the
red region (3,1), and the trajectory is therefore colored in red and parametrically given by
egs. (A.8-A.10). As the value of m4 is reduced from its nominal value (236.6 GeV) at the
point Ps;, the mass spectrum gets lighter and eventually we reach m 4 = 0, where (the red
portion of) the trajectory terminates at Rap = 0, Rpc ~ 0.67 and Rop ~ 0.58. If, on the
other hand, we start increasing m 4 from its nominal Ps; value, the spectrum gets heavier,
and we start approaching the neighboring region (4, 1). Eventually, at around m4 ~ 3600
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103
10°

ma (GeV)

Figure 5. The equivalent representation of Fig. 4 in terms of the mass squared ratios Rap, Rpc
and Rop (solid lines). The dotted lines depict various quantities of interest which are used to
delineate the regions in Fig. 2. The left panel shows the true branch passing through regions (3, 1)
(red) and (4,1) (blue), while the right panel shows the auxiliary branch through regions (2, 3)
(green) and (4,3) (magenta). The left insert zooms in on the transition between regions (3,1) and
(4,1) near m4 = 3600 GeV, while the right insert focuses on the transition between regions (2, 3)
and (4, 3) near m4 = 1800 GeV.

GeV, the trajectory crosses into region (4,1) and thus changes its color to blue. This
transition is illustrated in the left panel of Fig. 5, where we plot the mass squared ratios
Rup, Rpc and Rcop (solid lines), together with some other relevant quantities (dotted
lines). In particular, the boundary between regions (3,1) and (4, 1) is given by the relation
Rap = Rpp, see (A.2) and (A.29). We can see that crossover more clearly in the insert in
the left panel of Fig. 5, where the line color changes from red to blue as soon as the Rpp
(dotted) line crosses the R4p (solid) line.

Once we are in region (4, 1), we follow the blue portion of the trajectory in Fig. 3, which
is parametrically defined by eqgs. (A.36-A.38). We choose a representative study point for
region (4,1) as well — it is denoted by Py and listed in the third (blue shaded) column
of Table 1. The corresponding mass spectrum is clearly very heavy, but is nevertheless
perfectly consistent with the three measured endpoints a, b and ¢, as shown in Fig. 6.
As seen in Fig. 3, the blue portion of the mass trajectory appears headed for the point
(Rap,Rpc,Rcp) = (1,1,1), which is indeed reached in the limit of m4 — oo, without
ever entering into the neighboring region (1,1)'3.

Fig. 3 reveals that the mass family (1.7) through our study point P3; includes a segment
which starts at (Rap, Rpc, Rep) = (0,0.67,0.58) and ends at (Rap, Rpc, Rop) = (1,1,1),
visiting regions (3,1) and (4,1). Since the actual study point P3; belongs to this segment,
in what follows we shall refer to it as “the true branch”. However, Fig. 3 also shows
that there is an additional disconnected segment of the mass trajectory through the green
region (2, 3) and the magenta region (4, 3). In the following, we shall refer to this additional

13Note that as the value of Rop increases, the (1, 1) region shrinks and for Rcp = 1 it disappears
altogether.
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Figure 6. Unit-normalized invariant mass distributions for the four study points from Table 1:
the distribution of my, (left panel), mjy0) (middle panel), and mjg (right panel). The lines are
color coded according to our conventions from Fig. 2 and Table 1: red for P31, blue for Py;, magenta
for Py3 and green for Pss.

segment as “the auxiliary branch”. Note that this terminology is introduced only for clarity
and should not be taken too literally — as far as the measured endpoints a, b and c are
concerned, all points on the true and auxiliary branches are on the same footing, since
the experimenter would have no way of knowing a priori which is the true branch and
which is the auxiliary branch. This is why we have to seriously consider points on the
auxiliary branch as well. We choose two representative study points, which are listed in
the last two columns of Table 1: point Ps3 belongs to the magenta region (4,3), while
point Ps3 is in the green region (2,3). As shown in Fig. 3, the auxiliary branch starts at
(Rap, Rpc, Rcep) = (0.5,0,0.48) and asymptotically meets the true branch at the corner
point (Rap,Rpc,Rcp) = (1,1,1). The transition between the two regions (2,3) and
(4,3) along the auxiliary branch is illustrated in the right panel of Fig. 5. According to
(A.21) and (A.54), the boundary between regions (2, 3) and (4, 3) is defined by the relation
Rpc = RapRep. The right panel of Fig. 5 confirms this: the color of the auxiliary branch
in Figs. 3 and 4 changes from green to magenta as soon as the dotted line representing the
product RapRcp crosses the solid line for Rpc.

To summarize our discussion so far, we have imposed the three endpoint measurements
a, b and ¢ on the four-dimensional parameter space (1.1), reducing it to the one-dimensional
parameter curve depicted in Figs. 3 and 4. The curve consists of two branches which
visit four of the colored regions in Fig. 2, and we have chosen one study point in each
region. The four study points are listed in Table 1, and their predicted invariant mass
distributions from the ROOT phase space generator [99] are shown in Fig. 6: my, in the
left panel, m;y;,) in the middle panel and mje in the right panel. By construction, for
any points along the mass trajectory (1.7), and in particular for the four study points from
Table 1, these distributions share common kinematic endpoints. Furthermore, as Fig. 6
reveals, the shapes of most distributions are also very similar, which makes it difficult to
pinpoint our exact location along the mass trajectory (1.7). This is why in the remainder
of this section, we shall focus on the question, what additional measurements may allows
us to discriminate experimentally points along the two branches in Figs. 3 and 4, and in
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Figure 7. Left: The prediction for the kinematic endpoint v/d along the flat direction (1.7)
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Figure 8.  The same as Fig. 7, but for the endpoint /e and the corresponding distribution

6> %5)-

particular distinguish between the four study points in Table 1.

One obvious possibility is to investigate the remaining kinematic endpoints d and e,

which are analyzed in Figs. 7 and 8, respectively.
predictions for the kinematic endpoints vVd = m

max
je(hi

) and Ve =mjy

m
0>3%)

The left panels show the theoretical
along the flat di-

rection (1.7) as a function of m 4, while the right panels exhibit the corresponding invariant
mass distributions for each of our four study points from Table 1.

Let us first focus on Fig. 7 which illustrates the m4 dependence of the myy ;) dis-
tribution and its kinematic endpoint v/d. As we have already discussed, in regions (3,1)
and (2,3) the additional measurement of v/d is not useful, since it is not independent —
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the value of d is predicted by the relation (2.12), as confirmed by the left panel in Fig. 7,
where the red and green dotted lines representing those two regions are perfectly flat and
insensitive to m 4. However, this still leaves open the possibility that in the remaining two
regions, namely (4,1) and (4, 3), the measurement of the d endpoint will be able to lift
the degeneracy and determine the value of m 4, since, at least in theory, d is a non-trivial
function of m4, see (A.39b) and (A.63b). Unfortunately, Fig. 7 demonstrates that this is
not the case in practice — the m 4 dependence is extremely weak, and the endpoint value
for v/d only changes by a few tens of MeV as 74 is varied over a range of several TeV! This
lack of sensitivity is the reason why we have been referring to the family of mass spectra
(1.7) as a “flat direction” in mass parameter space. Clearly, due to the finite experimental
resolution, an endpoint measurement with a precision of tens of MeV is not feasible, the
anticipated experimental errors at the LHC are significantly higher, on the order of a few
GeV [100].

It is instructive to understand this lack of sensitivity analytically, by studying, e.g. the
mathematical expression (A.39b) for d which is relevant for region (4,1). Figs. 4 and 7
already showed that region (4,1) occurs at large values of m4, where the spectrum is
relatively heavy — on the order of several TeV. At the same time, the measured parameter
inputs into (A.39b), namely the endpoints a, b and ¢, are all on the order of several hundred
GeV. This suggests an expansion in terms of 1/m4 as

K 1
d(a,b,c,mA)EKo+~1+(’)(~2>. (3.1)

Using (A.39b), we get the expansion coefficients to be

Ky = (ajﬁ (Vbtvi—a—e) . (3.2)

ac K\/B—l— \/m> (a? + ac — 2ab + 2bc) + (a* — 62)\/{)}
K — T . (3.3)

Interestingly, the numerical value of Ky is extremely close to b — a:

Ko= lim d=(212.047 GeV)? <3 b —a = (212.132 GeV)2. (3.4)
M A —00
Since Ky is the leading order prediction for d, (3.4) implies that even in region (4,1), the
relation (2.12) will still hold to a very good approximation — any deviations from it will be
1/my suppressed. We can formalize this observation by introducing the value mff) which
the parameter my4 takes when the mass trajectory (1.7) crosses the boundary between
regions (3,1) and (4,1). Using the continuity of the function d(a, b, c,m 1), we can write

K 1
my (mﬁﬁ)

where the left-hand side is the value of d in region (3,1) which is given by (A.11), while
the right-hand side is the value of d as predicted by the Taylor expansion (3.1) in region

~ 18 —



(4,1). Eliminating Ky from (3.5), we can rewrite the expansion (3.1) in the form

d(a,b,c,ﬁ@A)Eb—aﬁ-ﬁ—ﬁ—i—O NL (3.6a)
m (b) 2
A my my
ﬁ’LA—m(b) 1
:b—a—Kl(b)A+0<~2>, (3.6b)
maAmy my

which manifestly shows that the deviations from the relation (2.12) are 1/m 4 suppressed.
One can check that the sign of the K coefficient (3.3) is positive, then (3.6b) explains why
d is a decreasing function of m 4 in region (4, 1), as observed in the left panel of Fig. 7.

Starting from (A.63b), one can repeat the same analysis for the magenta portion of
the auxiliary branch which is located in region (4, 3). As the left panel of Fig. 7 shows, the
conclusions will be the same — the d endpoint is still given approximately by the “bad”
relation (2.12), and the corrections to it are tiny and 1/m 4 suppressed. The right panel in
Fig. 7 explicitly demonstrates that the variation of the d endpoint along the flat direction is
unnoticeable by eye even with perfect resolution, large statistics and no background. The
shapes of the mjy ;) distributions are also very similar. As a result, we anticipate that
the additional measurement of the d kinematic endpoint and the analysis of the associated
M jo(niy distribution will not help much in lifting the degeneracy of the flat direction (1.7).

We now turn to the discussion of the fifth and final kinematic endpoint, e, illustrated
in Fig. 8. The left panel now shows a more promising result — the variation along the flat
direction is much larger than what we saw previously in Fig. 7. This is especially noticeable
for the auxiliary branch, where the prediction for /e can vary by as much as 17 GeV,
suggesting that one might be able to at least rule out some portions of it. At the same time,
the variation of /e along the true branch is only 4 GeV, once again making it rather difficult
to pinpoint an exact location along the true branch. Unfortunately, these theoretical
considerations are dwarfed by the experimental challenges in measuring the e endpoint,
as suggested by the right panel of Fig. 8. Unlike the other four kinematic endpoints, e
is a lower endpoint (a.k.a. “threshold”), which places it in a region where one expects
more background. More importantly, the signal distribution is very poorly populated near
its lower endpoint - the vast majority of signal events appear sufficiently far away from
the threshold, and the measurement will suffer from a large statistical uncertainty. This
casts significant doubts on the feasibility of this measurement — in previous studies, the
Ve endpoint was either the measurement with the largest experimental error from the fit
(on the order of 10 GeV [79]), or one could not obtain a measurement for it at all [81].
One could hope to improve on the precision by utilizing shape information [101], but this
introduces additional systematic uncertainty, since the background shape and the shape
distortion due to cuts has to be modeled with Monte Carlo.

Being mindful of the challenges involved with the measurement of the e endpoint, in
this paper we shall look for an alternative method for lifting the degeneracy along the flat
direction. Our proposal is to study the shape of the kinematic boundary (1.9), which is a
two-dimensional surface in the three-dimensional space of observables

{m?Z(lo)’ Mo hi s mfe} : (3.7)
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Figure 9. Signal kinematic boundaries in the (m?e(lo), m?e( hi) —m?alo)) plane, at nine fixed values
of m?,. Results are shown for several points along the true branch in regions (3,1) and (4,1). The
red solid line represents the case of the P3; study point with m4 = 236.6 GeV, while the dashed
lines correspond to other values of my along the true branch: m4 = 0 (black), m4 = 100 GeV
(gray), ma = 500 GeV (green), m4 = 1000 GeV (blue), m4 = 2000 GeV (yellow) and m 4 = 5000
GeV (magenta).

As a proof of principle, we first illustrate the change in the shape of the surface (1.9)
as we move along the flat direction. Our results are shown in Fig. 9 (for the true branch)
and in Fig. 10 (for the auxiliary branch). Following [93], we visualize the surface (1.9)
by showing a series of two-dimensional slices in the (m?e(lo), m?e(hl.) — m?e(lo)) plane, where
the slight modification of the “y-axis” was done in order to avoid wasted space on the
plots due to the unphysical areas with mjsqo) > mjgns)- Each slice is taken at a fixed
value of mfé, starting from a very low value (10 GeV?) and going up all the way until the
kinematic endpoint (m%w)2 = 20,976 GeV2. The red solid lines in Fig. 9 correspond to
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Figure 10. The same as Fig. 9, but for the auxiliary branch going through regions (2,3) and
(4,3). The dashed lines represent points with m4 = 100 GeV (black), ma = 500 GeV (green),
ma = 2000 GeV (blue) and m4 = 6000 GeV (yellow). For reference, we also show the case of the
true mass spectrum for point Ps; (red solid lines), although Ps; does not belong to the auxiliary
branch.

the nominal case of the study point P31. In each panel, the signal events will be populating
the areas delineated by these red solid lines. As pointed out in [92], the density of signal
events is enhanced near the phase space boundary, i.e. signal events will cluster close to
the solid red lines; this property can be incorporated into the algorithm for detecting the
surface boundary [93]. It is worth noting that in general, each panel contains two signal
populations, which arise from the reordering (1.3-1.4) [89]. As we vary the value of m3,,
the shape of the red solid lines changes in accordance with eq. (1.9), which follows from
simple phase space considerations. However, the main purpose of Figs. 9 and 10 is to
check how much the shape is modified relative to the nominal case of P3; when we vary
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the value of m 4 along the flat direction (1.7). The dashed lines in Fig. 9 show results for
several representative values of m4 along the true branch: my = 0 (black), m4 = 100
GeV (gray), ma = 500 GeV (green), ma = 1000 GeV (blue), ma = 2000 GeV (yellow)
and my4 = 5000 GeV (magenta). We observe noticeable shape variations, especially at
low to intermediate values of mﬁg, which bodes well for our intended purpose of measuring
the value of my. Fig. 9 aids in visualizing why sensitivity is lost when performing one-
dimensional projections. Consider, for example the variable m,). The top two rows of
Fig. 9 show that as m 4 is varied along the flat direction, the boundary contours are being
stretched vertically, which does not have any effect on the m () endpoint. Later on, when
the events are projected vertically on the m ) axis to obtain the mjy(,) distribution seen
in the middle panel of Fig. 6, the effects from this vertical stretching tend to be washed
out and the resulting my, distributions have very similar shapes.

Fig. 10 shows the analogous results for the auxiliary branch. Once again, the red
solid lines represent the study point P31, while the dashed lines correspond to four values
of ma: ma = 100 GeV (black), m4 = 500 GeV (green), ma = 2000 GeV (blue) and
ma = 6000 GeV (yellow). This time the shape variation along the flat direction is much
more significant compared to what we saw in Fig. 9. This observation agrees with our
expectation based on Fig. 8 that points on the auxiliary branch behave quite differently
from our nominal study point Psi1, especially at low m 4.

3.2 A toy study with uniformly distributed background

In the remainder of this section we shall illustrate our proposed method for mass mea-
surement with two exercises. In each case, we shall assume that the standard set of one-
dimensional kinematic endpoints (1.2) has already been well measured and used to reduce
the relevant mass parameter space (1.1) to the flat direction (1.7) parametrized by the test
mass m 4 for the lightest new particle A. This is done only for simplicity — in principle,
our method would also work without any prior information from endpoint measurements,
but by using those, we are reducing the 4-dimensional optimization problem in (1.17) to
the much simpler one-dimensional optimization problem

r%axi (ma,mp(ma), mc(ma), mp(ma)) ~ S(ma, mp, me, mp), (3.8)
A

where mp(ma), mc(ma), and mp(ma) are the masses of particles B, C and D along the
flat direction. Our main emphasis here is on demonstrating the advantages of our method
relative to the method of kinematic endpoints. In Section 3.1 we already showed that
while the method of kinematic endpoints does a good job in reducing the unknown mass
parameter space (1.1) to the flat direction (1.7), it does a poor job of lifting the degeneracy
along the flat direction. Thus, if we can show that our method can perform the remaining
mass measurement along the flat direction, we will have accomplished our goal.

In order to make contact with our previous studies in [93], we begin with a simple toy
exercise where in addition to the signal events from the cascade decay in Fig. 1, we also
consider a certain number of background events, which we take to be uniformly distributed
in the mass squared space of observables (3.7). While the assumption of uniform back-
ground density is unrealistic, such an exercise is nevertheless worth studying for several
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reasons. First, our method is completely general and applies in any situation where we have
a decay of the type shown in Fig. 1, while to correctly identify the relevant backgrounds,
we must be a lot more specific — we need to fix the signature, the type of production
mechanism (which determines what else is in the event), the cuts, etc. In order to retain
generality, we choose to avoid specifying those details and instead we generate background
events by pure Monte Carlo according to a flat hypothesis. Second, as shown in [93], a
uniform background distribution is actually a pretty good approximation to more realistic
backgrounds resulting, e.g., from dilepton ¢t events (compare to the results in Section 3.3
below). Finally, our method is attempting to detect a discontinuity in the measured event
density caused by a signal kinematic boundary, so the exact shape of the background dis-
tribution is not that important, as long as it is smooth and without any sharp kinematic
features.

In order to detect the exact location of the kinematic boundary, we shall be computing
the quantity ¥ defined in (1.16) along the flat direction (1.7), i.e.

S(ma) = X (ma,mp(ma), mce(ma), mp(ma)) . (3.9)
We shall perform several versions of the exercise, with varying levels of signal-to-background.
For this purpose, we vary the ratio of signal to background events inside the true “samosa”
surface S(ma, mp, mc, mp):

= fVS Ps dV
= T,VS o de

where Vs is the volume inside the samosa S(ma, mp, mc,mp), while ps and pp are the

S/B (3.10)

signal and background event densities from Section 1, respectively. In this exercise, we
shall fix the overall normalization by choosing Ng = 1000 background events inside S.

Our main result is shown in Fig. 11, which plots the quantity Y(74) along the flat
direction, for several different choices of S/B: S/B = 3 (upper left panel), S/B =1 (upper
right panel), S/B = 0.5 (lower left panel) and S/B = 0.2 (lower right panel). Each panel
contains two sets of points: the colored symbols represent points on the true branch, while
the black crosses indicate points on the auxiliary branch!'%.

There are several important lessons from Fig. 11:

o Viability of the method. We see that in each panel, the maximum of ¥ is obtained
for a value of m 4 which is close to the true value my4 = 236.6 GeV. This validates
our conjecture'®, eq. (1.17), and proves the viability of our method.

e Precision of the method. Of course, we did not recover exactly the input value for
ma, but in each case, came relatively close. Each panel of Fig. 11 contains an
insert which zooms in on the region near the peak, which is sampled more finely.
For the different values of S/B = {3.0,1.0,0.5,0.2}, the ¥ maxima are obtained
at ma = {280,290, 250,230} GeV, correspondingly. Since the measurement is not

1Recall from Fig. 4 that for any given choice of 4, there is one point on the true branch and a
corresponding point on the auxiliary branch.
15Strictly speaking, Fig. 11 tests only the one-dimensional version (3.8).
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Figure 11. The quantity ¥(1m4) defined in (3.9) as a function of 74 for different values of the
signal to background ratio S/B defined in (3.10): S/B = 3 (upper left panel), S/B = 1 (upper
right panel), S/B = 0.5 (lower left panel) and S/B = 0.2 (lower right panel). The colored symbols
correspond to the true branch with the color conventions from Fig. 2, while the black crosses indicate
points on the auxiliary branch. The insert on each panel zooms in on the region near the peak
value for X(r4).

perfect, it may be instructive to compare the theoretical boundary for the input study
point P31 to the boundary surface found by the fit. This is illustrated in Fig. 12,
where in analogy to Figs. 9 and 10 we show two-dimensional slices at fixed m?e of
the Voronoi tessellation of the data for the case of S/B = 3. The Voronoi cells are
color coded by their value of &; defined in (1.12). As in Figs. 9 and 10, the red solid
line in each panel is the expected signal boundary for the nominal case of point Ps1.
We notice that the cells with the highest values of &; are indeed clustered near the
nominal boundary, in agreement with the results from Refs. [93, 95]. On the other
hand, the boundary delineated by the black dashed lines in Fig. 12 corresponds to
the best fit value of my = 280 GeV, which was found in the upper left panel in
Fig. 11. The difference between the solid red and black dashed contours in Fig. 12 is
essentially a measure of the resolution of our method.

e FElimination of the auziliary branch and the large m 4 tail of the true branch. One

very positive piece of news from Fig. 11 is that the whole auxiliary branch has very
low values for ¥ which makes it easy to rule it out — one can see that no point on the
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Figure 12. Two-dimensional views at fixed m?, of the Voronoi tessellation of the data for the case
of S/B = 3. The red solid line is the expected signal boundary for the nominal case of point Psy,
i.e., with the true value my = ms = 236.6 GeV. The black dashed line corresponds to the mass
spectrum with m 4 = 280 GeV, which was found to maximize the quantity ¥ in the top left panel
of Fig. 11.

auxiliary branch was ever in contention for the top spot. Similar comments, albeit
to a lesser extent, also apply to the long tail along the true branch at large m4. In
particular, region (4,1) seems to be ruled out, as well as the large m4 portion of
region (3,1). In effect, the range of possible values for m 4 along the flat direction
has been significantly narrowed down to a small interval within a few tens of GeV of
the true value my4.
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e The adverse effect of the background. Comparing the different panels in Fig. 11, we see
that as we make S/B smaller, the difference between the true and auxiliary branch is
reduced, but the auxiliary branch is still disfavored. As for the true branch, the peak
near m 4 still persists, even in the case when the data is dominated by background
events. This is not surprising, since the background distribution is relatively smooth,
so that in the background-dominated regions of phase space there aren’t too many
Voronoi cells with large values of ;, which could adversely affect the fit.

3.3 A study with ¢t dilepton background events

We are now in position to repeat the exercise from Section 3.2, with signal events from
D+ A associated production and background taken from dilepton ¢t events, which represent
the main background to the signature from Fig. 1 of a jet plus two opposite sign, same
flavor leptons (the electroweak backgrounds involving leptonic Z decays can be suppressed
with a Z mass veto). Events were generated at parton level for LHC at 14 TeV with
MADGRAPH5 [102] version 2.1.1 with the default PDF set cteq611. For signal we used
the SUSY version of the cascade decay in Fig. 1, and considered the associate production
of a squark ¢ with the lightest neutralino )Z(f, namely pp — qN)Z(l) [103, 104]. Since each tt
background event contains two jets, there is a two-fold ambiguity in the jet selection. We
will use both possible pairings, so that each background event will contribute two entries
to our data. Of course, we do not know a priori how many of those entries will end up
inside the nominal boundary surface S(ma, mp, m¢c, mp), which is why we have to use
a slightly different normalization from Sec 3.2. We shall fix the number of signal events
to Ng = 3000, and then we shall consider several values'S for the number of dilepton ¢t
events: Np = {3000, 4000, 5000, 6000}. From Monte Carlo we then find that these choices
correspond to S/B = {1.52,1.14,0.91,0.76} inside the S boundary, see (3.10).

Our main result is shown in Fig. 13, which is the analogue of Fig. 11 for this case. Once
again, we find that the function (/) is maximized in the vicinity of ma = ma = 236.6
GeV. The fitting procedure is illustrated in Fig. 14, which is the analogue of Fig. 12. The
red solid lines show the boundary contours for the nominal value of m4 = 236.6 GeV, while
the black dashed lines are for the best fit value of m4 = 280.0 GeV, which was found in
the top left panel of Fig. 13. Fig. 13 shows that once again, our procedure has disfavored
the whole auxiliary branch and narrowed down the range of viable values of my4 to a few
tens of GeV around the nominal value m4.

4 A case study in region (3,2)

In this section, we shall repeat the analysis from Section 3, only this time our nominal
study point, from now on labelled as Psy, will be chosen within the cyan region (3,2) of
Fig. 2. Recall that the problematic relation (2.12) was satisfied in three of the colored
regions in Fig. 2, namely (2,3), (3,1) and (3,2). The former two regions, (2,3) and (3,1),

16The anticipated signal-to-background ratio is model-dependent. In this sense, SUSY may not be the
best case for discovery, since other scenarios, e.g., UED [105-107], have higher signal cross-sections.
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Figure 13. The analogue of Fig. 11 for the exercise with ¢ background events considered in
Section 3.3. Results are shown for Ng = 3000 signal events and several choices for the number of
background events: Np = 3000 (upper left panel), Ng = 4000 (upper right panel), Ng = 5000
(lower left panel) and Ng = 6000 (lower right panel).

were already visited by the mass trajectory studied in Section 3, thus here for completeness
we will also illustrate the case of region (3,2).

4.1 Kinematical properties along the flat direction

The mass spectrum for the study point P32 and the corresponding mass squared ratios and
kinematic endpoints are shown in the cyan-shaded column of Table 2. Point P3o was used
previously in Ref. [89] as an example of a discrete two-fold ambiguity, while here it serves
to define a flat direction (1.7) in mass parameter space. This flat direction is illustrated
in Figs. 15 and 16, which are the analogues of Figs. 3 and 4, respectively. According to
Figs. 15 and 16, the mass trajectory now goes through five of the six colored regions in
Fig. 2: there is a true branch through the red region (3,1), the cyan region (3,2) and the
the yellow region (4,2), as well as an auxiliary branch through the yellow region (4,2),
the magenta region (4,3) and the green region (2,3). As in Section 3, we choose one
representative study point in each of these regions. The four additional study points, Psq,
Py, P43 and Psg, are also listed in Table 2, and their columns are shaded with the color of
their respective regions in Fig. 2.
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Figure 14. The analogue of Fig. 12 for the exercise with ## background events considered in
Section 3.3. The Voronoi tessellation was done for the case of Ng = 3000. The red solid line is
the phase space boundary for the nominal value m 4 = 236.6 GeV, while the black dashed line
corresponds to the best fit value m 4 = 280.0 GeV found in the the top left panel of Fig. 13.

The flat direction depicted in Fig. 15 is again parametrized by the trial value m 4 for
the mass of the lightest new particle A. However, as seen in Fig. 16, this time the allowed
range for m 4 does not extend all the way to m 4 = 0, and instead the true and auxiliary
branch meet inside the yellow region (4,2) around at the lowest value m4 ~ 89 GeV.

The transitions between two neighboring regions along the flat direction can be under-
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true branch mirror branch

Region (3,2)

Study point P3o

ma (GeV) 126.49

mp (GeV) 282.84

me (GeV) 447.21

mp (GeV) 500.00

Rap 0.200

Rpo 0.400

Rep 0.800
mp* (GeV) Vva 309.84
m7ee (GeV) Vb 368.78
mo) (GeV) Ve 149.07
mg;;(’;bg) (GeV) | Ve || 247.94 253.72

Table 2. The same as Table 1, except now the starting point is a point (Ps2) from region (3,2).

" . . . . " . .
-

-

|}

|}
'
'

Figure 15. The same as Fig. 3, but for the flat direction generated by point Pss from Table 2.

stood from Fig. 17, which plots the mass squared ratios Rap, Rpc and Rep (solid lines)
and several other quantities (dotted lines) which are relevant for defining the regions from
Fig. 2, as a function of the mass trajectory parameter m4. For example, relations (A.3)
and (A.13) imply that the boundary between the cyan region (3,2) and the red region (3, 1)
is given by Rpc = (2— Rap)~'. Indeed, the lines in Figs. 16 and 17 change color from cyan
to red when the Rpc curve crosses the dotted line representing the function (2 — R AB)_l
near my4 = 173 GeV. Similarly, it follows from (A.21) and (A.54) that the boundary be-
tween the green region (2,3) and the magenta region (4, 3) is given by Rpc = RapRcb.
The right panel of Fig. 17 confirms that the line color changes from magenta to green when
the solid line for Rp¢ is intersected by the dotted line for RopRcp. Finally, according to
(A.42) and (A.53), the transition between the yellow region (4,2) and the magenta region

(4,3) occurs at Rqp = Rpc, and this is borne out by Fig. 17 as well.
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Figure 16. The analogue of Fig. 4, but for the flat direction defined in Fig. 15.

Figure 17. The equivalent representation of Fig. 16 in terms of the mass squared ratios Rap,
Rpc and Rep (solid lines). The dotted lines depict various quantities of interest which are used
to delineate the regions in Fig. 2. The left panel shows the true branch passing through regions
(3,2) (cyan) and (3,1) (red), while the right panel shows the auxiliary branch through regions (4, 2)
(yellow), (4,3) (magenta) and (2,3) (green). The left insert zooms in on the transition between
regions (3,2) and (3,1) near ma = 173 GeV, while the right insert focuses on the transitions
between regions (4,2) and (4,3) near my4 = 97 GeV and between regions (4,3) and (2,3) near
my = 193 GeV.

By construction, all five study points from Table 2 predict identical values for the three
kinematic endpoints a, b and ¢. This is demonstrated in Fig. 18, which is the analogue of
Fig. 6, but for the five study points from Table 2. As before, the distributions in Fig. 18
are color-coded according to our color conventions from Fig. 2. The nominal input study
point Pss is represented by the solid line, while the dotted lines mark the other four study
points. Given that the five study points look very similar on Fig. 18, we now focus on the
remaining two distributions, m ;) and Mjl(0> 7)) which are investigated in Figs. 19 and
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Figure 18. The analogue of Fig. 6, but for the five study points exhibited in Table 2. The
distributions are color-coded according to our color conventions for the regions in Fig. 2.
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Figure 19. The analogue of Fig. 19, but for the flat direction defined in Fig. 15 (left panel) and
for the five study points from Table 2 (right panel).

max

20. The left panels show the predictions for the kinematic endpoint vd = M) and
the threshold /e = m;%?bg), respectively, while the right panels plot the corresponding
kinematic distributions for the five study points from Table 2.

By now, we should not be surprised by the extreme flatness of the curves exhibited in
the left panel of Fig. 19. The mass trajectory from Fig. 15 passes through all three of the
regions where the endpoint d is not an independent quantity, but is fixed by the relation
(2.12) and is therefore strictly independent of 7 4. In the remaining two regions, (4,2) and
(4,3), Fig. 19 shows a maximal deviation of only 2 GeV from the prediction vVd = vb — a
of (2.12). Taken together, the left panels of Figs. 7 and 19 justify our terminology of the
mass trajectory (1.7) as a “flat direction” in mass parameter space.

On the other hand, the left panel of Fig. 20 shows a much more significant variation of
the kinematic threshold variable /e along the flat direction. The total variation is on the
order of 15 GeV, which is of the same order as our previous result in Fig. 8. However, as we
already discussed in Section 3, the measurement of /e presents significant experimental
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Figure 20. The same as Fig. 19, but for the kinematic endpoint /e and the corresponding
mjl0> 1) distribution.

challenges, as one can deduce from the very minor apparent variation of the Mje(9>1)
distributions shown in the right panel of Fig. 20. This motivates searching for alternative
methods for lifting the degeneracy along the flat direction.

As already discussed in Section 3, one such method is to track the deformation of the
shape of the kinematic boundary (1.9) along the flat direction. The effect is illustrated
in Figs. 21 and 22, which are the analogues of Figs. 9 and 10 for the example of a flat
direction considered in this section. Once again, the solid red lines in each panel indicate
the kinematic boundaries for the nominal study point P3o with ma4 = 126.5 GeV, while
the dashed lines are drawn for several other values of m 4, chosen so that they illustrate
the typical range of shape fluctuations. Along the true branch, in Fig. 21 we plot contours
for m4 = 100 (black), m4 = 173 GeV (green), m4 = 500 GeV (blue), m4 = 2000 GeV
(yellow) and m 4 = 4000 GeV (gray). Even though we are confined to the true branch only,
when we compare Fig. 21 to its analogue, Fig. 9, we observe a much larger variation in the
shape of the kinematic boundary in the present case, which promises good prospects for the
mass measurement exercise to follow. The results shown in Fig. 22 for the auxiliary branch
are also quite good. This should not come as a surprise, since the exercise in Section 3
already indicated that the auxiliary branch has a different kinematic behavior, as reflected
in the shape of the phase space boundary.

4.2 A toy study with uniformly distributed background

In the remainder of Section 4 we shall repeat the two exercises from Sections 4.2 and 4.3,
only this time we shall use P32 as our input study point, and perform the measurement
along the corresponding flat direction described in Figs. 15 and 16.

First we consider the case of uniformly distributed (in mass squared) background
events, and proceed to evaluate the quantity ¥ along the flat direction. As before, we fix
Np = 1000 and then vary the signal-to-background ratio inside the boundary surface S.
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Figure 21. The same as Fig. 9, but for the true branch in Fig. 15. The red solid line represents
the case of the P35 study point with m 4 = 126.5 GeV, while the dashed lines correspond to other
values of my4 along the true branch: m4 = 100 (black), m4 = 173 GeV (green), m4 = 500 GeV
(blue), m4 = 2000 GeV (yellow) and m4 = 4000 GeV (gray).

Fig. 23 shows our results for the same choices of S/B as in Fig. 11: S/B = 3 (upper left
panel), S/B = 1 (upper right panel), S/B = 0.5 (lower left panel) and S/B = 0.2 (lower
right panel). We find that the function 3(724) once again peaks in the vicinity of the true
value m4 = 126.5 GeV. Specifically, for S/B = {3.0,1.0,0.5,0.2}, the maxima are found at
ma = {125,125,116,116} GeV, to be contrasted with the true value of m4 = 126.5 GeV.
In all four cases, the auxiliary branch is disfavored, as it always gives low values for X,
while the true branch is restricted to a very narrow region near the true mass spectrum.

Fig. 24 provides a consistency check on our fitting procedure, similarly to Fig. 12. We
show two-dimensional views at fixed m%z of the Voronoi tessellation of the data for the case
of S/B = 3. The red solid line is the expected signal boundary for the nominal case of
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Figure 22. The same as Fig. 21, but for the auxiliary branch in regions (4,2), (4,3) and (2, 3).
The dashed lines represent points with m4 = 90 GeV (black), m4 = 150 GeV (green), m4 = 500
GeV (blue) and my = 5000 GeV (yellow). For reference, we also show the case of the true mass
spectrum for point Pss (red solid lines), although Pss itself does not belong to the auxiliary branch.

point Pso, i.e., with the true value myq = my = 126.5 GeV. The black dashed line then
corresponds to the best fit, i.e., a mass spectrum with m4 = 126 GeV, which was found to
maximize the quantity 3 in the top left panel of Fig. 23.

4.3 A study with ¢t dilepton background events

Our final task will be to repeat the P3o exercise with dilepton tt events as was done in
Section 3.3. As before, we fix the number of signal events Ng = 3000 and then consider
several values for the number of background events: Np = {3000, 4000, 5000,6000}. In each
case, we compute the function $(m4) along the flat direction of Fig. 15. The results are
shown in Fig. 25, which has the same qualitative behavior as Fig. 23. The X values for the
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Figure 23. The same as Fig. 11, but now taking point P35 as input and measuring along the flat
direction depicted in Fig. 15.

auxiliary branch tend to be low, and the branch is disfavored. The global peak of ¥(1.4)
is again found in the vicinity of the right answer (for Ng = {3000,4000, 5000, 6000}, the
peak is at m4 = {116, 125,125,125} GeV), and the large m 4 tail of the true branch is also
disfavored. One final consistency check is provided by Fig. 26, which shows a comparison
of the kinematic boundaries for the nominal study point Pss with my = 126.5 GeV (red
solid lines), and the boundaries for the best fit value m4 = 125 GeV (black dashed lines).

4.4 A detector level study

In this paper, we introduced the new Voronoi-based method for mass measurement as a
proof of principle, and showed that at the parton level it does reasonably well in the two
examples considered so far in Sections 3 and 4. Before concluding, we would like to also
test the method in the presence of detector effects (this subsection) and combinatorics (see
Sec. 4.5 below). For this purpose, we first repeat the exercise from Section 4.3, only this
time we account for the finite detector resolution by smearing the jet energies with the
typical hadronic calorimeter resolution

£~ (3

— 35 —



m? = 30000 GeV?

Si(low)
v
&

g

m?l (high) —m

2
gl

 (high) —m

2
J

m

S 1.2
NS
3 1.0
I
= 0.8
2
<
= 0.6
3
04

m?l(low)

Figure 24. The same as Fig. 12, but for the exercise performed in Section 4.2, with point Psy as
input (solid red lines). The black dashed line corresponds to the mass spectrum with m4 = 125
GeV, which was found to maximize the quantity ¥ in the top left panel of Fig. 23.

and electromagnetic calorimeter resolution

(%)2 = (%)2 + (0'}%)2 +0.0026> (4.2)

in CMS [108], with the energy measured in GeV. Smearing of the muon momenta is done
according to the “Full System” values in Fig. 1.5 of [108]. The result of the fitting exercise
is shown in Fig. 27. We see that the peak structure in the vicinity of the correct mass value
(126.5 GeV) is preserved, but somewhat degraded due to the detector resolution effects.
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Figure 25. The same as Fig. 13, but using study point P32 as input.

4.5 D-pair production and combinatorics effects

Our proposed mass measurement method uses a single decay chain like the one depicted
in Fig. 1. In that sense, the method is inclusive and model-independent, since it does
not depend on what else is going on in the event. In particular, the method is equally
applicable when particle D is produced singly, in pairs, or in association with another
object. Nevertheless, a well-motivated and widely studied class of models are the SUSY-
like dark matter scenarios in which all particles A, B, C' and D carry negative parity under
the additional Z5 symmetry. In that case, D has to be produced in association with another
negative parity object. If A is a neutral dark matter candidate, then D must carry color,
therefore D pair-production is strong and may dominate the inclusive cross-section for D
production.

The presence of a second D decay chain in the event can either be a blessing or a
curse. If both D particles decay the same way, as in Fig. 1, we can attempt to double our
statistics by considering the second decay chain as well. However, this comes at a cost, since
now we have to face the combinatorial problem of associating the different reconstructed
final state objects to one of the two decay chains. First, there is a two-fold ambiguity of
associating each jet to the correct side, and furthermore, there is an additional two-fold
ambiguity in the case when all leptons are the same flavor. The simplest approach would
be to consider all possible combinations and use the resulting data set for building the
Voronoi tessellation, then proceeding with the fitting of the boundary surface as before.
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Figure 26. The same as Fig. 14, but for the exercise performed in Section 4.3, using study point
P35 as input. The red solid line is the phase space boundary for the nominal value m4 = 126.5
GeV, while the black dashed line corresponds to the best fit value m4 = 116 GeV found in the the
top left panel of Fig. 25.

The result from this exercise is shown in Fig. 28 for the case of 100 (left panel) and 500
(right panel) signal events. We see that despite the pollution from wrong combinatorics,
the peak in X is still very well visible, and found in the right location.

Our final study is reserved for the most challenging example so far — a case with a
severe combinatorics problem, in the presence of SM (tf) background events. For signal,
let us again consider D-pair production, only this time let all three of the decay products of
the second D particle be QCD jets. Thus, each one of our signal events has 2 leptons and 4
jets, and picking the correct jet becomes a difficult task. Now, instead of using all possible
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Figure 27. The same as Fig. 25, but accounting for the detector resolution as described in the
text.
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Figure 28. The same as Fig. 25, but for signal events where particles D are pair-produced and
decay as in Fig. 1. The left (right) panel is made with 100 (500) signal events.

combinations, we design a preselection cut in order to improve our chances of capturing
the correct jet pairing. For this purpose, we consider the four possible jet-lepton-lepton
combinations and compute the corresponding three-body invariant masses. Next, we rank-
order these four values [17, 18] and eliminate from further consideration the two jets which
correspond to the two largest jet-lepton-lepton invariant masses, since those jets are very
likely to come from the decay chain opposite the two leptons. The remaining two jets
still cause a two-fold ambiguity, which we handle as in Fig. 28: by simply plotting both
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Figure 29. The same as the lower two plots in Fig. 25, but for signal events where particles D
are pair-produced and one of them decays as in Fig. 1, while the other decays to 3 jets and particle
A.

combinations. The end result from the analysis is shown in Fig. 29. As in the example
from Sec. 4.3, here we also include a certain number of ¢t background events: 5000 in the
left panel and 6000 in the right panel. The fact that the ¥ peak is again obtained in the
correct location indicates that our method can be viable in the presence of combinatorial
background due to pair production of particles D.

5 Conclusions

In this paper, we reconsidered the classic endpoint method for particle mass determination
in SUSY-like decay chains like the one shown in Fig. 1. Our main points are:

e We have identified a “flat direction” in the mass parameter space (1.1), along which
mass differences can be measured relatively well, but the overall mass scale remains
poorly constrained. (The analytical formulas parametrizing this flat direction can be
found in Appendix A.) We quantified the problem with examples of specific study
points, P31 and Pso, considered in Sections 3 and 4, respectively.

e We then proposed a new method for mass measurements in general, and for extracting
the mass scale along the flat direction, in particular. The method takes advantage of
the changes in the shape of the two-dimensional kinematic boundary surface within
the fully differential three-dimensional space of observables, as one moves along the
flat direction. We have tested our Voronoi-based algorithm [93, 95] for detecting the
boundary surface and demonstrated that it can be usefully applied in order to lift the
degeneracy along the flat direction. This approach represents the natural extension
of the one-dimensional kinematic endpoint method to the relevant three dimensions
of invariant mass phase space.

e We introduced a new variable, ¥, which is the average RSD per unit area, calculated
over the hypothesized kinematic boundary. We showed that the location of the %
maximum correlates very well with the true values of the new particle masses, see
Figs. 11, 13, 23, 25, and 27.
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The work reported here can be extended in several directions. First of all, the method
can be readily generalized to longer decay chains with more visible particles, where the
boundary enhancement is even more pronounced [94], and therefore, the detection of the
boundary surface should be in principle easier. One could also try to apply Voronoi-based
boundary detection algorithms for the discovery of new physics. It is also interesting to
develop a general and universal method for estimating the statistical significance of the
local peaks found in Figs. 11, 13, 23 and 25, and hence the statistical precision of our mass
measurement. These, along with many other interesting questions, will be investigated in
future studies [109].
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A Inverse formulas

In this appendix we derive the inverse relations which define mp, m¢ and mp in terms of
the three measured endpoints

2
a= (mer)?, b= (m}%“”)Q, c= (mﬁ&’gw)> , (A.1)

and the remaining mass parameter my4. For simplicity of notation, in this appendix we
shall omit the tildes on the trial mass parameters m, mpg, mg and mp.

The case of region (3,1)
Region (3,1) is defined by the following conditions

Rap < RpcRep = Rpp, (A.2)
1

R > A3

BCZ 5T (A.3)

The kinematic endpoints are given by the following formulas:

a =m%Rep (1 — Ruap)(1 — Rpe), (A.4)
b = m} (1 — Rpp)(1 — Rag), (A.5)
¢ = mp (1 - Rpe)(1 — Rop), (A.6)
d = m% (1 - Rop)(1 — Rag). (A.7)

The masses of B, C' and D are given by
1

my = % {Qmic +a(b—a—c)+ [4miac(b — a) + a*(b — a — ¢)?] 1/2} . (A8)
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where in the right hand sides of the last two equations m4 is an input, while mp is
calculated from (A.8). Using (A.2) it is easy to show that in this region, we always have

b—a—c=m%(1—-Rcp)(Rpc — Rap) >0,

so that (A.8) always gives a non-negative result for m%. Substituting (A.8-A.10) into
(A.7), one can explicitly check that the my4 dependence drops out and we recover the
“bad” relation (2.12) in the form

d=>b-a. (A.11)

The case of region (3,2)
Region (3,2) is defined by the following two conditions:

Rap < RpcRcp = Rp, (A.12)
1

R < - A.13

BO S o R ( )

The kinematic endpoints are given by the following formulas:

a = m¢(1— Rap)(1 — Rpo), (A.14)
b =mb(1 — Ra)(1 — Rpp), (A.15)
c=m%(1—Rep)(1— Rap)(2— Rap)~ !, (A.16)
d = m%(1 — Rep)(1 — Rap). (A.17)
The masses of B, C' and D are given by [101]
2
2 Cma
= A.18
"B T 5% bta ( )
2 2 a
= 14— A.19
mc mB<+mZB—m124>’ ( )
2 2 b
Mmp =My
In this region, we always have
2
2c—b+a=mb(1—-Rep) [ =—— 1) >0,
2— Rup

so that (A.18) always gives a non-negative result for m%. The “bad” relation (2.12) is again
satisfied in this region, so that along the flat direction the endpoint d is again constant and
given by (A.11), providing a useful cross-check on the obtained solution (A.18-A.20).
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The case of region (2,3).

is defined by the following condition:
Rpc < RapRep, (A.21)

The kinematic endpoints are given by the following formulas:

a = m&i(1 — Rag)(1 — Rpe), (A.22)
b =m%(1 — Rpc)(1 — RapRep), (A.23)
¢ =m%(1— Rep)(1 — Rap)(2 — Rag) ™!, (A.24)
d = m%(1 — Rep)(1 — Rpe). (A.25)
The masses of B, C' and D are given by
o 2m34(b—a)+a(2c—b+a)+ [4m¥ac(b — a) + a*(2¢c — b + a)?] 1/2
2(b—a)
2 —mg (14— A.27
meo mpg ( + mQB — mi , ( )
2 _ a b, o 2 2 A

Using (A.22), (A.23) and (A.25) it is easy to show that in this region, we always have
b—a=d>0,

and while the term (2¢ — b+ a) can have either sign, the discriminant (i.e., the term inside
the square root in (A.26)) is always larger than a?(2c — b + a)?, which guarantees a non-
negative result for m2B. In this region, the relation (2.12) is again satisfied, so that d is

again given by (A.11), which can be used to cross-check the result (A.26-A.28).

The case of region (4,1).
Region (4,1) is defined by the following conditions:

Rap > RpcRcp = Rap, (A.29)
1

R > A.30

BC —Z 9 _ RABv ( )

Rep > RapRpe = Rac. (A.31)

For the case (4,1) the endpoints are given by the following formulas:

a =mi(1 - Rap)(1 — Rpe), (A.32)
b =mb(1—+/Rap)?, (A.33)
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¢ =m%(1 - Rep)(1 — Rpe), (A.34)

d = mp(1 = Rep)(1— Rap). (A.35)

The masses of B, C' and D in terms of a, b, ¢c and m4 are given by

o amh+cemi + (mi —a)la+c)+allat+ec—m} —m3)? - 4m?4m2D]1/2
2(a+c)
mé =my 1+ . — (A.37)
mp —my)
mp = ma + Vb, (A.38)

where in (A.36) mp should be taken from (A.38), and the obtained result for mp should
be used in (A.37). The d endpoint is given by

d=b—a—m? (\/@—@)2 (A.39a)
ac{(b— a—c) [b(l + /1) +2mA\/5\/77} +2(20 — a—c)(mA\/l;+m?4)}

= , (A.39b)
(a+c) [a(b —a—c)(1+ /) +2amavVb+ 2(a + c)mi]
where
p =1y dmatma+ Vb) (A.40)
b—a—-c
The case of region (4,2).
is defined by the following conditions:
Rap > RpcRcp = Rpp, (A.41)
Rpc > Rag, (A.42)
Rpe < 2_;AB, (A.43)
Rcp > RapRpc = Rac. (A.44)
The kinematic endpoints are given by the following formulas:
a =m¢(1— Rap)(1 — Rpe), (A.45)
b=m%(1—+/Rap)?, (A.46)
¢ =mh(1 — Rep)(1— Rap)(2 — Rap) ™', (A.AT)
d = m} (1 — Rep)(1— Rag). (A.48)
The masses of B, C', D in terms of a, b, c, m4 are the following
m%:% m2D+m?4—a—2ci\/(m%+m124—a—20)2—4m124(m%—c) , (A.49)
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mé = my (1 + m2im2> ' (A.50)
B A

mp = ma + Vb. (A.51)

Here, just as in (A.36-A.38), one should first find mp from (A.51), then use the result in
(A.49) to obtain mp, which will be needed in (A.50). The d endpoint is then given by

d=b—a—m} (VRip—VEpp) (A.52a)

c[a+3b—20+6mA\/5+2m?4—\/(b—a—20+2mA\/l;)2—4(a+c)m?4

N 2(b — ¢+ 2mavb +m?) (4.52b)
The case of region (4,3).
Region (4, 3) is defined by the following conditions:
Rap > Rpc, (A.53)
Rpc > RapRep, (A.54)
Rep = RapRpc = Rac. (A.55)
For the case (4,3) the endpoints are given by the following formulas:
a =mg(1— Rap)(1— Rpc), (A.56)
b =mh(1 = Rap)?, (A.57)
c=m%(1—Rep)(1— Rap)(2— Rap) !, (A.58)
d = m}h(1 - Rep)(1 — Rpe) (A.59)

The masses of B, C', D in terms of a,b,c, m4 are the following

1
my = - [m%—l—mi—a—%—\/(m%+m?4—a—2c)2—4m?4(m2D—c) , (A.60)

2
2 2 a

= 14+ ——1, A.61
mp = ma + Vb, (A.62)
where again the masses are calculated in the order mp, mp and then m¢. The d endpoint

is given by

2

d=b—a—md <\/RBC - \/RABRCD> (A.63a)

dac [b—a—2c+2mA\/5+m2A— \/(b—a—Qc—i—QmA\/B)?—4(a—|—c)m124]
_ .(A.63D)

2
(b— 2e+2mavh - \/(b— a—2¢+2mav'b)? —4(a+c)m§4> — a2
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