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Abstract

We report a computational study, using the “moments method” [Y. Gao and M.
Daw,Modell. Simul.Mater. Sci. Eng. 23 045002 (2015)], of the anharmonicity
of the vibrational modes of single-walled carbon nanotubes. We find that modes
with displacements largely within the wall are more anharmonic than modes
with dominantly radial character, except for a set of modes that are related to
the radial breathing mode that are the most anharmonic of all. We also find
that periodicity of the calculation along the tube length does not strongly affect
the anharmonicity of the modes but that the tubes with larger diameter show
more anharmonicity. Comparison is made with available experiments and other
calculations.
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1 INTRODUCTION

Vibrational modes of single-wall carbon nanotubes
(SWNTs) are accessible experimentally via Raman
spectroscopy.[1–3] A typical Raman spectrum of a SWNT
reveals two prominent peaks associated with intrinsic (not
defect-related) modes: the radial breathing mode (RBM)
and the so-called “G-band,” a group of high-frequency
modes that have an analog in graphene. Extensive theoret-
ical investigations of the vibrational modes of SWNTs have
been carried out, most commonly using the harmonic
approximation.[4,5]
By examining the temperature-dependence of the

Raman spectra, it is possible to explore the anharmonicity
of the RBM and G-band in particular. Raman spectra of
the RBM and G-band in SWNT bundles have revealed that
their frequency drops with temperature between 300 and
800K.[6,7]. Molecular dynamics calculations on individual
SWNTs agree with these observations.[7]
In this work, we apply the “moments method”[8–10] to

investigate the temperature-dependence of the frequency

of all of the modes of a SWNT. We also study how the
chirality, diameter, and length of the tube affect the anhar-
monicity. We find that generally, all of the vibrational
modes shift to lower frequency with increasing temper-
ature. Within that generality, we find that, with respect
to anharmonicity, there are three basic groups of modes.
Vibrational modes with largely longitudinal character
(that is, displacements parallel to the length of the tube)
and modes with largely azimuthal displacements (trans-
verse to the length but tangential to the tube) are more
anharmonic than the large majority of radial modes. The
exception are the azimuthally symmetric radial modes,
which are the most anharmonic of all modes. The RBM
itself is the most anharmonic of all modes, and the G-band
is nearly as much.
In the next section, we discuss the method, and in the

following sections, we discuss our results, ending with the
conclusions that the RBM is the most anharmonic of the
vibrational modes of the SWNT as revealed by its shift
with temperature. We also find that the anharmonicity of
these modes is not sensitive to chirality or length but does
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depend on diameter. We discuss our results in relation to
experiments and previous calculations.

2 METHOD

The moments method is an approximation based on
low-order moments of the Liouvillian operator,[8] which is
the time-evolution operator of phase-space functions for a
classical dynamical system. Beginning with the harmonic
force constant matrix for the particular cell, the normal
modes are found, indexed by wavevector k and branch
b. The calculation involves ensemble averaging of prod-
ucts of normalmode amplitudesAkb and accelerations Äkb,
which are obtained by projecting the atomic displacements
and forces onto the normal modes. Using the harmonic
modes as a basis is justified by the weakly anharmonic
character of this system. The lowest, nontrivial moment
of the power spectrum of the displacement-displacement
autocorrelation

𝜇2(kb) = −
⟨AkbÄkb⟩

⟨A2
kb⟩ − ⟨Akb⟩2 (1)

(where the angle brackets indicate ensemble averages)
gives a simple measure of the temperature-dependent
dynamics of the system.
The expression in Equation 1 includes the possibility

that ⟨Akb⟩ is nonzero, which was not included in our previ-
ous papers because the systems considered previously had
sufficiently high symmetry that the average displacement
vanished. However, in the present case, the average dis-
placement of the RBM deviates significantly from zero as
the temperature increases, and so we have extended the
expressions derived in previous work to include nonzero
first moments. The average amplitude < Akb > is defined
relative to the equilibrium at T = 0. For most modes,
it is 0 but in the case of radial modes, it is not. By this
we mean, even when the expansion along the length is
allowed, the tubemay still be expanded or shrunk in radius
compared with zero temperature. It is a kind of thermal
expansion/contraction but radially not lengthwise along
the tube. It is important to include because the variance
around the mean is what allows us to determine the fre-
quency of the mode, and the variance involves both the
first and second moments.
The quasi-harmonic (temperature-dependent)

frequency 𝜔(k) is given by

𝜔(kb) =
√
𝜇2(kb). (2)

The moment is calculated by standard Monte Carlo inte-
gration. This methodwas used recently to study the anhar-
monic renormalization of flexural modes in graphene.[11]

In this study, the interatomic interaction is described by
a Tersoff potential tailored somewhat for graphene.[12–14]
The normal modes are identified from the eigenvectors of
the harmonic force constant matrix. The Monte Carlo cal-
culation includes 40,000 steps per atom, which obtains a
convergence of all averages to better than 3%.
We generated various tubes of different chirality and

length. The usual way[15] to specify the nanotubes is by the
chiral indices (n1,n2) that describes how a flat graphene
sheet can be “rolled-up” to make the nanotube. The diam-
eter is then fixed at d =

√
n21 + n1n2 + n22a0∕𝜋 where

a0 = 2.46 Å corresponds to the second nearest neighbor
distance in the surface of the tube. The lattice parameter of
the cells is determined for each tube at each temperature
bymolecular dynamicswith adjustable cell size at constant
(zero) pressure, thus incorporating thermal expansion or
contraction.
As noted above, the RBM is highly symmetrical; the dis-

placements are dominantly radial and are uniform along
the length of the tube. Other modes displacing along the
radial direction—we refer to simply and more generally
as “radial modes”—are related to the RBM by a modu-
lation along the tube axis—as in cos(kz) where k is the
wavevector and z is the distance along the axis of the
tube—and/or a phase related to the azimuthal angle𝜙—as
in cos(m𝜙) with integer m. The k = 0 modes are at
the 𝛤 -point in the one-dimensional Brillouin zone. The
RBM is then a special radial mode with m = 0 and
k = 0. Most of the radial modes are not visible in Raman
spectra but as we have noted before, the RBM appears
prominently.
All computational cells are under periodic boundary

condition along the length of the tube, and the possi-
ble lengths for this periodic condition must be compat-
ible with the chirality. The periodic boundary condition
imposed on the tube must then be compatible with the
unit periodic length for those chiral indices. For the (15, 0)
tube, for example, the unit periodic length is L0 =

√
3a0.

So the unit cell for the SWNT with that chirality has
60 atoms in it. The actual periodic length L = nL0
must be an integer multiple of this unit periodicity, so
that we can simulate tubes with (15, 0) with multiples of
60 atoms.
The periodicity affects the values of thewavevector k that

are included in the simulation. That is, for an actual CNT,
the values of k are virtually continuous, but for our periodic
boundary conditions, the values of kmust also be compat-
ible with the periodicity, so that k = 2𝜋Z∕L where Z is an
integer and L is the periodic length, out to the maximum k
value in the Brillouin zone of the tube. These discrete val-
ues of k are then included in the set of normalmodes of the
tube with the periodicity imposed. If the periodic length is
doubled, for instance, then there are twice as many modes
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included, including new k values in between the k values
for the smaller cell.
The periodicity is important for two reasons. First, it

restricts the normalmodes that can be studied in the calcu-
lation. So for a tube of a set periodicity, only so many nor-
mal modes will occur. Second, the periodicity also restricts
the modes that are available to interact with each normal
mode. The nonlinearity of the atomic interactions causes a
coupling among the normal modes. Thus, the periodicity
also restricts the number of modes available for coupling
to each normal mode. It is therefore important for us in
this work to determinewhether the results have converged
with respect to the periodic length.We include in our work
a study of this convergence.
All together, we studied tubes with lengths ranging from

1.3 to 13 nm and diameters from 0.78 to 2.35 nm, with
various chiralities. In some parts of the analysis, we focus
on particular modes, but all have been included in the
calculation.
We note additionally that the results we obtain are obvi-

ously tied to the Tersoff potential that we have used. The
Tersoff potential was devised according to the concept of
bond order and contains various prescriptions for angular
dependence and also cutoffs that can affect the anhar-
monicity.One approach that has beenused in the literature
is to determine explicitly the third- and fourth-order force
constants from a potential and to obtain from those the fre-
quency shift. Our approach here is different. We do not go
through the intermediate identification of force constants
but rather use the ensemble sampling of the correlations
among displacements and forces to determine how the
anharmonicity connects to the shift in frequency. Because
of this, our method can make use of any potential with-
out having to analyze in advance the particular form of a
potential.

3 RESULTS

We begin by presenting the results for a typical nan-
otube. The anharmonicity is easily displayed by comparing
the frequency 𝜔 at some temperature as compared with
the zero-temperature frequency (𝜔0). One measure of the
anharmonicity is the ratio 𝜔N ≡ 𝜔(T)∕𝜔0. This simple
measure shows the fractional shift in frequency due to tem-
perature, which is a sign of anharmonicity. It is not the
only measure of anharmonicity but it is a simple measure
that will allow us to compare the character of modes in a
quick way. Figure 1 is a scatterplot of the ratio 𝜔N versus
𝜔0 for all normal modes of a SWNT(15,0) nanotube with
periodic length 6.5 nm (so it has 900 atoms in the unit cell)
at T = 1, 200 K. As can be seen from the figure, closer
analysis shows that the modes fall into three basic groups

FIGURE 1 Scatterplot of the ratio 𝜔N ≡ 𝜔∕𝜔0 versus 𝜔0 for all of
the modes of a SWNT(15,0) tube. 𝜔 Is the frequency at temperature
(T = 1, 200 K) and 𝜔0 is the corresponding harmonic frequency (at
T = 0 K). A set of wavenumber labels for horizontal axis is added for
more convenient comparison with experiments. For a perfectly
harmonic system, all points would be at the top (at a value of 1); due
to anharmonicity, all of the modes of this system drop to lower
frequency with increasing temperature. The more anharmonic
modes exhibit lower values of 𝜔N . Lines are drawn in this figure as
guides to the eye to indicate the different groupings of modes
described in the text. RBM = radial breathing mode;
SWNT = single-wall carbon nanotube

according to anharmonicity. The least anharmonic modes
(those that show the least drop in frequency with increas-
ing temperature) are the radial modes (except for a small
group that will be discussed in a moment). The modes
with largely longitudinal and azimuthal displacements are
more anharmonic. The modes with displacements mostly
in-plane seem to be more anharmonic because displace-
ments in the plane will have a more direct effect on the
bond length than out-of-plane displacements.
Finally, in Figure 1, there is a standout set at a frequency

of about 35 × 1012 rad/s, which are radial modes that are
azimuthally symmetric (that is, have m = 0). Among
this set, we find that the RBM is the most anharmonic of
all of the modes of the nanotube. This is consistent with
experimental Raman results,[7] where both the RBM fea-
ture and the G-band are seen to shift with temperature but
in fractional terms, the RBM is more anharmonic. These
azimuthally symmetric radial modes differ from the RBM
by the wavevector k. So we focus in this work on the RBM
modes by showing the temperature-dependent dispersion
curves in Figure 2. At T = 0 K, the frequencies (purely
harmonic) follow a quartic dispersion

𝜔(k) = c0 + c1k4. (3)
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FIGURE 2 The dispersion relation of the azimuthally symmetric
(that is,m = 0), radial modes of SWNT(15,0) at various
temperatures calculated using the moments method. The periodic
length is 6.5 nm, so there are 900 atoms in the unit cell. A fit to
Equation 3 is shown. The results for several other intermediate
temperatures have been calculated and are intermediate to these
results, so they have been omitted from this plot for the sake of
presentation. SWNT = single-wall carbon nanotube

Our values of c0 and c1 are 36.3 and 56.9 × 1012 rad∕sec,
respectively (or 193 and 302 for wavenumbers). The tem-
perature dependence is made clearer in Figure 3 by replot-
ting the same data in terms of the ratio to the harmonic
frequency versus temperature. In both figures, it is clear
that the RBM has stronger temperature dependence than
the other azimuthally symmetric radial modes. The fre-
quency of theRBM is roughly linearwith temperature, and
the temperature coefficient p in

𝜔N(T) = 1 + 𝑝T (4)

is determined for this tube to be−6×10−5K−1. Figure 3 also
shows that the absolute value of p decreases with increas-
ing wavevector k. The RBM is the most anharmonic of the
set (indeed, of all modes).
Two different experimental observations using Raman

spectra of nanotube powders[6,7] of similar diameter (both
estimated to be 1.3 to 1.4 nm) determine a slope in the
range of 300–800 K of −7 × 10−5K−1 and −2 × 10−5K−1,
which span our value. We note that it is not clear how to
compare calculations of isolated nanotubeswith the exper-
imental Raman spectra of nanotube powders; it is expected
that in such powders, the tubes touch and interactions
with neighboring tubeswould affect their vibrational char-
acteristics. This could be studied theoretically by bringing
tubes in contactwith each other, which is beyond the scope
of the present calculation, but could be done in the future
with the same methods.

FIGURE 3 The ratio of anharmonic frequency to harmonic
frequency (𝜔N (T) = 𝜔(T)∕𝜔0) versus temperature for radial modes
of various wavevector k. RBM = radial breathing mode

A molecular dynamics simulation[7] using one of the
original Tersoff potentials for carbon[12] for a (10,10) tube
(1.4 nm) reported a value of p of −5 × 10−5K−1 very close
to our calculation and also within the range reported in
the two experiments. The minor difference between the
present calculations and those previously reported might
be attributed in part to the different chiralities and diam-
eters considered, in part to the interatomic potential (we
used a potential with Tersoff form that was somewhat opti-
mized to graphene[14]), or possibly in part to the difference
in technique (molecular dynamics vs. moments). At any
rate, the differences are not large.
One might hypothesize that the RBM is more anhar-

monic than other modes because it is radial—that is,
maybe displacements in the radial direction are more
anharmonic than displacements in other directions—but
that is disproved by our results that demonstrate that the
large majority of radial modes are not as anharmonic as
the RBM. The strong temperature dependence of the RBM
frequency, especially in contrast to the other radial modes
with k ≠ 0, can be understood rather in terms of the
high symmetry of the RBM (with k = 0 and m = 0).
The RBM has the same symmetry as the nanotube itself
(in that any operation that returns the atomic structure
of the nanotube to itself also returns the RBM to itself)
and can therefore couple easily with othermodes. In terms
of the usual third-order force constants (see, for example,
Madelung[16]), the high symmetry of the RBM allows it
to couple with many other modes of the tube. The rota-
tional and translational symmetry of the CNT requires, for
example, that the third-order coupling among modes with
indices (k1,m1), (k2,m2), and (k3,m3) can be nonzero only
if k1 + k2 + k3 is an integer multiple of G = 2𝜋∕L0 and if
m1 +m2 +m3 = 0. Because the RBM has k = 0 andm = 0,
it can form a third-order coupling with any other (k,m)
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FIGURE 4 In (a), the slope p of the temperature dependence of the frequency (Equation 4) of the RBM is plotted versus the diameter d of
the tube. For this plot, we chose a series of tubes with chirality from (10,0) to (30,0). Other corresponding sequences of tubes show similar
behavior. In (b), the slope p of the temperature dependence of the frequency (Equation 4) of the RBM of the (15,0) SWNT is plotted versus the
periodic length l of the supercell. Tubes of from 3 up to 30 unit lengths are included in this plot. RBM = radial breathing mode

and its symmetry-related partner (−k,−m). This ubiqui-
tous coupling would mean that the frequency shift of the
RBMmaydepend on the number of othermodes present in
the tube. Because of the periodic boundary condition, the
value of k is discrete and the spacing is determined by the
number of unit lengths included in the cell. The number
of such modes available for coupling will vary with tube
diameter and length, so we investigate the possible effect
of this in the following.
In Figure 4a, we show that the value of p for the RBM

(fromEquation 4 and Figure 3) depends on the diameter of
the tube. That is, the anharmonicity of the RBM is stronger
for tubes with larger diameter. This is consistent with
the observation in the previous paragraph, because as the
diameter of the tube increases, the number of modes that
are available to couple with the RBM increases, thereby
resulting in a stronger anharmonicity.
However, by contrast, we show in Figure 4b that the

temperature dependence of the modes is not very depen-
dent on the periodic length of our calculation. Periodicity
restricts the calculation so that only vibrational modes
with wavelength commensurate with the periodic length
are allowed. Increasing the length of the periodic cell
allows more modes to be present and also to couple with
the RBM that is present always. However, our results indi-
cate only a weak dependence of the anharmonicity on the
periodic length, so that our conclusions are convergedwith
respect to the periodic boundary condition.

4 CONCLUSIONS
We have presented the results of a study of anharmonicity
of vibrational modes of SWNTs obtained by the “moments
method,” which is based onMonte Carlo averages of prod-
ucts among displacements and forces. The forces and ener-
gies required for the MC calculation were obtained from a

semiempirical Tersoff potential, somewhat optimized for
graphene.
Generally, all modes shift down in frequency with

increasing temperature. Modes with largely in-plane
character (longitudinal and azimuthal modes) are more
strongly anharmonic than most modes with radial char-
acter, with the exception of azimuthally symmetric radial
modes (which includes the RBM). In terms of the frac-
tional shift in frequency, the RBM is the most anharmonic
of allmodes of the nanotube. The temperature dependence
of the frequency of the RBM increases with the diameter of
the tube. This is attributed to an increase in the number of
azimuthalmodes eligible to couplewith theRBM.As far as
we can determine from searching the literature, this is the
first time that the effect of diameter on the anharmonic-
ity has been appreciated. The pronounced anharmonicity
of the RBM is attributed to its ubiquitous coupling to other
azimuthal modes, which is allowed by its high symmetry.
The results provide a clearer picture of the anharmonicity
of the vibrational modes of a SWNT.
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