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a b s t r a c t 

In this article we introduce a new traffic flow model for a dense urban area. We consider 

a two-dimensional conservation law in which the velocity magnitude is given by the fun- 

damental diagram and the velocity direction is constructed following the network geom- 

etry and assuming we do not have precise information of drivers trajectories. We validate 

the model using synthetic data from Aimsun and propose a reconstruction technique to 

recover the 2D density from the data of individual vehicles. A comparison between the 

model and the data is shown. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Different families of traffic models have been developed over the years (see van Wageningen-Kessels et al., 2014 for a 

review of model evolution). Microscopic models aim at representing each vehicle as a particle with dynamics based on Ordi- 

nary Differential Equations (ODEs). The first microscopic model called car-following was proposed in ( Pipes, 1953; Kometani 

and Sasaki, 1961 ) with the idea that vehicles adapt their speed according to the position of the vehicle in front. Then, the 

global traffic state can be seen as a system of n coupled ODEs, where n is the number of vehicles in the network. These 

models allow to describe the behavior of every single driver but are not always used in practice due to their high com- 

putational cost and their difficulty to be calibrated as they require many parameters. Alternatively, macroscopic models do 

not model each individual vehicle but represent the traffic state as average quantities like vehicle density. In the thirties, 

Greenshields et al. (1934) found a link between vehicles density and flux. Following that work, a model inspired from fluid 

dynamics was introduced: the Lighthill, Whitham and Richards model (LWR model) ( Lighthill and Whitham, 1955; Richards, 

1956 ). This model is based on a partial differential equation and is able to describe dynamically the evolution of traffic den- 

sity along a road. A discrete and easy to implement version, the Cell Transmission Model (CTM) which is equivalent to the 

Godunov method ( Godunov, 1959 ) has been introduced in ( Daganzo, 1994 ). This model has been extended, subsequently, to 

networks to model urban settings. 

Subsequently, the extension to a network was developed in ( Coclite et al., 2005 ), here the authors couple the LWR model 

with a junction model. The dynamics of the junction is modeled with an LP-optimization problem. Several others models 
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have been introduced since then, see Garavello et al. (2016) and reference therein. These models assume knowledge of 

several parameters, for instance, the split ratio of vehicles at each intersection, which might be difficult to obtain, and also 

focus on a level of detail that my be not relevant for the size of the area considered that is why researchers on large 

scale traffic modeling started to develop models that describe traffic at a more aggregated level. In this framework, an 

important field of research concentrates on the notion of Macroscopic (or Network) Fundamental Diagram. Starting with 

some empirical observation of traffic in a city, Daganzo and Geroliminis (2008) and Geroliminis and Daganzo (2008) show 

that it is possible to exhibit a relation between the average density and the average flow over a whole network. This result 

enables the introduction of accumulation models — also called reservoir models — which consist of representing the traffic 

state of a network with a single scalar field variable representing the total number of vehicles in the network. These models 

are practical because they are understandable, with few parameters to tune and a low computational cost. However, they 

contain little information about the traffic states. For example, they are not able to describe precisely where vehicles are 

located over the reservoir. This problem was later on addressed in some papers in which the authors separated different 

areas of the city with different reservoirs, see for example Leclercq et al. (2015) and Hajiahmadi et al. (2013) . 

At the beginning of traffic modeling in urban areas, some continuous two dimensional model were investigated 

( Beckmann, 1952 ) but only in the case of static models. These authors represent the traffic state in the 2D-plane using 

a density of vehicles per area. An overview of static models in two dimensions is available in ( Ho and Wong, 2006 ). 

Finally, traffic in urban areas can be modeled with two-dimensional continuous and dynamic models. A review of some 

of these model have been done by Aghamohammadi and Laval (2018) . These models represent the traffic density ρ as a 

variable over a 2D-plane ( x, y ) ∈ �. Such models are based on a two-dimensional conservation law and take the following 

general structure: 
{ 

∂ρ(t, x, y ) 

∂t 
+ ∇ · � �(ρ(t, x, y )) = 0 

ρ(0 , x, y ) = ρ0 (x, y ) 

, ∀ t ∈ R 
+ , ∀ (x, y ) ∈ � (1) 

where ρ is the aggregated density and � � the flow vector defined as the product of the density ρ and velocity field vector 
� v . This type of two-dimensional equations is commonly used in pedestrian modelling ( Helbing, 1992; Hughes, 2002; Jiang 

et al., 2010 ). However, one should remark that crowds evolve in general in open space and are not constrained on roads as 

vehicles do. Thus, a first assumption for the application of this kind of equations to traffic is to consider that the urban net- 

work is dense enough to be approximated as a continuum. Generally, 2D models are not expected to describe very precisely 

the density evolution at space coordinates, but focus more on capturing the main traffic features and the global evolution 

of the density. The literature concerning this type of models is scarce, but there are several studies which start considering 

the problem. First, in Jiang et al. (2011) and Du et al. (2013) , the authors take inspiration from pedestrian modeling in order 

to model vehicular traffic. They define the flux � � by solving an Eikonal equation such that the flow follows the path of the 

lowest cost — usually in terms of travel time, but other criteria could be used as well. Another extension of this model is 

done in Jiang et al. (2015) . Their extension considers a second order equation such that it improves the description of the 

vehicle acceleration in the aim of pollutant estimation. In Romero Perez and Benitez (2008) , an advection diffusion equation 

is introduced with a function of flux � � that depends on the space coordinates instead of depending on the density. Thus, 

the velocity is predetermined and the equation becomes linear. Another study ( Della Rossa et al. (2010) ) consider a model 

including a diffusion term and a drift term dependent on the density. The direction of the drift vector is fixed in some area 

and is determined by the shape of the network. In Saumtally (2012) and Sossoe and Lebacque (2016) , the authors investigate 

the representation of intersection and how it could be interpreted in a 2D model. Following this idea, they take inspiration 

of junction models in one dimension like Lebacque and Khoshyaran (2004) and build extensions to 2D models. Lastly in 

( Herty et al., 2018; Chetverushkin et al., 2010; Sukhinova et al., 2009 ), the authors consider two-dimensional models for the 

case of multilane roads instead of a road network. Thus, the methodology and the model have several similarities but the 

objectives and the results are different. In Mollier et al. (2018) , we consider a flux function consisting of a direction that 

depends on the space coordinates — as the one considered in this paper — and the simple fundamental diagram suggested 

first by Greenshields et al. (1934) , however without any specific tuning of the parameters. 

As 2D models are recent, there is little validation or calibration of these models. A first challenge in testing 2D models 

is to obtain a two-dimensional density function from real traffic data. In particular, the reconstruction of a density in the 

2D-plane from vehicle data on the road network needs to be defined properly. The problem of reconstructing a probability 

density from observation is a well-known problem in statistics. One common method is Kernel Density Estimation (KDE) 

introduced first by Parzen (1962) . Using this method, each data observation contributes to the density via a Gaussian cen- 

tered at the position of the data observation. In Fan (2013) and Fan et al. (2014) , the authors suggest to use this method for 

real traffic density but in the one-dimensional case when density represents a single road. 

This article has two contributions. The first one is to present a 2D model with a geometry-dependent flux where the 

magnitude depends on the density and the direction depends on space. The second contribution is a methodology for the 

validation of 2D models using microsimulation. To this aim, a method to reconstruct a two-dimensional density from simu- 

lated data is described. A numerical method for the simulation is also shown and the results of comparison between the 2D 

model and the microsimulator Aimsun are presented. The organization of the paper follows these lines. In Section 2 , we 

present the considered model with the construction of the flux function and the numerical method used for the simulation. 

Then in Section 3 , we explain the methodology for the reconstruction of two-dimensional density. In Section 4 , we deal 
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Fig. 1. Representation of an urban area as a road network (left) and as a continuum (right). 

with the estimation from data of the parameters to construct a Fundamental Diagram consistent with the network. Finally 

in Section 5 , we display the results of the comparison between the simulation of the 2D model and the equivalent scenarios 

run with the microsimulator Aimsun . 

2. Model design 

2.1. A two-dimensional conservation law for traffic modeling 

In this paper we introduce a 2D model for traffic flow based on a two-dimensional conservation law. We consider a 

model in the two-dimensional plane where the density represents the number of vehicles per square area. An example can 

be seen in Fig. 1 , giving a comparison between the same traffic situation described with a 1D density (left) and a 2D density 

(right). 

Based on the different variables that could influence the flux function, several models could be designed. In this paper, 

we make the following assumptions : 

1. The velocity magnitude is decreasing with respect to density. 

2. The drivers do not adapt their paths with respect to density, i.e., there is no re-routing. 

3. The maximal speed and the capacity is constant with respect to space. 

4. The direction of the flow is given by the geometry of the network. 

As most relevant roads are commonly bi-directional, this last assumption requires some justification. Large-scale urban 

traffic modeling is of particular relevance during (morning and afternoon) rush hour times of peak congestion. During those 

times, most urban areas exhibit a dominant direction of traffic flow (e.g., from the suburbs to downtown in the morning), 

and it is generally known (from historic data and/or travel demand modeling) which roads in the network carry this peak 

flow. In that spirit, we consider the following model. 

{ 
∂ρ

∂t 
(t, x, y ) + ∇ · � �(x, y, ρ(t, x, y )) = 0 , ∀ t ∈ R + , ∀ (x, y ) ∈ � ⊂ R 2 

ρ(0 , x, y ) = ρ0 (x, y ) . ∀ (x, y ) ∈ �

(2) 

The density ρ is a two-dimensional quantity (number of vehicles per square meter) and it is a function of time t and space 

( x, y ) defined in an area � ⊂ R 2 . The flux function � �(x, y, ρ) : [0 , ρmax ] × � → [0 , �max ] is given by 

� �(x, y, ρ) = ρ� v (ρ) (3) 

where the velocity field � v (x, y, ρ) : [0 , ρmax ] × � → [0 , v max ] is given by 

� v (x, y, ρ) = v (ρ) 
︸ ︷︷ ︸ 

magnitude 

· � d θ (x, y ) 
︸ ︷︷ ︸ 

direction 

(4) 

We denote by θ the angle between � d θ and the x-axis. The magnitude of the velocity, v ( ρ), is determined by the Fundamental 

Diagram (FD). In this paper, the FD chosen is the one introduced by Newell (1961) and Francklin (1961) , whose velocity 
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Fig. 2. Speed and flow vs. density. 

function is: 

v (ρ) = v max 

(

1 − exp 
(

c 

v max 

(

1 −
ρmax 

ρ

)))

(5) 

This specific FD has been considered as the best one to fit the data among the concave FD. This function possesses three pa- 

rameters: The maximum velocity v max , the maximum density ρmax , and a velocity c that determines how rapidly the veloc- 

ity decreases with increasing density, and thus affects the value of the critical density. The resulting flux function is strictly 

concave down. An example of this FD is displayed in Fig. 2 . The existence and uniqueness of solutions of equation (2) are 

guaranteed under conditions of smoothness of the function flux �. We refer the reader to the papers of Kruzhkov (1970) (see 

p.223 for the conditions of Uniqueness and p. 230 for the Existence), Rossi (2017) for the scalar case in two space dimension 

as considered in this article. 

2.2. Construction of the velocity direction field 

In the model description (2) , we have presented a velocity field that is the product of the a magnitude that depends on 

the density only, and a direction that depends on position only. In this section, we suggest one possible way to construct 

the direction function � d θ from the geometry of the road network similarly to what is done in Mollier et al. (2018) . The mo- 

tivation behind this is due to the fact that, contrary to what happens with crowds Hughes (2002) , vehicles are constrained 

to the physical road network. 

Remark 1. This method is valid only for a traffic network defined by an oriented graph, i.e. without two directional roads. 

We assume as well, that we do not have any detail on driver trajectories. The split ratio, the origin-destination matrices 

or any information on driver behavior are unknown. The method presented here aims to analyze which traffic features a 

simple two dimensional model can capture in the situation where we just know that a preferred flow direction exists. 

Before describing in detail how the function � d θ is constructed we need to introduce some notation. We describe a road 

as a path from one intersection to another. We denote by q ∈ { 1 , ., Q} the different roads of the network. The spatial path 

of each road is described by a parametric curve �q : s ∈ [0 , s max ] → (�q 
1 (s ) , �

q 
2 (s )) ∈ R 2 . The variable s ∈ [0, s max ] allows to 

progress along the road curvature from an intersection to the next one. Let � τ q (�q (s )) be the tangent vector of the road q at 

position (�q 
1 (s ) , �

q 
2 (s )) . For example in a network with only straight roads, this tangent vector is constant along each road. 

An example is given in Fig. 3 . The estimation of the unit vector � d θ at the discrete cell level is done by a spatial interpolation 

method called Inverse Distance Weighting: 

� d θ (x, y ) = 

Q ∑ 

q =1 

∫ 

s ∈ [0 , 1] 
w (‖ (x, y ) − (�q 

1 (s ) , �
q 
2 (s )) ‖ ) � τ q (�q (s )) ds 

∣
∣
∣

∣
∣
∣

Q ∑ 

q =1 

∫ 

s ∈ [0 , 1] 
w (‖ (x, y ) − (�q 

1 (s ) , �
q 
2 (s )) ‖ ) � τ q (�q (s )) ds 

∣
∣
∣

∣
∣
∣

(6) 

Eq. (6) constructs a direction at any point in the domain as a (normalized) weighted average of the road direction � τ q of all 

points in the network, where the weight of a contributing point on a road depends on its distance to the evaluation point. 

The weight function w : R + → R + should be a decreasing function of the distance. Here we use an exponential function: 

w : X → e −βX with β > 0 . 
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Fig. 3. Variables considered for the estimation of the velocity direction field. ( s max = 1 ). 

Fig. 4. Comparison between the estimation of the velocity direction for a small β (left) and large β (right). 

However, other weight functions, particularly compactly supported ones, are also possible. The parameter β represents the 

localization of the weighted average: for small β , the velocity direction field provides only the global trend of the direction, 

while with a large β , the velocity field follows the detailed features of the roads. Fig. 4 demonstrates these two extreme 

cases in an example. As we are interested in a model that captures the large-scale two-dimensional vehicle transport, but 

without over-resolving the details of the network, we need to choose a value of β that lies between these two extremes. 

Fig. 5 shows the velocity direction field on the network considered for simulation: as the β chosen is not large, the 

direction field is smooth and quite close to the global direction of the network which is towards the North-East direction. It 

is important to stress that for a general network, the weighted average (6) could potentially generate an undefined direction 

(due to the numerator and denominator vanishing). However, for dominant direction flow networks considered here, this 

scenario cannot happen. 

2.3. Model discretization 

2.3.1. Internal scheme 

Numerical methods for conservation laws have been broadly studied in one dimension, multidimension and variable 

coefficient Toro (2013) . In Lie (1999) , the authors consider space-dependence for quasilinear equations and show that it 
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Fig. 5. Example of a velocity direction field in a modified Manhattan grid network. 

is possible to use dimensional splitting if the flux function is bounded and Lipschitz continuous. As the space and density 

dependencies of the flux can be split, one can rewrite equation (2) to have an equation with a quasilinear term and a source 

term: ∀ t ∈ R + , ∀ (x, y ) ∈ �, 

∂ρ

∂t 
+ cos 

(

θ
)
∂ ρv (ρ) 

∂x 
+ sin 

(

θ
)
∂ ρv (ρ) 

∂y 
︸ ︷︷ ︸ 

Quasilinear 

= −ρv (ρ) 

(
∂ cos (θ ) 

∂x 
+ 

∂ sin (θ ) 

∂y 

)

︸ ︷︷ ︸ 

Source 

. (7) 

The splitting method, or method of fractional steps, was considered first by Godunov (1959) and then properly introduced 

by Strang (1968) . The principle of dimensional splitting is to compute separately the different term of the equation for each 

discrete interval of time. Thus, the equation of our model can be split in three parts: 

∂ρ

∂t 
+ cos (θ (x, y )) 

∂ ρv (ρ) 

∂x 
︸ ︷︷ ︸ 

1 

+ sin (θ (x, y )) 
∂ ρv (ρ) 

∂y 
︸ ︷︷ ︸ 

2 

= −ρv (ρ) 

(
∂ cos (θ ) 

∂x 
+ 

∂ sin (θ ) 

∂y 

)

︸ ︷︷ ︸ 

3 

. 

Then, the dimensional and operator splitting consist of dividing for each time step, the computation of the solution by 3 

steps. In the first step, the propagation of the density along the x -coordinates is computed. Then in the second step, the 

propagation of density along the y -coordinates is updated. Finally, using the operator splitting method ( Toro, 2013; Gosse, 

2014 ) the source term is taken into account. 

For each dimension, the flux is computed using the Godunov scheme ( Godunov, 1959 ). Note that the splitting approach 

presented here is only one, simple, way to discretize the model equations. Other, potentially more efficient computationally, 

discretizations are possible. In the numerical results, the numerical approximation is conducted with a fine spatio-temporal 

resolution, so that the errors due to the discretization are negligible compared to the model and upscaling errors. 

Let ( C i,j ) ( i,j ) ∈ [1.. I ] × [1.. J ] be the cell space discretization and (x C i, j , y C i, j ) be the coordinates of each cell center. Applying the 

method given in Section 2.2 , we can define a flux direction for each cell � d θ (x i , y j ) . Let us define the density in the cells 

with (ρi, j ) (i, j) ∈ [1 .I] ×[1 .J] , then the numerical flux is defined at cell interfaces with the notation F 
i + 1 

2 , j 
= F (ρi, j , ρi +1 , j ) and the 
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Fig. 6. Application of the dimensional splitting with the representation of the cell interfaces. 

function F is defined as follows: 

F (ρi, j , ρi +1 , j ) = 

⎧ 

⎪ 
⎪ 
⎪ 
⎨ 

⎪ 
⎪ 
⎪ 
⎩ 

min (�(ρi, j ) , �(ρi +1 , j )) , if ρi, j < ρi +1 , j 

�(ρi, j ) , if ρi +1 , j ≤ ρi, j ≤ ρcrit 

�(ρi +1 , j ) , if ρcrit ≤ ρi +1 , j ≤ ρi, j 

�max , if ρi +1 , j ≤ ρcrit ≤ ρi, j . 

(8) 

The vertical flux F 
i, j+ 1 

2 
is defined analogously. 

Let 
t be the time step, and 
x and 
y the space discretization with respect to the x -axis and the y -axis, respectively. 

The time step 
t is chosen in practice to respect the Courant–Friedrichs–Lewy (CFL) condition in order to garantee the 

stability of the numerical scheme. In two dimensions, this condition can be described as follows: 


t ≤

x 
y 

(
x + 
y ) v max 
. (9) 

Then the global scheme for the computation of the model can be defined as follows: 

ρ∗
i , j = ρn 

i , j − cos (θi , j ) 

t 


x 
(F n 

i+ 1 2 , j 
− F n 

i − 1 
2 , j 

) , (10) 

ρ∗∗
i , j = ρ∗

i , j − sin (θi , j ) 

t 


y 
(F ∗

i , j+ 1 2 
− F ∗

i , j − 1 
2 
) , (11) 

ρn+1 
i , j = ρ∗∗

i , j − m (ρ∗∗) 

(


t 


x 
( cos (θi+ 1 2 , j 

) − cos (θi − 1 
2 , j 

)) + 

t 


y 
( sin (θi , j+ 1 2 

) − sin (θi , j − 1 
2 
)) 

)

. (12) 

Here θ i,j is the angle of the unit vector direction of the flux 
� d θ (x i , y j ) defined in Section 2.2 at cell C i,j , and cos (θi+ 1 

2 , j 
) is equal 

to 
cos (θi+1 , j )+ cos (θi , j ) 

2 the average between cosinus of the angles in cell C i,j and C i +1 , j . Fig. 6 shows a graphical representation 

of the dimensional splitting, on the left the propagation of the density and the flow interface in the x -axis, and on the 

right the y -axis propagation. In summary, the splitting separates the computation of every time iteration into three steps: 

propagation along the horizontal axis, propagation along the vertical axes, and source term. 

2.3.2. Boundary conditions 

The boundary conditions are defined by using Ghost Cells. The concept of this method is to compute the flux crossing 

the boundary F 
I x + 1 2 , j 

by considering fictitious cells ρ
I x + 1 2 , j 

outside of the domain. The method have been introduced first by 

Fedkiw et al. (1999) . The representation of this situation are displayed in Fig. 7 . 

The flux across the boundary F 
I x + 1 2 , j 

= F (ρI x , j , ρI x +1 , j ) is defined in the same way as the internal numerical flux using the 

internal density at the boundary and the fictitious ghost cell outside the domain. 

3. Reconstruction of a 2D density from individual vehicle trajectories of microsimulation 

Two-dimensional model validation is a topic that is not commonly addressed in the literature: while many references 

can be found concerning the validation and reconstruction of 1D density, only few references exists for two-dimensional 
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Fig. 7. Representation of the boundary conditions using Ghost Cell: the domain � is represented in green and the area outside the domain is represented 

in purple. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Manhattan grid oriented towards the North-East direction in Aimsun (left) and a zoom of the road network (right). 

models. In Della Rossa et al. (2010) , the authors compare their results against microsimulation but without providing a 

systematic methodology. In Herty et al. (2018) , the authors compare their model with real data from a highway, however, 

for the case of a multilane road instead of a road network. In this paper we propose a comparison between the model that 

we introduce and a reconstructed density obtained from microsimulations done in Aimsun ( https://www.aimsun.com/ ). We 

start the simulations with same initial conditions and we want to compare the evolution of the main traffic density with 

respect to time. A first question that arises is the exact definition of density over the plane and how to estimate it from 

data. In this Section, we show a method to reconstruct density from GPS logs and then use this reconstruction to compare 

microscopic and macroscopic model results. 

3.1. Data collection from Aimsun 

We consider several scenarios in the microsimulator Aimsun . We use a test network, shown in Fig. 8 , of a deformed 

10 ×10 Manhattan grid, laid out on a 1 km ×1 km domain. To cut the regularity and therefore have a more generic network, 

we start from a regular Manhattan grid and add a normally distributed perturbation (of standard deviation 30 m) to the 

position of each node. Horizontal edges go East-bound, and vertical edges go North-bound. In line with this, all roads in 

the West and South are entrance roads (“I” number 1 to 16), whereas the roads in the East and North are exit roads (“O”

number 1 to 16). Each network edge is a single-lane road. Vehicles are assumed to have a length of 4 m and the minimum 
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gap between two vehicles is 2 m. This results in a road capacity of 166.67 vehicles per kilometer. It is important to note 

that this 1D road capacity does not equal the maximum density of the 2D model. The time step of the Aimsun simulation 


t Aim = 0 . 8 s. During the simulations, the vehicles’ positions in the network are collected at each time step, yielding the 

data points x n 
k 
, y n 

k 
for vehicle indices k ∈ [1 , . . . , K(n )] and at times t n = n 
t Aim , n ∈ [0 , . . . , N] . 

3.2. Density estimation with Gaussian kernel 

In this section, the Kernel Density Estimation (KDE) method is presented. The idea of this method is that each observation 

has a spatial contribution to the estimated density, defined by the function chosen as kernel. The final estimated density 

then corresponds to the superposition of all those contributions. Note that, in contrast to the estimation of probability 

densities that are normalized to integrate to 1, the resulting vehicle density is scaled to integrate to the total number of 

vehicles. We start with the one-dimensional case to establish the concepts and notations. 

Reconstruction of density with kernel estimation in 1D: 

Let x n 
k 
be the position of vehicle k at time t n . Then, the density at that time can be estimated as follows: 

˜ ρn (x ) = 

K(n ) 
∑ 

k =1 

G 1 d (x − x n k ) (13) 

where G 1 d is the kernel function used to describe the contribution of each vehicle. We choose the kernel to be a Gaussian 

function: 

G 1 d (x ) = 
e 
− x 2 

2 d 2 
0 

√ 
2 πd 0 

which satisfies 
∫ 

R 

G 1 d (x ) dx = 1 

Here the parameter d 0 is a length scale determining the width of the Gaussian. The integral of the estimated density 

over space is equal to the number of vehicles: 
∫ 

R 
˜ ρn (x ) dx = Number of vehicles on the road at time t n . (14) 

Reconstruction of density with kernel estimation in 2D: 

Let (x n 
k 
, y n 

k 
) k ∈ [1 , ... ,K(n )] ,n ∈ [0 , ... ,N] be the position of the vehicles at time t n . Then the density over the 2D-plane can be 

estimated as follows: 

˜ ρn (x, y ) = 

K(n ) 
∑ 

k =1 

G 2 d 

((

x 
y 

)

−
(

x n 
k 

y n 
k 

))

(15) 

with 

G 2 d (x, y ) = 
e 

−
x 2 + y 2 

2 d 2 0 

2 πd 2 0 
which satisfies 

∫ ∫ 

R 2 

G 2 d (x, y ) dx dy = 1 . 

The density ˜ ρn 
i, j 

in the cell C i,j is estimated with the value at the center of the cell. An example of the reconstruction of the 

density is given in Fig. 9 . 

3.3. Parameters fitting for the kernel reconstruction 

In practice, the parameter d 0 , which determines the range impact of the Gaussian kernel, has to be properly chosen. 

There are several works regarding the optimal choice of this parameter including some applications on traffic modeling, see 

for example ( Fan et al., 2014; Fan, 2013 ). In these articles, the authors study the choice of this parameter for an application 

of the kernel density approximation for a 1D model of traffic. They based their choice of the parameter d 0 on the idea that 

if the headway between vehicles is constant then the reconstructed density should be constant as well. However, there must 

be an exception to this principle when the density of vehicles is very low. An example is given in Fig. 10 . 

We can observe that a choice of a small d 0 (smaller than the vehicle spacing) leads to the creation of peaks in the 

reconstructed density. Conversely, a d 0 chosen too high invalidates the reconstructed density due to boundary effects and 

leads to a bell-shaped reconstruction. For an intermediate value of d 0 , the reconstructed density is almost constant, with 

only small layers of reduced density near the boundaries. 

Next we try to extend this idea for density reconstructions in two dimensions. First, let us consider equidistant vehicles 

in the 2D-plane without taking into account the network (e.g., vehicles on a parking lot). The density reconstructed in this 

case can be seen in Fig. 11 . 

The same qualitative effects as in one dimension can be observed in the 2D case. When the d 0 is chosen too large or too 

small, the reconstructed density tends to a bell or to have multiple peaks, respectively. If d 0 takes an intermediate value, 

then the reconstructed density is almost constant in space and has the shape of a plateau. 
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Fig. 9. Example of 2d density reconstruction from data by kernel density estimation method: the density is represented by the colormap, the blue squares 

represent the positions of vehicles and the considered network can be seen in the background. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Next we consider the test network and place vehicles equidistantly along the roads. This means that on the whole net- 

work, we consider that vehicles are distributed with a constant spacing. Fig. 12 shows the result of the reconstructed density 

for this scenario. In the cases that d 0 is too high or too low, we face the same problem than encountered previously. 

In practice, it seems difficult to obtain a totally flat estimation of the density in this case even when d 0 is chosen with 

an intermediate value. Thus, the parameter d 0 is chosen by an optimization process. Consider vehicles placed at a minimal 

distance — one vehicle every 6m — over the network and let ˜ ρ be the corresponding estimated density. The parameter d 0 
is chosen such that it reduces as much as possible the distance between maximum of the density evaluated over � and the 

rest of the estimated density. 

d 0 = arg min 
d 0 ∈ R ∗+ 

‖ ̃  ρ(., . ) − max 
(x,y ) ∈ �

˜ ρ(x, y ) ‖ 2 (16) 

The density ˜ ρ depend on the parameter d 0 in a non linear way given by the Eq. (15) . For the 10 ×10 Manhattan square grid 

of 1km length considered, the resulting value of d 0 is 85.1 m. An important remark is that the method suggested for the 

estimation of d 0 is required in order to remain consistent with the assumption that the FD is defined as constant over the 

2D-plane. 
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Fig. 10. Reconstruction of density in 1D for vehicles with a constant headway of 37 m and for a d 0 of respectively 12 m, 18 m, 25 m, and 100 m. 

Fig. 11. Reconstruction of 2D density for vehicles uniformly distributed every 37 m in the 2D-plane and for d 0 of respectively 12 m, 18 m, 25 m, and 

100 m. 
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Fig. 12. Reconstruction of 2D density for vehicles with a constant spacing of 37 m on the network and for d 0 of respectively 25 m, 50 m, 100 m, and 

150 m. 

4. Parameter tuning 

4.1. Estimation of the fundamental diagram 

Since we consider densities as number of vehicles per meter square, we need to introduce a new way to estimate from 

synthetic data the fundamental diagram for the two-dimensional models. The definition of a fundamental diagram is closely 

linked to the definition of density. In Section 3.2 , a way to reconstruct density from traffic data was presented. Thus, it 

is consistent that the fundamental diagram is also based on the kernel reconstruction method. For clarity purposes, one 

may emphasize that this FD aims to be applied for network modeling, but it is not related to the notion of Macroscopic 

Fundamental Diagram (MFD). Indeed, this FD links the two dimensional density and the velocity of vehicles and it is applied 

locally. 

The data for the construction of the FD is collected from a simulation in Aimsun in which we recorded the position and 

the instantaneous velocity of vehicles every 0.8s. We are then able at each time step, to reconstruct an estimated density 

with the kernel method defined Section 3.2 . In order to construct a FD we need to reconstruct a velocity or a flux over 

the 2D plane using the data collected from Aimsun as well. In particular, we construct an interpolation of the velocity of 

all vehicles. Let (v n 
k 
) (k,n ) ∈ [1 , ... ,K(n )] ×[1 , ... ,N] b e the spee ds of the vehicles of subscript k over the K ( n ) vehicles present in the 

network at time t n . The corresponding positions of these vehicles are (x n 
k 
, y n 

k 
) (k,n ) ∈ [1 , ... ,K(n )] ×[1 , ... ,N] . Using these data, we can 

— consistent with (15) — estimate the density ( ̃  ρn 
i, j 

) (i, j) ×n ∈ [1 , ... ,I] ×[1 , ... ,J] ×[1 , ... ,N] by the Kernel Density Estimation method: 

˜ ρn 
i, j = 

K(n ) 
∑ 

k =1 

G 2 d 

(
(

x C i, j 
y C i, j 

)

−
(

x n 
k 

y n 
k 

)
)

(17) 

We can also estimate the velocity field ( ̃ v n 
i, j 

) (i, j) ×n ∈ [1 , ... ,I] ×[1 , ... ,J] ×[1 , ... ,N] , by interpolation of each individual vehicle speed and 

then deduce the flow rate field ( ̃  �n 
i, j 

) (i, j) ×n ∈ [1 , ... ,I] ×[1 , ... ,J] ×[1 , ... ,N] respectively, as follows: 

˜ v n i, j = 

K(n ) ∑ 

k =1 

G 2 d 

((

x C i, j 
y C i, j 

)

−
(

x n 
k 

y n 
k 

))

v n 
k 

∣
∣
∣
∣

K(n ) ∑ 

k =1 

G 2 d 

((

x C i, j 
y C i, j 

)

−
(

x n 
k 

y n 
k 

))∣
∣
∣
∣

and ˜ �n 
i, j = ˜ v n i, j ˜ ρn 

i, j (18) 
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Fig. 13. Estimation of the fundamental diagram with the function of Newell and Franklin. 

Fig. 14. Distribution of vehicles during the Aimsun simulation for an individual run of the scenario 1 at the initial and final time of the simulation. 

The number of data observation we obtain with the method presented just above can be really huge: for each discrete 

point and each time step we have a measure. This leads to redundant data, difficulty to read data and inconsistency of the 

estimation. For these reason, we apply a sampling over time and an aggregation over space. Let s t the ratio between the 

time step of the sampling and the time step of the simulation. Let H and L be the number of cells aggregated over space. 

We denote by ( ̄ρn 
i, j 

) (i, j) ×n ∈ [1 , ... , ̄I ] ×[1 , ... , ̄J ] ×[1 , ... , ̄N ] and ( ̄�
n 
i, j 

) (i, j) ×n ∈ [1 , ... , ̄I ] ×[1 , ... , ̄J ] ×[1 , ... , ̄N ] respectively the density and the flow after 

the sampling and aggregation and constructed as follows: 

ρ̄n 
i, j = 

1 

H.L 

H.i 
∑ 

h = H. (i −1)+1 

L. j 
∑ 

l= L. ( j−1)+1 

˜ ρs t .n 
h,l 

and �̄n 
i, j = 

1 

H.L 

H.i 
∑ 

h = H. (i −1)+1 

L. j 
∑ 

l= L. ( j−1)+1 

˜ �s t .n 
h,l 

(19) 

where s t = 20 , H = 10 and L = 10 . 

Applying these reconstructions for all data, a fundamental diagram density–flow relation can be obtained. The result is 

shown as the points in Fig. 13 . We then fit a function ˜ � to these data points that satisfies the following constraints: 

1. The flux is zero for a vanishing density: ˜ �(0) = 0 . 

2. The flux returns to zero when the density reaches its maximum: ˜ �(ρmax ) = 0 

3. The function ˜ � must be a concave down function. 

4. The function ˜ � must be smooth. 
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Fig. 15. Distribution of vehicles during the Aimsun simulation for an individual run the scenario 2 at the initial and an interdiate time of the simulation. 

The two first constraints ensure that the density remains between 0 and ρmax . For a review of existing fundamental 

diagram and their properties we refer the reader to the paper of Carey and Bowers (2012) . For our case, we consider the FD 

suggested by Newell (1961) and Francklin (1961) that satisfies the above properties and that seems the most appropriate to 

the shape of the data we have: 

�(ρ) = v max ρ
(

1 − exp 
(

c 

v max 
(1 −

ρmax 

ρ
) 

))

(20) 

For the simulations, we consider that the maximum density ρmax is fixed and corresponds to the maximum density 

reconstructed (before doing sampling and aggregation) of the data collected from the simulation. 

ρmax = max 
(i, j) ×n 

˜ ρn 
i, j , (i, j) × n ∈ [1 , . . . , I] × [1 , . . . , J] × [1 , . . . , N] (21) 

The estimation of the parameters v max and c is done using the aggregated and sampled data. The optimization problem is 

solve with a toolbox of Matlab considering the following minimization problem: 

arg min 
v max ,c 

( Ī 
∑ 

i =1 

J̄ 
∑ 

j=1 

N̄ 
∑ 

n =1 

‖ �( ̄ρn 
i, j ) − �̄n 

i, j ‖ 
2 
2 

)

(22) 

The scenario of simulation considered for the collection of data is the following. We consider the network described in 

Fig. 8 initially congested. Then we open the network exits and stop the inflows. We collect data during the dissipation of 

the congestion which lasts 15 min. Every 0.8 s, measures are collected from vehicle position and speed over the whole 

space. The aggregated and sampled data can be seen in Fig. 13 . We can emphasize that these data are only used for the 

estimation of v max and c whereas ρmax is given as the maximum of the untreated data. The curve is obtained for the value 

ρmax = 2175 vehicles/km 2 , v max = 29 . 9110 km/h and c = 17 . 2089 km/h. 

5. Simulation results 

5.1. Description of the scenario 

In Section 3 , we established a way to reconstruct a two-dimensional density from data of the microsimulator Aimsun . 

We are now able to compare a simulation of the 2D model with the microsimulator. With this aim, we build two scenarios. 

Recall that we assume that we have only a flow oriented towards the North-East direction for all simulation. The network is 

the same deformed 10 ×10 Manhattan grid as before. The minimum spacing between vehicles along the road is 6m. For the 

two scenarios, the parameters of the 2D model are the same as the ones estimated in the previous sections: d 0 = 85 . 1 m , 

ρmax = 2175 vehicles / km 
2 
, v max = 29 . 911 km / h , and c = 17 . 2089 km/h. The time step of Aimsun microsimulator is equal 

0.8 s and it could not be changed because the reaction time of drivers rely on this value. For this reason, the time step 
t 

of the 2D model has to be a multiple of this value. The discretization 
x is chosen in order to respect the CLF condition. 

In the Aimsun simulator, there is an important role of randomness (for instance at each intersection, the direction taken 

by a vehicle is a random variable with a probability dependent of the turning ratios). This implies that different runs of the 

same scenario could yields noticeably different results on a micro-scale. Thus, some congestion at a local level may appear at 

different place and time in two different run of microsimulation. Thus, to improve the robustness of our model comparison, 

we compute 100 different runs of the Aimsun simulation for each scenario. For each of these runs, we reconstruct a 2D 

density and then we use the average of these reconstructed densities as a means of comparison for our 2D model. 
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Fig. 16. Comparison of two-dimensional (left) and the average microsimulator behavior (right) during the creation of a congestion. Video of the full 

simulation available at https://youtu.be/Y9RGLFTIGSs . 

Scenario 1: Creation of a congestion. We set up Aimsun that there is an accident in the North-East corner of the 

domain, which causes a congestion to propagate over the network that is initially in free flow. It is not possible to define 

directly boundary condition in a comparable way for the two-dimensional model and the Aimsun simulator. For this reason, 

the comparison between the 2D model and Aimsum microsimulation is done on a subdomain, a square of 800m which starts 

in the left bottom corner, of the real network defined in the microsimulator. Outside this subdomain, a two dimensional 

density is reconstructed from the microsimulation by the method described in Section 3.2 . Finally, this density is used to 

feed the Ghost Cell of the 2D model as defined in Section 2.3.2 . The split ratio at every intersection is set equal to 50%. This 

choice is consistent with the way of estimating the direction field in Section 2.2 . The inflows in both the 2D model and the 

Aimsum simulator are identical: 800 vehicles per hour at each of the 16 entrances (see Fig. 8 for an example of an Aimsun 

simulation which correspond to 6400 vehicles per hour and per km over the 2 km of entrance boundary of the 2D model. 

The simulation starts 3 min after the beginning of the congestion and lasts 5 min 00 s. In Fig. 14 the initial and final states 
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Fig. 17. Comparison of two-dimensional (left) and the average microsimulator behavior (right) during the dissipation of a congestion. Video of the full 

simulation available at https://youtu.be/OLGGyWU2jz4 . 

of the microsimulation for scenario 1 are displayed. A video that shows the reconstruction of density and the distribution of 

vehicle for one instance of this scenario is available at https://youtu.be/Nb- m2- fDxHY . The 2D-model for this scenario are 

simulated and compared only in the green subdomain. The parts of the network that are not considered in the 2D model 

are used to provide the boundary condition such that the condition of the 2D-model and the microsimulation are similar. 

Scenario 2: Congestion dissipation. The second scenario consists of the dissipation of a congested area. We create a 

congestion in the microsimulation that fill the network during 15 min and then we start to dissipate it by opening all the 

outputs and stopping the inflow at the entrances of the model. One minute after the dissipation start, we reconstruct the 2D 

density from the Aimsun simulator and feed this density as initial state to the 2D model. Then we compare the evolution 

of the micro and the macro models over the next 5 min 00 s. The flow of vehicles can cross the boundary without any 
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constraint. For this reason, it is not necessary to consider a specific subdomain as it is the case in scenario 1. The split ratio 

in the entire network are set equal to 50%. In Fig. 15 the initial and final states of the microsimulation for one sample of 

scenario 2 are displayed. A video that shows the reconstruction of density and the distribution of vehicle for one instance 

of this scenario is available at https://youtu.be/L8Q9MgYyBK4 . 

As the two models are very different, it might be difficult to have a good precision in the results. However, the aim of 

this study is more to be able to capture the large scale features of traffic than to focus on detail at a local level. 

5.2. Comparison micro vs. macro simulation 

Results of simulation scenario 1. 

In this scenario, we are considering a creation of congestion. The results of the simulation can be seen in Fig. 16 . The 

figure represents a comparison of simulation results between the 2D model and the average of the reconstructed density 

from 100 runs in Aimsun . 

First, we can notice that the main traffic features, which is the propagation of a wave moving backward is captured by the 

2D model. During the first 2 min, for the considered selected square of 800 m, the network is in free flow conditions because 

the congestion needs a sufficient time to appear. From t = 120 s , a delay can be seen in the creation of the congestion in 

the 2D model. This might be explained by the choice of boundary condition. Indeed, the boundary conditions in the 2D 

model are defined using Ghost Cells. The values of these cells are computed by reconstruction of a two dimensional density 

from the microsimulator. However, one feature of the two dimensional reconstruction is its smoothness due to the Gaussian 

kernel, whereas the 2D model propagates sharp discontinuities. This difference is causing a delay at the time at which 

appears the congestion. This delay propagates during the duration of the simulation. 

Furthermore, we can observe some difference regarding the shape of the shock wave. Indeed, the shock in the 2D model 

is really discontinuous whereas for the reconstruction from the microsimulation it is smooth. But, as the kernel use for the 

reconstruction is a Gaussian with a quite large range we could have expected this phenomenon. The simulation time is short 

in comparison with usual study case but this scale directly with the size of the network smaller than usual. 

Results of simulation scenario 2. 

In the second scenario, we are considering a dissipation of a congestion. As in the previous simulation, the results rep- 

resent a comparison of the density evolution between the 2D model and the average of 100 Aimsun simulation runs. The 

results can be seen in Fig. 17 . 

The simulation of the dissipation of congestion seems to fit well the reconstruction of the Aimsun simulation. The speed 

of the dissipation looks also similar. Nevertheless, there is some fundamental difference. First starting from time t = 30 s , 

one may notice that the 2D model includes a shock in the South-West of the congested area. This phenomena could not be 

captured by the reconstructed density which is smooth due to the Gaussian Kernel. On the other side of the congested area, 

a rarefaction wave that reduced can be observed. If the simulation time is short in comparison with usual study case, this 

could be directly link with the scaling of the size of the network. 

6. Conclusion and future work 

This paper investigates a method for the validation of a two-dimensional model. We construct a 2D model and explain 

methods for the tuning of parameters using the network for the direction of the flux and data for an estimation of a 

specific fundamental diagram. Then we present results of simulations which compare the results of a 2D model and the 

microsimulator Aimsun for a similar scenario. Future steps that need to be done is to consider a heterogeneous network 

with capacity and speed varying over the 2D-plane and also to extend the model with multiple layers of density to be able 

to describe several direction of traffic. Indeed, this would be necessary to get closer to more realistic scenarios. We could 

notice that the tools described in this article for the comparison between the microscopic and the 2D model can be used 

for the validation of more complex situation. 
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