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machining quality in the pulse electrochemical discharge machining (PECDM) of glass-fiber epoxy
reinforced composite are studied. The frequency and duty cycle of the pulse current were controlled for
discharging at no more than single spark per cycle. As compared to ECDM with DC current, the PECDM
results in smaller hole diameter and smaller heat affected zone (HAZ). Also, lower tool immersion depth
results in thinner gas film and smaller HAZ in the workpiece.

© 2019 Published by Elsevier Ltd on behalf of CIRP.

1. Introduction

Advanced materials such as glass, ceramics, and composites have
numerous aerospace, biomedical, healthcare, and MEMS applica-
tions. However, these materials, in general, are difficult to machine
due to their high material strength, brittleness, nonconductivity,
inertness, and complex structure. Electrochemical discharge ma-
chining (ECDM) is capable of machining such hard and brittle non-
conductive materials [ 1-8]. While several studies are available on the
machining of glass and ceramics [8-11], the literature on the ECDM of
composite materials such as fiber-reinforced composites is rather
limited [12,13]. Mechanical machining of composites has challenges
such as delamination and chipping caused by residual stresses and
strain [14,15]. Thermal machining such as laser beam machining is
proposed as an alternative to mechanical machining. However, in the
thermal machining of composites made of a matrix of fibers and
resin, such as glass-fiber epoxy reinforced composite, the melting
point of the epoxy poses machinability challenges due to the thermal
damages to the fiber structure caused by the melting of the resin
during the process|[16]. The energy required to melt the glass fibers is
much higher than melting the resin. Additionally, due to the
nonconductive nature of glass-fiber epoxy reinforced composites,
electrical machining processes such as electrochemical machining
(ECM) or electro discharge machining (EDM) are less effective, if not
unsuitable, to machine these advanced materials. Though ECDM, as
mentioned earlier, has a great potential to machine these materials,
issues such as wrinkling may cause certain surface integrity
challenges [17].In a study of machining glass-fiber-epoxy composite
by ECDM, a poor surface quality was reported due to heat effect
[12]. Therefore, to mitigate the thermal defects in the machining
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glass-fiber epoxy reinforced composites by ECDM, the feasibility of
controlling the discharging energy needs to be investigated.

Most of the ECDM studies are performed with DC power supply.
An inevitable heat affected zone (HAZ) occurs in the process and
damages the surface quality of the material. Applying a pulse
current instead of the usual direct current (DC) causes a reduction
in the surface damage and HAZ in glass machining [18,19]. It has
been reported that smaller duty cycle decreases the surface
roughness due to the reduction in the ratio of time that the
discharges are occurring [18]. In addition to the duty cycle, pulse
frequency also can affect the discharge energy in ECDM with a
change on the critical voltage [20]. Increasing pulse voltage
decreases the film formation time, which is a key factor that
reflects in the energy of discharges. A recent study demonstrated
that the discharging energy is related with the gas film thickness
and the gas film stability [21]. A more stable gas film can be
obtained by decreasing the level of the electrolyte and electrolyte
concentration used in ECDM. In the present study, the effect of the
duty cycle of the pulse current and tool immersion depth (or
electrolyte level) on the gas film formation and its consequence on
machining quality in the pulse electrochemical discharge machin-
ing (PECDM) of glass-fiber epoxy reinforced composite is studied.

2. Experimental method

An in-house built pulse ECDM experimental setup used in this
study is shown in Fig. 1. A pulse width modulator is connected to a
DC power supply (0-3 A, 0-120V) to provide a pulse voltage
output. A 760 pm thick non-conductive glass-fiber epoxy rein-
forced composite is used as work material. Table 1 lists other
experimental parameters used in this study.

A tapered tungsten tool (the cathode) was prepared using an in-
house-built electrochemical setup [22]. Using of tapered tool helps in
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Fig. 1. PECDM experimental setup.

Table 1
Experimental parameters.
Parameters Values
Work Piece Glass-fiber epoxy reinforced composite
Tool Tapered WC
Applied voltage 45V

Pulse duty cycle 33%; 66%; 100% (DC)

Pulse frequency 100Hz
Electrolyte 1M NaOH
Electrolyte level 2-6mm
Tool rotation speed 1200 rpm
Machining time 1 min

focussing the sparks at a specific location [23]. Sparks mostly occur at
the rims of the tool which may be due to a higher current density at
these locations [23]. A high-speed camera is used to capture the
images of the gas film formation process. A current probe is connected
to the circuit with an oscilloscope to read the current values during
PECDM. The frequency of the pulse voltage was adjusted to where the
66% duty cycle will be sparking with around one or a few in each cycle
(each pulse). The quality of a machined hole (i.e., the diameter of the
hole and the HAZ) was studied with an optical microscope and
scanning electron microscope (SEM).

3. Results and discussion
3.1. Hole diameter
The diameter of the machined hole is studied using an optical

microscope. Representative results are shownin Fig. 2, and the values
of the average hole diameter at different trails are shown in Fig. 3.
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Fig. 2. Optical microscope image of the machined hole with 2-6 mm electrolyte
level (or tool immersion depth) and 33%, 66%, 100%(DC) duty cycle.
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Fig. 3. Hole diameter at different electrolyte level and duty cycle.

Two observations can be made from Fig. 2. Decreasing the duty
cycle typically decreases the diameter of the machined hole.
Secondly, this trend was found to be even more pronounced as the
electrolyte level/ tool immersion depth increases as can be seen in
Fig. 3. Also, as the level of the electrolyte increases, the hole
diameter increases when ECDM is performed with DC current as
shown in the first column in Fig. 2. This is due to the increase in the
peak current at higher electrolyte level. This larger peak current
can be related to higher gas film thickness. That is, as the
electrolyte level increases, the correspondinggas film thickness
also would increase [21]. Higher spark energy is required to break
this thicker gas film and thus produces larger holes at higher
electrolyte level in ECDM using DC.

However, with pulsed ECDM, this trend was found to reverse. At
66% duty cycle, the hole diameter seldom varies with the
electrolyte level (middle column in Fig. 2), and more interestingly,
at 33% duty cycle, the diameter of the hole decreases with
increasing electrolyte level (last column in Fig. 2). This can be
reasoned with the observations made on the gas bubble generation
and gas film formation using a high-speed camera (Fig. 4). In Fig. 4,
the first row (a)-(c) and the second row (d)-(f) show the gas film
for different duty cycles at a 3 mm and at 6 mm electrolyte levels
respectively. The gas film was clearly observed for ECDM with DC
current (first column in Fig. 4) but not for any of the ECDM trails
with a pulsed current. This is because of the higher level of
turbulence caused in pulsed ECDM where the gas film is more
likely to collapse frequently during the pulse off-time. This causes
more gas bubbles surrounding the tool to diffuse into the
electrolyte (2nd and 3rd columns in Fig. 4) in pulsed ECDM. Thus,
the gas film thickness with lower duty cycles could be inferred to
be thinner. The increase in tool immersion depth for pulsed ECDM
with a small duty cycle causes longer gas film formation time as
can be seen from the current signal shown in Fig. 5. The gas film
formation time is much longer with a 6 mm electrolyte level than a
3 mm level (indicated by the green arrow in Fig. 5). Therefore, in
pulsed ECDM, the spark frequency and hence the hole diameter
decreases with the increase in electrolyte level.

6 mm

Fig. 4. Gas film images captured at the 10th second with 60 fps using a high-speed
camera. The electrolyte level is (a)-(c) 3 mm and (d)-(f) 6 mm. (a) and (d) is a DC
current; (b) and (e) 66% duty cycle; (c) and (f) 33% duty cycle.

If the gas bubbles are unable to coalesce into a film within the
pulse on-time (6.6 and 3.3ms for 66% and 33% duty cycles
respectively), a gas film is less likely to be built up in pulsed ECDM.
Thus, the chances of gas film formation, and hence the probability
of sparking decreases at lower duty cycles. Also due to the longer
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Fig. 5. Current signals of 66% duty cycle recorded at different electrolyte levels. (a)
shows a shorter gas film formation time for 3 mm tool immersion depth where the
current peaks are observed after the current reaches zero i.e. sparks occur after the
tool is totally insulated with gas film. (b)-(d) shows a longer gas film formation time
for 4-6 mm tool immersion depth where current peaks (i.e. sparks) are observed
within the film formation time.

pulse off-time in lower duty cycles, more gas bubble will escape
from the electrolyte and no new gas bubbles are generated during
the pulse off-time. This results in a reduction of discharging
frequency and the hole diameter at lower duty cycles.

In summary, increasing the electrolyte level increases the gas
film formation time, the gas film thickness, the discharging energy
of each spark, and produces larger hole diameters. However, in
pulsed ECDM, the need for longer gas film formation time at higher
electrolyte levels would decrease the frequency of sparking,
especially at a lower duty cycle wherein during the longer period of
pulse off time the gas bubbles leave the tool and go into the
electrolyte.

3.2. Heat affected zone

The heat affected zone with a different duty cycle at various
electrolyte levels and the corresponding values of mean current
observed are shown in Fig. 6. Optical images of maximum and
minimum HAZ observed are shown in Fig. 7(a) and (b) respectively
where the green line indicates the edge of the hole, and a red dash
line shows the edge of the HAZ.
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Fig. 6. (a) Width of HAZ at different electrolyte level and duty cycle. (b) Mean
current different electrolyte level and duty cycle.

Fig. 7. HAZ observed at (a) 33% duty cycle, 2 mm electrolyte level; (b) DC current,
6 mm electrolyte level. The green line indicates the edge of the hole. The red dash
line indicates the end of the HAZ.

The tendency of the HAZ can be compared with the hole
diameter values shown in Fig. 3. The HAZ increases as the
electrolyte level increases. This can be related to the increasing gas
film thickness and the consequently increasing energy of each
spark. However, in the case of ECDM with DC current, at 2 mm
electrolyte level, an unexpected high HAZ was observed. A similar
observation has also been reported in the literature and the reason
has been attributed to the occurrence of highly concentrated
sparks at a low electrolyte level [24].

Though the mean DC current values are lower than that of
pulsed ECDM (Fig. 6(b)), the ECDM with DC current is showing a
much greater HAZ than with pulse ECDM (Fig. 6(a)) due to the
continuous high-energy sparking as explained before.

ECDM with pulse current minimizes the HAZ. This can be
reasoned with the explanation in the previous section that the
thinner gas film formation in pulsed ECDM results in less sparking
energy that reduces HAZ.

Monitoring the current signal (Fig. 8) reveals the reason for the
mean current in ECDM with DC to be lower than that of pulsed
ECDM with 33% and 66% duty cycles (Fig. 6(b)). Due to the absence
of pulse off-time in ECDM with DC, there is a significant period of
time during which the coalescence of gas bubbles into a gas film
formation and tool insulation occurs. In this time, the enveloping
gas film is too thick to generate a spark and no current flows. In the
absence of current flow, obviously no new gas bubbles are formed
at this stage and as a consequence, the thickness of gas film would
gradually decrease due to gas bubbles escaping continuously at the
surface of the electrolyte. Discharges (shown with blue arrows in
Fig. 8) occur only when the gas film thickness decreases to a critical
film thickness where the applied voltage can break through the gas
film causing sparks. Therefore, the mean value for DC current is
lower than pulse current.
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Fig. 8. Current plot observed with DC current at a 2 mm electrolyte level.

Finally, it can be noticed from Fig. 3 and Fig. 6(a) that the hole
diameter and HAZ follow a tend with the increase in the
electrolyte level. However, this trend changes when the tool
immerses beyond 5 mm electrolyte level. The possible reason for
this phenomenon can be understood by observing the minimum
(non-zero) current limit in ECDM. In Fig. 5 this lower current limit
is shown in red line. Sparking is occurring before the current
value drops to zero (when the gas film fully insulates the tool). At
this level, the current is relatively higher, and the gas bubbles
surrounding the tool merge to form a gas film. As the gas film no
longer is coalesced at zero current, this will increase the
frequency of the gas film formation (i.e., the current does not
need to drop to zero to form a gas film) and also the gas film
thickness (i.e., a portion of the departure gas bubbles merge back
into a gas film) during pulse ECDM. Therefore, both the diameter
and the HAZ will increase.

In summary, decreasing the electrolyte level decreases the gas
film thickness, and discharge energy of each spark, which will
result in a smaller HAZ. Also, pulse ECDM produces smaller HAZ.
Therefore, it is recommended to perform pulse ECDM with lower
electrolyte level to achieve better machining quality.
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4. Micro hole drilling

As discussed in the earlier section, HAZ is minimum for pulse
ECDM at an electrolyte level of 3 mm. To validate these findings,
confirmation tests were performed on a 762 pwm thick glass-fiber
epoxy reinforced composite at 3 mm electrolyte level. Four micro
holes were drilled in the composite at a feed rate of 1.5 pm/s with
33%, 66% and DC duty cycles. Fig. 9 shows the SEM cross-section
images of the four machined holes under each machining
condition. As compared to the ECDM with DC current, the HAZ
is greatly reduced in pulsed ECDM. Fig. 9(d) shows the glass fibers
that are exposed with no epoxy holding the fiber structures. This is
due to the excessive sparking energy melting the epoxy while
machining. This thermal damage is minimized in pulsed ECDM
(Fig. 9(e)) and almost avoided at the lower duty cycle (Fig. 9(f)).
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Fig. 9. SEM images of the ECDM drilled holes. (a) DC (b) 66% duty cycle (c) 33% duty
cycle machined hole. (d)—(f) are zoomed in images of areas marked in green in (a)-

(c).

5. Conclusions

Following conclusions can be drawn based on the results from
this study:

Pulse ECDM with lowering duty cycle decreases the gas film
thickness and increases the gas film formation time, which in turn
decreases the sparking energy and sparking frequency respectively.
This results in smaller hole diameter, especially for low duty cycle and
smaller HAZ. An optimal combination of duty cycle and electrolyte
level exists. Increasing the electrolyte level furthermore will decrease
the hole diameter for low duty cycle but will increase the HAZ.
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