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ABSTRACT A new method of creating microwave imagery by capturing the signals emitted by a small set
of wireless WiFi transmitters is presented. The imaging technique leverages the fact that the signals emitted
by separate WiFi transmitters are sufficiently statistically independent to create a radiation pattern that is
spatially incoherent, enabling the use of spatial frequency sampling using a small set of receiving antennas in
a sparse array. In contrast to traditional microwave imaging, this method requires no mechanical or electrical
beam scanning and no coordination between transmitters and receivers. Furthermore, the WiFi imaging
system requires far less receiver gain than passive microwave imagers and significantly less bandwidth.
We experimentally demonstrate the 2-D image reconstruction of reflecting metal spheres and an X-shaped
reflecting target using three transmitters emitting independent 16-level quadrature amplitude modulated
signals at 5.5 GHz matching commercial WiFi protocols 802.11n/ac.

INDEX TERMS Computational imaging, interferometry, microwave imaging, radar imaging, Wi-Fi.

I. INTRODUCTION

The use of imagery to convey information has always been
widely prevalent in scientific settings and society more
broadly due to the inherent human ability to quickly pro-
cess spatial information. While imagery has traditionally
been captured at optical or infrared frequencies, electromag-
netic radiation in the microwave and millimeter-wave bands
is becoming more widely used for imaging. Wavelengths
at these bands are sufficiently small that images can be
generated with good resolution, and the signals can eas-
ily propagate through smoke, fog, clothing, and even many
building materials, which are opaque at optical and infrared
wavelengths [1], [2].

Many different techniques of microwave imaging exist,
the most common ones being mechanical and electrical
scanning imagers [3], which are generally limited by the
data acquisition time required to physically scan a beam
over a desired field of view. Holographic imaging sys-
tems have the same drawback [4]. Staring-type imagers
that operate similarly to optical cameras have been devel-
oped; examples of these include recently introduced compres-
sive imagers [5], [6], and passive interferometric imagers [7].
The main drawback of compressive imagers is their heavy
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computational load, and their poor tolerance in low signal-
to-noise ratio (SNR) [8]. Passive interferometric imagers
employ sparse arrays with fewer elements than a filled
aperture [9]; however, because they capture the extremely
low power thermal radiation emitted by humans and objects,
very high sensitivity receivers are needed with wide band-
width, leading to high system cost.

The use of WiFi signals for sensing applications has seen
significant interest in recent years, due in large part to the
ubiquitous presence of WiFi signals from access points in
areas where people are present, but also because of the com-
mercial availability of devices that communicate with each
other using WiFi protocols [10]. Using WiFi for localization
of people and devices [11]-[13], and detection of moving
people through walls [14]-[16] have been demonstrated in
recent years. While these examples have shown that local-
ization and tracking are possible using WiFi signals, or in
some cases using non-communication-type signals in the
WiFi bands, the literature on 2-D imaging systems using
WiFi still lacks a system that can perform real-time imaging
in an affordable fashion. Holography with WiFi has been
implemented, but this technique requires either mechanical
scanning or a filled 2-D aperture, increasing the total sys-
tem cost [17]. Other techniques for 2-D and 3-D imaging of
scenes require unmanned vehicles to physically coordinate
and scan an area or volume, which cannot offer real-time
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image reconstruction [18], [19]. In this work we show that the
instantaneous wideband nature of WiFi can be beneficial in a
sensing application if the receiver and signal processing are
appropriately designed, as discussed in the following.

We have developed a new form of microwave computa-
tional imaging that uses WiFi signals from separate, indepen-
dent routers as the transmitters, combined with a sparse array
receiver that captures the image information in the spatial
frequency domain. Our approach is inspired by passive radar
techniques [20], [21], where echoes from third-party radia-
tion is used for target tracking and detection. However, rather
than performing traditional radar detection and estimation
algorithms, in this imaging system the uncorrelated nature
of multiple WiFi signals transmitted from spatially diverse
locations enables the use of Fourier-domain spatial sampling
to create images. While earlier works on passive imaging
systems used sparse arrays [22], [23], such passive systems
measure the extremely low-power thermally-generated elec-
tromagnetic radiation in the microwave and millimeter-wave
bands. To capture this radiation, the receivers must be imple-
mented with very wide bandwidths, in the range of 100s or
1000s of MHz, and very high gains, often exceeding 100 dB,
combined with integration times on the order of a few mil-
liseconds to seconds. In previous work, we used independent
noise transmitters in order to bypass the wide bandwidth,
high sensitivity and long integration time requirements [24].
In this work, by capturing transmitted WiFi signals our
approach yields higher received signal power than thermally
generated electromagnetic radiation, thus enabling imag-
ing using standard-gain receivers with bandwidths of only
25 MHz and integration time of 10 ws, both an order of mag-
nitude improvement over the state-of-the-art passive imagers.
The result is that the imaging technique presented in this
paper can utilize a sparse array with lower-cost commercial
hardware compared to other passive techniques and can yield
faster image reconstruction. Furthermore, the proposed tech-
nique uses existing communications signals in the environ-
ment, providing a unique dual-use approach to sensing and
communications.

Il. INTERFEROMETRIC IMAGE RECONSTRUCTION

The WiFi imaging concept is based on the fact that a 2-D
scene can be represented by the superposition of an infi-
nite series of spatial sinusoidally-varying signals of differ-
ent spatial frequencies. A 2-D antenna array can capture
these signals at different spatial frequencies by pairwise
cross-correlating the response of its elements. If enough
signals corresponding to different spatial frequencies are
captured, the scene can be reconstructed in the spatial
domain through an inverse Fourier transform (IFT) of the
sampled spatial frequency information. First developed in
radio astronomy [25], spatial frequency imaging used sparse
antenna arrays to capture the thermally generated electro-
magnetic radiation from astronomical sources and create
high-resolution image reconstructions. More recently, this
imaging approach has been used in security sensing [7] where
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antenna arrays capture the thermal radiation from humans and
other objects.

The WiFi imaging system measures spatial-frequency
domain information, called visibility V(u,v), which is the
2-D Fourier transform of the spatial scene intensity /(«, 8),
with u and v being the two spatial frequency dimensions of
the visibility, and « = sinf cos¢, B = sinfsin¢ are the
direction cosines relative to u and v. The two-dimensional
visibility is given by

V(u,v) = f f - I, B)e 7B g d B. (1)

The imaging process is described in Fig. 1. The signals
emitted by a set of WiFi routers or access points reflect off
the scene of interest and are captured by a sparse receiving
array. Complex data associated with the spatial frequency
domain information are captured by processing the received
signals in the elements pair-wise. For an antenna pair sep-
arated by a baseline D, the spatial frequency is given by
u = D/X (rad™!), where A is the corresponding wavelength.
The array captures information residing in a discrete set of
two-dimensional spatial frequencies; this set is defined by the
pair-wise antenna baselines in two dimensions, and is called
the sampling function

N M

S, vy =YY 8(u—up)d(v — vy) )

n

where N - M is the maximum number of spatial frequencies
(antenna baselines) represented in the array. The sampled
visibility V(u, v) = V - S is the product of the scene visibility
and the sampling function, and represents the information
captured by the imaging system.

The Van Cittert-Zernike theorem [27]-[29] indicates that
the spatial intensity of a scene I can be reconstructed from
samples of the visibility through an inverse Fourier transform
providing the signals emitted by the scene are spatially and
temporally incoherent. In passive interferometric imaging
systems, such as those used in radio astronomy, the signal
incoherence constraint is met because the signals are ther-
mally generated by the sources of interest. In this work,
the signals transmitted by WiFi routers illuminate the scene
of interest. Since each router transmits a different stream of
data, and because each router emits signals based on different
frequency sources, the resulting signals between multiple
routers are largely independent. It can be shown that the radia-
tion from WiFi emissions from multiple routers is sufficiently
incoherent by calculating the average spatial mutual coher-
ence of the radiation pattern [30], [31] (commonly used in the
compressive sensing field [32]—-[34]). The signals thus satisfy
the Van Cittert-Zernike theorem, enabling image reconstruc-
tion using a simple Fourier transform. To ensure that the
signal impinging on the scene is spatially and temporally
incoherent, two-dimensional images require three uncorre-
lated transmitters, ensuring that the signal impinging on the
scene is sufficiently uncorrelated in both angular dimensions.

28617



IEEE Access

S. Vakalis et al.: Imaging With WiFi

jEEEEEENY

Array
Configuration

B

Sampling function

WiFi routers transmit separately and independently

Sparse passive array collects superposition of
WiFi signals scattered off the scene

Reconstructed Scene

FIGURE 1. (A) Imaging with WiFi signals utilizes a small set of WiFi routers emitting random QAM signals. The
receiving array samples the spatial frequency information reflected off the scene on a pair-wise basis. (B) The
image is reconstructed by taking the inverse Fourier transform of the sampled scene visibility, the latter being the
scene information in the spatial-frequency domain. The sampled visibility is the product of the scene visibility and
the sampling function, which is the set of spatial frequencies measured by the array.

With such a transmitter, the received signals are spatially
and temporally incoherent, and the reconstructed image I, is
found by

N M

L(a, B) =) Y Vg, v)e/ e tmP), 3)

n m

The spatial interpretation of this process can be described
using the point spread function (PSF) of the array, which can
be found through PSF = IFT{S(«, v)} and in practice consists
of a main beam and a number of sidelobes. The reconstructed
image is given by the convolution of the PSF and the scene
intensity, I, = PSF % I.

The spatial resolution of this imaging technique can
be approximated using the null-to-null beamwidth of the
response from the largest antenna baseline of the receive array
in each dimension. For a linear antenna with a largest baseline
of D, the null-to-null beamwidth is

A
0, ~2— 4
NNBW D 4

Using x and y to describe the horizontal and vertical axis,
the resolution for a two-dimensional array for the two axes
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can be defined through
A6, ~ 6% (5)
x.y ~ Y NNBW

The resolution is only a function of the receive array, how-
ever at least three WiFi transmitters are needed in order to
ensure that constructive and destructive interference takes
place in both the azimuth and elevation planes. The SNR of
the received reflections will increase as the number of the
WiFi transmitters increases which will contribute to better
image reconstruction.

Ill. INCOHERENCE OF SIGNALS AND THE VAN
CITTERT-ZERNIKE THEOREM

To understand why WiFi signals support the incoherence
requirement in the Van Cittert-Zernike theorem, one can
consider an incoherent radiating source as shown in Fig. 2A,
and let its radiation be captured at the two locations of the
two antenna elements. The signals received by the antennas
are analyzed using the mutual coherence function, which
is a measure of the spatial coherence of a signal [25].
In optics, the mutual coherence function for an electric field
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A B

FIGURE 2. (A) Two antenna elements observing a radiating source. (B) Three independent WiFi transmitters illuminating an object. The
two slices show the random spatio-temporal transmit pattfern at two separate time instances.

E measured at two different locations 1 and 2, is given by

) 1T
Tio(u, v, 7) = Tlimooﬁ/TEl(t) Ei(t—1)di  (6)

where u and v are the electrical coordinates of the spacing
between the two measurement points, u = M and v =

M, where (x1, y1) (x2, y2) are the locations of elements
1 and 2, f is the carrier frequency, and c is the speed the
wavefront propagates. The name of the term suggests that for
an incoherent source, observed from a far enough distance,
the waves will appear partially coherent.

If the radiating source resides in a much larger distance
than the separation of the two elements, then we can assume
that the direction cosines «,  (on the azimuth and elevation
planes respectively) that an antenna observes the radiating
point source through, are the same for both antenna elements
1 and 2 in Fig. 2A. Moreover, the intensities of the received
electric fields at both elements can be assumed to be almost
the same because they both reside on the same plane, far
away from the source. However, the phase term will be
time delayed by their distance from the source. As a result,
the electric fields resulting from a single point of the source
in both the locations 1 and 2 can be given by

o I2nf (t—R1/c))
Ry
o2 f (1—Ry/0))

Ez(a»ﬂ»t)Zg(Oh ﬂvt)R—z (7)

where £(«, B, t) is the received intensity of the electric field,
Ry, R, are the distances of the antenna elements from the
point source. By complex cross-correlating the two element
responses, a measurement of the common (coherent) signal
is given by

(E\(a, B, E5 (o0, B, 1))
e—ﬂﬂf ((Ry—Ry)/c))

= (5(%,3,05*(%5,1))T (8)

Ey(a, B.1) = E(a, B, 1)
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where the angle brackets indicate time-averaging. This quan-
tity thus represents the time-averaged power from the single
point source. By integrating over all point sources, the inten-
sity I(c, B) of the source can be given in relationship with
the mutual coherence of the source at the locations of the two
elements by

I(a, B)e 2™/ (R2=R1)/c)
[12(u, v, 0) =/ ds (9

source RiR,

where (R; — R») is the difference in the distances from the
point source to locations 1 (x1,y;) and 2 (x, y2). For the
amplitude we can assume R; ~ Ry ~ R, and ds = R? dadp,
thus (6) can be written as

Tia(u, v, 0) = / I, Be 7 B gadB.  (10)

source

It is clear that that the mutual coherence is the two-
dimensional Fourier transform of the intensity of the source,
which is the definition of the visibility, hence

'@, v,0) = V(u,v). (11D

IV. INCOHERENCE OF MULTIPLE WIFI SIGNALS

USING MUTUAL COHERENCE

To this point, it has been assumed that the point sources
composing the source are uncorrelated, generating fully
incoherent signals. Thus, after sufficient time averag-
ing, only the correlated signals components remain, and
cross-product terms between different points in the form
of (Ei(ai, Bi» t)E2*(atj, Bj, 1)) where i and j denote different
points of the radiating source, tend to zero. If the radiation
from the separate points is not uncorrelated, such cross terms
are retained, which make image reconstruction infeasible due
to significant interference issues. Thermally radiating sources
generate noise-like radiation in both the spatial and temporal
domain, and thus the cross terms tend to zero as the integra-
tion time increases; this is the reason that passive systems are
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unaffected by such terms. However, when the signals being
captured are actively transmitted, it is necessary to ensure that
the radiation scattered off the scene is sufficiently uncorre-
lated such that the cross terms still tend to zero. This section is
concerned with how an active system can satisfy this require-
ment when all the sources are not perfectly incoherent and the
cross-product terms start to appear, in particular the use of a
metric to quantify the spatial incoherence of the scene.

To assess the spatial incoherence of the signals, the fields
impinging on the scene, characterized in matrix form E with
dimensions of time, azimuth plane projection, and eleva-
tion plane projection, are analyzed in terms of the coher-
ence between the spatial dimensions of E. The following
analysis is an attempt to quantify the incoherence of the
spatio-temporal transmit pattern, and make sure that the
dependence between the individual point responses is small.
The calculation of electric field is not needed for the image
reconstruction. Introduced in optics [28], [29] as the com-
plex degree of coherence, and later in [30] and [31] for
sparse representation of signals and matrices , the maximum
degree of coherence y of a matrix E with K columns and
T rows is defined as the maximum absolute value of the
cross-correlation between the columns of the matrix by

H
l€x €l

y(E) (12)

= max — —

1<k#j<K ||€k][]]€;l]
where ¢, is the k-th column of E. In our case K is the number
of spatial points of the calculated electric field.

Eq. (12) shows the maximum coherence between two
columns of the matrix, corresponding to two spatial points,
which as a result is representative of the worst-case. This
metric became very popular in the compressive sensing
research [32] because if a sensing matrix E has low enough
mutual coherence the reconstruction of the signal with fewer
samples than dictated by the Nyquist criterion will still suc-
ceed with high probability. This metric can thus help with
comparing the performance of different sensing matrices for
sparse representation or reconstruction of signals [33].

Low values of mutual coherence between two vectors
correspond to low dependency between them, and both inter-
ferometric and compressive imaging systems require an inco-
herent spatio-temporal pattern for the image reconstruction
process to succeed. However, the spatio-temporal pattern for
compressive sensing systems needs to be completely known
in general, while for the presented imaging system with WiFi
signals, the knowledge of the exact transmit pattern is not
required as long as it is known to be partially incoherent.
Additional spatial variation is also added from the multiple
antenna locations that the reflections are measured from.
Therefore a more general metric can be adopted, which is the
average spatial mutual coherence [34], given by

H
lex €l

1
K(K—l)gé; [lex!lll€l]

As shown in (10), the average spatial mutual coherence is
considerably important because of the integration process that

(13)

y(E) =
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combines the radiation from multiple single points simul-
taneously. Low values of average spatial mutual coherence
can also be more easily achieved than low values of the
maximum degree of coherence. The average value of the
cross-correlations between the columns will give a measure
of the unwanted information in the image as a result of the
superposition of all points on the aperture of the antenna.

To analyze a system using the incoherent radiation from
three WiFi transmitters using the average spatial mutual
coherence of the spatio-temporal transmit pattern, the trans-
mit pattern is first defined by

fet 3 Af

Si(t) e*jzﬂ'é(dxta+dyzﬁ)df (14)

3
E@p. )=
Sltar

where S;(t) is the 16-QAM signal coming from the [-th trans-
mitter, f,. is the carrier frequency, Af is the equivalent receiver
bandwidth, and the dy, dy; terms represent the location of
the /-th transmitter in the x and y directions accordingly.
Fig. 2B shows the spatio-temporal transmit pattern at two
separate time instances, making the response of every single
point partially independent with each other. The azimuth and
elevation planes are noted and the time arrow is pointing
towards the transmitters to show that the “frame” furthest
away from the transmitters is the one transmitted first.

The spatio-temporal transmit pattern is modeled as
described earlier, as a 3-D matrix E where the first two
dimensions are selected as the two angular dimensions that
the antenna array observes the scene from, and the third
dimension is time. One may think of the 3-D matrix as
a collection of vectors incident to a 2-D plane as shown
in Fig. 3A, where only a set of the columns is shown in order
to simplify the figure and make it easily understandable. The
two azimuth and elevation dimensions indicate the location of
every single radiating point. The vertical sets of same color
cubes indicate the single point responses over time. To satisfy
the Van Cittert-Zernike theorem, the columns in the matrix
must be statistically independent.

In order to quantify the independence or incoherence of
the columns we use the average spatial mutual coherence
metric for a 3-D matrix calculated from (13). The 3-D matrix
shown in Fig. 3A can be easily reshaped to 2-D by keeping
time as the one dimension and combining the two angle
dimensions into one as shown in Fig. 3B. This 3-D to 2-D
matrix reshaping is used to speed up computational time and
also to keep the paper’s structure consistent to the widely
used definition of degree of coherence in literature for 2-D
matrices. We calculated the spatio-temporal transmit pattern
in MATLAB for three random 16-QAM signals modulated on
a carrier frequency of 5.5 GHz with 25 MHz of bandwidth.
The 3-D spatio-temporal transmit pattern was calculated from
(14), and it was transformed from a 3-D matrix into a 2-D
matrix, as shown in Fig. 3. The maximum degree of coherence
of the matrix, given by (12) was found to be equal to 1, which
means that some point sources were coherent, but the average
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FIGURE 3. (A) The 3-D matrix that represents the incoherent spatio-temporal pattern, where same color represents same
point. (B) The 2-D equivalent matrix that resulted from reshaping the 3-D matrix.

spatial mutual coherence, given by (13), was found to be
equal to 0.32 for 10 us, and by randomizing the locations of
the transmitters, this number was very consistent. This means
that the normalized coherent part of the radiation coming
from two different point sources will be on average less
than the one third of the normalized single point response,
indicating that the columns are largely independent. This
analysis focuses on the transmit pattern and does not take into
account the spatial variations when measuring the field in two
different locations, for example when two antenna elements
are separated by a certain number of wavelengths. Objects in
areal scene will add additional unknown amplitude and phase
changes randomly in angle, which will further decorrelate the
columns of E, and will serve to reduce the average degree of
coherence further. Regardless, the following section demon-
strates experimental measurements showing that average spa-
tial mutual coherence levels of around 0.32 are sufficient for
the WiFi imaging approach.

V. EXPERIMENTAL RESULTS

The WiFi imaging system was demonstrated by creating
a 2-D experimental setup operating at 5.5 GHz. Since we
implemented imaging in two dimensions, three transmitters
were used, each emitting pseudo-random 16-QAM signals
from 15 dBi antennas. The signals were generated using
a Keysight M8190A Arbitrary Waveform Generator, which
has only two independent outputs, thus one channel output
was split, with one signal fed directly to an antenna and
the other delayed through a 7.6 m cable before being fed to
another antenna. This additional time delay ensured that the
signals incident on the scene were independent and uncor-
related, having the same effect as three independent WiFi
transmitters. The scene consisted of two reflecting spheres
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placed at the center of a 7.3 m antenna range. For the
receive array, we leveraged the fact that each antenna collects
spatio-temporally incoherent signals from the scene, enabling
us to synthesize a larger aperture by collecting data pairwise
with only two receive antennas, and sequentially moving
them to the locations of a 2-D inverse T-array. This process
yields image formation equivalent to capturing the signals
simultaneously in a filled array, since the image information
is sampled on a pairwise basis. The configuration for the
experimental measurements is shown in Fig. 4A. The receive
array had a maximum horizontal dimension of 15A and a
maximum vertical dimension of 8, as shown in Fig. 4B,
claiming a horizontal and a vertical resolution of 0.13 radians
and 0.25 radians respectively. The transmitters were located
just outside the span of the receiving array. The received
signals were captured using 10 dBi horn antennas, amplified
using 20 dB low-noise amplifiers and then downconverted to
baseband using quadrature RF mixers. The baseband signals
were digitized using a mixed signal oscilloscope and were
processed in MATLAB.

The signal processing consisted of digitally low-pass filter-
ing the response of each element to a bandwidth of 25 MHz,
then cross-correlating the responses of each antenna pair
corresponding to unique spatial frequencies (redundant base-
lines were omitted) and reconstructing the visibility of the
source. The time duration of the captured waveforms was
10 us, an order of magnitude less than that of typical pas-
sive imaging systems, which makes this imaging technique
very promising for real-time operation. The reconstructed
image was obtained via a 2-D inverse Fourier transform.
Fig. 5A shows the two reflecting calibration spheres used for
the experimental measurements. The reconstructed image is
shown in Fig. 5B, captured pairwise from the locations of
the inverse T-array. Fig. 5C shows the deconvolved image

28621



IEEE Access

S. Vakalis et al.: Imaging With WiFi

Receivers

_— [

>0

0000000000000 0O00O0

©000000O0OOOOO 00000000000

X

FIGURE 4. (A) Configuration for the experimental 5.5 GHz measurements with three transmitters and two receivers synthesizing a 151x81 array by moving
the receiving antennas in the horizontal and vertical directions. (B) The locations of the synthesized array in 1/2 increments. The narrow baselines are

missing due to the dimensions of the horn antennas.
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FIGURE 5. (A) The two reflecting calibration spheres used as the two-dimensional scene. (B) Raw reconstructed 5.5 GHz image of the intensities of two
reflecting spheres, using data from a full array consisting of all receiver locations. (C) Deconvolved image using the calculated PSF, in which the two
responses can be clearly distinguished. The reconstructions are normalized to their peak value, thus the colorbar values are in dB.
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FIGURE 6. (A) The reflecting X-shaped target used as a distributed scene with features smaller than the array resolution.

(B) Reconstructed 5.5 GHz image of the reflecting X-shaped target, using data from a full array consisting of all receiver locations.
Although this target is more challenging to image with the given resolution, its features can be distinguished. The reconstruction
is normalized to its peak value, thus the colorbar values are in dB.

using blind deconvolution [35] with the calculated PSF of the
array shown in Fig. 4B. The responses from the two spheres
are clearly distinguishable. A more complex target is shown
in Fig. 6A, with an X-shape formed from copper tape on a
foam board. The X has edges of 94 cm and 97 cm, however
the features are lower than the resolution of the 5.5 GHz imag-
ing array. The array configuration used for the calibration
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spheres was used for imaging the X, with the result shown
in Fig. 6B. The overall shape of the X is clearly apparent,
with bright spots aligning with the arms of the X. There is
some loss of the shape between the bright responses, however
the overall shape is clearly distinguished, demonstrating the
feasibility of imaging complex objects using 5.5 GHz WiFi
signals.
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VI.

SUMMARY AND CONCLUSION

The imaging technique presented in this paper is the first to
generate imagery in two angle dimensions using WiFi signals
as the illuminators. Furthermore, no connection between the
receivers and transmitters is required, with the only necessary
information being the statistics of the transmitted signals.
Using this technique, full 2-D imagery is possible by captur-
ing the WiFi signals present in typical environments, using
calibration spheres and more challenging distributed targets.
Due to the ability of WiFi to propagate through building
materials, the potential for through-wall imaging using ambi-
ent WiFi signals exists. With the first 802.11ad commercial
routers, operating at 60 GHz, being already available and
enabling even higher resolution, future implementations may
yield images with significant resolution capabilities.
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