
Please cite this article as: V. Maroulas, X. Pan and J. Xiong, Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy
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Abstract

In this paper, we focus on the asymptotic behavior of the optimal filter where both signal and
observation processes are driven by Lévy noises. Indeed, we study large deviations for the case where
the signal-to-noise ratio is small by considering weak convergence arguments. To that end, we first
prove the uniqueness of the solution of the controlled Zakai and Kushner–Stratonovich equations. For
this, we employ a method which transforms the associated equations into SDEs in an appropriate Hilbert
space. Next, taking into account the controlled analogue of Zakai and Kushner–Stratonovich equations,
respectively, the large deviation principle follows by employing the existence, uniqueness and tightness
of the solutions.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: Nonlinear filtering; Lévy noise; Uniqueness; Large deviations

1. Introduction

Stochastic filtering deals with the estimation problem under partial information. Given two
stochastic processes, the signal process and observation process, the filtering problem aims to
estimate a functional of the signal based on the partially observed data. This paper focuses
on a general model in which signal and observation processes are driven by Lévy noises.
Several models in finance engineering, biology etc., e.g. see the partial list [1,8,9,12,15,17,22,
23,25,26,31,32], have considered such stochastic dynamics driven by a pertinent Lévy noise for
describing partially received information with discontinuities or jumps in a time interval. By the
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same token, there exists an array of studies which encounter the analysis of optimal filter in a
Lévy environment, for instance, [6,7,13,20,28,29]. We investigate a small-noise large deviation
principle (LDP) of the optimal filter, which is basically a solution of the Kushner–Stratonovich
stochastic partial differential equation (SPDE). Such analysis is associated with the rare events
of a small signal-to-noise ratio.

The early work [14] derived large deviations for the conditional density for diffusion systems
in which both the signal and the observation noises were small. The study [27] established
a quenched large deviation principle with small-noise observations. In a similar setup as
herein, [33] took aim in a model where the signal was a diffusion process and the observation
process was driven by a Brownian motion. A fractional Brownian motion model was studied
in [24]. This work investigates the large deviations for the optimal filter where both signal and
observation processes are driven by Lévy noises.

The strategy we apply is to prove the Laplace principle, which is equivalent to the large
deviation principle, by using a weak convergence argument, proposed in [3,4]. This weak
convergence method is an approach that has been increasingly used, e.g., the large deviations
for a variety of SPDEs [2,3,5,10,21,30,35,36], based on variational representations of the
functionals of driving Brownian motions and Poisson random measures. The novelty of such
a method is that, it does not require the exponential continuity or exponential tightness, and in
contrast only basic qualitative properties of existence, uniqueness of controlled analogues of
the stochastic dynamical systems of interest are needed to be shown.

To that end, we first prove the uniqueness of the controlled unnormalized filtering equation,
i.e. the controlled Zakai equation, and subsequently this of the controlled filtering equation,
the controlled Kushner–Stratonovich equation. Some studies have been devoted to verifying
the uniqueness of the filtering equation. In [7], the uniqueness was shown by the Filtered
Martingale Problem approach which was proposed in [18], however, that model has a limitation
that the signal and observation are driven by the same Poisson random measure having common
jump times. A more general setting was suggested in [29] and the uniqueness was also
proved by the approach of Filtered Martingale Problem, however, it was shown under the
assumption that the correlated Poisson random measure is independent of the signal. Moreover,
in these studies the uniqueness of the Filtered Martingale Problem was assumed when the
Filtered Martingale Problem method was used, which requires the regularity conditions of the
coefficients of the equations. In our work, based on a method using the Brownian motion
semigroup, we bypass these restrictions and establish the uniqueness for the general model
with a mild assumption on the coefficients of the Poissonian noise.

The paper is organized as follows. Section 2 discusses preliminaries on the introduction to
the controlled Poisson random measure and a general criterion of large deviations. We prove the
uniqueness of the solutions to the Zakai and Kushner–Stratonovich equations in Section 3 which
are given in Theorems 3.3 and 3.4 respectively. Section 4 focuses on the establishment of the
large deviation principle for the optimal filter. We start with deriving the controlled version and
zero-noise version of Zakai equation, then the existence and uniqueness of these two versions of
Zakai equation are verified and finally the results are concluded by demonstrating the sufficient
conditions presented in Propositions 4.2 and 4.3.

2. Preliminaries

Our problem concerns with a small-noise large deviation principle for the optimal filter
where the respective SPDEs are driven by a pertinent Brownian motion and a Poisson random
measure. This section lists definitions and notations used later on. Most of these notations can
be also found in [4] but they are presented here for the sake of completeness.
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2.1. Definitions and conventional notations

Let U be a locally compact Polish space and denote by M(U) the space of all measures ν
on (U,B(U)), satisfying ν(A) < ∞ for every compact subset A of U, and B(U) is the Borel
σ -field on U. Endow M(U) with the weakest topology such that for every continuous function
f on U with compact support, the function ν →

∫
U f (u)ν(du), ν ∈ M(U) is continuous.

This topology can be metrized such that M(U) is a Polish space, e.g. see [4]. For a fixed
T ∈ (0,∞), denote by M = M(UT ) the space of measures on UT = [0, T ] × U and let
νT = λT ⊗ ν, λT is the Lebesgue measure on [0, T ]. We recall that a general Poisson random
measure (PRM) n on UT with intensity measure νT is an M-valued random variable such that
for each A ∈ B(UT ) with νT (A) < ∞, n(A) is Poisson distributed with mean νT (A) and for
disjoint A1, . . . , Ak ∈ B(UT ), n(A1), . . . ,n(Ak) are mutually independent random variables.

For any m ≥ 1, let Wm = C([0, T ],Rm) be the space of all continuous functions from
[0, T ] to Rm , and D([0, T ], E) denote the space of right continuous functions with left limits
from [0, T ] to a Polish space E . Take V = Wm ×Wn ×M and let P be the probability measure
on (V,B(V)) such that (i) N : V → M is a Poisson random measure with intensity measure
θνT , and νT (A) < ∞ for all A ∈ B(UT ); (ii) W : V → Wm is a Rm-valued Brownian
motion and B : V → Wn is a Rn-valued Brownian motion; and (iii) {Wt }t∈[0,T ], {Bt }t∈[0,T ]

and {N ([0, t] × A), t ∈ [0, T ]} are Gt -martingales for every A ∈ B(U), where the filtration
Gt := σ {N ([0, t] × A) − θ tν(A),Ws, Bs : 0 ≤ s ≤ t, A ∈ B(U)}.

To adopt the strategy of weak convergence arguments in order to prove the large deviations,
we introduce a properly controlled Poisson random measure. Define YT = [0, T ] × Y, where
Y = U× [0,∞) and then denote M̄ = M(YT ). Suppose N̄ is a Poisson random measure with
points on V̄ = Wm × Wn × M̄ with intensity measure ν̄T = λT ⊗ ν ⊗ λ∞ where λ∞ is the
Lebesgue measure on [0,∞). Similarly abusing notations, B and W , are Brownian motions
on V̄. Next define (P̄, {Ḡt }) on (V̄,B(V̄)) analogous to (P, {Gt }) by replacing (N , θνT ) with
(N̄ , ν̄T ). Consider the P̄-completion of the filtration {Gt } and denote it by {F̄t }. We denote by
P̄ the predictable σ -field on [0, T ] × V̄ with the filtration {F̄t : 0 ≤ t ≤ T } on (V̄,B(V̄)).
Let Ā be the class of all (P̄ ⊗ B(U)) \ B[0,∞) measurable maps φ : UT × M̄ → [0,∞). For
the variable φ ∈ Ā which basically controls the intensity at time s on location u, define the
counting process Nφ on UT by

Nφ((0, t] × A) =

∫
(0,t]×A×(0,∞)

1[0,φ(s,u)](r )N̄ (ds, du, dr ) (1)

where t ∈ [0, T ], A ∈ B(U). If φ(s, u) = θ for all (s, u) ∈ UT , then we write Nφ
= N θ , where

N θ has the same distribution on M̄ with respect to P̄ as N has on M with respect to P. For
any φ ∈ Ā, the quantity

LT (φ) =

∫
UT

l(φ(t, u)) ν(du)ds (2)

is well-defined as a [0,∞]-valued random variable where l(r ) := r log r − r + 1, r ∈ [0,∞).
We denote by L2([0, T ],Rm) the Hilbert space from [0, T ] to Rm satisfying |ψ(s)|2 =∑m

i=1 ψi (s)2 < ∞. Define P2 ={
ψ = (ψi )m

i=1 : ψi is P̄ \ B(R) measurable and

∫ T

0
|ψ(s)|2ds < ∞, P̄ − a.s.

}
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and set U = P2 × Ā. For ψ ∈ P2 define

L̃T (ψ) :=
1
2

∫ T

0
ψ(s)2ds (3)

and for u = (ψ, φ) ∈ U , set

L̄T (u) = LT (φ) + L̃T (ψ). (4)

2.2. A general criterion of large deviations

The theory of small-noise large deviations concerns with the asymptotic behavior of
solutions of SPDEs, say {X ϵ

}, ϵ > 0 defined on a probability space (Ω ,F ,P), which converge
exponentially fast as ϵ → 0. The decay rate is expressed via a rate function. An equivalent
argument of the large deviations principle is the Laplace principle. A reader may refer to
[11, Theorem 1.2.1 and Theorem 1.2.3].

Definition 2.1. A function I : E → [0,∞] is called a rate function on E , if for each M < ∞

the level set {x ∈ E : I (x) ≤ M} is a compact subset of E . The family {X ϵ
} is said to satisfy the

Laplace principle on E with rate function I , if for all bounded continuous functions h mapping
E into R,

lim
ϵ→0

⏐⏐⏐⏐ϵ logEx0

{
exp

[
−

1
ϵ

h(X ϵ)
]}

+ inf
x∈E

{h(x) + I (x)}
⏐⏐⏐⏐ = 0.

Next, a set of sufficient conditions for a uniform large deviation principle for functionals of a
Brownian motion and Poisson random measure is presented. Consider the family of measurable
maps, for any ϵ > 0, Gϵ : Wm × M → E defined as follows:

{X ϵ ·
= Gϵ(

√
ϵW, ϵN ϵ−1

)}.

Define the space, for some M ∈ N, S̃M
:= {ψ ∈ L2([0, T ],Rm) : L̃T (ψ) ≤ M} and

SM
:= {φ : UT → [0,∞) : LT (φ) ≤ M}, where LT and L̃T are defined in Eqs. (2) and

(3), respectively. For a function φ, define a measure νφT ∈ M, such that

ν
φ

T (A) =

∫
A
φ(s, u)ν(du)ds, A ∈ B(UT ).

Throughout we encapsulate the topology on SM obtained through this identification which
makes SM a compact space. Let S̄M

= S̃M
× SM with the usual product topology and

S = ∪
∞

M=1 S̄M . Define the space of controls UM
= {u = (ψ, φ) ∈ U : u(ω) ∈ S̄M , P̄ a.e. ω},

where U = P2 × Ā.
The following condition in [4] plays a key role in proving large deviation estimates for the

filtering equation driven by a Brownian motion and an independent Poisson random measure.
The corresponding rate function is given in Eq. (5).

Condition 2.1. There exists a measurable map G0
: Wm × M → E such that the following

holds.

1. For M ∈ N, let ( fn, gn), ( f, g) ∈ S̄M be such that ( fn, gn) → ( f, g) as n → ∞, then

G0
(∫

·

0
fn(s)ds, νgn

T

)
→ G0

(∫
·

0
f (s)ds, νg

T

)
.
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noise, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.02.009.

V. Maroulas, X. Pan and J. Xiong / Stochastic Processes and their Applications xxx (xxxx) xxx 5

2. For M ∈ N, let ξ ϵ = (ψϵ, φϵ), ξ = (ψ, φ) ∈ UM be such that ξ ϵ
d

→ ξ , where
d

→ denotes
convergence in distribution, as ϵ → 0. Then

Gϵ(
√
ϵW +

∫
·

0
ψϵ(s)ds, ϵN ϵ−1φϵ )

d
→ G0(

∫
·

0
ψ(s)ds, νφT ).

For ζ ∈ E , define Sζ = {u ∈ S : ζ = G0(
∫

·

0 ψ(s)ds, νφT )}. Let I : E → [0,∞] be defined
by

I (ζ ) = inf
u∈Sζ

{
L̄T (u)

}
. (5)

By convention, I (ζ ) = ∞ if Sζ = ∅. Under Condition 2.1, we have the following theorem
shown in [4].

Theorem 2.1. For ϵ > 0, let X ϵ ·
= Gϵ(

√
ϵW, ϵN ϵ−1

), and suppose that Condition 2.1 holds.
Then I : E → [0,∞], defined by Eq. (5), is a rate function on E and the family {X ϵ

} satisfies
the large deviation principle on E with rate function I .

3. Existence and uniqueness of filtering equations

3.1. Existence

This section first presents the filtering model and filtering equations for the system driven
by Lévy noise. Consider the following signal-observation system (X t , Yt ) on Rd

× Rm :

d X t = b1(X t )dt + σ1(X t )d Bt +

∫
U1

f1(X t−, u)Ñp(dt, du) (6a)

+

∫
U\U1

g1(X t−, u)Np(dt, du),

dYt = b2(t, X t )dt + σ2(t)dWt +

∫
U2

f2(t, u)Ñλ(dt, du) (6b)

+

∫
U\U2

g2(t, u)Nλ(dt, du),

where Bt ,Wt are n-dimensional and m-dimensional Brownian motions respectively defined on
the filtered probability space (V,B(V), {Ft }t∈[0,T ],P). Np is a Poisson random measure such
that ENp([0, t] × A) = tν1(A), for any A ∈ B(U) with ν1(A) < ∞, and ν1(U \ U1) < ∞,∫
U1

∥u∥
2
Uν1(du) < ∞ where ∥ · ∥U denotes the norm on the measurable space (U,B(U)) and

U1 ⊂ U. Denote the compensated measure Ñp([0, t] × du) = Np([0, t], du) − tν1(du). Let
Nλ(dt × du) be an integer-valued random measure and its predictable compensator is given by
λ(t, X t−, u)dtν2(du), where the function λ(t, x, u) ∈ [l, 1), 0 < l < 1, and Ñλ([0, t] × A) =

Nλ([0, t] × A) −
∫ t

0

∫
A λ(s, Xs−, u)ν2(du)ds such that for each A ∈ B(U), ν2(A) < ∞, and

ν2(U \ U2) < ∞,
∫
U2

∥u∥
2
Uν2(du) < ∞ with U2 ⊂ U. Moreover, Bt ,Wt , Np, Nλ are mutually

independent.
We assume that the mappings b1 : Rd

→ Rd , b2 : [0, T ] ×Rd
→ Rm, σ1 : Rd

→ Rd×n, σ2 :

[0, T ] → Rm×m, f1 : Rd
× U1 → Rd , f2 : [0, T ] × U2 → Rm, g1 : Rd

× (U \ U1) → Rd , and
g2 : [0, T ] × (U \ U2) → Rm are all Borel measurable, and satisfy the following conditions:
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Assumption 3.1. For each x1, x2 ∈ Rd , there exists a constant K > 0 such that

|b1(x1) − b1(x2)|2 + |σ1(x1) − σ1(x2)|2 +

∫
U1

| f1(x1, u) − f1(x2, u)|2ν1(du)

≤ K |x1 − x2|
2,∫

U\U1

|g1(x1, u) − g1(x2, u)|ν1(du) ≤ K |x1 − x2|,

where | · | denotes the Hilbert–Schmidt norm for a matrix and the length for a vector.

Assumption 3.2. σ2(t) is invertible for t ∈ [0, T ], and for each x ∈ Rd ,

|σ1(x)|2 +

∫
U1

| f1(x, u)|2ν1(du) + |b2(t, x)|2 + |σ−1
2 (t)|

2
+

∫
U2

| f2(t, u)|2ν2(du) ≤ K .∫
U\U2

|g2(t, u)|ν2(du) ≤ K .

Note that Yt = f2(t, pλ(t)) + g2(t, pλ(t))1Dλ (t) is observable, where Dλ and pλ are the
jumping times and locations of the random measure Nλ. As g2 describes the large jumps
while f2 the small ones, we assume they have disjoint ranges and, for each t , f2(t, ·) and
g2(t, ·) are invertible functions. Namely, we assume that Nλ is observable. Let Ỹt be given by
dỸt = b2(t, X t )dt + σ2(t)dWt . Then, FY

t = F Ỹ
t ∨ F Nλ

t . Based on the discussion above, we
make the following assumption throughout this article.

Assumption 3.3. For each t , f2(t, ·) and g2(t, ·) are invertible functions with disjoint ranges.

Set πt (F) := E(F(X t )|FY
t ), for any F ∈ C2

b (Rd ), where C2
b (Rd ) denotes the set of all

bounded functions F : Rd
→ Rd that have continuous second order derivative. Taking into

account the Radon–Nikodym derivative there is an equivalent probability measure P̃ such that,
dP̃ = Λ−1

T dP, where

Λ−1
T = exp

(
−

∫ T

0
σ−1

2 (s)b2(s, Xs)∗dWs −
1
2

∫ T

0
|σ−1

2 (s)b2(s, Xs)|
2
ds (7)

−

∫ T

0

∫
U

log λ(s, Xs−, u)Nλ(ds, du) −

∫ T

0

∫
U

(1 − λ(s, Xs, u))ν2(du)ds
)
.

where ∗ denotes the transpose operator. In turn, the Kallianpur–Striebel formula [34] gives
πt (F) =

µt (F)
µt (1) , where µt (F) := Ẽ(F(X t )Λt |FY

t ) and Ẽ denotes expectation under the measure
P̃. Now we are ready to derive Zakai and Kushner–Stratonovich equations.

Proposition 3.1 (Zakai Equation). Assume Assumptions 3.1–3.3. For F ∈ D(L), the Zakai
equation of Eq. (6) is given by

µt (F) = µ0(F) +

∫ t

0
µs(LF)ds +

m∑
i=1

∫ t

0
µs(F(σ−1

2 (s)b2(s, ·))i )dW̃ i
s

+

∫ t

0

∫
U
µs−(F(λ(s, ·, u) − 1))Ñ (ds, du), (8)



Please cite this article as: V. Maroulas, X. Pan and J. Xiong, Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy
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where W̃t = Wt +

∫ t

0
σ−1

2 (s)b2(s, Xs)ds and Ñ (dt, du) = Nλ(dt, du) − dtν2d(u), and for any

f ∈ C2
b (Rd ), the infinitesimal generator, L, is given by

L f (x) =

d∑
i=1

∂ f (x)
∂xi

bi
1(x) +

1
2

d∑
i, j=1

n∑
k=1

∂2 f (x)
∂xi∂x j

σ ik
1 (x)σ jk

1 (x)

+

∫
U\U1

[ f (x + g1(x, u)) − f (x)]ν1(du)

+

∫
U1

[ f (x + f1(x, u)) − f (x) −

d∑
i=1

∂ f (x)
∂xi

f i
1 (x, u)]ν1(du),

(9)

where σ ik
1 is the (i, k)th entry of the diffusion coefficient σ1.

Proof. By Itô’s formula, we have

dΛt = Λtσ
−1
2 (t)b2(t, X t )dW̃t +

∫
U
Λt−(λ(t, X t−, u) − 1)Ñ (dt, du),

and

d F(X t ) = LF(X t )dt + ∇F(X t )σ1(X t )d Bt

+

∫
U\U1

[F(x + g1(x, u)) − F(x)]Ñp(dt, du)

+

∫
U1

[F(x + f1(x, u)) − F(x)]Ñp(dt, du).

By Itô’s formula again, we have

d(Λt F(X t )) = Λt F(X t )σ−1
2 (t)b2(t, X t )dW̃t

+

∫
U
Λt−F(X t−)(λ(t, X t−, u) − 1)Ñ (dt, du)

+ΛtLF(X t )dt + ∇F(X t )σ1(X t )d Bt

+

∫
U\U1

Λt−[F(x + g1(x, u)) − F(x)]Ñp(dt, du)

+

∫
U1

Λt−[F(x + f1(x, u)) − F(x)]Ñp(dt, du).

Taking conditional expectations on both sides, we arrive at (8). ■

Using the Kallianpur–Striebel formula, we obtain the following Kushner–Stratonovich
equation.

Proposition 3.2. Assume Assumptions 3.1–3.3. For F ∈ D(L), the solution of the following
equation exists

πt (F) = π0(F) +

∫ t

0
πs(LF)ds

+

m∑
i=1

∫ t

0
(πs(F(σ−1

2 (s)b2(s, ·))i ) − πs(F)πs(σ−1
2 (s)b2(s, ·))i )dŴ i

s

+

∫ t

0

∫
U

πs−(Fλ(s, ·, u)) − πs−(F)πs−(λ(s, ·, u))
πs−(λ(s, ·, u))

N̂ (ds, du), (10)
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where Ŵt = W̃t −

∫ t

0
πs(σ−1

2 (s)b2(s, ·))ds is the innovation process and N̂ (dt, du) =

Nλ(dt, du) − πt−(λ(t, ·, u))ν2(du)dt.

3.2. Uniqueness

In this section, we prove the uniqueness for the solutions to the Zakai and Kushner–
Stratonovich equations for the signal-observation model (6). Although the uniqueness was
investigated in [29], it was assumed that the Poisson noise in the observation is independent of
the signal, i.e., λ(t, x, u) = λ(t, u). This reduces the complexity of the Zakai equation; that is,
the Zakai equation is independent of the Poisson noise. This makes the problem more tractable
since the Poissonian part in Eq. (10) vanishes, see [29, Section 4]. Furthermore, therein, the
uniqueness of the Filtered Martingale Problem is assumed, and regularity conditions on the co-
efficients of the signal and observation processes are required (see [29, Remark 4.1] and [18]).
Next, we show the uniqueness of Zakai and Kushner–Stratonovich equations by bypassing the
above restrictive assumptions and instead imposing the following mild assumption.

Assumption 3.4.
⏐⏐det

(
J f1 + I

)⏐⏐ > 1
C

and
⏐⏐det

(
Jg1 + I

)⏐⏐ > 1
C

for a constant C > 0, where
J f1 and Jg1 are the Jacobian matrices of f1 and g1 with respect to x , respectively.

The uniqueness for the solution to Zakai equation is proved by transforming it to an SDE
in a pertinent Hilbert space and by making use of estimates based on Hilbert-space techniques,
which was studied in [19,34]. Recall that the optimal filter E(F(X t )|FY

t ) is the solution to the
filtering Eq. (10) characterized by the conditional probability πt . Denote P(Rd ) the collection
of all Borel probability measures on Rd such that πt ∈ P(Rd ). Denote by ⟨ν, F⟩ the integral of
a function F with respect to a measure ν, e.g., for any F ∈ Cb(Rd ), E(F(X t )|FY

t ) = ⟨πt , F⟩.

Let MF (Rd ) be the collection of all finite Borel measures on Rd such that the unnormalized
filter µt is an MF (Rd )-valued process. Let H0 = L2(Rd ) be the Hilbert space consisting
of square-integrable functions on Rd with the usual L2-norm and the inner product given by
∥φ∥

2
0 =

∫
Rd |φ(x)|2dx and ⟨φ,ψ⟩0 =

∫
Rdφ(x)ψ(x)dx . We introduce an operator to transform a

measure-valued process to an H0-valued process. Denote by MG(Rd ) the space of finite signed
measures on Rd . For any ν ∈ MG(Rd ) and δ > 0, let

(Tδν)(x) =

∫
Rd

Gδ(x − y)ν(dy), (11)

where Gδ is the heat kernel given by Gδ(x) = (2πδ)−
d
2 exp

(
−

|x |
2

2δ

)
. We use the same notation

as in Eq. (11) for the Brownian motion semigroup on H0, i.e., for t ≥ 0, define operator
Tt : H0 → H0 by Ttφ(x) =

∫
Rd G t (x − y)φ(y)dy, for any φ ∈ H0. Then Lemma 3.1 obtains

bounds for the partial derivative of Tδ , and Lemma 3.2 is directly applied to Theorem 3.1. The
reader should refer to [34] for the proofs of these two lemmas.

Lemma 3.1.

(i) The family of operators {Tt : t ≥ 0} forms a contraction semigroup on H0, i.e. for any
t, s ≥ 0 and φ ∈ H0, we have Tt+s = Tt Ts and ∥Ttφ∥0 ≤ ∥φ∥0.

(ii) If ν ∈ MG(Rd ) and δ > 0, then Tδν ∈ H0.
(iii) If ν ∈ MG(Rd ) and δ > 0, then ∥T2δ|ν|∥0 ≤ ∥Tδ|ν|∥0, where |ν| is the total variation

measure of ν.



Please cite this article as: V. Maroulas, X. Pan and J. Xiong, Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy
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Lemma 3.2. For any δ > 0, ν ∈ MG(Rd ) and φ ∈ H0, we have

(i)

⟨Tδν, φ⟩0 = ⟨ν, Tδφ⟩. (12)

(ii) If, in addition, ∂iφ ∈ H0, where ∂iφ =
∂φ

∂xi
, then

∂i Tδφ = Tδ∂iφ. (13)

The next theorem presents an expression for the expectation of the transformation applying
to the solution to Zakai equation. The proof is delegated to Appendix A.

Theorem 3.1. Let µt ∈ MF (Rd ) be a solution to Zakai equation (8) and let Z δt = Tδµt .
Considering the probability measure P̃ defined by (7), the following holds.

Ẽ∥Z δt ∥
2
0 = A1 − 2A2 + A3 + 2A4 + A5 + A6 + A7, (14)

where

A1 = ∥Z δ0∥
2
0, A2 =

d∑
i=1

∫ t

0
Ẽ⟨Z δs , ∂i Tδ(bi

1µs)⟩0ds,

A3 =

d∑
i, j=1

n∑
k=1

∫ t

0
Ẽ⟨Z δs , ∂

2
i j Tδ(σ

ik
1 σ

k j
1 µs)⟩

0
ds,

A4 =

∫ t

0

∫
U\U1

[Ẽ⟨Z δs , Z̃ δ,g1
s ⟩0 − Ẽ∥Z δs ∥

2
0]ν1(du)ds, (15)

A5 =

∫ t

0

∫
U1

[Ẽ⟨Z δs , Z̃ δ, f1
s ⟩0 − Ẽ∥Z δs ∥

2
0

−

d∑
i=1

Ẽ⟨Z δs , ∂i Tδ( f i
1 (·, u)µs)⟩0]ν1(du)ds,

A6 =

∫ t

0
Ẽ∥⟨Tδ(σ−1

2 (s)b2(s, ·)µs)⟩∥2
0ds,

A7 =

∫ t

0

∫
U
Ẽ∥Tδ ((λ(s, ·, u) − 1)µs) ∥

2
0ν2(du)ds;

and

⟨Z δt , Z̃ δ, f1
t ⟩0 =

∑
η

⟨Z δt , η⟩0⟨Z δt , η(· + f1(·, u))⟩0, (16)

⟨Z δt , Z̃ δ,g1
t ⟩0 =

∑
η

⟨Z δt , η⟩0⟨Z δt , η(· + g1(·, u))⟩0, (17)

here the set of functions {η} is a complete orthonormal system (CONS) of H0.

In order to get estimates of the terms as defined in Eq. (15), we proceed with the following
lemmas.

Lemma 3.3. Suppose Assumption 3.4 holds. Then there exists a constant C0 > 0 such that⏐⏐⏐⟨Z δt , Z̃ δ, f1
t ⟩0

⏐⏐⏐ ≤ C0∥Z δt ∥
2
0, (18)
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and ⏐⏐⏐⟨Z δt , Z̃ δ,g1
t ⟩0

⏐⏐⏐ ≤ C0∥Z δt ∥
2
0. (19)

Proof. We only need to show inequality (18). Let y = x + f1(x, u) and assume x = h(y, u).
Denote the Jacobian of h with respect to y by |∂yh(y, u)|. According to Assumption 3.4,⏐⏐det

(
I + J f1

)⏐⏐ > 1
C , then⏐⏐∂yh(y, u)

⏐⏐ =
⏐⏐det

(
I + J f1

)⏐⏐−1
≤ C. (20)

Note that

⟨Z δt , η(· + f1(·, u))⟩0 =

∫
Rd

Z δt (h(y, u))η(y)|∂yh(y, u)|dy

=⟨Z δt (h(·, u))|∂yh(·, u)|, η⟩0.

Furthermore, summing over {η} in a CONS of H0, we have∑
η

⟨Z δt (h(·, u))|∂yh(·, u)|, η⟩0⟨Z δt , η⟩0 = ⟨Z δt (h(·, u))|∂yh(·, u)|, Z δt ⟩0.

Hence, by Eq. (20) we get

∥Z δt (h(y, u))|∂yh(y, u)|∥2
0 =

∫
Rd

|Tδµt (h(y, u))|2 |∂yh(y, u)|2dy (21)

=

∫
Rd

|Tδµt (x)|2 |∂yh(y, u)|dx ≤ C∥Z δt ∥
2
0,

and the bound of Eq. (18) then follows from the Cauchy–Schwarz inequality. ■

Lemma 3.4, verified in [19, Lemma 3.2], is useful to estimate the transformation Tδ and the
derivatives of Tδ in Lemma 3.5 and Theorem 3.2.

Lemma 3.4. Let (H,H, η) be a measure space and H = Ł2(η). Let φi : Rd
→ H, i = 1, 2

such that there exists a constant K > 0, for any x ∈ Rd , ∥φi (x)∥H ≤ K . Let ζ ∈ MG(Rd ).
Then there exists a constant K1 ≡ K1(φi ) such that

∥∥Tδ(φ1ζ )∥0∥H ≤ K1∥Tδ(|ζ |)∥0. (22)

If, additionally, (we are interested in H = U with η = ν1) ∥φi (x) −φi (y)∥H ≤ K |x − y|, then

|⟨Tδ(φ2ζ ), ∂i Tδ(φ1ζ )⟩H0⊗H| ≤ K1∥|Tδ(|ζ |)∥2
0, (23)

where ⊗ denotes convolution.

The next lemma gives a bound of the derivatives of the transformation on σ1. The proof is
shown in Appendix B.

Lemma 3.5. There exists constant K1 such that for any ζ ∈ MG(Rd ), we have

d∑
i, j=1

⟨Tδζ, ∂2
i j Tδ(σ1σ

∗

1 )i jζ ⟩0
+

n∑
i=1


d∑

i=1

∂i Tδ(σ ik
1 ζ )


2

0

≤ K1∥Tδ(|ζ |)∥2
0. (24)

Now applying Lemmas 3.3–3.5 yields the following theorem.
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Theorem 3.2. If µ is a measure-valued solution of the Zakai equation (8) and Z δ = Tδµ,
then

Ẽ∥Z δt ∥
2
0 ≤ ∥Z δ0∥

2
0 + K1

∫ t

0
Ẽ∥Tδ(|µs |)∥2

0ds, (25)

where K1 is a suitable constant.

Proof. Consider Eq. (14) such that Ẽ∥Z δt ∥
2
0 = A1 − 2A2 + A3 + 2A4 + A5 + A6 + A7 and

A1, . . . , A7 are defined in Eq. (15). Then by inequality (23), A2 is bounded by a constant times
∥Tδ(|µs |)∥2

0. The bound for A3 follows from inequality (24). A4 follows from Lemma 3.3 and
inequality (22), and A5 is bounded by Lemma 3.3, inequalities (22) and (23). The bounds for
A6 and A7 follow from inequality (22). ■

Corollary 3.1. If µ is a measure-valued solution to Eq. (8) and µ0 ∈ H0, then µt ∈ H0 a.s.
and Ẽ∥µt∥

2
0 < ∞, for all t ≥ 0.

Proof. Eq. (25) yields that Ẽ∥Z δt ∥
2
0 ≤ ∥Z δ0∥

2
0 + K1

∫ t

0
Ẽ∥Z δs ∥

2
0ds. By Gronwall’s inequality,

we get Ẽ∥Z δt ∥
2
0 ≤ ∥Z δ0∥

2
0eK1t . Note that lim

δ→0
⟨Z δt , F⟩0 = lim

δ→0

∫
Rd

∫
Rd

Gδ(x − y)F(x)dxµt (dy) =

⟨µt , F⟩. Let {φ j } be a CONS of H0 such that φ j ∈ Cb(R). Then by Fatou’s lemma

Ẽ

⎛⎝∑
j

⟨µt , φ j ⟩
2

⎞⎠ = Ẽ

⎛⎝∑
j

lim
δ→0

⟨Z δt , φ j ⟩
2
0

⎞⎠ ≤ lim inf
δ→0

Ẽ∥Z δt ∥
2
0 ≤ ∥Z δ0∥

2
0eK1t .

Let µ̃t =
∑

j ⟨µt , φ j ⟩φ j . Then µ̃t ∈ H0 and ⟨µ̃t , F⟩0 =
∑

j ⟨µt , φ j ⟩⟨F, φ j ⟩0 = ⟨µt , F⟩. Hence,
µt ∈ H0 and Ẽ∥µt∥

2
0 < ∞. ■

Theorem 3.3. Suppose that µ0 ∈ H0. Then the solution of Zakai equation (8) is unique.

Proof. Let µ1
t and µ2

t be two measure-valued solution with the same initial value µ0. By
Corollary 3.1, µ1

t and µ2
t ∈ H0 a.s. Let Dt = µ1

t − µ2
t . Then Dt ∈ H0 and Ẽ∥TδDt∥

2
0 ≤

K1

∫ t

0
Ẽ∥Tδ(|Ds |)∥2

0ds. Note that by Lemma 3.1,
∫ t

0
Ẽ∥Tδ(|Ds |)∥2

0ds ≤

∫ t

0
Ẽ∥Ds∥

2
0ds < ∞.

Then letting δ → 0, by dominated convergence we have Ẽ∥Dt∥
2
0 ≤ K1

∫ t

0
Ẽ∥Ds∥

2
0ds, and

Gronwall’s inequality yields Dt = 0. ■

Consequently, the uniqueness of Kushner–Stratonovich equation then follows from
Theorem 3.3.

Theorem 3.4. The solution of Kushner–Stratonovich equation (10) is unique.

Proof. Let π1
t and π2

t be two solutions to the Kushner–Stratonovich equation (10). Note that
for i = 1, 2 and F ∈ Cb(R) we have π i

t (F)µi
t (1) = µi

t (F), where µi
t are the corresponding

solutions to Zakai equation. From Theorem 3.3, we have µ1
t = µ2

t , a.s. for all t ≥ 0. Hence
for all t ≥ 0, π1

t (F) =
µ1

t (F)
µ1

t (1)
=

µ2
t (F)
µ2

t (1)
= π2

t (F), a.s. ■



Please cite this article as: V. Maroulas, X. Pan and J. Xiong, Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy
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4. Large deviation principle

4.1. LDP result for the optimal filter

We study the limiting behavior of the optimal filter with a small signal-to-noise ratio,
i.e., consider the signal given in Eq. (6a) and the observation process below, for ϵ ↓ 0,

Y ϵ
t =

√
ϵ

∫ t

0
b2(s, Xs)ds +

∫ t

0
σ2(s)dWs (26)

+

∫ t

0

∫
U2

f2(s, u)Ñλϵ (ds, du) +

∫ t

0

∫
U\U2

g2(s, u)Nλϵ (ds, du),

where Nλϵ (dt, du) is a Poisson random measure with intensity λϵ(t, x, u)ν2(du)dt and
λϵ(t, x, u) = ϵλ(t, x, u)+1−ϵ. For any test function F ∈ C2

b (Rd ), set π ϵt (F) = E(F(X t )|FY ϵ
t )

and define similarly to Eq. (7) an equivalent probability measure which makes the signal and
observation processes independent, i.e.,

Λϵt = exp
{
√
ϵ

∫ t

0
(σ−1

2 (s)b2(s, Xs))∗dWs

+
ϵ

2

∫ t

0
|σ−1

2 (s)b2(s, Xs)|
2
ds +

∫ t

0

∫
U

(1 − λ(s, Xs, u))ν2(du)ds

+

∫ t

0

∫
U

log(ϵλ(s, Xs−, u) + 1 − ϵ)N ϵ−1

λϵ (ds, du)
}
,

where N ϵ−1

λϵ (dt, du) is a Poisson random measure with intensity ϵ−1 λϵ(t, X t , u) ν2(du)dt .
Consider P̃ϵ such that dP̃ϵ/dP = (ΛϵT )−1 and µϵt (F) = Ẽϵ(Λϵt F(X t )|FY ϵ

t ), where Ẽϵ denotes the
expectation under the measure P̃ϵ . First, we establish the existence of the small-noise optimal
filter, given in Proposition 4.1. Its proof is delegated to Appendix C.

Proposition 4.1. Let the signal be defined as in Eq. (6a) and the observation process, Y ϵ
t , be

as in Eq. (26). Then we have the following small-noise Zakai equation, for any F ∈ D(L)

µϵt (F) = µ0(F) +

∫ t

0
µϵs (LF)ds +

√
ϵ

m∑
i=1

∫ t

0
µϵs (F(σ−1

2 (s)b2(s, ·))i )dW̃ ϵ,i
s

+

∫ t

0

∫
U
µϵs−(F(λ(s, ·, µ) − 1))(ϵN ϵ−1

λϵ (ds, du) − ν2(du)ds). (27)

The corresponding small-noise Kushner–Stratonovich equation is given by

π ϵt (F) = π0(F) +

∫ t

0
π ϵs (LF)ds

+
√
ϵ

m∑
i=1

∫ t

0
(π ϵs (F(σ−1

2 (s)b2(s, ·))i ) − π ϵs (F)π ϵs (σ−1
2 (s)b2(s, ·))i )dŴ ϵ,i

s

+

∫ t

0

∫
U

π ϵs−(Fλ(s, ·, u)) − π ϵs−(F)π ϵs−(λ(s, ·, u))
π ϵs−(ϵλ(s, ·, u) + 1 − ϵ)

ϵ N̂ ϵ−1
(ds, du), (28)

where Ŵ ϵ
t = W̃ ϵ

t −
√
ϵ

∫ t

0
π ϵs (σ−1

2 (s)b2(s, ·))ds is the innovation process and

ϵ N̂ ϵ−1
(dt, du) = ϵN ϵ−1

λϵ (dt, du) − π ϵt−(ϵλ(s, ·, u) + 1 − ϵ)ν2(du)dt.
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What it follows verifies Condition 2.1 such that we show the LDP for the signal described in
Eq. (6a) and observation process as in Eq. (26). To proceed with the demonstration of the LDP,
the assumption on the boundedness of the infinitesimal generator L is necessary. However, this
condition does not contradict with the well-posedness of the optimal filtering framework, as
seen in [29] and the proof of Proposition 4.1.

Assumption 4.1. The test function F has continuous and bounded derivatives up to order 2.

The images of Gϵ,G0 considered in Condition 2.1 are solutions of versions of Zakai
equation with or without noise respectively. Recall that MF (Rd ) denotes the collection of
finite Borel measure on Rd , and µϵt is an MF (Rd )-valued process. For each ϵ > 0, let
Gϵ : C([0, T ],Rm) × M(UT ) → D([0, T ],MF (Rd )) be a measurable map, such that

µϵ := Gϵ(
√
ϵW̃ ϵ, ϵN ϵ−1

λϵ ). (29)

Adopting the arguments of Theorem 3.3, the following holds.

Theorem 4.1. Under Assumptions 3.1–3.4, the unnormalized filtered µϵ defined in Eq. (29)
is the unique solution of the Zakai equation (27).

Let ξ = (ψ, φ) ∈ UM . The controlled version of Eq. (27) for all F ∈ D(L), is given by

µ
ϵ,ξ
t (F) = µ0(F) +

∫ t

0
µϵ,ξs (LF)ds +

√
ϵ

m∑
i=1

∫ t

0
µϵ,ξs (F(σ−1

2 (s)b2(s, ·))i )dW̃ ϵ,i
s

+

∫ t

0
µϵ,ξs (F(σ−1

2 (s)b2(s, ·)))ψ(s)ds

+

∫ t

0

∫
U
µ
ϵ,ξ
s− (F(λ(s, ·, µ) − 1))(ϵN ϵ−1φ

λϵ (ds, du) − ν2(du)ds). (30)

Let µ0,ξ
t be the solution of the noise-free controlled version of Eq. (30), i.e.

µ
0,ξ
t (F) = µ0(F) +

∫ t

0
µ0,ξ

s (LF)ds +

∫ t

0
µ0,ξ

s (F(σ−1
2 (s)b2(s, ·)))ψ(s)ds

+

∫ t

0

∫
U
µ0,ξ

s (F(λ(s, ·, µ) − 1))(φ(s, u) − 1)ν2(du)ds. (31)

For g : B(UT ) → [0,∞), define νg
2 (A) =

∫
A g(s, u)ν2(du)ds for any A ∈ B(UT ) where ν2 is

the intensity measure of Nλϵ in the observation process. Let G0
: MF (Rd ) × C([0, T ],Rm) ×

M(UT ) → C([0, T ],MF (Rd )) be a measurable map such that G0(µ0, w,m) = µ
0,ξ
t if

(w,m) = (
∫

·

0 ψ(s)ds, νφ2 ) ∈ C([0, T ],Rm) × M(UT ) for ξ = (ψ, φ), otherwise G0
= 0.

For µ ∈ C([0, T ],MF (Rd )) define

I1 ≡ I1(µ) := inf
{ξ=(ψ,φ)∈Sµ:µ=G0(

∫
·

0 ψ(s)ds,νφ2 )}
L̄T (ξ ), (32)

where L̄T is defined in Eq. (4) by replacing ν with ν2. The following theorem is the main one
that establishes the uniform large deviations for the unnormalized filter. Its proof is delegated
to the next section.

Theorem 4.2. Let µϵ be as in Eq. (29). Then I1, defined in (32), is a rate function and {µϵ}

satisfies the large deviation principle on D([0, T ],MF (Rd )) with the rate function I1.
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Recall that P(Rd ) denotes the collection of the optimal filter πt . We define G̃0
: L2([0, T ],

Rm) × [0,∞) → C([0, T ],P(Rd )) a measurable function and suppose that π0,ξ
= G̃0(ψ, φ),

where π0,ξ is the solution of the following controlled equation.

π
0,ξ
t (F) = π0(F) +

∫ t

0
π0,ξ

s

{
LF +

(
σ−1

2 (s)b2(s, ·) − π0,ξ
s (σ−1

2 (s)b2(s, ·))
)
ψ(s)F

}
ds

+

∫ t

0

∫
U

[
π0,ξ

s (Fλ(s, ·, u)) − π0,ξ
s (F)π0,ξ

s (λ(s, ·, u))
]

(φ(s, u) − 1)ν2(du)dt. (33)

For π ∈ C([0, T ],P(Rd )) define

I2 ≡ I2(π ) := inf
{ξ=(ψ,φ)∈Sπ :π=G0(

∫
·

0 ψ(s)ds,νφ2 )}
L̄T (ξ ). (34)

Lemma 4.1. For ξ = (ψ, φ) ∈ UM , let

Mξ
t = exp

( ∫ t

0
πs(σ−1

2 (s)b2(s, ·)ψ(s))ds

+

∫ t

0

∫
U
πs(λ(s, ·, µ) − 1)(φ(s, u) − 1)ν2(du)ds

)
.

Then µ0,ξ
t (F) = π

0,ξ
t (F)Mξ

t satisfies the noise-free Zakai equation (31).

Proof. We first note that

d Mξ
t = Mξ

t

(
πt (σ−1

2 (t)b2(t, ·)ψ(t))dt +

∫
U
πt (λ(t, ·, µ) − 1)(φ(t, u) − 1)ν2(du)dt

)
.

Differentiating the product, π0,ξ
t (F)Mξ

t , we have

π
0,ξ
t (F)Mξ

t πt (σ−1
2 (t)b2(t, ·)ψ(t))dt (35)

+ π
0,ξ
t (F)Mξ

t

∫
U
πt (λ(t, ·, µ) − 1)(φ(t, u) − 1)ν2(du)dt

+ π
0,ξ
t (LF)Mξ

t dt + πt (Fσ−1
2 (t)b2(t, ·)ψ(t))Mξ

t dt

− π
0,ξ
t (F)Mξ

t πt (σ−1
2 (t)b2(t, ·)ψ(t))dt

+

∫
U

Mξ
t
[
π0,ξ

s (Fλ(s, ·, u)) − π0,ξ
s (F)π0,ξ

s (λ(s, ·, u))
]

(φ(s, u) − 1)ν2(du)dt.

Regroup the right-hand side of Eq. (35) and then the integral form coincides with
Eq. (31). ■

The following theorem establishes a uniform large deviation principle for the optimal
filtering defined in Eq. (28).

Theorem 4.3. Suppose π ϵt is the optimal filter described by the Kushner–Stratonovich
equation (28). Then {π ϵ} satisfies the large deviation principle on D([0, T ],P(Rd )) with the
rate function I2, defined in Eq. (34).

Proof. Define a map G : D([0, T ],MF (Rd ) \ {0}) → D([0, T ],P(Rd )) such that (Gµ)t =
µt (F)
µt (1) . Then, by the contraction principle, {π ϵ = G(µϵ)} satisfies the large deviation principle
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noise, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.02.009.

V. Maroulas, X. Pan and J. Xiong / Stochastic Processes and their Applications xxx (xxxx) xxx 15

with rate function I ′

2(π ) = inf{I1(µ) : G(µ) = π}. Suppose I ′

2(π ) < ∞, then for all δ > 0
there exists µ such that G(µ) = π and I1(µ) < I ′

2(π ) + δ. Choose a control ξ ∈ Sπ such that
γ (ξ ) = µ, where γ is the solution of Eq. (31) and L̄T (ξ ) < I1(µ) + δ. Taking γ̃ ·

= G ◦ γ

we have γ̃ (ξ ) = ξ , where γ̃ is the solution of Eq. (33), and L̄T (ξ ) < I ′

2(π ) + 2δ. Thus, by
definition of I2 we have

I2(π ) ≤ I ′

2(π ). (36)

Now if I2(π ) < ∞. Then for all δ > 0, there exists ξ ∈ Sπ such that γ̃ (ξ ) = π and
L̄T (ξ ) < I2(π ) + δ. By Lemma 4.1, we have µt = Mξ

t πt . Then µ = γ (ξ ) is the solution
of Eq. (31) and G(µ) = π . Hence

I ′

2(π ) ≤ I1(µ) ≤ L̄T (ξ ) < I2(π ) + δ. (37)

Eqs. (36) and (37) give I2 = I ′

2 and then the result follows. ■

4.2. Proof of Theorem 4.2

In the subsection we verify Condition 2.1 in order to show the large deviation estimates for
the unnormalized filter. The following theorem establishes the existence and uniqueness of the
controlled version of Zakai equation given in Eq. (30).

Theorem 4.4. Suppose Gϵ is given by µϵ = Gϵ(
√
ϵW̃ ϵ, ϵN ϵ−1

λϵ ), and ξ = (ψ, φ) ∈ UM for
some M > 0. For ϵ > 0, define µϵ,ξ = Gϵ(

√
ϵW̃ ϵ

+
∫

·

0 ψ(s)ds, ϵN ϵ−1φ
λϵ ). Then µϵ,ξ is the

unique solution of Eq. (30).

Proof. Take a control ξ = (ψ, φ) ∈ UM , and consider

Mϵ,ξ
t : = exp

{
−

1
√
ϵ

∫ t

0
ψ(s)dW̃ ϵ

s +

∫ t

0

∫
U×[0,ϵ−1]

logφ(s, u)N̄λϵ (ds, du, dr )

−
1
2ϵ

∫ t

0
|ψ(s)|2ds +

∫ t

0

∫
U×[0,ϵ−1]

(1 − φ(s, u))ν̄2(ds, du, dr )
}
,

where N̄λϵ and the corresponding intensity ν̄2 satisfy the definitions of N̄ and ν̄T in Section 2.1
respectively. By Itô’s formula,

d Mϵ,ξ
t = Mϵ,ξ

t

(
−

1
√
ϵ
ψ(t)dW̃ ϵ

t −
1
2ϵ

|ψ(t)|2dt

+

∫
U×[0,ϵ−1]

(1 − φ(s, u))ν̄2(ds, du, dr )
)

+
1
2ϵ

Mϵ,ξ
t |ψ(t)|2dt +

∫
U×[0,ϵ−1]

Mϵ,ξ
t− (φ(t, u) − 1)N̄λϵ (ds, du, dr ).

Thus,

Mϵ,ξ
t = 1 −

1
√
ϵ

∫ t

0
Mϵ,ξ

s ψ(s)dW̃ ϵ
s

+

∫ t

0

∫
U

Mϵ,ξ
s− (φ(s, u) − 1)

(
N̄λϵ (ds, du, dr ) − ν̄2(ds, du, dr )

)
.
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Define a new probability measure Pϵ,ξ by dPϵ,ξ
dP̃ϵ

= Mϵ,ξ

T , then Pϵ,ξ is an equivalent probability

measure with respect to P̃ϵ . By Girsanov’s theorem, W ϵ,ξ
t := W̃ ϵ

t +
1

√
ϵ

∫ t

0
ψ(s)ds is a

Pϵ,ξ -Brownian motion and N ϵ,ξ (dt, du) := Nλϵ (dt, du) − φ(t, u)ν2(du)dt is a Pϵ,ξ -Poisson
martingale measure. Hence, the desired result follows from replacing (W̃ , Nλϵ ) in Eq. (27)
with (W ϵ,ξ , N ϵ,ξ ) and Theorem 4.1. ■

We now verify the existence and uniqueness of the solution of the zero-noise controlled
Zakai equation (31).

Theorem 4.5. For a pair of well-defined control ξ = (ψ, φ) ∈ UM , M > 0, there is a unique
solution µ0,ξ

t ∈ C([0, T ],MF (Rd )) of Eq. (31).

Proof. We start with showing the existence of the solution. Let

Λ
0,ξ
t = exp

(∫ t

0
σ−1

2 (s)b2(s, Xs)ψ(s)ds

+

∫ t

0

∫
U

(λ(s, Xs, µ) − 1)(φ(s, u) − 1)ν2(du)ds
)
.

Next, we define µ0,ξ
t = E(Λ0,ξ

t F(X t )) and we show that it is a solution of Eq. (31). First of
all,

dΛ0,ξ
t = Λ

0,ξ
t

(
σ−1

2 (t)b2(t, X t )ψ(t)dt +

∫
U

(λ(t, X t , µ) − 1)(φ(t, u) − 1)ν2(du)dt
)
.

Note that for any F ∈ D(L) we have M F
t ≡ F(X t ) −

∫ t

0
LF(Xs)ds is a martingale. Then by

Itô’s formula, we have

dΛ0,ξ
t F(X t ) = Λ

0,ξ
t
(
d M F

t + LF(X t )dt
)
+ F(X t )Λ

0,ξ
t σ−1

2 (t)b2(t, X t )ψ(t)dt

+

∫
U

F(X t )Λ
0,ξ
t (λ(t, X t , µ) − 1)(φ(t, u) − 1)ν2(du)dt.

Hence,

Λ
0,ξ
t F(X t ) = F(X0) +

∫ t

0
Λ0,ξ

s (LF(Xs) + σ−1
2 (s)b2(s, Xs)ψ(s))ds. (38)

+

∫ t

0

∫
U
Λ0,ξ

s F(Xs)(λ(s, Xs, µ) − 1)(φ(s, u) − 1)ν2(du)ds +

∫ t

0
Λ0,ξ

s d M F
s .

Taking expectation on both sides of Eq. (38) yields Eq. (31). Thus µ0,ξ
t (F) = E(Λ0,ξ

t F(X t )) is
a solution of Eq. (31).

Next, we verify the uniqueness by a similar strategy to Theorem 3.3. Recall that for any
µ ∈ MF (Rd ), ⟨µ, F⟩ =

∫
R F(x)µ(dx). Then Eq. (31) is written as

⟨µ0,ϵ
t , F⟩ = ⟨µ0, F⟩ +

∫ t

0
⟨µ0,ϵ

s ,LF⟩ds +

∫ t

0
⟨µ0,ϵ

s , F(σ−1
2 (s)b2(s, ·)ψ(s))⟩ds

+

∫ t

0

∫
U
⟨µ0,ϵ

s , F(λ(s, ·, u) − 1)(φ(s, u) − 1)⟩ν2(du)ds.
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Let Z δt = Tδµ
0,ϵ
t be defined as in Eq. (11). Replacing F by TδF and noting that ⟨Tδν, F⟩ =

⟨ν, TδF⟩, we have that ⟨Z δt , F⟩0 equals to

⟨µ0, TδF⟩ +

∫ t

0
⟨µ0,ϵ

s ,LTδF⟩ds +

∫ t

0
⟨µ0,ϵ

s , TδF(σ−1
2 (s)b2(s, ·)ψ(s))⟩ds

+

∫ t

0

∫
U
⟨µ0,ϵ

s , TδF(λ(s, ·, u) − 1)(φ(s, u) − 1)⟩ν2(du)ds. (39)

Employing Lemma 3.2, Eq. (39) is given by

⟨Z δt , F⟩0 = ⟨Z δ0, F⟩ +

∫ t

0
⟨∂i Tδ(bi

1µ
0,ϵ
s ), F⟩0ds +

1
2

∫ t

0
⟨∂2

i j Tδ(σ
ik
1 σ

k j
1 µ

0,ϵ
s ), F⟩

0
ds

+

∫ t

0
⟨Tδ(σ−1

2 (s)b2(s, ·)ψ(s)µ0,ϵ
s ), F⟩0ds

+

∫ t

0

∫
U\U1

[
⟨Tδµ0,ϵ

s , F(· + g1(·, u))⟩0 − ⟨Tδµ0,ϵ
s , F⟩0

]
ν1(du)ds

+

∫ t

0

∫
U1

[
⟨Tδµ0,ϵ

s , F(· + f1(·, u))⟩0 − ⟨Tδµ0,ϵ
s , F⟩0

−⟨∂i Tδ( f i
1 (·, u)µ0,ϵ

s ), F⟩0

]
ν1(du)ds

+

∫ t

0

∫
U

⟨Tδ(λ(s, ·, u) − 1)((φ(s, u) − 1)µ0,ϵ
s ), F⟩0ν2(du)ds.

Furthermore, summing ⟨Z δt , η⟩
2
0 = ⟨Z δ0, η⟩

2
0 +

∫ t

0
2⟨Z δs , η⟩0d⟨Z δs , η⟩0 over η in a CONS of

L2-space, there exists a constant K1 > 0 such that

∥Z δt ∥
2
0 ≤ ∥Z δ0∥

2
0 + K1

∫ t

0
∥Tδµ0,ϵ

s ∥
2
0ds. (40)

Now let µ0,ϵ
1,t and µ0,ϵ

2,t be two solutions with the same initial value µ0. Then by Corollary 3.1

and Eq. (40), we get ∥Tδ(µ
0,ϵ
1,t − µ

0,ϵ
2,t )∥2

0 ≤ K1

∫ t

0
∥Tδ(µ

0,ϵ
1,s − µ

0,ϵ
2,s )∥2

0ds. Taking δ → 0 gives

∥µ
0,ϵ
1,t − µ

0,ϵ
2,t ∥

2
0 ≤ K1

∫ t

0
∥µ

0,ϵ
1,s − µ

0,ϵ
2,s∥

2
0ds, and by Gronwall’s inequality, we have µ0,ϵ

1,t − µ
0,ϵ
2,t

= 0. ■

The following proposition demonstrates the first statement in Condition 2.1.

Proposition 4.2. For M < ∞, suppose that ξn = (ψn, φn), ξ = (ψ, φ) ∈ UM such that
ξn → ξ , as n → ∞. Then

G0(
∫

·

0
ψn(s)ds, νφn

2 ) → G0(
∫

·

0
ψ(s)ds, νφ2 ), as n → ∞.

Proof. Consider

Λ
0,ξ
t = exp

(∫ t

0
σ−1

2 (s)b2(s, Xs)ψ(s)ds

+

∫ t

0

∫
U

(λ(s, Xs, µ) − 1)(φ(s, u) − 1)ν2(du)ds
)
.
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The proof of the existence in Theorem 4.5 shows that ρt F =
∫
Rdµ0(dx)ExΛ

0,ξ
t F(X t ) is a

solution of zero-noise version of Zakai equation (31). Furthermore, the solution is unique
according to Theorem 4.5 and hence we get µ0,ξ

t = ρt . Notice that, by the boundedness of
σ−1

2 , b2 and (ψn, φn) ∈ UM , there exists a constant K > 0 such that∫ T

0
|σ−1

2 (s)b2(s, Xs)ψn(s)|ds

≤

(∫ T

0
|σ−1

2 (s)b2(s, Xs)| 2ds
)1/2 (∫ T

0
|ψn(s)|2ds

)1/2

≤ (K T )1/2 M1/2.

In addition, by the inequality, for any φ ∈ [0,∞),

|φ − 1| ≤ 2 + φ logφ − φ + 1, (41)

we have∫ T

0

∫
U

|(λ(s, Xs, µ) − 1)(φn(s, u) − 1)|ν2(du)ds

≤ 2
∫ T

0

∫
U
(2 + φn(s, u) logφn(s, u) − φn(s, u) + 1) ν2(du)ds

≤ 4T ν2(U) + 2M.

The dominated convergence theorem yields the convergence below, as n → ∞,

µ
0,ξn
t (F) =

∫
R
µ0(dx)Ex F(X t ) exp

(∫ t

0
σ−1

2 (s)b2(s, Xs)ψn(s)ds

+

∫ t

0

∫
U

(λ(s, Xs, µ) − 1)(φn(s, u) − 1)ν2(du)ds
)

→

∫
R
µ0(dx)Ex F(X t ) exp

(∫ t

0
σ−1

2 (s)b2(s, Xs)ψ(s)ds

+

∫ t

0

∫
U

(λ(s, Xs, µ) − 1)(φ(s, u) − 1)ν2(du)ds
)

= µ
0,ξ
t (F).

Then the proof is completed. ■

The next proposition verifies the second part of Condition 2.1.

Proposition 4.3. For M < ∞, let ξ ϵ = (ψϵ, φϵ), ξ = (ψ, φ) ∈ UM be such that ξ ϵ
d

→ ξ as
ϵ → 0. Then

Gϵ(
√
ϵW̃ ϵ

+

∫
·

0
ψϵ(s)ds, ϵN ϵ−1φϵ

λϵ )
d

→ G0(
∫

·

0
ψ(s)ds, νφ2 ), as ϵ → 0.

Proof. First, we prove that the family

{µϵ,ξ
ϵ

= Gϵ(
√
ϵW̃ ϵ

+

∫
·

0
ψϵ(s)ds, ϵN ϵ−1φϵ

λϵ ), ϵ ∈ (0, ϵ0)}
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is tight in D([0, T ],MF (Rd )) for some ϵ0 > 0. Note that

µ
ϵ,ξϵ

t (1) = µ0(1) +
√
ϵ

m∑
i=1

∫ t

0
µ
ϵ,ξϵ ,µϵ0
s ((σ−1

2 (s)b2(s, ·))i )dW̃ ϵ,i
s

+

∫ t

0
µϵ,ξ

ϵ

s (σ−1
2 (s)b2(s, ·))ψϵ(s)ds

+

∫ t

0

∫
U
µϵ,ξ

ϵ

s (λ(s, ·, µ) − 1) (φϵ(s, u) − 1) ν2(du)ds

+ϵ

∫ t

0

∫
U
µ
ϵ,ξϵ

s− (λ(s, ·, µ) − 1)(N ϵ−1φϵ

λϵ (ds, du) − ϵ−1φϵ(s, u)ν2(du)ds).

By Itô’s formula, we get µϵ,ξ
ϵ

t (1)2
= A1

t + A2
t + A3

t + A4
t + A5

t + A6
t + A7

t where

A1
t = µ

ϵ,ξϵ

0 (1)2, A2
t = 2

∫ t

0
µϵ,ξ

ϵ

s (1)µϵ,ξ
ϵ

s (σ−1
2 (s)b2(s, ·))ψϵ(s)ds,

A3
t = 2

∫ t

0

∫
U
µϵ,ξ

ϵ

s (1)µϵ,ξ
ϵ

s (λ(s, ·, µ) − 1) (φϵ(s, u) − 1) ν2(du)ds,

A4
t = ϵ

∫ t

0

⏐⏐⏐µϵ,ξϵs (σ−1
2 (s)b2(s, ·))

⏐⏐⏐2 ds,

A5
t =

∫ t

0

∫
U
ϵ2µϵ,ξ

ϵ

s (λ(s, ·, µ) − 1)2φϵ(s, u)ν2(du)ds,

A6
t = 2

√
ϵ

m∑
i=1

∫ t

0
µϵ,ξ

ϵ

s (1)µϵ,ξ
ϵ

s ((σ−1
2 (s)b2(s, ·))i )dW̃ ϵ,i

s ,

A7
t =

∫ t

0

∫
U

[
2ϵµϵ,ξ

ϵ

s− (1)µϵ,ξ
ϵ

s− (λ(s, ·, µ) − 1) ,

+ϵ2µ
ϵ,ξϵ

s− ((λ(s, ·, µ) − 1))2
] (

N ϵ−1φϵ

λϵ (ds, du) − ϵ−1φϵ(s, u)ν2(du)(ds)
)
.

Considering Assumption 3.2 and Cauchy–Schwarz inequality, A3
t is bounded by

2K
∫ t

0
µϵ,ξ

ϵ

s (1)2
|ψϵ(s)| ds (42)

≤ 2K
(∫ t

0
µϵ,ξ

ϵ

s (1)2
|ψϵ(s)|2 ds

)1/2 (∫ t

0
µϵ,ξ

ϵ

s (1)2ds
)1/2

≤ K
∫ t

0
µϵ,ξ

ϵ

s (1)2
|ψϵ(s)|2 ds + K

∫ t

0
µϵ,ξ

ϵ

s (1)2ds,

and A3
t + A4

t + A5
t is bounded by

4
∫ t

0

∫
U
µϵ,ξ

ϵ

s (1)2
|φϵ(s, u) − 1| ν2(du)ds (43)

+ K ϵ
∫ t

0
µϵ,ξ

ϵ

s (1)2ds + 4ϵ2
∫ t

0

∫
U
µϵ,ξ

ϵ

s (1)2
|φϵ(s, u)|ν2(du)ds.
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Set

A7,1
t =

∫ t

0

∫
U

2ϵµϵ,ξ
ϵ

s− (1)µϵ,ξ
ϵ

s− (λ(s, ·, µ) − 1)
(

N ϵ−1φϵ

λϵ (ds, du) − ϵ−1φϵ(s, u)ν2(du)(ds)
)

(44)

and

A7,2
t =

∫ t

0

∫
U
ϵ2µ

ϵ,ξϵ

s− ((λ(s, ·, µ) − 1))2
(

N ϵ−1φϵ

λϵ (ds, du) − ϵ−1φϵ(s, u)ν2(du)(ds)
)
. (45)

Combining Eqs. (42) and (43) implies that

µ
ϵ,ξϵ

t (1)2
≤ µ

ϵ,ξϵ

0 (1)2
+ sup

0≤t≤T
|A6

t | + sup
0≤t≤T

|A7,1
t | + sup

0≤t≤T
|A7,2

t |

+

∫ t

0
µϵ,ξ

ϵ

s (1)2
(

K |ψϵ(s)|2 + K +

∫
U

(
|φϵ(s, u) − 1| + K ϵ + 4ϵ2φϵ(s, u)

)
ν2(du)

)
ds.

Furthermore, inequality (41) gives∫ T

0

∫
U

|φϵ(s, u)| ν2(du)ds ≤

∫ T

0

∫
U
(|φϵ(s, u) − 1| + 1) ν2(du)(ds) (46)

≤

∫ T

0

∫
U
(3 + φϵ(s, u) logφϵ(s, u) − φϵ(s, u) + 1) ν2(du)(ds)

≤ 3T ν2(U) + M.

Then by Gronwall’s inequality and Eq. (46), we have

µ
ϵ,ξϵ

t (1)2
≤ C0

(
µ
ϵ,ξϵ

0 (1)2
+ sup

0≤t≤T
|A6

t | + sup
0≤t≤T

|A7,1
t | + sup

0≤t≤T
|A7,2

t |

)
, (47)

where C0 = exp
(
K M + K T + K ϵT + 2T ν2(U) + M + 4ϵ2(3T ν2(U) + M)

)
. Next, we have

Ẽϵ
(

sup
0≤t≤T

|A6
t |

)
≤ 8K

√
ϵẼϵ

√∫ T

0
µ
ϵ,ξϵ

s (1)4ds ≤ 8K
√

T
√
ϵẼϵ

(
sup

0≤t≤T
µϵ,ξ

ϵ

s (1)2
)
. (48)

For Eq. (44), we have

Ẽϵ
(

sup
0≤t≤T

|A7,1
t |

)
(49)

≤ 8ϵẼϵ
(∫ T

0

∫
U
µ
ϵ,ξϵ

s− (1)2µ
ϵ,ξϵ

s− (λ(s, ·, µ) − 1)2 N ϵ−1φϵ

λϵ (ds, du)
) 1

2

≤ 16ϵẼϵ
⎛⎝ sup

0≤t≤T
µ
ϵ,ξϵ

t (1) ·

(∫ T

0

∫
U
µ
ϵ,ξϵ

s− (1)2 N ϵ−1φϵ

λϵ (ds, du)
) 1

2

⎞⎠
≤

1
C
Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (1)2
)

+ 64ϵ2CẼϵ
(∫ T

0

∫
U
µ
ϵ,ξϵ

s− (1)2 N ϵ−1φϵ

λϵ (ds, du)
)

=
1
C
Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (1)2
)



Please cite this article as: V. Maroulas, X. Pan and J. Xiong, Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy
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+ 64ϵC
(∫ T

0

∫
U
µϵ,ξ

ϵ

s (1)2φϵ(s, u)ν2(du)ds
)

≤

(
1
C

+ 64ϵC(3T ν2(U) + M)
)
Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (1)2
)
,

where C is any positive number. Eq. (44) is bounded by

Ẽϵ
(

sup
0≤t≤T

|A7,2
t |

)
(50)

≤ Ẽϵ
(∫ T

0

∫
U
ϵ2µ

ϵ,ξϵ

s− ((λ(s, ·, µ) − 1))2 N ϵ−1φϵ

λϵ (ds, du)
)

+ ϵẼϵ
(∫ T

0

∫
U
µϵ,ξ

ϵ

s ((λ(s, ·, µ) − 1))2φϵ(s, u)ν2(du)(ds)
)

≤ 8ϵẼϵ
(∫ T

0

∫
U
µϵ,ξ

ϵ

s (1)2φϵ(s, u)ν2(du)(ds)
)

≤ 8ϵẼϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (1)2
)(∫ T

0

∫
U
φϵ(s, u)ν2(du)(ds)

)
≤ ϵ (24T ν2(U) + 8M) Ẽϵ

(
sup

0≤t≤T
µ
ϵ,ξϵ

t (1)2
)
,

where inequality (46) was used. By Eqs. (48), (49) and (50), Eq. (47) turns out to be

Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (1)2
)

≤ C0µ
ϵ,ξϵ

0 (1)2

+ C0

(
8K

√
T

√
ϵ + ϵ (24T ν2(U) + 8M)+

1
C

+ 64ϵC(3T ν2(U) + M)
)
.

Recall that the constant C can be arbitrarily large, we hence select C and ϵ0 small enough such
that

C0

(
8K

√
T

√
ϵ + ϵ (24T ν2(U) + 8M)+

1
C

+ 64ϵC(3T ν2(U) + M)
)
<

1
2
.

Therefore, there is a constant K1 such that

sup
0<ϵ≤ϵ0

Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (1)2
)

≤ K1. (51)

We now establish the tightness of {µϵ,ξ
ϵ
}. It is well-known, e.g. see [16] that we only need to

prove the tightness of {µ
ϵ,ξϵ

t (F)} in D([0, T ],R) for every test function F in D(L). By Eq. (51)
and the boundness of F , we have

sup
0<ϵ≤ϵ0

Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (F)2
)

≤ K2. (52)

Denote

Aϵt =

∫ t

0
µϵ,ξ

ϵ

s (LF)ds +

∫ t

0
µϵ,ξ

ϵ

s (F(σ−1
2 (s)b2(s, ·)))ψϵ(s)ds

+

∫ t

0

∫
U
µϵ,ξ

ϵ

s (F(λ(s, ·, µ) − 1)) (φϵ(s, u) − 1) ν2(du)ds.
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Let Mϵ
t = Mϵ,1

t + Mϵ,2
t , where

Mϵ,1
t =

√
ϵ

m∑
i=1

∫ t

0
µϵ,ξ

ϵ

s (F(σ−1
2 (s)b2(s, ·))i )dW̃ ϵ,i

s

and

Mϵ,2
t =

∫ t

0

∫
U
µ
ϵ,ξϵ

s− (F(λ(s, ·, µ) − 1))
(
ϵN ϵ−1,φϵ

λϵ (ds, du) − φϵ(s, u)ν2(du)ds
)
.

To verify the tightness of Aϵt in D([0, T ],R), it suffices to show (see Lemma 6.1.2 of [16])
that for all δ > 0, there exists τ = τδ > 0 such that

sup
0≤ϵ≤ϵ0

P̃ϵ
(

sup
0<t1<t2<τ

|Aϵt1 − Aϵt2 | > δ

)
< δ.

Then for arbitrary τ > 0 and a fixed δ > 0,

sup
0≤ϵ≤ϵ0

P̃ϵ
(

sup
0<t1<t2<τ

|Aϵt1 − Aϵt2 | > δ

)
(53)

≤ sup
0≤ϵ≤ϵ0

P̃ϵ
(

sup
0<t1<t2<τ

⏐⏐⏐⏐∫ t2

t1

µϵ,ξ
ϵ

s (LF)ds
⏐⏐⏐⏐ > δ

3

)

+ sup
0≤ϵ≤ϵ0

P̃ϵ
(

sup
0<t1<t2<τ

⏐⏐⏐⏐∫ t2

t1

µϵ,ξ
ϵ

s (F(σ−1
2 (s)b2(s, ·)))ψϵ(s)ds

⏐⏐⏐⏐ > δ

3

)

+ sup
0≤ϵ≤ϵ0

P̃ϵ
(

sup
0<t1<t2<τ

⏐⏐⏐⏐∫ t2

t1

∫
U
µϵ,ξ

ϵ

s (F(λ(s, ·, µ) − 1))

× (φϵ(s, u) − 1) ν2(du)ds| >
δ

3

)
:= D1 + D2 + D3.

The term D1 in Eq. (53) is bounded by

sup
0≤ϵ≤ϵ0

9
δ2 Ẽ

ϵ

(
sup

0<t1<t2<τ

∫ t2

t1

µϵ,ξ
ϵ

s (LF)ds

)2

(54)

≤ sup
0≤ϵ≤ϵ0

9
δ2 Ẽ

ϵ

(
δ2 sup

0≤t≤T
µ
ϵ,ξϵ

t (LF)2
)
.

By Eq. (52) and Assumption 4.1, we can find τ1 > 0 such that for all τ ≤ τ1, Eq. (54) is
bounded by δ/3.

For D2 in Eq. (53), we note that

Ẽϵ
⏐⏐⏐⏐∫ t2

t1

µϵ,ξ
ϵ

s (F(σ−1
2 (s)b2(s, ·)))ψϵ(s)ds

⏐⏐⏐⏐2
≤ Ẽϵ

(∫ t2

t1

⏐⏐⏐µϵ,ξϵs (F(σ−1
2 (s)b2(s, ·)))

⏐⏐⏐2 ds
∫ t2

t1

|ψϵ(s)|2ds
)

≤ M K2|t2 − t1|.

Thus, we can find τ2 > 0 such that for all τ ≤ τ2 the second term D2 in Eq. (53) is bounded
by δ/3.
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noise, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.02.009.

V. Maroulas, X. Pan and J. Xiong / Stochastic Processes and their Applications xxx (xxxx) xxx 23

Now let us consider D3 in Eq. (53). Using the fundamental inequality, for a, b ∈ (0,∞)
and any c ∈ [1,∞), ab ≤ eac

+
1
c (b log b − log b + 1) = eac

+
1
c l(b), twice (once with b = φϵ

and once with b = 1), for any C1 ∈ (1,∞) we have⏐⏐⏐⏐∫ t2

t1

∫
U
µϵ,ξ

ϵ

s (F(λ(s, ·, µ) − 1)) (φϵ(s, u) − 1) ν2(du)ds
⏐⏐⏐⏐ (55)

≤ 2 sup
0≤t≤T

µ
ϵ,ξϵ

t (F)
∫ t2

t1

∫
U

(φϵ(s, u) + 1)ν2(du)ds

≤ 2 sup
0≤t≤T

µ
ϵ,ξϵ

t (F)
(

2τν2(U)eC1 +
M
C1

)
.

Given any ϵ > 0, we can choose C1 such that M
C1

≤ ϵ, and choose τ > 0 such that
2τν2(U)eC1 ≤ ϵ. Hence combining Eqs. (52) and (55) we proved that

lim
τ→0

sup
0<t1<t2<τ

⏐⏐⏐⏐∫ t2

t1

∫
U
µϵ,ξ

ϵ

s (F(λ(s, ·, µ) − 1)) (φϵ(s, u) − 1) ν2(du)ds
⏐⏐⏐⏐ = 0.

Thus we find τ3 > 0 such that for τ ≤ τ3, D3 in Eq. (53) is bounded by δ/3. Consequently,
the tightness of {Aϵ}ϵ≤ϵ0 follows from Eq. (53) by taking τ = min{τ1, τ2, τ3}.

Next, considering Mϵ we have Ẽϵ⟨Mϵ,1
⟩T ≤ ϵK Ẽϵ

∫ T
0 µ

ϵ,ξϵ

t (F)2ds and

Ẽϵ⟨Mϵ,2
⟩T = ϵẼϵ

(∫ T

0

∫
U
µ
ϵ,ξϵ

t (F(λ(s, ·, µ) − 1))2φϵ(s, u)ν2(du)ds
)

≤ ϵ4Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (F)2
∫ T

0

∫
U
φϵ(s, u)ν2(du)ds

)
.

By Eqs. (46) and (52), we have Ẽϵ sup0≤t≤T ⟨Mϵ
⟩t converges to 0 as ϵ → 0. Then according

to Theorem 6.1.1 in [16], for any F ∈ D(L), the sequence of semimartingales µϵ,ξ
ϵ

t (F) =

µ
ϵ,ξϵ

0 (F) + Aϵt + Mϵ
t is tight in D([0, T ],R).

Next we show that G0(
∫

·

0 ψ(s)ds, νφ2 ) is the weak limit of µϵ,ξ
ϵ
. Note that

Ẽϵ
(

sup
0≤t≤T

⏐⏐Mϵ,1
t

⏐⏐2) ≤ ϵK Ẽϵ
∫ T

0
µ
ϵ,ξϵ

t (F)2ds

and

Ẽϵ
(

sup
0≤t≤T

⏐⏐Mϵ,2
t

⏐⏐2) ≤ ϵK Ẽϵ
(

sup
0≤t≤T

µ
ϵ,ξϵ

t (F)2
∫ T

0

∫
U
φϵ(s, u)ν2(du)ds

)
.

Therefore, Mϵ,1
t and Mϵ,2

t converge to 0 in distribution as ϵ → 0. Let (µ0,ξ
t , ψ, φ, 0, 0) be

any limit point of the tight sequence (µϵ,ξ
ϵ

t , ψϵ, φϵ,Mϵ,1
t , Mϵ,2

t ) for ϵ ∈ (0, ϵ0). Without
loss of generality, we assume that the convergence is almost sure by using the Skorokhod
representation theorem. Note that for any test function F in D(L), we have

µ
ϵ,ξϵ

t (F) = µ
ϵ,ξϵ

0 (F) +

∫ t

0
µϵ,ξ

ϵ

s (LF)ds + Mϵ,1
t

+

∫ t

0
µϵ,ξ

ϵ

s (F(σ−1
2 (s)b2(s, ·)))ψϵ(s)ds

+Mϵ,2
t +

∫ t

0

∫
U
µϵ,ξ

ϵ

s (F(λ(s, ·, µ) − 1)) (φϵ(s, u) − 1) ν2(du)ds.
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Taking ϵ → 0, along the lines of Theorem 4.5 and Proposition 4.2 we see that µ0,ξ must solve
Eq. (31). Then the uniqueness of the solution to Eq. (31) completes the proof. ■
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Appendix A. Proof of Theorem 3.1

Proof. Considering Eq. (12) and replacing F by TδF in the Zakai equation (8), we have that
⟨Z δs , F⟩0 equals to

⟨µ0, TδF⟩ +

∫ t

0
⟨µs,LTδF⟩ds +

m∑
i=1

∫ t

0
⟨µs, (TδF)(σ−1

2 (s)b2(s, ·))i
⟩dW̃ i

s

+

∫ t

0

∫
U
⟨µs−, (TδF)(λ(s, ·, u) − 1)⟩Ñ (ds, du). (A.1)

Note that for any ν ∈ MF (Rd ),

⟨ν,LTδF⟩ = ⟨ν,

d∑
i=1

∂i (TδF)bi
1 +

1
2

d∑
i, j=1

n∑
k=1

∂2
i j (TδF)σ ik

1 σ
jk

1 ⟩

+⟨ν,

∫
U\U1

[TδF(x + g1(x, u)) − TδF(x)]ν1(du)⟩ (A.2)

+⟨ν,

∫
U1

[TδF(x + f1(x, u)) − TδF(x) −

d∑
i=1

∂i (TδF) f i
1 (x, u)]ν1(du)⟩.

Furthermore, by Lemma 3.2, we have

⟨ν,

d∑
i=1

∂i (TδF)bi
1 +

1
2

d∑
i, j=1

n∑
k=1

∂2
i j (TδF)σ ik

1 σ
jk

1 ⟩ (A.3)

=

d∑
i=1

⟨bi
1ν, Tδ∂i F⟩ +

1
2

d∑
i, j=1

n∑
k=1

⟨σ ik
1 σ

jk
1 ν, Tδ∂2

i j F⟩

=

d∑
i=1

⟨Tδ(bi
1ν), ∂i F⟩0 +

1
2

d∑
i, j=1

n∑
k=1

⟨Tδ(σ ik
1 σ

jk
1 ν), ∂2

i j F⟩
0

= −

d∑
i=1

⟨∂i Tδ(bi
1ν), F⟩0 +

1
2

d∑
i, j=1

n∑
k=1

⟨∂2
i j Tδ(σ

ik
1 σ

jk
1 ν), F⟩

0
.

In addition, ⟨ν, (TδF)(σ−1
2 (s)b2(s, ·))i

⟩ = ⟨Tδ(σ−1
2 (s)b2(s, ·)iν), F⟩0, where (TδF)(σ−1

2 (s)
b2(s, ·))i is the ith entry of vector (TδF)(σ−1

2 (s)b2(s, ·)), as well as ⟨ν, (TδF)(λ(s, ·, u) − 1)⟩
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= ⟨Tδ((λ(s, ·, u) − 1)v), F⟩0. Suppose that F ≥ 0, then the case for general F follows from
the linearity. By Fubini’s theorem,

⟨ν,

∫
U\U1

TδF(x + g1(x, u))ν1(du)⟩ =

∫
U\U1

∫
Rd

TδF(x + g1(x, u))ν(dx)ν1(du)

=

∫
U\U1

⟨ν, TδF(x + g1(x, u))⟩ν1(du). (A.4)

Consequently, taking into consideration Eqs. (A.2), (A.3) and (A.4) into Eq. (A.1), one can get
⟨Z δs , F⟩0 equals to

⟨Z δ0, F⟩0 −

d∑
i=1

∫ t

0
⟨∂i Tδ(bi

1µs), F⟩0ds +
1
2

d∑
i, j=1

n∑
k=1

∫ t

0
⟨∂2

i j Tδ(σ
ik
1 σ

jk
1 µs), F⟩

0
ds

+

∫ t

0

∫
U\U1

[
⟨Tδµs, F(· + g1(·, u))⟩0 − ⟨Tδµs, F⟩0

]
ν1(du)ds

+

m∑
i=1

∫ t

0
⟨Tδ(σ−1

2 (s)b2(s, ·))iµs, F⟩0dW̃ i
s

+

∫ t

0

∫
U

⟨Tδ ((λ(s, ·, u) − 1)µs−) , F⟩0 Ñ (ds, du)

+

∫ t

0

∫
U1

[
⟨Tδµs, F(· + f1(·, u))⟩0 − ⟨Tδµs, F⟩0 −

d∑
i=1

⟨∂i Tδ( f i
1 (·, u)µs), F⟩0

]
× ν1(du)ds.

Then by Itô’s formula, we have ⟨Z δt , F⟩
2
0 equals to

⟨Z δ0, F⟩
2
0 + 2

∫ t

0
⟨Z δs , F⟩0

{
−

d∑
i=1

⟨∂i Tδ(bi
1µs), F⟩0 +

1
2

d∑
i, j=1

n∑
k=1

⟨∂2
i j Tδ(σ

ik
1 σ

jk
1 µs), F⟩

0

+

∫
U\U1

[
⟨Z δs , F(· + g1(·, u))⟩0 − ⟨Z δs , F⟩0

]
ν1(du)

+

∫
U1

[
⟨Z δs , F(· + f1(·, u))⟩0 − ⟨Z δs , F⟩0 − ⟨∂i Tδ( f i

1 (·, u)µs), F⟩0

]
ν1(du)

}
ds

+ 2
m∑

i=1

∫ t

0
⟨Z δs , F⟩0⟨Tδ((σ

−1
2 (s)b2(s, ·))iµs), F⟩0dW̃ i

s

+

∫ t

0

⏐⏐⟨Tδ(σ−1
2 (s)b2(s, ·)µs), F⟩0

⏐⏐2 ds

+

∫ t

0

∫
U

[(
⟨Z δs−, F⟩0 + ⟨Tδ ((λ(s, ·, u) − 1)µs−) , F⟩0

)2
− ⟨Z δs−, F⟩

2
0

]
Ñ (ds, du)

+

∫ t

0

∫
U

[(
⟨Z δs , F⟩0 + ⟨Tδ ((λ(s, ·, u) − 1)µs) , F⟩0

)2
− ⟨Z δs , F⟩

2
0

−2⟨Tδ ((λ(s, ·, u) − 1)µs) , F⟩0⟨Z δs , F⟩0

]
ν2(du)ds.
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Summing over η in a CONS of H0 we have∑
η

⟨Z δ0, η⟩
2
0 = ∥Z δ0∥

2
0,

∑
η

⟨Z δt , η⟩0⟨∂i Tδ(bi
1µt ), η⟩0 = ⟨Z t , ∂i Tδ(bi

1µt )⟩0.

Similarly, we eventually get that ∥Z δt ∥
2
0 equals to

∥Z δ0∥
2
0 − 2

d∑
i=1

∫ t

0
⟨Z δs , ∂i Tδ(bi

1µs)⟩0ds +

d∑
i, j=1

n∑
k=1

∫ t

0
⟨Z δs , ∂

2
i j Tδ(σ

ik
1 σ

jk
1 µs)⟩

0
ds

+ 2
∫ t

0

∫
U\U1

[⟨Z δs , Z̃ δ,g1
s ⟩0 − ∥Z δs ∥

2
0]ν1(du)ds (A.5)

+

∫ t

0

∫
U1

[⟨Z δs , Z̃ δ, f1
s ⟩0 − ∥Z δs ∥

2
0 −

d∑
i=1

⟨Z δs , ∂i Tδ( f i
1 (·, u)µs)⟩0]ν1(du)ds

+ 2
m∑

i=1

∫ t

0
⟨Z δs , Tδ((σ−1

2 (s)b2(s, ·))iµs)⟩0dW̃ i
s +

∫ t

0
∥Tδ(σ−1

2 (s)b2(s, ·)µs)∥2
0ds

+

∫ t

0

∫
U

[2⟨Z δs−, Tδ ((λ(s, ·, u) − 1)µs)⟩0 + ∥Tδ ((λ(s, ·, u) − 1)µs−) ∥
2
0]Ñ (ds, du)

+

∫ t

0

∫
U

∥Tδ ((λ(s, ·, u) − 1)µs) ∥
2
0ν2(du)ds,

provided Z δ,g1
t , Z δ, f1

t are defined as Eqs. (16) and (17) respectively. Eventually, taking expec-
tation on Eq. (A.5) gives Eq. (14). ■

Appendix B. Proof of Lemma 3.5

Proof. Note that
∑d

i, j=1 ⟨Tδζ, ∂2
i j Tδ(σ1σ

∗

1 )i jζ ⟩0
equals to

d∑
i, j=1

∫
Rd

dx
∫
Rd
ζ (dy)Gδ(x − y)

∫
Rd
ζ (dz)∂2

xi x j
Gδ(x − z)

n∑
k=1

σ ik
1 (z)σ jk

1 (z). (B.1)

Employing the semigroup property of Gδ in Lemma 3.1, we have
∫
Rd Gδ(x − y)Gδ(x − z)dx =

G2δ(y − z). Noticing that ∂i Gδ(x) = −
xi
δ

Gδ(x), we have ∂2
i j Gδ(x) =

(
xi x j
δ2 −

1i= j
δ

)
Gδ(x). Due

to the fact that ∂2
xi x j

Gδ(x − z) = ∂2
zi z j

Gδ(x − z), Eq. (B.1) is written as

d∑
i, j=1

∫
Rd
ζ (dy)

∫
Rd
ζ (dz)

n∑
k=1

σ ik
1 (z)σ k j

1 (z)∂2
zi z j

∫
Rd

Gδ(x − y)Gδ(x − z)dx (B.2)

=

d∑
i, j=1

∫
Rd
ζ (dy)

∫
Rd
ζ (dz)

(
(zi − yi )(z j − y j )

4δ2 −
1i= j

2δ

)
G2δ(z − y)

n∑
k=1

σ ik
1 (z)σ jk

1 (z).

By symmetry of y and z in Eq. (B.2), Eq. (B.1) is further given by
d∑

i, j=1

∫
Rd
ζ (dy)

∫
Rd
ζ (dz)

(
(zi − yi )(z j − y j )

4δ2 −
1i= j

2δ

)

× G2δ(z − y)
1
2

n∑
k=1

(
σ ik

1 (z)σ jk
1 (z) + σ ik

1 (y)σ jk
1 (y)

)
. (B.3)
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Similarly, the second term on the left hand side of Eq. (24) can be expressed as

−

d∑
i, j=1

∫
Rd
ζ (dy)

∫
Rd
ζ (dz)

(
(zi − yi )(z j − y j )

4δ2 −
1i= j

2δ

)

× G2δ(z − y)
1
2

n∑
k=1

(
σ ik

1 (y)σ jk
1 (z) + σ ik

1 (z)σ jk
1 (y)

)
. (B.4)

Now adding Eqs. (B.3) and (B.4), the left-hand side of (24) is given by
d∑

i, j=1

∫
Rd
ζ (dy)

∫
Rd
ζ (dz)

(
(zi − yi )(z j − y j )

4δ2 −
1i= j

2δ

)

× G2δ(z − y)
1
2

n∑
k=1

(
σ ik

1 (y) − σ ik
1 (z)

) (
σ

jk
1 (y) − σ

jk
1 (z)

)
.

Using the identity that Gδ(x) = exp
(
−

|x |
2

4δ

)
2d/2G2δ(x), the Lipschitz continuity of σ1 and

Lemma 3.1, we have the quantity above estimated by
d∑

i, j=1

∫
Rd
ζ (dy)

∫
Rd
ζ (dz)

(
|z − y|

2

4δ2 +
1
2δ

)
exp

(
−

|z − y|
2

4δ

)

× 2d/2G4δ(z − y)
1
2

K 2
|z − y|

2

≤ 4K 2
d∑

i, j=1

∫
Rd

|ζ |(dy)
∫
Rd

|ζ |(dz)2d/2G4δ(z − y)

= d222+d/2 K 2
∥T2δ(|ζ |)∥2

0 ≤ d222+d/2 K 2
∥Tδ(|ζ |)∥2

0.

The lemma then follows with K1 = d222+d/2 K 2. ■

Appendix C. Proof of Proposition 4.1

Proof. By Itô’s formula,

dΛϵt = Λϵt

{
√
ϵ(σ−1

2 (t)b2(t, X t ))∗dWt

+
ϵ

2
|σ−1

2 (t)b2(t, X t )|
2
dt +

∫
U

(1 − λ(t, X t , u))ν2(du)dt
}

+
ϵ

2
Λϵt |σ

−1
2 (t)b2(t, X t )|

2
dt +

∫
U
Λϵt (λ(t, X t−, u) − 1)ϵN ϵ−1

λϵ (dt, du).

Then

Λϵt = 1 +
√
ϵ

∫ t

0
Λϵs (σ−1

2 (s)b2(s, Xs))∗dW̃ ϵ
s

+

∫ t

0

∫
U
Λs−(λ(s, Xs−, u) − 1)(ϵN ϵ−1

λϵ (ds, du) − ν2(du)ds).
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By Girsanov’s theorem, W̃ ϵ
t = Wt +

√
ϵ
∫ t

0 σ
−1
2 (s)b2(s, Xs)ds, is a P̃ϵ-Brownian motion,

and Ñ ϵ−1
= N ϵ−1

λϵ (dt, du) − ϵ−1ν2(du)dt , is a P̃ϵ-Poisson martingale measure. The Zakai
equation (27) is obtained by the same argument of Proposition 3.1. We now show the derivation
of the Kushner–Stratonovich equation (28). Note that

µϵt (1) = µ0(1) +
√
ϵ

m∑
i=1

∫ t

0
µϵs ((σ−1

2 (s)b2(s, ·))i )dW̃ ϵ,i
s

+

∫ t

0

∫
U
µϵs−(λ(s, ·, µ) − 1)(ϵN ϵ−1

λϵ (ds, du) − ν2(du)ds).

By Itô’s formula, we have that d 1
µϵt (1) equals to

−

√
ϵ

µϵt (1)2

m∑
i=1

µϵt ((σ−1
2 (t)b2(t, ·))i )dW̃ ϵ,i

t +
ϵ

µϵt (1)3µ
ϵ
t (σ−1

2 (t)b2(t, ·))dt

+

∫
U

(
1

µϵt (1) + ϵµϵt (λ(t, ·, u) − 1)
−

1
µϵt (1)

)(
N ϵ−1

λϵ (dt, du) − ϵ−1ν2(du)dt
)

+
1
ϵ

∫
U

(
1

µϵt (1) + ϵµϵt (λ(t, ·, u) − 1)
−

1
µϵt (1)

+ ϵµϵt (λ(t, ·, u) − 1)
1

µϵt (1)2

)
ν2(du)dt.

Hence, the quadratic variation, d[µϵ(F), µϵ(1)−1]t , is given by

−
ϵ

µϵt (1)2

m∑
i=1

µϵt ((σ−1
2 (t)b2(t, ·))i )µϵt (F(σ−1

2 (t)b2(t, ·))i )dt

+

∫
U

(
1

µϵt (1) + ϵµϵt (λ(t, ·, u) − 1)
−

1
µϵt (1)

)
ϵµϵs−(F(λ(s, ·, µ) − 1))N ϵ−1

λϵ (ds, du).

Eventually, one can easily get Eq. (28) by the following the product of Itô’s formula d µϵt (F)
µϵt (1) =

1
µϵt (1) dµ

ϵ
t (F) + µϵt (F)d 1

µϵt (1) + d[µϵ(F), µϵ(1)−1]t . ■
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