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Abstract

In this paper, we focus on the asymptotic behavior of the optimal filter where both signal and
observation processes are driven by Lévy noises. Indeed, we study large deviations for the case where
the signal-to-noise ratio is small by considering weak convergence arguments. To that end, we first
prove the uniqueness of the solution of the controlled Zakai and Kushner—Stratonovich equations. For
this, we employ a method which transforms the associated equations into SDEs in an appropriate Hilbert
space. Next, taking into account the controlled analogue of Zakai and Kushner—Stratonovich equations,
respectively, the large deviation principle follows by employing the existence, uniqueness and tightness
of the solutions.
© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic filtering deals with the estimation problem under partial information. Given two
stochastic processes, the signal process and observation process, the filtering problem aims to
estimate a functional of the signal based on the partially observed data. This paper focuses
on a general model in which signal and observation processes are driven by Lévy noises.
Several models in finance engineering, biology etc., e.g. see the partial list [1,8,9,12,15,17,22,
23,25,26,31,32], have considered such stochastic dynamics driven by a pertinent Lévy noise for
describing partially received information with discontinuities or jumps in a time interval. By the
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same token, there exists an array of studies which encounter the analysis of optimal filter in a
Lévy environment, for instance, [6,7,13,20,28,29]. We investigate a small-noise large deviation
principle (LDP) of the optimal filter, which is basically a solution of the Kushner—Stratonovich
stochastic partial differential equation (SPDE). Such analysis is associated with the rare events
of a small signal-to-noise ratio.

The early work [14] derived large deviations for the conditional density for diffusion systems
in which both the signal and the observation noises were small. The study [27] established
a quenched large deviation principle with small-noise observations. In a similar setup as
herein, [33] took aim in a model where the signal was a diffusion process and the observation
process was driven by a Brownian motion. A fractional Brownian motion model was studied
in [24]. This work investigates the large deviations for the optimal filter where both signal and
observation processes are driven by Lévy noises.

The strategy we apply is to prove the Laplace principle, which is equivalent to the large
deviation principle, by using a weak convergence argument, proposed in [3,4]. This weak
convergence method is an approach that has been increasingly used, e.g., the large deviations
for a variety of SPDEs [2,3,5,10,21,30,35,36], based on variational representations of the
functionals of driving Brownian motions and Poisson random measures. The novelty of such
a method is that, it does not require the exponential continuity or exponential tightness, and in
contrast only basic qualitative properties of existence, uniqueness of controlled analogues of
the stochastic dynamical systems of interest are needed to be shown.

To that end, we first prove the uniqueness of the controlled unnormalized filtering equation,
i.e. the controlled Zakai equation, and subsequently this of the controlled filtering equation,
the controlled Kushner—Stratonovich equation. Some studies have been devoted to verifying
the uniqueness of the filtering equation. In [7], the uniqueness was shown by the Filtered
Martingale Problem approach which was proposed in [18], however, that model has a limitation
that the signal and observation are driven by the same Poisson random measure having common
jump times. A more general setting was suggested in [29] and the uniqueness was also
proved by the approach of Filtered Martingale Problem, however, it was shown under the
assumption that the correlated Poisson random measure is independent of the signal. Moreover,
in these studies the uniqueness of the Filtered Martingale Problem was assumed when the
Filtered Martingale Problem method was used, which requires the regularity conditions of the
coefficients of the equations. In our work, based on a method using the Brownian motion
semigroup, we bypass these restrictions and establish the uniqueness for the general model
with a mild assumption on the coefficients of the Poissonian noise.

The paper is organized as follows. Section 2 discusses preliminaries on the introduction to
the controlled Poisson random measure and a general criterion of large deviations. We prove the
uniqueness of the solutions to the Zakai and Kushner—Stratonovich equations in Section 3 which
are given in Theorems 3.3 and 3.4 respectively. Section 4 focuses on the establishment of the
large deviation principle for the optimal filter. We start with deriving the controlled version and
zero-noise version of Zakai equation, then the existence and uniqueness of these two versions of
Zakai equation are verified and finally the results are concluded by demonstrating the sufficient
conditions presented in Propositions 4.2 and 4.3.

2. Preliminaries

Our problem concerns with a small-noise large deviation principle for the optimal filter
where the respective SPDEs are driven by a pertinent Brownian motion and a Poisson random
measure. This section lists definitions and notations used later on. Most of these notations can
be also found in [4] but they are presented here for the sake of completeness.
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2.1. Definitions and conventional notations

Let U be a locally compact Polish space and denote by M(U) the space of all measures v
on (U, B(U)), satisfying v(A) < oo for every compact subset A of U, and B(U) is the Borel
o-field on U. Endow M(U) with the weakest topology such that for every continuous function
f on U with compact support, the function v — fU f@yv(du), v € M(U) is continuous.
This topology can be metrized such that M(U) is a Polish space, e.g. see [4]. For a fixed
T € (0,0), denote by Ml = M(Uy) the space of measures on Uy = [0, 7] x U and let
vr = Ar ® v, A7 is the Lebesgue measure on [0, T]. We recall that a general Poisson random
measure (PRM) n on Uy with intensity measure vy is an M-valued random variable such that
for each A € B(U7) with v7(A) < oo, n(A) is Poisson distributed with mean vr(A) and for
disjoint Ay, ..., Ay € B(Ur), n(Ay), ..., n(A;) are mutually independent random variables.

For any m > 1, let W,, = C([0, T], R™) be the space of all continuous functions from
[0, T] to R™, and D([0, T'], £) denote the space of right continuous functions with left limits
from [0, T'] to a Polish space £. Take V = W,, x W, x M and let P be the probability measure
on (V, B(V)) such that (i) N : V — M is a Poisson random measure with intensity measure
Ovr, and vr(A) < oo for all A € B(Uy); (i) W : V — W, is a R”-valued Brownian
motion and B : V — W, is a R"-valued Brownian motion; and (iii) {W;}:cj0.7], {B:}:ef0.7]
and {N([0,t] x A),t € [0, T]} are G,-martingales for every A € B(U), where the filtration
G =a{N([0,t] x A) — 0tv(A), Wy, B, : 0 <s <t,A € B(U)}.

To adopt the strategy of weak convergence arguments in order to prove the large deviations,
we introduce a properly controlled Poisson random measure. Define Y7 = [0, T] x Y, where
Y=Ux [0 o0) and then denote M = M(Y7). Suppose N is a Poisson random measure with
points on V =W, x W, x M with intensity measure vy = Ar ® Vv ® Ay Where A is the
Lebesgue measure on [0, c0). Similarly abusing notations, B and W, are Brownian motions
on V. Next define (P, {G,}) on (V, B(V)) analogous to (P, {G,}) by replacing (N, Ovr) with
(N, vr). Consider the P- completion of the filtration {G,} and denote it by {F;}. We denote by
P the predictable o-field on [0, T] x V with the filtration {F, : 0 < 7 < T} on (V, B(V)).
Let A be the class of all (P ® B(U)) \ B[0, co) measurable maps ¢ : Uy x M — [0, 00). For
the variable ¢ € A which basically controls the intensity at time s on location u, define the
counting process N? on Ur by

N?((0,1] x A) = f 110,661 (r)N(ds, du, dr) )
(0,£]x Ax(0,00)

where t € [0, T], A € B(U). If ¢(s_, u) = 0 for all (s, 14) € Uy, then we write N® = N?, where
N? has the same distribution on M with respect to I’ as N has on M with respect to . For
any ¢ € A, the quantity

LT(¢)=/[U [(p(t, u)) v(du)ds @

is well-defined as a [0, oco]-valued random variable where I(r) := rlogr —r + 1, r € [0, 00).
We denote by L%([0, T],R™) the Hilbert space from [0, T] to R™ satisfying |1p(s)|2
>, i(s)? < oo. Define P; =

T
{W = (), ¥y is P\ B(R) measurable and / [W(s)|?ds < oo, P — a.s.}

0
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and set U = P, x A. For ¢ € P, define

- 1 rT
Lﬂww=§/‘w@fw A3)
0
and for u = (Y, ¢) € U, set
Lr(u) = Lr(#) + Lr(¥). )

2.2. A general criterion of large deviations

The theory of small-noise large deviations concerns with the asymptotic behavior of
solutions of SPDEs, say {X¢}, € > 0 defined on a probability space ({2, F, P), which converge
exponentially fast as ¢ — 0. The decay rate is expressed via a rate function. An equivalent
argument of the large deviations principle is the Laplace principle. A reader may refer to
[11, Theorem 1.2.1 and Theorem 1.2.3].

Definition 2.1. A function I : £ — [0, oo] is called a rate function on & , if for each M < oo
the level set {x € £ : I(x) < M} is a compact subset of £. The family {X¢} is said to satisfy the
Laplace principle on £ with rate function /, if for all bounded continuous functions 2 mapping
& into R

lim
e—0

elogE,, {exp [—éh(Xe)]} + ;Ielg {h(x)+ I1(x)}| =

Next, a set of sufficient conditions for a uniform large deviation principle for functionals of a
Brownian motion and Poisson random measure is presented. Consider the family of measurable
maps, for any € > 0, G¢ : W,, x Ml — & defined as follows:

(X =G (JeW. eN ).
Define the space, for some M € N, SM = (v e L*(0, T, R™) : I:T(zﬁ) < M} and

SM = (¢ : Ur — [0,00) : Ly(¢p) < M}, where Ly and LT are defined in Eqs. (2) and
(3), respectively. For a function ¢, define a measure v‘Tl’ € M, such that

v?(A):/qs(s,u)v(du)ds, A e B(Uy).

Throughout we encapsulate the topology on S* obtained through this identification which
makes S a compact space. Let §¥ = §¥ x SM with the usual product topology and
S = USS_, SM. Define the space of controls UM = {u = (Y, ¢) € U : u(w) € SM, P ae. w),
where U = P, x A.

The following condition in [4] plays a key role in proving large deviation estimates for the
filtering equation driven by a Brownian motion and an independent Poisson random measure.
The corresponding rate function is given in Eq. (5).

Condition 2.1. There exists a measurable map G° : W,, x M — & such that the following
holds.

1. For M €N, let (f,, gn), (f, 8) € SM be such that (f,, g.) — (f, g) as n — oo, then

g0 </ fa(s)ds, v§”> N </ f(s)ds, v?) .
0 0
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2. For M €N, let €€ = (Y, ¢°), &€ = (¥, ¢) € UM be such that &€ 4 &, where 2 denotes
convergence in distribution, as € — 0. Then

GE(JeW + / Y (s)ds, N9 b g f Y(s)ds, VD).
0 0

For ¢ € &, define S; = {u € S: ¢ = G, ¥(s)ds, V). Let I : £ — [0, 0o] be defined
by

1) = uiEnSf{ {Lrw)}. ®)

By convention, /(¢) = oo if S; = @. Under Condition 2.1, we have the following theorem
shown in [4].

Theorem 2.1. For € > 0, let X¢ = G¢(/eW, eNefl), and suppose that Condition 2.1 holds.
Then I : £ — [0, 00], defined by Eq. (5), is a rate function on £ and the family {X€} satisfies
the large deviation principle on & with rate function I.

3. Existence and uniqueness of filtering equations

3.1. Existence

This section first presents the filtering model and filtering equations for the system driven
by Lévy noise. Consider the following signal-observation system (X, ¥;) on R? x R™:

dX; = bi(X)dt + oy(X)dB, + | fi(X,—, u)N,(dt, du) (6a)
U,

+ / g1(X,—, u)N,(dt, du),
U,

dY, = by(t, X;)dt + o»(t)dW, + fa(t, u)](’k(dt, du) (6b)
Us

+ / g2(t1 M)N)\.(dt7 dl/l),
U\U,

where B,, W, are n-dimensional and m-dimensional Brownian motions respectively defined on
the filtered probability space (V, B(V), {F;}ic0,71, P). N, is a Poisson random measure such
that EN,([0, 1] x A) = tvi(A), for any A € B(U) with vi(A) < oo, and v;(U \ U;) < oo,
fUl ||u||%v1(du) < oo where || - ||y denotes the norm on the measurable space (U, B(U)) and
U, c U. Denote the compensated measure Np([O, 11 x du) = Np([0, 1], du) — tvi(du). Let
N, (dt x du) be an integer-valued random measure and its predictable compensator is given by
Mt, X;_, u)dtvy(du), where the function A(t,x,u) € [[,1),0 <[ < 1, and 1(7,\([0, ] x A) =
N, ([0, ] x A) — fot Sy ACs, Xs—, u)va(du)ds such that for each A € B(U), v(A) < o0, and
U\ U,) < oo, fUz ||u||%v2(du) < oo with U, C U. Moreover, B;, W;, N,,, N, are mutually
independent.

We assume that the mappings b; : R — R? b, : [0, T] x RY — R™, 07 : R — R¥" ¢, :
[0,T] = R £ :RYxU; — RY, £, :[0, T] x Uy = R”, g, : RY x (U\ U;) - R?, and
g [0, T] x (U\ U,;) — R™ are all Borel measurable, and satisfy the following conditions:
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Assumption 3.1. For each x, x; € R4, there exists a constant K > 0 such that
1b1(x1) = b1 ()]* + o1 (x1) — 01 (x2) +/U |fixr,w) = filxa, w)Pvi(du)
< 1K|x1 —xl
[ et = it ol < Ky = ol
U\U,

where | - | denotes the Hilbert—Schmidt norm for a matrix and the length for a vector.

Assumption 3.2. o,(¢) is invertible for ¢ € [0, T, and for each x € R,

|01(x)|2+/ |16 ) Pui(du) + o, 0P + 1o OF + | 140, w)Pva(du) < K.
Uy Uy

/ lg2(t, u)|va(du) < K.
U\U,

Note that Y, =f(z, p,(t)) + g2(t, pi(t))1p, (t) is observable, where D, and p, are the
jumping times and locations of the random measure N,. As g, describes the large jumps
while f, the small ones, we assume they have disjoint ranges and, for each ¢, f>(t,-) and
&(t, -) are invertible functions. Namely, we assume that N, is observable. Let Y, be given by
dY, = by(t, X,)dt + 02(t)dW,. Then, F¥ = ]-"Y v FN+. Based on the discussion above, we

t
make the following assumption throughout this article.

Assumption 3.3. For each ¢, f>(¢, -) and g»(t, -) are invertible functions with disjoint ranges.

Set 7,(F) = E(F(X,)|F}), for any F € C}(RY), where C2(R?) denotes the set of all
bounded functions F : RY — R? that have continuous second order derivative. Taking into
account the Radon—-Nikodym derivative there is an equivalent probability measure P such that,
dP = A}ldP, where

A7l —ex < /T —1 * 1 /T —1 2
r =exp(— | oy ()ba(s, Xy)"dWs — 3 loy " ($)ba(s, Xs)| ds (N
0 0

T T
— / / log A(s, X—, u)N,(ds, du) — / /(1 — A(s, X, u))vz(du)ds) .
0o Ju 0o Ju

where * denotes the transpose operator. In turn, the Kallianpur—Striebel formula [34] gives

7w, (F) = %, where w,(F) := E(F (X,)/l,|]-',y) and E denotes expectation under the measure

P. Now we are ready to derive Zakai and Kushner—Stratonovich equations.

Proposition 3.1 (Zakai Equation). Assume Assumptions 3.1-3.3. For F € D(L), the Zakai
equation of Eq. (6) is given by

wF) = o)+ [ 2P + 3 [ For wbats )W,
i=1

+ / /MS._(F()\.(S,',I/[)—1))N(ds,du), )
0 JU
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t
where W, = W, —i—/ agl(s)bz(s, X,)ds and N(dt,du) = N;(dt, du) — dtvad(u), and for any

0
fe C,E(Rd) the inﬁnitesimal generator, L, is given by

£f<>—2 f(x)b’<>+ Zzaf()’k<) “)

1] 1 k=

+ / LF(x + g1, ) — £ (du) ©
U\U,

. Lf(x+ filx,w) = f(x) — Z ﬂfl »w)vi(du),

i=1

where (T is the (i, k)th entry of the diffusion coefficient o;.

Proof. By It6’s formula, we have
dA, = Aoy YOby(t, X,)dW, + /A,_(A(t, X,_,u) — DN(t, du),
and
dF(X;) = LF(X,)dt + VF(X,)o1(X,)dB;
+ / [F(x + g1(x, 1) — FOOIN,(dr, du)
U\U,

[F(x + fi(x,u)) — F(x)IN,(dt, du).
Uy

By It6’s formula again, we have
d(AF(X,)) = A F(X)o;  (0)ba(t, X,)dW,
+ / A F(X, )M, X,_, u) — 1)N(dt, du)
+ AiuﬁF(X,)dr + VF(X,)o1(X,)dB,
+ / A [F(x + g1(x, u)) — F(x)IN,(dt, du)
U\U,

+ | A_[F(x + fi(x,u)) — F(x)IN,(dt, du).
Uy

Taking conditional expectations on both sides, we arrive at (8). W

Using the Kallianpur—Striebel formula, we obtain the following Kushner—Stratonovich
equation.

Proposition 3.2. Assume Assumptions 3.1-3.3. For F € D(L), the solution of the following
equation exists

7,(F) = mo(F) + / 2 (LF)ds
0

+Z f (T, (F (03 (5)bas, ))) — 7, (F)m(o5  ($)bals, )W

/ /ﬂs (FAGs, - ) — g (F)ms—(A(s, - u))

R N(ds, du), (10)
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t
where W, = W, — / ns(ogl(s)bz(s, ))ds is the innovation process and N(dt,du) =

Nyt du) — 71, (M, ) va(du)dr.
3.2. Uniqueness

In this section, we prove the uniqueness for the solutions to the Zakai and Kushner—
Stratonovich equations for the signal-observation model (6). Although the uniqueness was
investigated in [29], it was assumed that the Poisson noise in the observation is independent of
the signal, i.e., A(#, x, u) = A(¢, u). This reduces the complexity of the Zakai equation; that is,
the Zakai equation is independent of the Poisson noise. This makes the problem more tractable
since the Poissonian part in Eq. (10) vanishes, see [29, Section 4]. Furthermore, therein, the
uniqueness of the Filtered Martingale Problem is assumed, and regularity conditions on the co-
efficients of the signal and observation processes are required (see [29, Remark 4.1] and [18]).
Next, we show the uniqueness of Zakai and Kushner—Stratonovich equations by bypassing the
above restrictive assumptions and instead imposing the following mild assumption.

1 1
Assumption 3.4. |det(J;, +1)| > — and |det (J,, + 1)| > ¢ for a constant C > 0, where
Jy, and J,, are the Jacobian matrices of fi and g; with respect to x, respectively.

The uniqueness for the solution to Zakai equation is proved by transforming it to an SDE
in a pertinent Hilbert space and by making use of estimates based on Hilbert-space techniques,
which was studied in [19,34]. Recall that the optimal filter E(F(X,)|.F}) is the solution to the
filtering Eq. (10) characterized by the conditional probability ;. Denote P(R¢) the collection
of all Borel probability measures on R such that 77, € P(R?). Denote by (v, F) the integral of
a function F with respect to a measure v, e.g., for any F € C,(R?), E(F(X)|FY) = (n,, F).
Let M p(R?) be the collection of all finite Borel measures on R? such that the unnormalized
filter p, is an Mp(R¢)-valued process. Let Hy = L*(RY) be the Hilbert space consisting
of square-integrable functions on RY with the usual L>-norm and the inner product given by
115 = Jpaldp(x)Pdx and (¢, ¥)g = [ra®(x)¥(x)dx. We introduce an operator to transform a
measure-valued process to an Hy-valued process. Denote by M (R?) the space of finite signed
measures on R, For any v € Mg(R9) and § > 0, let

(Ty)(x) = f Gl = iy, (an

R
where G is the heat kernel given by Gs(x) = (27r8)’% exp (—% .
as in Eq. (11) for the Brownian motion semigroup on Hy, i.e., for + > 0, define operator
T, : Hy — Hy by T,¢(x) = fR{,G,(x — y)¢(y)dy, for any ¢ € Hy. Then Lemma 3.1 obtains

bounds for the partial derivative of Ts, and Lemma 3.2 is directly applied to Theorem 3.1. The
reader should refer to [34] for the proofs of these two lemmas.

We use the same notation

Lemma 3.1.

(i) The family of operators {T, : t > 0} forms a contraction semigroup on Hy, i.e. for any
t,s > 0and ¢ € Hy, we have T,; = T, T; and |T;¢llo < lI$llo.
(ii) If v e Mg@R?) and § > 0, then Tsv € H.
(i) If v € Mg@R?Y) and § > 0, then | Tss|v|llo < ||T5|v|llo, where |v| is the total variation
measure of v.
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Lemma 3.2. Forany § >0, v € MR and ¢ € Hy, we have

(i)

(Tsv, @)o = (v, Ts9). (12)
(ii) If, in addition, 9;¢p € Hy, where 0;¢p = 7, then

0;Ts¢p = T50;. (13)

The next theorem presents an expression for the expectation of the transformation applying
to the solution to Zakai equation. The proof is delegated to Appendix A.

Theorem 3.1. Let u, € Mp(R?) b~e a solution to Zakai equation (8) and let Z;S = Tsu;.
Considering the probability measure P defined by (7), the following holds.

E|Z2|2 = A] —2As + A3 + 2A4 4 As + Ag + A, (14)

where

d '
M= 1205 Ax= Y [ BT Geds
= Jo

Z Z/ (Z], 95T (o}" oy m)) ds,

i,j=1 k=1

= / / E(z?, Z2#) ) — B Z2 151vi(du)ds, (15)
U\U,;

| |
S— 3

/ E(z8, Z-y, —EIZ21I3

E(Z8, 8 Ts(fi(, wies))oIvi(du)ds,

MQ

i=1

Ag —/O EIl(Ts(o5 " ()ba(s, ) I5ds,

~

A _/ /E||]5 ((/\-(S . ll) - 1)/”(’5) ”Sv ( ' ) ,
a”d

(22, 27 7) o =D 420 m)o(Z0 (- + Fil )y, (16)

n

(Z, Z0%Y) g = Y AZ0 m)o(Z8, -+ g1(, 1)), (17)

n

here the set of functions {n} is a complete orthonormal system (CONS) of H.

In order to get estimates of the terms as defined in Eq. (15), we proceed with the following
lemmas.

Lemma 3.3. Suppose Assumption 3.4 holds. Then there exists a constant Cy > 0 such that

(72, 20| < colZ}13, (18)

Please cite this article as: V. Maroulas, X. Pan and J. Xiong, Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy
noise, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.02.009.




10 V. Maroulas, X. Pan and J. Xiong / Stochastic Processes and their Applications xxx (xxxx) xxx

and

(28, 204, | = Col Z2 1, 19)

Proof. We only need to show inequality (18). Let y = x + f1(x, u) and assume x = A(y, u).
Denote the Jacobian of i with respect to y by [0,A(y, u)|. According to Assumption 3.4,
|det (I + Jf'1)| > %, then

|a,h(y, w)| = |det (I + J5)| " < C. (20)
Note that
(Z) 0+ filu))y = /R Z Gy, w)n()10sh(y, w)ldy
=(Z](h(-, )|dyh(-, w)]. 1)y
Furthermore, summing over {n} in a CONS of Hj, we have

D AZJ G w)IdhC, ] 0)o(Z7, m)g = (Z2(hC, uD|dyh(, W), Z7),-
n

Hence, by Eq. (20) we get
1 Z2(h(y, u))dyh(y, W = / TRy, w)[? 13,8 (y, u)|*dy (21)
R

= / T 195k (y, wldx = CIZ; I,
R
and the bound of Eq. (18) then follows from the Cauchy—Schwarz inequality. W

Lemma 3.4, verified in [19, Lemma 3.2], is useful to estimate the transformation 75 and the
derivatives of 75 in Lemma 3.5 and Theorem 3.2.

Lemma 3.4. Let (H,H,n) be a measure space and H = £(n). Let ¢; 1 R — H,i = 1,2
such that there exists a constant K > 0, for any x € R?, ||¢;(x)|lz < K. Let { € MgR?).
Then there exists a constant K| = K(¢;) such that

T Mollg < Kill 751 Dllo- (22)
If, additionally, (we are interested in H = U with n = v;) ||¢:i(x) —d;(V)|lm < K|x — y|, then
UTs(20), 3: Ts(h10)) myem| < K1l T5(1Z DG, (23)

where ® denotes convolution.

The next lemma gives a bound of the derivatives of the transformation on oy. The proof is
shown in Appendix B.

Lemma 3.5. There exists constant K| such that for any ¢ € Mg(R?), we have

d 2
> aTief )| < KTz DI3- (24)
i=1

0

d n
> Tyt 93 Ts(o107)i8), + D
ij=l1

i=1

Now applying Lemmas 3.3-3.5 yields the following theorem.
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Theorem 3.2. If u is a measure-valued solution of the Zakai equation (8) and Z° = Tsu,
then

t
EIZ2IIG < 1Z505 + Ky / ElITs( s Dllgds. (25)
0

where K is a suitable constant.

Proof. Consider Eq. (14) such that I~E||Zf||g = A, —2A, + A3 +2A4 + As + Ag + A7 and
Ay, ..., A7 are defined in Eq. (15). Then by inequality (23), A, is bounded by a constant times
||T,g(|p,s|)||%. The bound for Az follows from inequality (24). A4 follows from Lemma 3.3 and
inequality (22), and As is bounded by Lemma 3.3, inequalities (22) and (23). The bounds for
Ag and A7 follow from inequality (22). W

C0r0~llary 3.1. If u is a measure-valued solution to Eq. (8) and po € Hy, then u; € Hy a.s.
and Ellut”% < o0, forall t > 0.

t
Proof. Eq. (25) yields that E||Z°|12 < |1 Z3II2 + K, / E||Z%||2ds. By Gronwall’s inequality,
0

we get B[ Z2)|2 < [ Z3]|2eX1". Note that ;i_r)r(l)(Zf, F), = gr(l)/ / Gs(x — Y)F(x)dxu,(dy) =

(e, F). Let {¢;} be a CONS of Hy such that ¢; € C,(R). Then by Fatou’s lemma

= = . 2

I Z(M“%)z ) Zg%(zf,qu)o < hmmenzﬁnO < | Z3lIZe .
J J

Let IELZ = Zj<f‘l/t7 ¢]>¢] Then ﬂ‘l € HO and <Ij‘la F)O = Z/ (/J/t’ ¢]><F9 ¢]>0 = <:ul‘7 F> Hence’

w: € Hy and El|p, )3 <c0. W

Theorem 3.3. Suppose that o € Hy. Then the solution of Zakai equation (8) is unique.

Proof. Let ,ull and utz be two measure-valued solution with the same initial value 0. By
Corollary 3.1, u! and u? € Hy as. Let D, = pu} — p2. Then D, € Hy and E|T5D, |5 <
t t t

Klf || T5(| Ds])l|3ds. Note that by Lemma 3.1,/ E|T5(Ds))||3ds 5/ E|Dy|3ds < oo.
0 0
t

Then letting § — 0, by dominated convergence we have IE||D,||0 < K, / IE||D5|I3ds, and
0

Gronwall’s inequality yields D; =0. W

Consequently, the uniqueness of Kushner—Stratonovich equation then follows from
Theorem 3.3.

Theorem 3.4. The solution of Kushner-Stratonovich equation (10) is unique.

Proof. Let 7! and 7 be two solutions to the Kushner-Stratonovich equation (10). Note that
fori = 1,2 and F € C»(R) we have 7/ (F)ui(1) = pi(F), where u! are the corresponding
solutions to Zakai equation. From Theorem 3.3, we have ,ull = M,Z, a.s. for all + > 0. Hence

N(F) u2(F) 2
forallt >0, 7/(F) =45 — ) _ 225y 5. W
= () wi () T pd) i (F)
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4. Large deviation principle

4.1. LDP result for the optimal filter

We study the limiting behavior of the optimal filter with a small signal-to-noise ratio,
i.e., consider the signal given in Eq. (6a) and the observation process below, for € | 0,

= \/E/ bZ(SaX.s)dS+/ 02(8)d W (26)

t
/ fols, u)Nye(ds, du)+/ / 82(s, u)Nye(ds, du),
0 U\U,
where N,\e(dt,du) is a Poisson random measure with intensity A€(¢, x, u)vy(du)dt and
AS(t, x,u) = el(t, x,u)+1—e. For any test function F € Cg(]Rd), set r; (F) = E(F(X,)|.7-'IY6)

and define similarly to Eq. (7) an equivalent probability measure which makes the signal and
observation processes independent, i.e.,

Af = &Xp {\/E/ (Uz_l(s)bZ(Sv Xv))*dwv
0
b £ / (05 ($)ba(s, X,)Pds + / / (1= 2(s, X, w)va(du)ds
2 Jo o Ju

t
+/ / log(eA(s, Xs—, u) + 1 — )NS  (ds, du)} ,
where Nf6 (dt du) is a P01ss0n random measure with intensity e~! A¢(z, X,, u) vy(du)dt.
Consider P¢ such that dP¢ /dP = )_ and u; (F) = IEE(Ae F(X; )|]-'y€) where E€ denotes the
expectation under the measure ]P’€ First, we establish the existence of the small-noise optimal

filter, given in Proposition 4.1. Its proof is delegated to Appendix C.

Proposition 4.1. Let the signal be defined as in Eq. (6a) and the observation process, Y, be
as in Eq. (26). Then we have the following small-noise Zakai equation, for any F € D(L)

WE(F) = po(F) + / WE(LF)ds + /e Z / WE(F (03 ($)ba(s, NNAWE

+ / / we (F(A(s, -, u) — 1))(6]\7;; (ds, du) — vo(du)ds). 27
0o Ju

The corresponding small-noise Kushner—Stratonovich equation is given by

7w (F) = mo(F) —i—/ g (LF)ds

+ /e Z / (s (F (o5 ' ($)bals, )') = 7 (F)ms (o ()bals, )NNd W

* / / T PR, 1) = B O ) et (5, (28)
i (er(s,,u)+1—¢€)

t
where W = Wi — /e / (o, L($)ba(s, -))ds is the innovation process and
0

N '(dt, du) = €N, (dt, du) — € (eA(s, - u) + 1 — e)va(du)dt.
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What it follows verifies Condition 2.1 such that we show the LDP for the signal described in
Eq. (6a) and observation process as in Eq. (26). To proceed with the demonstration of the LDP,
the assumption on the boundedness of the infinitesimal generator £ is necessary. However, this
condition does not contradict with the well-posedness of the optimal filtering framework, as
seen in [29] and the proof of Proposition 4.1.

Assumption 4.1. The test function F has continuous and bounded derivatives up to order 2.

The images of G¢, GO considered in Condition 2.1 are solutions of versions of Zakai
equation with or without noise respectively. Recall that M (R?) denotes the collection of
finite Borel measure on R¢, and e is an M r(RY)-valued process. For each ¢ > 0, let
G¢: C([0, T],R™) x M(Uz) — D([0, T1, M r(R?)) be a measurable map, such that

1€ = GE(VEWS, eNS ). (29)

Adopting the arguments of Theorem 3.3, the following holds.

Theorem 4.1. Under Assumptions 3.1-3.4, the unnormalized filtered u¢ defined in Eq. (29)
is the unique solution of the Zakai equation (27).

Let £ = (¥, ¢) € UM . The controlled version of Eq. (27) for all F € D(L), is given by

uy € (F) = po(F) + /0 WS (LF)ds + ey /0 1SE(F oy ' (9)bas, NHAWE!
i=1

t
+ / HE (F oy (5)ba(s. )Y (s)ds
0
! —
+ / M;E(F()\.(S, ) — 1))(6N;e 1¢(ds, du) — vy(du)ds). (30)
0o Ju
Let ,u?’g be the solution of the noise-free controlled version of Eq. (30), i.e.

15 (F) = po(F) + fo uOE(LF)ds + /0 18 (F (o ' (s)ba(s, M) (s)ds

+ / /U ROE(FACs, - w) — D)@(s, u) — Dva(du)ds. 31)
0

For g : B(Ur) — [0, 00), define v§(A) = [, g(s, u)vo(du)ds for any A € B(Ur) where v, is
the intensity measure of N,e in the observation process. Let G° : Mp(R%) x C([0, T], R™) x
M(Uz) — C([0, T], Mp(R%) be a measurable map such that G%(uo, w,m) = ul* if
(w, m) = (fd Y(s)ds, vg’) e C([0, T1, R™) x M(Uy) for € = (Y, ¢), otherwise G° = 0.

For . € C([0, T], Mp(R?)) define

I =6Lp) = inf L1(§), (32)
{E=(0. )8y :n=GO(f; ¥ (s)ds,v)))
where Ly is defined in Eq. (4) by replacing v with v,. The following theorem is the main one
that establishes the uniform large deviations for the unnormalized filter. Its proof is delegated
to the next section.

Theorem 4.2. Let u€ be as in Eq. (29). Then Iy, defined in (32), is a rate function and {j.€}
satisfies the large deviation principle on D([0, T1, Mr(R?)) with the rate function I,.
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Recall that P(R?) denotes the collection of the optimal filter 7r,. We define QO : L~2([0, T],
R™) x [0, 00) — C([0, T, P(RY)) a measurable function and suppose that 7% = GO, ),
where 7%¢ is the solution of the following controlled equation.

78 (F) = mo(F) + / 7% {ﬁF + (05 ' ($)bals, ) — 72 (07 L (5)ba(s, ) w(s)F}ds
0

+ / / [7Q5(FAGs, - w) — 75 (F)w S Os, - u)] (p(s, u) — Dva(du)dt. (33)
0o JU

For = € C([0, T], P(R?)) define

L= L) = inf Lr(§). (34)
{E=(Y.$)eSxm=G0(f; ¥ (s)ds.v))

Lemma 4.1. For £ = (y, ¢) e UM, let

M! =exp ( / 5(05  ()ba(s, )Y (s))ds
0

t
b [ mus 0 = D600~ Dratards ) .
0 Ju
Then ,u?’E(F) = JT,O’E(F)M,E satisfies the noise-free Zakai equation (31).

Proof. We first note that

amt = M¢ (m(o{l(l)bz(h WD)t + /U 7,08, -, 1) = D@, ) - 1>vz<du>dt)-
Differentiating the product, 7"* (F)M?, we have

7S (F)M{ 0y (0ba(t, W (1)1 35)

+ nl(’f(F)Mf/ (e, - ) = D(@(t, u) — Duy(du)dt

+ 7t (ﬁF)Minlt + 1 (Foy (0ba(t, ()M dt

— 7 (F)M; 70,(o5 (Dba(t, Yy (1))dt

+ /U My [ (FAGs, - w) = 7S (F)m)S (s, - )] (s, ) — Dva(duds.

Regroup the right-hand side of Eq. (35) and then the integral form coincides with
Eq. 31). N

The following theorem establishes a uniform large deviation principle for the optimal
filtering defined in Eq. (28).

Theorem 4.3. Suppose mf is the optimal filter described by the Kushner—Stratonovich
equation (28). Then {7 ¢} satisfies the large deviation principle on D([0, T], P(RY)) with the
rate function I, defined in Eq. (34).

Proof. Define a map G : D([0, T], Mr(R%) \ {0})) — D([0, T1, P(R?Y)) such that (Gu), =

%. Then, by the contraction principle, {7¢ = G(u)} satisfies the large deviation principle
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with rate function Ij(rw) = inf{l;(u) : G(u) = m}. Suppose I;() < oo, then for all § > 0
there exists  such that G(u) = 7 and I1(n) < I;(;r) + 8. Choose a control & € S; such that
y(§) = u, where y is the solution of Eq. (31) and l_,T(E) < Ii(n) + 8. Taking y = Goy
we have y(§) = &, where y is the solution of Eq. (33), and l_,T(E) < Ly(mw) + 26. Thus, by
definition of I, we have

L) < Lm). (36)

Now if Ir(w) < oo. Then for all § > 0, there exists & € Sy such that y(§) = m and
L7(§) < IL(w) + 6. By Lemma 4.1, we have u, = an,. Then u = y(§) is the solution
of Eq. (31) and G(u) = m. Hence

L(m) < Li(u) < Ly(§) < L(w) + 6. (37)
Eqgs. (36) and (37) give I, = I} and then the result follows. W

4.2. Proof of Theorem 4.2

In the subsection we verify Condition 2.1 in order to show the large deviation estimates for
the unnormalized filter. The following theorem establishes the existence and uniqueness of the
controlled version of Zakai equation given in Eq. (30).

Theorem 4.4. Suppose G¢ is given by u¢ = G¢(\/eW¢, eNf;l), and € = (Y, ¢) € UM for

- ) | .
some M > 0. For € > 0, define u¢ = G°(\JeW¢ + fo Y(s)ds, €N, ?). Then wet is the
unique solution of Eq. (30).

Proof. Take a control £ = (¥, ¢) € UM, and consider

1 t - t _
MSS = exp {——/ Y(s)dWE —i—/ / log ¢(s, u)Nye(ds, du, dr)
Vel 0 JUx[0,e~1]

L / W (s)Pds + / / (1—¢(s,u>>a2<ds,du,dr>},
2e Jo 0 JUx[0,e~1]

where N, and the corresponding intensity v, satisfy the definitions of N and v7 in Section 2.1
respectively. By It6’s formula,

L

Je

+/ (1 = @(s, u))va(ds, du, dr))
Ux[0,e~1]

€ € T, 1
Mt = M, ’f( YOAW; — |y oldr

1 € € N7
+ M oPdn + / MES (@, 1) — DN« (ds, du, dr).
2e Ux[0.e=1]

Thus,
g Lo ~
t \/E‘/.S s w(s) s

+ / / M‘f’_g((l)(s, u)—1) (N,\e (ds,du,dr) — vy(ds, du, dr)) .
0 JU
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3 . . e
Define a new probability measure P4 by ””P~ =M; €%, then P is an equivalent probability

measure with respect to Pe. By Girsanov’s theorem, Wf’ = Wf + JLE f Y(s)ds is a

0
P<¢-Brownian motion and N¢¢(dt, du) = Ne(dt, du) — ¢(t, u)vo(du)dt is a P -Poisson
martingale measure. Hence, the desired result follows from replacing (W, N,¢) in Eq. (27)
with (W, N¢€) and Theorem 4.1. W

We now verify the existence and uniqueness of the solution of the zero-noise controlled
Zakai equation (31).

Theorem 4.5. For a pair of well-defined control & = (Y, ¢) € UM, M > 0, there is a unique
solution u* € C([0, T1, MpRY)) of Eq. (31).

Proof. We start with showing the existence of the solution. Let
t
A% = exp ( f o 1 ($)ba(s, X, ) (s)dss
0
1
[ [ s X0 = D@65, - 1)U2(du)ds> .
0 Ju

Next, we define ,u?’é = ]E(A?’E F(X,)) and we show that it is a solution of Eq. (31). First of
all,

dAY = /105( oy (Oba(t, X)W (t)dt + / O, X, 1) — D(p(t, u) — l)vz(du)dt).

Note that for any F € D(L) we have M = F(X,) — / LF(X,)ds is a martingale. Then by

1t6’s formula, we have
dAYSF(X) = AV (M + LF(X,)d) + F(X)AY o5 (0)ba(t, X)W (1)1
+ f F(X)AYEOut, X, 1) — 1@, u) — Dvy(du)d.
U

Hence,

AP F(X,) = F(Xo) + f A28 (LF(X,) 4 05 (s)bals, X )P (5))ds. (38)
0

+f /Ag'EF(XS)(k(s, XS,pL)—1)(¢(s,u)—1)vz(du)ds+/ A% amf.
0 U 0

Taking expectation on both sides of Eq. (38) yields Eq. (31). Thus V% (F) = E(AY* F(X,)) is
a solution of Eq. (31).

Next, we verify the uniqueness by a similar strategy to Theorem 3.3. Recall that for any
we Mp@RY, (u, F) = fR F(x)u(dx). Then Eq. (31) is written as

t

(€, F) = (uo, F) + / (u<, LF)ds + / (1€, F(oy '(5)ba(s, )Y (s)))ds

/ / 1<, FQAGs, -, u) — D(¢(s, u) — 1)va(du)ds.
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Let Z = Tsu?’e be defined as in Eq. (11). Replacing F by T3 F and noting that (Tsv, F) =
(v, Ts F), we have that (Zf, F), equals to

(o, TsF) + f (u0€, LT3 F)ds + / (L0, Ty F(oy ' (5)ba(s, ) (s)))ds
0 0
+/ /(/L?’e, TsF(A(s, -, u) — )(¢p(s, u) — 1))va(du)ds. 39)
0 U
Employing Lemma 3.2, Eq. (39) is given by
(Z8, F)o = (ZS,F)+/ (8; Ts (b} ), F)Ods—l—%/ <aij5(glikoij2,e), F)ds
0 0
+ f (T(03™ (5)ba(s, W (%), Fds
0
+ f / [(Tsud<, FC+ g1 u))y — (Tsud, F)y] vi(du)ds
o Ju\U;

+ /0 fU (T, FC A+ il u))g — (Tspud, F)g
— (@ To(f{ ¢ wpd®), F)o] vi(du)ds

+/0 /U(Ta()»(s,wu)—1)((¢>(S,u)—1)ug‘€), Fova(du)ds.

1

Furthermore, summing (Zf, n)g = (ZS, 77)(2) +/ Z(Zf, n)od(Zf, 1n), over n in a CONS of
0

Lz—space, there exists a constant K; > 0 such that
t
1Z215 < 125115 + K / I T l5ds. (40)
0

Now let M?f and ngf be two solutions with the same initial value po. Then by Corollary 3.1

t
and Eq. (40), we get | Ts(us — u3)I2 < K, / IT5 () — uyOllads. Taking § — 0 gives
0

t
||;L?:f - ,ug:f 12 < K, / ||/J,(]):§ - y,g:i”%ds, and by Gronwall’s inequality, we have ,u,?:f - ,u,g:f
0
=0. 1

The following proposition demonstrates the first statement in Condition 2.1.

Proposition 4.2. For M < oo, suppose that &, = (Y, ¢n), € = (¥, d) € UM such that
& — & asn — oo. Then

QO(/' Ya(s)ds, vg’”) — QO(/' v(s)ds, v?), as n — oo.
0 0

Proof. Consider

196 — exp ( / o5 (9)ba(s, X)W (5)ds
0

+ / / (A5 Xy 1) — D@5, 1) — 1)Vz(du)d5) .
0 U
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The proof of the existence in Theorem 4.5 shows that p, FF = fRd ,uo(d)c)I[-Zx/l?’é F(X;) is a
solution of zero-noise version of Zakai equation (31). Furthermore, the solution is unique
according to Theorem 4.5 and hence we get ,u?’é = p,. Notice that, by the boundedness of
o, 1, by and (Y, ¢,) € UM | there exists a constant K > 0 such that

T
/ oy L ($)ba(s, X)W (s)|ds
0
1/2

T 1/2 T
5(/ loy ' (s)ba(s, X)) 2ds> (/ |x/fn<s)|2ds) <(KT)'*M'?
0 0

In addition, by the inequality, for any ¢ € [0, 00),
| — 1] <2+ ¢plogep — ¢ + 1, 41
we have

T
/ /I(?»(S, Xso ) = D(@a(s, u) — Dva(du)ds
0 U

T

<2 f / (2 + (s, 1) 108 (s, 1) — u(s, 1) + 1) va(du)ds
0 U

< 4Ty (U) 4 2M.

The dominated convergence theorem yields the convergence below, as 71 — 00,
5 (F) = fR Ho(dx)E, F(X,) exp ( /0 57 (als. XoWi(s)ds
4 /0 t /U (s, X, 1) = Dhas, ) — 1>v2(du)ds>
N /R Ho(dx)E, F(X,) exp ( /O oy (als. X, (s)ds
+ /0 t fU (M5, X 1) — (@5, 1) — 1)Uz(du)ds>

= Wt (F).

Then the proof is completed. W

The next proposition verifies the second part of Condition 2.1.

Proposition 4.3. For M < oo, let £€€ = (Y€, ¢°), £ = (¥, ¢) € UM be such that &€ i) & as
€ = 0. Then

GE(JeWe + f ve(s)ds, eNS ¥y % g‘)(/' Y (s)ds, vl), as e — 0.
0 0

Proof. First, we prove that the family

(et =g (Jew + / W5, eNje ), € € 0, )
0
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is tight in D([0, T], M z(R%)) for some €y > 0. Note that
P = o) + IZ/ S (0 (5)bals, ) AW

n / 1SE (05 {(9)bals, NP (s)ds

+/0 /Uuife(x(s, o ) — 1) (@(s, u) — 1) va(du)ds

+6f /uj_ (A(s, -, ) — 1)(N,\5 o* (ds, du)—e_lqb (s, w)va(du)ds).
0

By It6’s formula, we get £ (1)> = A! + A2 4+ A3 4+ A% + A5 + A + A7 where

Al = pssay, A?=2 / uEE (s (057 (9)bals, MY (s)ds,
0

A = 2/0 /Uuifeumifé (s, - 1) — 1) (¢(s, u) — 1) va(du)ds,

A= [ st o3 6, ) as,

0
a5 = [ [ st s, = 079 matdras,
A = MZ f O O OBPrATA

A3=f/ 2euf(1)u (AGs, - ) — 1),

+2uE (s, 0 = DP | (Wi s, du) = €795 (s, wpa(du)(ds) )

Considering Assumption 3.2 and Cauchy-Schwarz inequality, A? is bounded by
! €
21</ “E (D [ ()] ds
0
12 P 172
<2K (/ HEE (D [9Gs)] ds) (f ui’f‘a)zds)
0 0
t
< K/ uSS (D [y () ds + Kf uss (1)%ds,
and A} + A} 4+ A? is bounded by
! €
4 f f 1SS (D (955, u) — 1] va(du)ds
0 JU

t t
+Kef ui‘fe(l)zds+462/ /M§’§€(1)2|¢€(s,u)|vz(du)ds.
0 0 JU

(42)

(43)
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Set

A = /0 ' / 2 (e Guts. o) = 1) (N5 " (ds, du) — €7 ¢G5, wpw(du)(ds))
(44)
and
A7 = / / EuE (s ) = 1) (Nie s, du) = €79 (s, upma(du)(ds) ) . (45)
Combining Egs. (42) and (43) implies that

ws (D < g™ (12 + sup |A%+ sup [A]'[ 4+ sup |A]?]
0<t<T 0<t<T 0<t<T

+f usE (1) (KW(S)F + K + / (I6°(s, u) — 1| + Ke + 4€*¢°(s, u))vz(du)> ds
0 U

Furthermore, inequality (41) gives
T T
f / 16 (s )| va(du)ds < / f (6°(s. ) — 1] + 1) va(du)(ds) (46)
0 U 0 U

T
< / / (3 + ¢°(s, u) log ¢*(s, u) — (s, u) + 1) va(du)(ds)
0 U
<3Tw(U)+ M.
Then by Gronwall’s inequality and Eq. (46), we have
ues (1) < G <ufﬁ (1> + sup A%+ sup |A7'|+ sup |AZ*2|) : 47)
0<t<T 0<t<T 0<t<T

where Co = exp (KM + KT + KeT + 2T v,(U) + M + 4€*(3Tv(U) + M)). Next, we have

T
N ( sup |A,6|> < 8K \JeEk* // wS (1)4ds < 8KNT/€E* ( sup /Li’ge(l)z). (48)
0<t<T 0 0<t<T

For Eq. (44), we have

ke < sup |AZ’1|> (49)
0<t<T
1

< 8elie (/ / SE P s, - ) — DENS ¥ (ds, du))

1

< 16€E | sup p5 (1) - (/ / 512N (ds, du))

0<t<T

1 - o 56
< o ( sup pf (1>2)

0<t<T

+64eZCE€<// S5 12N (ds, du))

=5E (sup uﬁ(l))

0<t<T
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T
+ 64eC (f /,uﬁ’ée(l)z(bg(s,u)vz(du)ds)
0 U

< (% + 64 C(3T v, (U) + M)) Iy ( sup uf’se(l)z) :

0<t<T

where C is any positive number. Eq. (44) is bounded by

E€ ( sup |A,7’2|> (50)

0<t<T

T
- e (/ [ s - PN 1"’*6“"””)
0 U

~ T €
e ( [ [ s s = o u)vz<du><ds>>

T
< 8¢l ( / / ueE (129, u)w(du)(ds))
0 U

T
< 8efie ( sup uif‘(l)Z) ( / / ¢E(S,M)V2(du)(ds))
0<t<T 0 U

< e (24T v (U) + 8M) E¢ ( sup Mfff(l)z) ,

0<t<T

where inequality (46) was used. By Egs. (48), (49) and (50), Eq. (47) turns out to be

k€ ( sup puf* (1)2> < Coug® (1

0<t<T
1
+ Cy <8Kﬁﬁ + € (24T v, (U) + 8M) + ot 64¢C(3Tv,(U) + M)) .

Recall that the constant C can be arbitrarily large, we hence select C and €y small enough such
that

M| —

1
Co (8Kﬁ¢€ + € Q4Twa(U) +8M) +  + 64eCRTv(U) + M)) <
Therefore, there is a constant K; such that

sup Ee ( sup uf’f€(1)2> < K,. (51)

0<e<e 0<t<T

We now establish the tight{less of {uef ). It is well-known, e.g. see [16] that we only need to
prove the tightness of {uf"é (F)} in D([0, T1, R) for every test function F in D(L). By Eq. (51)
and the boundness of F, we have

sup [E€ ( sup uf’se(F)z) < K,. (52)

O<e<e 0<t<T

Denote

A = f uEE (LP)ds + f U (F oy (9)bals, MY (s)ds
0 0

" /0 /UME’EE(F(?»(S, o ) = D) (@°(s, u) — 1) va(du)ds.
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Let Mf = M + M7, where
m t
M = ey / & (F oy (9)bals, NHAWS!
i=1 70
and

Mf’2=/ /Mjf‘(p(x(s, L) —1)) (6N§21’¢€(ds,du)—¢E(s,u)v2(du)ds).
0 JU

To verify the tightness of A§ in D([0, T'], R), it suffices to show (see Lemma 6.1.2 of [16])
that for all § > 0, there exists t = t5 > 0 such that

sup I@e( sup  |A5, — A5 > 5) <.

0<e<eq O<ti<tr<t

Then for arbitrary T > 0 and a fixed § > 0,

sup I@f( sup  |A5, — A5 | > 5) (53)

O<e=<ep O<ty<tr<t
)
> —
3
8
> —
3

+ sup I@’E< sup / ME"EG(F(UEI(S)bz(S, INYE(s)ds

0<e<eq O<ty<tr<t

. no
< sup ]P’e< sup / e (LF)ds

0<e<eg O<ty<tr<t n

1
+ sup P¢ ( sup /Mfs (FA(s, 5 u) — 1))
151 U

0<e<eq O<ty<tr<t

X (¢(s, u) — 1) va(du)ds| > g)

= D; + D, + Ds.
The term D in Eq. (53) is bounded by

2
9 - f2 €
sup —ZEE sup / ME'E (LF)ds (54)
0<e=<e O<ti<tr<t J1y

9 . €

< sup E° (82 sup puét (£F)2>.

0<e=<e¢p 0<t<T
By Eq. (52) and Assumption 4.1, we can find 7; > O such that for all 7 < 7, Eq. (54) is
bounded by §/3.

For D, in Eq. (53), we note that

I 2
E€ / st (Foy (s)bals, )Y (s)ds

14l

- B
== (]
3|

Thus, we can find 7, > 0 such that for all T < 1, the second term D, in Eq. (53) is bounded
by §/3.

E 2 n
1 (F (o5 (s)ba(s, ->>)] ds / |wf(s>|2ds> < MKty — 11].

I
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Now let us consider D3 in Eq. (53). Using the fundamental inequality, for a,b € (0, 00)

and any c € [1, 00), ab < e““ + %(b logh —logh + 1) = e + %l(b), twice (once with b = ¢¢
and once with b = 1), for any C; € (1, co) we have

(55)

%) .
/ /Uui‘g (FA(s, -, ) = 1) (@°(s, u) — 1) va(du)ds
5l

<2 sup uit(F) / 2 / (¢(s, u) + Dua(du)ds
n U

0<t<T
€,£¢ c M
<2 sup u;” (F)|2tv,(U)e! + —|.
0<i<T Ci

Given any € > 0, we can choose C; such that CMI < ¢, and choose T > 0 such that
27, (U)e€! < €. Hence combining Eqs. (52) and (55) we proved that

lim sup =0.

1=00<s <<t

15 .
/ fUM?E (FGs, - p) — 1) (@°(s, u) — 1) va(du)dss

Thus we find 73 > 0 such that for T < 13, D3 in Eq. (53) is bounded by §/3. Consequently,
the tightness of {A€}c<, follows from Eq. (53) by taking T = min{z, 12, 73}.
Next, considering M€ we have E€(M©'); < eKE€ fOT u&s (F)2ds and

T
E<(M“?); = €E° ( / / WS (FMGs, - ) — 1)>2¢f<s,u)vZ<du>ds)
0 U

T
< e4Ee < sup pé (F)? f f ¢€(s,u)vz(du)ds).
0 U

0<t<T

By Eqgs. (46) and (52), we have e SUPg<,<7{M€); converges to 0 as € — 0. Then according
to Téheorem 6.1.1 in [16], for any F € D(L), the sequence of semimartingales Mf’ée(F ) =
1S (F) + A€ 4+ M¢ is tight in D([0, T, R).

Next we show that GO( [, ¥(s)ds, 1) is the weak limit of ;4. Note that
T

E€ < sup |Mf‘1|2) < EKEG/ o (F)2ds

0<t<T 0
and

~ 2 ~ € T

E€ < sup |M;?| ) < eKE* < sup putt (F)2/ / o< (s, u)vz(du)ds) )
0<t<T 0<t<T 0 U

Therefore, Mf’l and Mf'2 converge to O in distribution as ¢ — 0. Let (u?’s, v, ¢,0,0) be
any limit point of the tight sequence (u<", ¥, ¢¢, MS', MS?) for € € (0, ). Without
loss of generality, we assume that the convergence is almost sure by using the Skorokhod
representation theorem. Note that for any test function F in D(L), we have

wis (F) = ug® (F) + / uEE (LF)ds + ME!
0
+ / WS (F (o (9)ba(s, MY (s)ds

0
+Mf'2+/ / WS (F (s, - 1) — 1) (s, 1) — 1) va(du)ds.
0 JU
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Taking € — 0, along the lines of Theorem 4.5 and Proposition 4.2 we see that u*¢ must solve
Eq. (31). Then the uniqueness of the solution to Eq. (31) completes the proof. W
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Appendix A. Proof of Theorem 3.1

Proof. Considering Eq. (12) and replacing F by T; F in the Zakai equation (8), we have that
(Zf, F), equals to

(1o, TsF) + / (1o LTs F)ds + Y / (s (Ts F)oy  ()bas, ) )d W
0 = Jo

+ f /(Ms_, (Ts F)(A(s, -, u) — 1))N(ds, du). (A.1)
0 JU
Note that for any v € MF(Rd)
(v, LTsF Z 3 (T3 F)b + Z Z 02 (T3 F)oikal")
i=1 l_] 1 k=1
+(v, / [T5F(x + g1(x, u)) — Ts F(x)]vi(du)) (A2)
U\U,;

+(v, /U [TsF(x + fi(x, u)) — TsF(x) — Za(TaF)fl(x w)lvi(du)).

i=1

Furthermore, by Lemma 3.2, we have

d
(v. Y (T F)bj + Z Z 0% (Ty F)oikai") (A3)

i=l ljlkl

=

d d
= (biv. Ts0; F) +% > (oik i v, Ts0% F)
i=1 i,j=1 k=1

d n
(Tsbiv). i F)g+ 5 Y Y (Ta(oi*o{“v), 92 F),
i=1 i,j=1 k=1
d

M&

d n
@O TsBv). F)g+ 5 Y Y (03 Taoi*aiv). F),,.
1 i,j=1 k=1

l\)l'—‘

In addition, (v, (T5F)(0;5 '()ba(s, ))) = (Ts(oy '(5)bas, )'v), F),, where (T5F)(o; '(s)
by(s, -))' is the ith entry of vector (T,;F)(a{l(s)bz(s, ), as well as (v, (TsF)(A(s, -, u) — 1))

Please cite this article as: V. Maroulas, X. Pan and J. Xiong, Large deviations for the optimal filter of nonlinear dynamical systems driven by Lévy
noise, Stochastic Processes and their Applications (2019), https://doi.org/10.1016/j.spa.2019.02.009.




V. Maroulas, X. Pan and J. Xiong / Stochastic Processes and their Applications xxx (xxxx) xxx 25

= (Ts((A(s, -, u) — 1)v), F),. Suppose that F' > 0, then the case for general F' follows from
the linearity. By Fubini’s theorem,

(v,/ TsF(x + g1(x, w)vi(du)) =/ / T3F(x + g1(x, w)v(dx)vi(du)
U\U; U\U; JR4
= / (v, T F(x + g1(x, u))vi(du). (A4)
U\U;

Consequently, taking into consideration Egs. (A.2), (A.3) and (A.4) into Eq. (A.1), one can get
(Z2, F), equals to

(Zy, F Z / (0 T3y 1), Fods + 5 ZZ / (05T (01 o 1), F)yds

l] 1 k=1
4 / / [(Tstass FC+ g1Gou)o — (Tos. Fho] vi(du)ds
0 Ju,
+ /O (Ts(o ' ()bals, )) s, F)pd W,
i=1
4 /0 /U (Ty (s, - 1) — Dpty_) , F)oN(ds. du)

d d
+ /0 /U [(Tsus, F(G+ fiGu)))o — (Tspus, F Z & Ts(fiC, wyy), F)o}
1

i=1

x vi(du)ds.
Then by It6’s formula, we have (Zf, F )(2) equals to
d ‘ 1 d
(Z3, F)y +2/ { DT ). Flo+ 5 D Y @5 Toloi* o o). )
i=1
+ / [(Z2, F(-+ g1C. u))y — (Z2, F)y] vi(du)
U\U;
+ /U [(Z2, FC-+ fiC,u))y — (Z2, F)y — (& Ts(f{ Coups), Fy) vl(du)}ds
+ 22 f o{Ts((05  ()ba(s. ) 1), F)od W
+ / (T(o5 ()bas. s, | ds
/ / 20 F)y 4+ {T5 (s, ) = Dty Flo)' — (28 F)p| Neds. du

/ f Yo+ (Ts (A(s, - ) — Dpay) , Flo) = (28, F)g

—2(T; ((A(s, -, u) = D), Flo(Z] >o] vy(du)ds.
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Summing over 1 in a CONS of Hy we have

Sz =123 S AZ )T W), g = (Ze, 8 Ts (B,

n n

Similarly, we eventually get that || Z° ||(2) equals to

d t
||ZS||3—ZZ / 8, 8 Ty(bi 1) ds+ZZ / (22, 9 Ty(of o ) ds

i,j=1 k=1

+2// [(Z2, Z2#1), — |1 Z2|I31vi(du)ds (A.5)
U\U,;
d
+ f [z, Z2h) — ||Z§||é—Z<Z§,8,-T3<f{<-,ums»o]vl(du)ds
0 JU;
+2)° f (Z2, Ts((o3 ' ($)ba(s, )) 1)) d Wi + f I T5(05 " ($)ba(s, )G
i=1 70

+/0 /U[2<Zf,, Ts ((A(s, - ) — D))o + 175 ((AGs, - ) — Dps) IGIN(ds, du)
+/ /||T5 ((A(s, -, u) = D) lIgva(duds,

provided Z6 81 ZLs /1 are defined as Egs. (16) and (17) respectively. Eventually, taking expec-

tation on Eq. (A 5) gives Eq. (14). W

Appendix B. Proof of Lemma 3.5

Proof. Note that Z” L (Ts¢, UTg(O’]O'l )ii¢ ) equals to

3 [ ax [ cncie—n [ caon, Gt -9 Y o @l o). (B.1)
k=1

i,j=I
Employing the semigroup property of Ga in Lemma 3.1, we have fRd Gs(x —y)Gs(x —z)dx =
Gas(y — 2). Noticing that ;Gs(x) = — % Gs(x), we have 92 Gs(x) = (3 — “5 ) Gy(x). Due
to the fact that Bf.x.G(;(x —2)= 82,,,G5(x —z), Eq. (B.1) is written as

Z f “@ )f (@) Z”l’k(Z)“k’(Z)aiz,/ Gi(x = )Gs(x — 2)dx (B.2)
i,j=1

(zi —y)z —y) Lz l
:,; [ otan [ s (S0t y)kzlal"@ol o

By symmetry of y and z in Eq. (B.2), Eq. (B.1) is further given by

(zi )’z)(Z; y]) _ 11_:/
Z/ can | ;(d)(— 28)

i,j=1

X Gas(z = ¥)5 Z( @0 @ + ol o' ). (B.3)
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Similarly, the second term on the left hand side of Eq. (24) can be expressed as
(zi —yi)z; —y)) L5
_Z/ ;(dy)/ 2(dz) ;11_#
by 25

1 n
x Gas(z = )3 2 (o1 0 @ + o' @l ). (B4)
k=1

Now adding Egs. (B.3) and (B.4), the left-hand side of (24) is given by

(zi yl)(Zj )_ll_=j
Z/ c(dy)/ ,;(d)(— 28)

i,j=1
e, ; , .
x Gas(z =33 2 (0100 = o) (o ) = o @) .
k=1

Using the identity that G5(x) = exp (—%) 29/2Gs(x), the Lipschitz continuity of o; and
Lemma 3.1, we have the quantity above estimated by

lz =y |z —yI?
Z/g(dy)f can (B3t + g5 e (<550

i,j=1

1
x 292G 45(z — y)—K2|z —y?

<4K2Z / 1£1(dy) / 121(d2)2/Gas(z = )

i,j=1
= d* 2K Tos(1C D)l < d*2° MK T3 (12 DG
The lemma then follows with K, = d222t9/2K2. N

Appendix C. Proof of Proposition 4.1

Proof. By It6’s formula,
dAS = A¢ {ﬁ(azl(z)bz(t, X)*dW,
+f|a;1(t)b2(z, X)) dr + /(1 A X u))vz(du)dt}
+ Af|a Yo)by(t, X)) dt+//1€(x(t X, u)— DN (dt, du).
Then

t
A =14 e /0 A5(o5 ($)bas, X, ) dWe

+ / / Ag_(M(s, Xs—, u) — 1)(6Nfg_l(ds, du) — va(du)ds).
0 JU
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By Girsanov’s theorem, W& = W, 4 /e fot o, '(s)ba(s, X,)ds, is a P<-Brownian motion,
and N = Nf;l(dt,du) — e luy(du)dt, is a [P¢-Poisson martingale measure. The Zakai
equation (27) is obtained by the same argument of Proposition 3.1. We now show the derivation
of the Kushner—Stratonovich equation (28). Note that

m t
i) = po(D + €y / 15 (0 ($)ba(s, NHA W
i=1 0

t
+ / / s (A(s, -, u) — 1)(e f;l(ds, du) — vo(du)ds).
o Ju

By It6’s formula, we have that dﬁ
t

N R
: 15 (o3 Oba(t, NHAWS +
u,(l)zi; :

equals to

Mefm (o3 (Oba(t, Ndi

! ! <'(dt,d ~Lyy(du)dt
+A(uf(lHeuf(/\(nnu)—l)_Mf(l))( i dw) = €y

i 1 1 . 1
* E/U (M?(l) e =D e k0 = 1)u§(1)2> va(dwydr.

Hence, the quadratic variation, d[u(F), ,uf(l)’l],, is given by

- ﬁ D (o5 Oba(t, N (F oy (O, ) )t
! i=1

1 1 -1
— ¢ . — 1))N;e (ds, du).
i /U<u5<1>+eu§<x<r, 0 —1) Mf(l))EMS(F(MS’ T I (i

Eventually, one can easily get Eq. (28) by the following the product of 1t6’s formula d
s (F) + 1 (F)d ey + dlu(F), p(1)7'],. M

w(F) _
ni@®
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