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1. Introduction

An array of studies have been devoted to jump-diffusion models in filtering and control problems because
of their applicability in finance, wireless sensor networks, biology, etc. (see, e.g., [4,15,20-22,26,23]. However,
it is often of great interest to estimate the associated parameters instead of just the typical state estimation
(see, e.g., [10,14,18,24,11]. Precisely, in this work, the signal process is described by

dX, = aX,dt + bdW, + 6dN;, Xo=z0 € R, (1)

where W; is a standard Brownian motion and N; is an independent Poisson process with intensity A on the
filtered probability space (2, F, P, (F)¢cjo, 1)) for some T' > 0 and constants a, b, § in R. However, Eq. (1)
is not observed, but instead partial information is propagated via the equation

t
Y, :h/XSdSJrBt, te 0,7, (2)
0
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where the driving noise, By, is another standard Brownian motion, independent of W; and N; in Eq. (1),
and h € R is a constant that explains the relationship between the signal and its observation.

The goal of this work is the statistical inference of A, where tail probabilities of a pertinent statistics need
to be established. However, inference for partially observed jump-diffusion processes is complex and chal-
lenging because such distributions typically do not have a closed form. To that end, the typical maximum
likelihood estimation method for diffusion cases (e.g., [5,8]) is rarely tractable and thus need to be esti-
mated. Indeed, very few studies have investigated the estimation of Poisson intensity for partially observed
jump-diffusion systems. Johannes et al. [18] studied a discretized model using a particle filtering approach.
Vacarescu [25] investigated the maximum likelihood estimation for the intensity of a counting process using
an expectation maximization algorithm, where the intensity is restricted to a pertinent dynamic process.
Djouadi et al. [10] proposed a consistent least-squares estimator (LSE) for the intensity A of the Poisson
process when the drift coefficient in Eq. (1) is negative (i.e., a < 0) and established a central limit theorem
for the LSE given in Theorem 2.1. However, the associated LSE’s asymptotic variance is a function of the
true value of the intensity, and thus the approximation cannot be used to resolve the inference problem of
the intensity of the signals’ jumps.

To that end, the moderate deviation principle of the LSE is considered herein as an alternative convergence
scheme influenced by the early studies of Chernoff [7] and Bahadur [2] and more recent developments of
large deviations and moderate deviations in statistics [1,3,12,13,19,17]. The moderate deviations provide
us with the rates of convergence of the LSE and prescribe a strategy for approximating the power of the
associated hypothesis testing as well as computing the (1 — ) - 100% confidence interval for the intensity.

The remainder of this article is organized as follows. In Section 2, we state the problem and introduce the
LSE of the Poisson intensity. Some motivating elements of large deviation theory are also presented. The
inferential results, the power of hypothesis testing, and the confidence interval are presented in Section 3
by our proving a moderate deviation principle.

2. Preliminaries

Consider a latent signal described by the jump diffusion given in Eq. (1) and observed by the observation
process in Eq. (2). The asymptotic behavior of the LSE An of the intensity X is considered when the drift
coefficient a < 0 in Eq. (1). According to [10], @ > 0 does not yield interesting behavior, and one should
notice that the trajectory of X; blows up when a > 0. Assume that Y; is observable at discrete times
{t,t7,....,t0} € [0,T] and precisely t =i, i = 1,...,n, such that T = n — oo without causing any loss of
generality. Define the innovation process Zin := Yin =Yy =h fttf . Xsds+e;, where €; denotes the normally
distributed and independent Brownian increments Bip — Btlll ~ iid. N(0,At] ), At} =t — 1t 4,
i=1,...,n. Let © denote the parameter space of the intensity of the driving Poisson process. The LSE A of

n
A minimizes the residual sum of squares, \, = arg {\1161(191 Q(N), where Q(\) = Z(Zt? —E(Z;»))?. The solution

i=1
of the optimization problem derived in [10] yields an unbiased and consistent LSE of the intensity A:

A " 1
Sp= ——— 2 3 (Zi — @dz) (—d,. - 1) , (3)
h&Z(ld- —1)2 =1 ‘ !
=1 a z

where d; = €% — €%, The following lemma provides an alternative definition of the LSE in Eq. (3), the
asymptotic normality of which is shown in Theorem 2.1. The reader should refer to [10] for the proofs of
the statements.
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Lemma 2.1. Consider the partially observed signal process X; as described in Eq. (1) and the associated
observation Yy in Eq. (2). Suppose that data are received in time horizon [0,T) such that T — oco. Then A,
is unbiased. Furthermore, define

= |a|/X ds—i—hmsZEl (4)

Then the LSE can be written as

- n - 1 L
)‘n: /\n —Sn _’ﬂ’ 5
n+k:n< +n€>+n (5)

where the sequence of (ky,l,) converges to (k,£), and the random sequence &, almost surely converges to a
finite random variable €.

Theorem 2.1. The LSE )\, in Eq. (3) satisfies the following central limit theorem:

Vvn (S\n - /\> LN (0,0%)  asn — oo, (6)

2 2
wherea2:§—2+)\+#.

Theorem 2.1 provides the limit distribution of the LSE, 5\n; however, its asymptotic variance depends on
the true intensity. To that end, different convergence arguments, precisely a moderate deviation principle
for A, need to be established. The moderate deviation principle is related to the large deviations; therefore
we present below large and moderate deviation formalisms. The reader may refer to [9] for more details.

Definition 2.1. A function I : R — [0, o0] is called a rate function if it is lower semicontinuous, for any [ > 0,
the level sets I} = {z € R; I(z) <} is a closed set. Further, a rate function is said to be good if every level
is compact in R.

Assumption 2.1. Let {v,} be a sequence of random variables with topological state space T'. For each p € R
and a sequence ¢, — 00 as n — oo, the logarithmic moment generating function A(u), defined as the limit

A(p) = lim — logEexp(ucn%) (7)

n—oo C n

exists as in (—oo, +00]. Further, the origin belongs to the interior DY of the domain Dy = { € R : A(p) <
oo} of the function A(w).

Remark 2.1. By the Holder inequality, A(u) is a convex function. Define the Fenchel-Legendre transform

I(z) = ilé%{um — A}, v eR. (8)

Then the function I(x) is a good rate function; see [9, Section 4.5].
Definition 2.2. A convex function A : R — (—o00, 00] is essentially smooth if

(1) D} = (a,b) is nonempty for some —oo < a < b < oo.
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(2) A(p) is differentiable in DS.

(3) A(") is steep; that is, lim A(p) = lim A'(p) = oo.
n—ra n—b

The following theorem is known as the Gartner—FEllis theorem (see, e.g., [6,9]) on large deviations, which
shows the correspondence between the logarithmic moment function and large deviations.

Theorem 2.2. Assume Assumption 2.1 holds. For any closed set F C R,

1
li —logP (v, € F) < — inf I(x).
imsup = log (v € F) < — inf I(z)

If we further assume that the logarithmic moment function A(u) is essentially smooth, then for any open
set G C R,

1
oo 1 o ‘
lim inf . logP (v, € G) > mlggl(x)

Next, the motivating large deviation principle for the LSE, A, is presented in Theorem 2.3, whose proof
is given in the Appendix.

Theorem 2.3. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2).
The sequence of least-squares estimates {jxn,n > 1} for the intensity, given by Eq. (3), satisfies the large
deviation principle in R, with rate function Iy(x) = sup,ecg {px — Ae(pn)}, where the logarithmic moment
generating function A¢(p) defined with ¢, = n in Eq. (7) is given by

(h2b2 + a2)u2

AZ (M) = 2h262

+ et — A, peR. (9)

Theorem 2.3 provides the rate function of convergence, I,; however, it depends on the true value of the
unknown parameter (as the asymptotic variance in Theorem 2.1). Therefore Theorem 2.3 is insufficient to
conduct statistical inference relying on this asymptotic tail probability. To that end, moderate deviations
need to be examined instead.

3. Statistical inference
3.1. Moderate deviations

We are now concerned with the weak convergence of the quantity na(j\n -\ for0<a< % (i.e., the mod-
erate deviation principle) using the logarithmic moment generating function Ci log E exp cnuno‘(ﬁ\n - A,

where ¢,, = n? for some fixed § > 0. The result is presented in the following theorem.

Theorem 3.1. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2).

The least-squares estimate, {3\”}, given by Eq. (3), satisfies a moderate deviation principle. Precisely, for

any a € (0, %), the sequence {na(j\n —\),n > 1} satisfies the large deviation principle in R with speed n'=2*

and the rate function
x? h2v? + a?

Im(l’) = m, where /‘{/2 = W (10)
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Proof. Given Theorem 2.2, we need only to consider for some 5 > 0, o € (0, %)

1 “
_ Bt —
e log Eexp |un” "% (A, )\)] . (11)

According to Egs. (4) and (11), we have

E pa [ Lol Xd MB -\
s no s+ hns "
L 0

=Eexp 5_1|a|un5+a_1/Xsd3 + Eexp (unﬁJra_l%BT) — exp (u/\na+ﬁ). (12)
0

Applying 1t6’s formula [16], we write the solution of the signal process as

t t
X = e (zo + b/e_“SdWs + 5/6_“sts), (13)
0 0
and consequently,
h b h an—as 6 [ an—as 1 an
X, dr = al (1—e ‘)dVVs%—ﬂ (1—e ‘)st—f-ﬂxo(l—e ). (14)
a a a
0 0 0

If we let S, := 6 lunfTo=1 Eq. (14) yields

n

[Eexp IaISn/Xsds =Eexp bSn/(l—ea("_s))dWs
0 0

n

x [E exp 6Sn/(1 — "3 gN,
0

x Eexp [Spzo(1l —e*™)]. (15)

Recall that Br is a standard Brownian motion at time 7', and hence it is easy to show that

Eex nB"""_lMB —e ﬁanrQa_l (16)
PAH no T ) T P gp2s2 ‘

Note that bS,, [;' (1 —e"=*))dW, follows a normal distribution N(0,72) for a pertinent variance 72, n € N.
Hence

n

1
Eexp |bS, /(1 — e aW, | = exp (57'3) ) (17)
0

where 72 = E [bS, [;' (1 — e“(”_s))dWs]2 =252 ['(1 — e*=%))2ds. By 1t6’s formula [16, Rule 4.23], for a
suitable function g, we have the stochastic differential equation
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t t

d |exp /g(s)st = exp /g(s)st (eg(t) - 1) dNy. (18)
0 0

Taking the expectation on the integral form of Eq. (18) we obtain

t t s

Eexp /g(s)st = 1+)\/ (eg(r) — 1)Eexp /g(s)st dr.

0 0 0
t
Let G(t) :== Eexp /g(s)dNS . Solving the ordinary differential equation G’(t) = AG(t) (e9() — 1) yields
0

t

Glt) = G0)exp | A / d(s)ds | | (19)

where §(s) := e9(*) — 1. Consequently, substitution of g(s) := §5, (1 — e("~%)) into Eq. (19) gives

n

E exp 5Sn/(1 — "8 gN,
0

n

=exp )\/ {exp [/mBJrO‘*l(l - e“(”fs))} - 1} ds | . (20)
0

Recall that a < 0; thus the term fon exp(unte—1leim=a%)ds decays exponentially. If we choose f+a—1 < 0,
by Taylor’s formula, Eq. (20) becomes
1
exp [)\;mﬂ“‘ + §u2n25+2°‘71 + o(n2’3+2“1)] . (21)
Then plugging Egs. (16), (17), and (21) into Eq. (15) and taking into account Eq. (12), we can express the
logarithmic moment generating function of Eq. (11) as

242, B+2a—2 1
M n (2@”"‘ 3 — 407 + eQan) + §M2n5+2a—1 + 0(n6+2a—1)

4a6?
Ko o1 an a21u2 B+2a—1
+Tn (1—e*")+ 252" . (22)

If we let B =1 — 2«, Eq. (22) converges to a constant as n — oo. Next we claim that %fn converges to 0
exponentially fast; that is,

1 1
lim sup —3 logP (‘ —&n
n

n—oo T

> e] = —00. (23)

> ne]

By Markov’s inequality

P<%|§n|>e>:]?!

(1_6_(1) S ai
e L
=1
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n

1—e® ,
< 67”262E6Xp {% Z GaZZi
i=1

and then the claim follows from Lemma 2.1. Thus, together with Lemma 2.1, Egs. (22) and (A.3) imply
that the logarithmic moment generating function

h2b2 2\,,2

1 2
2h252 2

1 N
Ap(p) := lim ———logEexp |un'"*(\, — \) i

n—oo pl—2a
for any o € (0, 3). The rate function is then given by the Fenchel-Legendre transform (8):

2

T
Im m = 3 5 a5
€ ilé% {pz — Am(p)} 992 19

. 2,2, 2
with k2 = h}?Zg;a .0

3.2. Hypothesis testing and confidence interval

Consider the null and alternative hypotheses

Hoi)\:)\oandHli)\#)\(),

~

and the test statistic T}, := /n(A\, — Ag). For 0 < ap < 1, denote the rejection region for testing the
null hypothesis Hy against Hy to be R = {|T},| > c(ap)}, where ¢(ap) is a positive constant in R such
that ap/2 =1 — <I>(C(UL0°)), with 02 = ’g—z + Ao + h‘;—;, and ®(-) is the cumulative distribution function of a
standard normal distribution. We consider the power, 1 — f3,,, of the hypothesis testing (i.e., the probability
of correctly rejecting a false null hypothesis), where 3, is the probability of type II error given by

Bn="P (|Tn| < c(ap) | A= A1 # Ao under Hl) .

Proposition 3.1. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2).
Then the power of the hypothesis testing tends to 1 with exponential speed exp(—rn'=2%) for any a € (0,1/2)
and any r > 0. In other words,

. 1

Proof. Note that by the triangle inequality, | A, — Ao| = |A1 — Ao| — |[An — A1|. Then we have

Bn:POEJ<cm@‘A:AO

gPGﬂﬁn—AlZnﬂM—AO—C@M‘A:AO.
n2-¢

1
Then Theorem 3.1 implies that lim ———logf, = —oo. O
n—oo N @

Next, a direct application of the asymptotic normality derived in Theorem 2.1 yields an approximate
(1 —ap) - 100% confidence interval for A as </\n - ﬁZaO/g, An + %Zao/g), where Z,, /2 is a critical value

of the standard random variable Z such that P(Z > Z,,/2) = ag/2, and ¢ is defined in Theorem 2.1.
Consider the inequality —Z, /2 < M < Zq, /2, which is equivalent to
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22 b2 2
2 N ag/2 {2 a 2
A (”n + T) At = (ﬁ + m) Zao2 S0 (24)
Thus, solving inequality (24) gives the (1 — ap) - 100% confidence interval by the weak convergence

1/2

72 1 72 2 b2 2
040/2 N 040/2 a 2
R (”n* n ) _4<W+W>Zao/2 : (25)

>

We can see from Eq. (25) that the confidence interval obtained by the central limit theorem has large errors
when the true value and accordingly the unbiased point estimate )\, is large. We now apply Theorem 3.1
to construct the confidence interval for the intensity A.

Proposition 3.2. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2).
The moderate deviation principle-based (1 — ap) - 100% confidence interval for the intensity A, ap € (0,1),

“ 252 + 2 & 2k2 4 2
</\n—|— Kn+ (logao)lm,)\n—\/ Kn_l_ (loga0)1/2>, (26)

where k2 is given in Eq. (10).

is given by

Proof. By Theorem 3.1, for a fixed v > 0 we have

P

A n1—2au2
n (A, — /\)’ > u) ~ exp (—nlm dnf Im(x)) = &P <_m> ’

where k2 = hQ,fjgrz“z. For a given confidence level 1 — ay, set
22 +2 1 \"? /2242 1\
Tog = 1 %4 log — =n 10g — .
n o n ao

Then the (1 — ap) - 100% confidence interval by the moderate deviation principle for the intensity A is
approximately (Xn — N Yoy, M + n_o‘TaO), which follows Eq. (26). O

4. Conclusion

We focused on a partially observed jump-diffusion signal. The jumps were considered from a Poisson
distribution whose intensity is statistically inferred. To that end, asymptotic behavior of the consistent
LSE for the Poisson intensity was investigated. The large and moderate deviation principles were proved
on the basis of the Gartner—Ellis theorem. Together with the central limit theorem, these results compose
the limit theorems of the LSE with different dominated scale c¢,, where ¢, = n for large deviations and
cn =n% a€ (0, %), for moderate deviations. In turn, the moderate deviation principle was applied to find
the power of the hypothesis testing and to construct an effective confidence interval. An intensity estimate
for high-dimensional partially observed jump diffusions and the associated convergence rates may follow by
generalization of the aforementioned large and moderate deviation results.
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Appendix A. Proof of Theorem 2.3

Using Eq. (14), we have

n

E exp @/Xsds =Eexp %b/(l—e“("_s))dWs
0

x Eexp u/(l — edm=))aN,
X]Eexp[uéoﬂ, a”ﬂ. (A1)

Using Eqgs. (A.1), (17), and (19) with g(s) := u(1 — e*®=)), we have * logEexp( plal Iy Xsds> equals

1 1 T _ a(n—s) /j,xo M2b2
il p—pie — 1) 01 — e £ A2
- 20n+)\/<e ds + 3 (1—e")| — 552 + Aet —1). (A.2)
0
" u2a2T \a\ 2a®T
Note that “h— E 0, 252 ~————). Therefore Eexp | & E g | = exp (%), and furthermore

2

- M oo 1
nlg%o logEexp e Zl €| = oIk Similarly to the proof of Eq. (23), one can show that &, converges

to 0 exponentially fast; that is,

1 1
lim sup — log P (‘ &,
n

n—oco T

Q:—m. (A.3)

Therefore the logarithmic moment generating function (9) is obtained by Egs. (A.3), (A.2), and (5), and
the rate function follows from Theorem 2.2. O
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