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This article focuses on a partially observed linear diffusion with jumps described by 
a Poisson process. Precisely, we study an inferential problem for the intensity of the 
Poisson process by establishing a moderate deviation principle for the least-squares 
estimator of the intensity.
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1. Introduction

An array of studies have been devoted to jump-diffusion models in filtering and control problems because 
of their applicability in finance, wireless sensor networks, biology, etc. (see, e.g., [4,15,20–22,26,23]. However, 
it is often of great interest to estimate the associated parameters instead of just the typical state estimation 
(see, e.g., [10,14,18,24,11]. Precisely, in this work, the signal process is described by

dXt = aXtdt+ bdWt + δdNt, X0 = x0 ∈ R, (1)

where Wt is a standard Brownian motion and Nt is an independent Poisson process with intensity λ on the 
filtered probability space (Ω, F , P , (Ft)t∈[0,T ]) for some T > 0 and constants a, b, δ in R. However, Eq. (1)
is not observed, but instead partial information is propagated via the equation

Yt = h

t∫

0

Xsds+Bt, t ∈ [0, T ], (2)
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where the driving noise, Bt, is another standard Brownian motion, independent of Wt and Nt in Eq. (1), 
and h ∈ R is a constant that explains the relationship between the signal and its observation.

The goal of this work is the statistical inference of λ, where tail probabilities of a pertinent statistics need 
to be established. However, inference for partially observed jump-diffusion processes is complex and chal-
lenging because such distributions typically do not have a closed form. To that end, the typical maximum 
likelihood estimation method for diffusion cases (e.g., [5,8]) is rarely tractable and thus need to be esti-
mated. Indeed, very few studies have investigated the estimation of Poisson intensity for partially observed 
jump-diffusion systems. Johannes et al. [18] studied a discretized model using a particle filtering approach. 
Vacarescu [25] investigated the maximum likelihood estimation for the intensity of a counting process using 
an expectation maximization algorithm, where the intensity is restricted to a pertinent dynamic process. 
Djouadi et al. [10] proposed a consistent least-squares estimator (LSE) for the intensity λ of the Poisson 
process when the drift coefficient in Eq. (1) is negative (i.e., a < 0) and established a central limit theorem 
for the LSE given in Theorem 2.1. However, the associated LSE’s asymptotic variance is a function of the 
true value of the intensity, and thus the approximation cannot be used to resolve the inference problem of 
the intensity of the signals’ jumps.

To that end, the moderate deviation principle of the LSE is considered herein as an alternative convergence 
scheme influenced by the early studies of Chernoff [7] and Bahadur [2] and more recent developments of 
large deviations and moderate deviations in statistics [1,3,12,13,19,17]. The moderate deviations provide 
us with the rates of convergence of the LSE and prescribe a strategy for approximating the power of the 
associated hypothesis testing as well as computing the (1 − α0) · 100% confidence interval for the intensity.

The remainder of this article is organized as follows. In Section 2, we state the problem and introduce the 
LSE of the Poisson intensity. Some motivating elements of large deviation theory are also presented. The 
inferential results, the power of hypothesis testing, and the confidence interval are presented in Section 3
by our proving a moderate deviation principle.

2. Preliminaries

Consider a latent signal described by the jump diffusion given in Eq. (1) and observed by the observation 
process in Eq. (2). The asymptotic behavior of the LSE λ̂n of the intensity λ is considered when the drift 
coefficient a < 0 in Eq. (1). According to [10], a ≥ 0 does not yield interesting behavior, and one should 
notice that the trajectory of Xt blows up when a > 0. Assume that Yt is observable at discrete times 
{tn0 , tn1 , ..., tnn} ∈ [0, T ] and precisely tni = i, i = 1, ..., n, such that T = n → ∞ without causing any loss of 
generality. Define the innovation process Ztni := Ytni −Ytni−1 = h 

∫ tni
tni−1

Xsds +εi, where εi denotes the normally 
distributed and independent Brownian increments Btni − Btni−1 ∼ i.i.d. N(0, ∆tni−1), ∆tni−1 = tni − tni−1, 
i = 1, ..., n. Let Θ denote the parameter space of the intensity of the driving Poisson process. The LSE λ̂n of 

λ minimizes the residual sum of squares, λ̂n = argmin
λ∈Θ

Q(λ), where Q(λ) =
n∑

i=1
(Ztni −E(Ztni ))

2. The solution 

of the optimization problem derived in [10] yields an unbiased and consistent LSE of the intensity λ:

λ̂n = a

hδ
n∑

i=1
(1
a
di − 1)2

n∑

i=1

(
Zi − hx0

a
di

) (1
a
di − 1

)
, (3)

where di = eai − eai−a. The following lemma provides an alternative definition of the LSE in Eq. (3), the 
asymptotic normality of which is shown in Theorem 2.1. The reader should refer to [10] for the proofs of 
the statements.
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Lemma 2.1. Consider the partially observed signal process Xt as described in Eq. (1) and the associated 
observation Yt in Eq. (2). Suppose that data are received in time horizon [0, T ) such that T → ∞. Then λ̂n

is unbiased. Furthermore, define

λ̃n := |a|
nδ

n∫

0

Xsds+
|a|
hnδ

n∑

i=1
εi. (4)

Then the LSE can be written as

λ̂n = n

n+ kn

(
λ̃n + 1

n
ξn

)
+ ℓn

n
, (5)

where the sequence of (kn, ℓn) converges to (k, ℓ), and the random sequence ξn almost surely converges to a 
finite random variable ξ.

Theorem 2.1. The LSE λ̂n in Eq. (3) satisfies the following central limit theorem:

√
n

(
λ̂n − λ

)
L→ N

(
0,σ2)

as n → ∞, (6)

where σ2 = b2

δ2 + λ + a2

h2δ2 .

Theorem 2.1 provides the limit distribution of the LSE, λ̂n; however, its asymptotic variance depends on 
the true intensity. To that end, different convergence arguments, precisely a moderate deviation principle 
for λ̂n, need to be established. The moderate deviation principle is related to the large deviations; therefore 
we present below large and moderate deviation formalisms. The reader may refer to [9] for more details.

Definition 2.1. A function I : R → [0, ∞] is called a rate function if it is lower semicontinuous, for any l > 0, 
the level sets Il = {x ∈ R; I(x) ≤ l} is a closed set. Further, a rate function is said to be good if every level 
is compact in R.

Assumption 2.1. Let {γn} be a sequence of random variables with topological state space Γ. For each µ ∈ R
and a sequence cn → ∞ as n → ∞, the logarithmic moment generating function Λ(µ), defined as the limit

Λ(µ) = lim
n→∞

1
cn

logE exp(µcnγn), (7)

exists as in (−∞, +∞]. Further, the origin belongs to the interior D◦
Λ of the domain DΛ = {µ ∈ R : Λ(µ) <

∞} of the function Λ(µ).

Remark 2.1. By the Hölder inequality, Λ(µ) is a convex function. Define the Fenchel–Legendre transform

I(x) = sup
µ∈R

{µx − Λ(µ)} , x ∈ R. (8)

Then the function I(x) is a good rate function; see [9, Section 4.5].

Definition 2.2. A convex function Λ : R → (−∞, ∞] is essentially smooth if

(1) D◦
Λ = (a, b) is nonempty for some −∞ ≤ a < b ≤ ∞.
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(2) Λ(µ) is differentiable in D◦
Λ.

(3) Λ(·) is steep; that is, lim
µ→a+

Λ′(µ) = lim
µ→b−

Λ′(µ) = ∞.

The following theorem is known as the Gartner–Ellis theorem (see, e.g., [6,9]) on large deviations, which 
shows the correspondence between the logarithmic moment function and large deviations.

Theorem 2.2. Assume Assumption 2.1 holds. For any closed set F ⊂ R,

lim sup
n→∞

1
cn

logP (γn ∈ F ) ≤ − inf
x∈F

I(x).

If we further assume that the logarithmic moment function Λ(µ) is essentially smooth, then for any open 
set G ⊂ R,

lim inf
n→∞

1
cn

logP (γn ∈ G) ≥ − inf
x∈G

I(x).

Next, the motivating large deviation principle for the LSE, λ̂n, is presented in Theorem 2.3, whose proof 
is given in the Appendix.

Theorem 2.3. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2). 
The sequence of least-squares estimates {λ̂n, n ≥ 1} for the intensity, given by Eq. (3), satisfies the large 
deviation principle in R, with rate function Iℓ(x) = supµ∈R {µx − Λℓ(µ)}, where the logarithmic moment 
generating function Λℓ(µ) defined with cn = n in Eq. (7) is given by

Λℓ(µ) =
(h2b2 + a2)µ2

2h2δ2
+ λeµ − λ, µ ∈ R. (9)

Theorem 2.3 provides the rate function of convergence, Iℓ; however, it depends on the true value of the 
unknown parameter (as the asymptotic variance in Theorem 2.1). Therefore Theorem 2.3 is insufficient to 
conduct statistical inference relying on this asymptotic tail probability. To that end, moderate deviations 
need to be examined instead.

3. Statistical inference

3.1. Moderate deviations

We are now concerned with the weak convergence of the quantity nα(λ̂n−λ) for 0 < α < 1
2 (i.e., the mod-

erate deviation principle) using the logarithmic moment generating function 1
cn

logE exp
[
cnµnα(λ̂n − λ)

]
, 

where cn = nβ for some fixed β > 0. The result is presented in the following theorem.

Theorem 3.1. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2). 
The least-squares estimate, {λ̂n}, given by Eq. (3), satisfies a moderate deviation principle. Precisely, for 
any α ∈ (0, 12 ), the sequence {nα(λ̂n −λ), n ≥ 1} satisfies the large deviation principle in R with speed n1−2α

and the rate function

Im(x) = x2

2κ2 + 2 , where κ2 = h2b2 + a2

h2δ2
. (10)
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Proof. Given Theorem 2.2, we need only to consider for some β > 0, α ∈ (0, 12 )

1
nβ

logE exp
[
µnβ+α(λ̂n − λ)

]
. (11)

According to Eqs. (4) and (11), we have

E exp

⎡

⎣µnβ+α

⎛

⎝ |a|
nδ

n∫

0

Xsds+
|a|
hnδ

BT − λ

⎞

⎠

⎤

⎦

=E exp

⎛

⎝δ−1|a|µnβ+α−1
n∫

0

Xsds

⎞

⎠ + E exp
(
µnβ+α−1 |a|

hδ
BT

)
− exp

(
µλnα+β

)
. (12)

Applying Itô’s formula [16], we write the solution of the signal process as

Xt = eat(x0 + b

t∫

0

e−asdWs + δ

t∫

0

e−asdNs), (13)

and consequently,

n∫

0

Xrdr = b

|a|

n∫

0

(1 − ean−as)dWs +
δ

|a|

n∫

0

(1 − ean−as)dNs +
1
|a|x0(1 − ean). (14)

If we let Sn := δ−1µnβ+α−1, Eq. (14) yields

E exp

⎛

⎝|a|Sn

n∫

0

Xsds

⎞

⎠ =E exp

⎡

⎣bSn

n∫

0

(1 − ea(n−s))dWs

⎤

⎦

× E exp

⎡

⎣δSn

n∫

0

(1 − ea(n−s))dNs

⎤

⎦

× E exp [Snx0(1 − ean)] . (15)

Recall that BT is a standard Brownian motion at time T , and hence it is easy to show that

E exp
(
µnβ+α−1 |a|

hδ
BT

)
= exp

(
a2µ2

2h2δ2
n2β+2α−1

)
. (16)

Note that bSn

∫ n
0 (1 − ea(n−s))dWs follows a normal distribution N(0, τ2

n) for a pertinent variance τ2
n, n ∈ N. 

Hence

E exp

⎡

⎣bSn

n∫

0

(1 − ea(n−s))dWs

⎤

⎦ = exp
(1
2τ2

n

)
, (17)

where τ2
n = E 

[
bSn

∫ n
0 (1 − ea(n−s))dWs

]2 = b2S2
n

∫ n
0 (1 − ea(n−s))2ds. By Itô’s formula [16, Rule 4.23], for a 

suitable function g, we have the stochastic differential equation
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d

⎡

⎣exp

⎛

⎝
t∫

0

g(s)dNs

⎞

⎠

⎤

⎦ = exp

⎛

⎝
t∫

0

g(s)dNs

⎞

⎠
(
eg(t) − 1

)
dNt. (18)

Taking the expectation on the integral form of Eq. (18) we obtain

E exp

⎛

⎝
t∫

0

g(s)dNs

⎞

⎠ = 1 + λ

t∫

0

(
eg(r) − 1

)
E exp

⎛

⎝
r∫

0

g(s)dNs

⎞

⎠ dr.

Let G(t) := E exp

⎛

⎝
t∫

0

g(s)dNs

⎞

⎠. Solving the ordinary differential equation G′(t) = λG(t) 
(
eg(t) − 1

)
yields

G(t) = G(0) exp

⎛

⎝λ

t∫

0

g̃(s)ds

⎞

⎠ , (19)

where g̃(s) := eg(s) − 1. Consequently, substitution of g(s) := δSn(1 − ea(n−s)) into Eq. (19) gives

E exp

⎡

⎣δSn

n∫

0

(1 − ea(n−s))dNs

⎤

⎦

=exp

⎛

⎝λ

n∫

0

{
exp

[
µnβ+α−1(1 − ea(n−s))

]
− 1

}
ds

⎞

⎠ . (20)

Recall that a < 0; thus the term 
∫ n
0 exp(µnβ+α−1ean−as)ds decays exponentially. If we choose β+α−1 < 0, 

by Taylor’s formula, Eq. (20) becomes

exp
[
λµnβ+α + 1

2µ
2n2β+2α−1 + o(n2β+2α−1)

]
. (21)

Then plugging Eqs. (16), (17), and (21) into Eq. (15) and taking into account Eq. (12), we can express the 
logarithmic moment generating function of Eq. (11) as

µ2b2nβ+2α−2

4aδ2
(2an+ 3 − 4ean + e2an) + 1

2µ
2nβ+2α−1 + o(nβ+2α−1)

+ µx0
δ

nα−1(1 − ean) + a2µ2

2h2δ2
nβ+2α−1. (22)

If we let β = 1 − 2α, Eq. (22) converges to a constant as n → ∞. Next we claim that 1
nξn converges to 0 

exponentially fast; that is,

lim sup
n→∞

1
nβ

logP
(∣∣∣∣

1
n

ξn

∣∣∣∣ > ϵ

]
= −∞. (23)

By Markov’s inequality

P
( 1
n
|ξn| > ϵ

)
= P

[∣∣∣∣∣
(1 − e−a)

hδ

n∑

i=1
eaiZi

∣∣∣∣∣ > nϵ

]
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≤ e−n2ϵ2E exp

⎧
⎨

⎩

[
(1 − e−a)

hδ

n∑

i=1
eaiZi

]2
⎫
⎬

⎭ ,

and then the claim follows from Lemma 2.1. Thus, together with Lemma 2.1, Eqs. (22) and (A.3) imply 
that the logarithmic moment generating function

Λm(µ) := lim
n→∞

1
n1−2α

logE exp
[
µn1−α(λ̂n − λ)

]
= (h2b2 + a2)µ2

2h2δ2
+ 1

2µ
2

for any α ∈ (0, 12 ). The rate function is then given by the Fenchel–Legendre transform (8):

Im(x) = sup
µ∈R

{µx − Λm(µ)} = x2

2κ2 + 2 ,

with κ2 = h2b2+a2

h2δ2 . ✷

3.2. Hypothesis testing and confidence interval

Consider the null and alternative hypotheses

H0 : λ = λ0 and H1 : λ ̸= λ0,

and the test statistic Tn := √
n(λ̂n − λ0). For 0 < α0 < 1, denote the rejection region for testing the 

null hypothesis H0 against H1 to be R = {|Tn| ≥ c(α0)}, where c(α0) is a positive constant in R such 
that α0/2 = 1 − Φ( c(α0)

σ0
), with σ2

0 = b2

δ2 + λ0 + a2

h2δ2 , and Φ(·) is the cumulative distribution function of a 
standard normal distribution. We consider the power, 1 − βn, of the hypothesis testing (i.e., the probability 
of correctly rejecting a false null hypothesis), where βn is the probability of type II error given by

βn = P
(
|Tn| < c(α0)

∣∣∣ λ = λ1 ̸= λ0 under H1
)
.

Proposition 3.1. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2). 
Then the power of the hypothesis testing tends to 1 with exponential speed exp(−rn1−2α) for any α ∈ (0, 1/2)
and any r > 0. In other words,

lim
n→∞

1
n1−2α

log βn = −∞.

Proof. Note that by the triangle inequality, |λ̂n − λ0| ≥ |λ1 − λ0| − |λ̂n − λ1|. Then we have

βn = P
(
|Tn| < c(α0)

∣∣∣ λ = λ1
)

≤ P
(
nα|λ̂n − λ1| ≥ nα|λ1 − λ0| − c(α0)

n
1
2 −α

∣∣∣ λ = λ1

)
.

Then Theorem 3.1 implies that lim
n→∞

1
n1−2α

log βn = −∞. ✷

Next, a direct application of the asymptotic normality derived in Theorem 2.1 yields an approximate 
(1 − α0) · 100% confidence interval for λ as 

(
λ̂n − σ√

n
Zα0/2, λ̂n + σ√

n
Zα0/2

)
, where Zα0/2 is a critical value 

of the standard random variable Z such that P(Z > Zα0/2) = α0/2, and σ2 is defined in Theorem 2.1. 
Consider the inequality −Zα0/2 ≤

√
n(λ̂n−λ)

σ ≤ Zα0/2, which is equivalent to
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λ2 −
(
2λ̂n +

Z2
α0/2
n

)
λ + λ̂2

n −
(

b2

nδ2
+ a2

nh2δ2

)
Z2

α0/2 ≤ 0. (24)

Thus, solving inequality (24) gives the (1 − α0) · 100% confidence interval by the weak convergence

⎧
⎪⎨

⎪⎩
λ̂n +

Z2
α0/2
2n ± 1

2

⎡

⎣
(
2λ̂n +

Z2
α0/2
n

)2

− 4
(

b2

nδ2
+ a2

nh2δ2

)
Z2

α0/2

⎤

⎦
1/2

⎫
⎪⎬

⎪⎭
. (25)

We can see from Eq. (25) that the confidence interval obtained by the central limit theorem has large errors 
when the true value and accordingly the unbiased point estimate λ̂n is large. We now apply Theorem 3.1
to construct the confidence interval for the intensity λ.

Proposition 3.2. Consider the signal described by Eq. (1) and the associated observation process in Eq. (2). 
The moderate deviation principle–based (1 − α0) · 100% confidence interval for the intensity λ, α0 ∈ (0, 1), 
is given by

(
λ̂n +

√
2κ2 + 2

n
(logα0)1/2 , λ̂n −

√
2κ2 + 2

n
(logα0)1/2

)
, (26)

where κ2 is given in Eq. (10).

Proof. By Theorem 3.1, for a fixed u > 0 we have

P
(∣∣∣nα(λ̂n − λ)

∣∣∣ > u
)

≈ exp
(

−n1−2α inf
|x|>u

Im(x)
)

= exp
(

−n1−2αu2

2κ2 + 2

)
,

where κ2 = h2b2+a2

h2δ2 . For a given confidence level 1 − α0, set

τα0 =
(2κ2 + 2

n1−2α
log 1

α 0

)1/2
= nα

(2κ2 + 2
n

log 1
α 0

)1/2
.

Then the (1 − α0) · 100% confidence interval by the moderate deviation principle for the intensity λ is 
approximately 

(
λ̂n − n−ατα0 , λ̂n + n−ατα0

)
, which follows Eq. (26). ✷

4. Conclusion

We focused on a partially observed jump-diffusion signal. The jumps were considered from a Poisson 
distribution whose intensity is statistically inferred. To that end, asymptotic behavior of the consistent 
LSE for the Poisson intensity was investigated. The large and moderate deviation principles were proved 
on the basis of the Gartner–Ellis theorem. Together with the central limit theorem, these results compose 
the limit theorems of the LSE with different dominated scale cn, where cn = n for large deviations and 
cn = nα, α ∈ (0, 12 ), for moderate deviations. In turn, the moderate deviation principle was applied to find 
the power of the hypothesis testing and to construct an effective confidence interval. An intensity estimate 
for high-dimensional partially observed jump diffusions and the associated convergence rates may follow by 
generalization of the aforementioned large and moderate deviation results.
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Appendix A. Proof of Theorem 2.3

Using Eq. (14), we have

E exp

⎛

⎝µ|a|
δ

n∫

0

Xsds

⎞

⎠ =E exp

⎡

⎣µb

δ

n∫

0

(1 − ea(n−s))dWs

⎤

⎦

× E exp

⎡

⎣µ
n∫

0

(1 − ea(n−s))dNs

⎤

⎦

× E exp
[µx0

δ
(1 − ean)

]
. (A.1)

Using Eqs. (A.1), (17), and (19) with g(s) := µ(1 − ea(n−s)), we have 1n logE exp
(

µ|a|
δ

∫ n
0 Xsds

)
equals

1
n

⎡

⎣1
2σ2

n + λ

n∫

0

(
eµ−µea(n−s)

− 1
)
ds+ µx0

δ
(1 − ean)

⎤

⎦ → µ2b2

2δ2
+ λ(eµ − 1). (A.2)

Note that µ|a|
hδ

n∑

i=1
εi ∼ N(0, µ

2a2T

h2δ2
). Therefore E exp

(
µ|a|
hδ

n∑

i=1
εi

)
= exp

(
µ2a2T
2h2δ2

)
, and furthermore 

lim
n→∞

1
n
logE exp

(
µ|a|
hδ

n∑

i=1
εi

)
= µ2a2

2h2δ2
. Similarly to the proof of Eq. (23), one can show that 1nξn converges 

to 0 exponentially fast; that is,

lim sup
n→∞

1
n
logP

(∣∣∣∣
1
n

ξn

∣∣∣∣ > ϵ

)
= −∞. (A.3)

Therefore the logarithmic moment generating function (9) is obtained by Eqs. (A.3), (A.2), and (5), and 
the rate function follows from Theorem 2.2. ✷
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[3] F. Camerlenghi, E. Villa, Large and moderate deviations for kernel-type estimators of the mean density of Boolean models, 

Electron. J. Stat. 12 (1) (2018) 427–460.
[4] C. Ceci, K. Colaneri, Nonlinear filtering for jump diffusion observations, Adv. in Appl. Probab. 44 (03) (2012) 678–701.
[5] C.D. Charalambous, A. Logothetis, Maximum likelihood parameter estimation from incomplete data via the sensitivity 

equations: the continuous-time case, IEEE Trans. Automat. Control 45 (5) (2000) 928–934.
[6] X. Chen, Random Walk Intersections: Large Deviations and Related Topics, American Mathematical Society, 2010.
[7] H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. 

Stat. (1952) 493–507.
[8] A. Dembo, O. Zeitouni, Parameter estimation of partially observed continuous time stochastic processes via the EM 

algorithm, Stochastic Process. Appl. 23 (1) (1986) 91–113.



10 V. Maroulas et al. / J. Math. Anal. Appl. 472 (2019) 1–10

[9] A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, 2nd edition, Springer-Verlag, New York, 1998.
[10] S.M. Djouadi, V. Maroulas, X. Pan, J. Xiong, Consistency and asymptotics of a Poisson intensity least-squares estimator 

for partially observed jump–diffusion processes, Statist. Probab. Lett. 123 (2017) 8–16.
[11] E. Evangelou, V. Maroulas, Sequential Empirical Bayes method for filtering dynamic spatiotemporal processes, Spatial 

Statist. 21 (Part A) (2017) 114–129.
[12] F. Gao, J. Xiong, X. Zhao, et al., Moderate deviations and nonparametric inference for monotone functions, Ann. Statist. 

46 (3) (2018) 1225–1254.
[13] F. Gao, X. Zhao, Delta method in large deviations and moderate deviations for estimators, Ann. Statist. (2011) 1211–1240.
[14] F.B. Gonçalves, G.O. Roberts, Exact Simulation and Bayesian Inference for Jump-Diffusion Processes, Technical report, 

University of Warwick.
[15] B. Grigelionis, R. Mikulevicius, Nonlinear filtering equations for stochastic processes with jumps, in: The Oxford Handbook 

of Nonlinear Filtering, 2011, pp. 95–128.
[16] F.B. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation, Society 

for Industrial and Applied Mathematics, 2007.
[17] T. Inglot, T. Ledwina, On probabilities of excessive deviations for Kolmogorov–Smirnov, Cramer–von Mises and chi-square 

statistics, Ann. Statist. (1990) 1491–1495.
[18] M.S. Johannes, N.G. Polson, J.R. Stroud, Optimal filtering of jump diffusions: extracting latent states from asset prices, 

Rev. Financ. Stud. 22 (7) (2009) 2759–2799.
[19] W.C. Kallenberg, On moderate deviation theory in estimation, Ann. Statist. (1983) 498–504.
[20] T. Meyer-Brandis, F. Proske, Explicit solution of a non-linear filtering problem for Lévy processes with application to 

finance, Appl. Math. Optim. 50 (2) (2004) 119–134.
[21] X. Pan, S.M. Djouadi, Estimation and identification for wireless sensor network undergoing uncertain jumps, in: 2017 

Proceedings of the Conference on Control and its Applications, SIAM, 2017, pp. 46–53.
[22] D.R. Poklukar, Nonlinear filtering for jump-diffusions, J. Comput. Appl. Math. 197 (2) (2006) 558–567.
[23] H. Qiao, J. Duan, Nonlinear filtering of stochastic dynamical systems with Lévy noises, Adv. in Appl. Probab. 47 (03) 

(2015) 902–918.
[24] C.A. Ramezani, Y. Zeng, Maximum likelihood estimation of the double exponential jump-diffusion process, Ann. Finance 

3 (4) (2007) 487–507.
[25] A.P. Vacarescu, Filtering and Parameter Estimation for Partially Observed Generalized Hawkes Processes, Ph.D. thesis, 

Stanford University, 2011.
[26] X. Yang, Information-Based Commodity Pricing and the Theory of Signal Processing with Lévy Information, Ph.D. thesis, 

Imperial College London, 2013.


