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ABSTRACT

Optimization-based models have been used to predict cellular be-
havior for over 25 years. The constraints in these models are derived
from genome annotations, measured macromolecular composition
of cells, and by measuring the cell’s growth rate and metabolism
in different conditions. The cellular goal (the optimization problem
that the cell is trying to solve) can be challenging to derive exper-
imentally for many organisms, including human or mammalian
cells, which have complex metabolic capabilities and are not well
understood. Existing approaches to learning goals from data include
(a) estimating a linear objective function, or (b) estimating linear
constraints that model complex biochemical reactions and constrain
the cell’s operation. The latter approach is important because often
the known reactions are not enough to explain observations; there-
fore, there is a need to extend automatically the model complexity
by learning new reactions. However, this leads to nonconvex opti-
mization problems, and existing tools cannot scale to realistically
large metabolic models. Hence, constraint estimation is still used
sparingly despite its benefits for modeling cell metabolism, which
is important for developing novel antimicrobials against pathogens,
discovering cancer drug targets, and producing value-added chemi-
cals. Here, we develop the first approach to estimating constraint
reactions from data that can scale to realistically large metabolic
models. Previous tools were used on problems having less than 75
reactions and 60 metabolites, which limits real-life-size applications.
We perform extensive experiments using 75 large-scale metabolic
network models for different organisms (including bacteria, yeasts,
and mammals) and show that our algorithm can recover cellular
constraint reactions. The recovered constraints enable accurate
prediction of metabolic states in hundreds of growth environments
not seen in training data, and we recover useful cellular goals even
when some measurements are missing.

“Both authors contributed equally to this project and are corresponding authors.
T Current address: Department of Chemical Engineering, Queen’s University, Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08...$15.00
https://doi.org/10.1145/3292500.3330775

Michael A. Saunders
saunders@stanford.edu
Stanford University

2202

Jean-Christophe Lachance
jelachance@eng.ucsd.edu
Université de Sherbrooke

José Bento*
jose.bento@bc.edu
Boston College

KEYWORDS

nonconvex optimization; distributed optimization; metabolism; com-
putational biology

ACM Reference Format:

Laurence Yang, Michael A. Saunders, Jean-Christophe Lachance, Bernhard
O. Palsson, and José Bento. 2019. Estimating Cellular Goals from High-
Dimensional Biological Data. In The 25th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD °19), August 4-8, 2019, An-
chorage, AK, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3292500.3330775

1 INTRODUCTION AND RELATED WORK

Engineered microbial and mammalian cells are used as production
platforms to synthesize commodity or specialty chemicals and phar-
maceuticals. Accurate computational models of cell metabolism and
protein expression are important to design cell factories and to max-
imize product yield and quality [26, 43]. Similarly, mathematical
models of cell metabolism have been used to identify strategies to
improve the efficacy of existing antibiotics [8].

The ability of engineers to predict microbial behavior was fa-
cilitated in 1990 by the observation that overflow metabolism—
an industrially-relevant metabolic behavior—in Escherichia coli
could be predicted by a relatively simple network of reactions with
capacity-constrained flows [28]. Since then, this constrained opti-
mization model of cellular metabolism (often called COBRA) has
been applied to over 78 species across the tree of life [30]. Metabolic
reconstructions today are “genome-scale”—i.e., they account for the
majority of metabolic genes annotated in the organism’s genome—
and consist of hundreds to thousands of biochemical reactions and
metabolites. For example, the most recent reconstruction of human
metabolism includes 13,543 metabolic reactions involving 4,140
metabolites [7], while the latest multiscale model of metabolism
and protein expression for E. coli [27] consists of 12,655 reactions
and 7,031 components including macromolecules like protein, RNA
(ribonucleic acid), and ribosome.

As of mid-2013, over 640 published studies used COBRA for
experimental investigation in various domains of engineering and
health sciences [5]. Successful applications of COBRA include en-
gineering microbes to produce commodity or valuable chemicals
[43], developing novel antimicrobials against infectious disease [8],
and discovering new drug targets against cancer [15].

In its basic form, COBRA predicts n reaction fluxes v € R"
(reaction rate normalized by dry weight of biomass) in a metabolic
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network, consisting of m metabolites and n reactions, by solving a
linear program that models cellular goal:

max v subjecttoSv=b, 1 <v < u, (1)
where ¢ € R" is a vector of objective coefficients, (-)T denotes the
transpose, S € R™*" is a matrix of stoichiometric coefficients (one
column per biochemical reaction), b € R™ is a vector of metabolite
accumulation or depletion rates, and 1, u € R” are lower and upper
flux bounds.

In order to make accurate predictions, these models require an
accurate S matrix, which is nowadays reliably reconstructed from
extensive knowledgebases of enzyme biochemistry, and genome
annotations for thousands of species and strains organisms. The
other key ingredient is the cellular objective function, ¢’v. Other
objectives, including nonlinear functions, have been tested [36]. For
many microbes cultured in nutrient-limiting conditions, maximiza-
tion of cell growth rate (per unit of limiting nutrient) is an accurate
objective function [36]. This particular function corresponds to a
c that is an indicator vector with a 1 in the component associated
with the reaction that corresponds to the cell growth, and zero
everywhere else.

Currently, system-level understanding of living organisms re-
quires the analysis of large-scale measurements originating from
disparate biological processes operating at multiple length and time
scales. Such measurements are collectively referred to as “omics”, as
they involve measuring the complete makeup of a given biological
variable (e.g., proteomics attempts to measure the complete protein
composition of a cell). Analysis of such omics measurements has
shown that, despite the complexity inherent in living systems, rel-
atively simple models are accurate enough for several biological
studies. E.g., the gene expression profiles of various cell types can
be described in terms of relatively few biological functions [21].

Similarly, the metabolic fluxes in a cell can be predicted by as-
suming that the cell is solving an optimization problem shaped by
its evolutionary history [14]. The problem includes constraints that
model biochemical “reactions” consuming and producing metabo-
lites at specific stoichiometric ratios, and an objective that depends
on the fluxes through the reactions. For example, the metabolism
of fast-growing microbes (mid-log phase) is predicted accurately
by a linear problem such as (1). As another example, the metab-
olism of mammalian cells (e.g., hybridoma), is explained well by
minimization of the flux through the reaction that makes reactive
oxygen species [14]. Studies have identified alternative objective
functions that best predict microbial metabolism under different
growth conditions [36]. These objectives include maximizing ATP
yield per flux unit and maximizing ATP or biomass yield.

While the aforementioned studies have focused on using pre-
defined optimization problems, a number of studies have investi-
gated data-driven estimation of cellular goals. Two types of method
exist. Methods of the first type estimate how important the differ-
ent chemical reactions are for the cell’s operation, i.e., estimate
c in (1). For example, ObjFind [9] does this through a nonconvex
optimization formulation, and the more recent invFBA [44] solves
a linear program. The second type, and the focus of our work, es-
timate the stoichiometric coefficients of a new chemical reaction,
i.e., estimate a new column for matrix S in (1). This approach is
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important because often the known biochemical reactions are not
enough to explain observed data. We want to extend the model
complexity automatically by learning new chemical reactions, i.e.,
new columns for S.

The main drawback of estimating new reactions is that it re-
quires solving nonconvex optimization problems. Currently, only
the BOSS tool [17] does this. BOSS was shown to recover known
biomass reactions successfully in synthetic experiments involv-
ing less than 70 reactions and 60 metabolites. This is not large
enough for real-life applications, which can involve thousands
of reactions/metabolites. Note that BOSS (a) uses an off-the-shelf
solver (e.g. MINOS) that cannot exploit parallelism, (b) cannot in-
duce sparsity on the learnt reaction, and (c) has not been tested on
large problems.

Here we address these important limitations. Our main contri-
butions are the following.

(1) We develop BIG-BOSS (https://github.com/laurenceyang33/
cellgoal), the first tool that can learn biochemical reactions
in large models (up to 4,456 metabolites and 6,663 reactions).
BIG-BOSS is based on the alternating direction method of
multipliers (ADMM). It employs an adaptive penalty and a
preconditioning scheme, and hence requires no tuning. Fur-
ther, it can exploit multiple CPUs to speed up computations
on large problems.

BIG-BOSS uses a sparsity-inducing regularization to allow
users to control the complexity of inferred reactions.

We test and report the accuracy of BIG-BOSS on 75 genome-
scale models of cell metabolism including prokaryotes, eu-
karyotes, and mammalian cells, using both clean and cor-
rupted input datasets.

—
N
=

2 REACTION ESTIMATION AS AN
OPTIMIZATION PROBLEM

We estimate a cellular goal using measured fluxes (cf. v in (1)) as
input. These fluxes are measured for different cell growth environ-
ments, e.g., growth on glucose, or with/without oxygen. The part of
the cellular goal that we estimate here is one new metabolic reaction,
in particular its stoichiometric coefficients. In other words, we want
to learn a new column for S in (1) in order to explain observations
better. We focus on one reaction for simplicity, but BIG-BOSS can
be used to estimate simultaneously the stoichiometric coefficients
of multiple new biochemical reactions.

2.1 Bilevel optimization problem

We formulate our problem as a bilevel optimization problem [2].
We start from fluxes {\7(") }{.‘:1 measured across k growth conditions,
which is accomplished by feeding an organism carbon-13 labeled nu-
trients and tracing their distribution using spectroscopy/spectrometry
[1]. Each vector v(!) contains the fluxes through a subset of all n re-
actions taking place in the cell. We also fix the flux 20 >0,z e R,
through the new undefined reaction whose stoichiometric coeffi-
cients y € R™ we want to estimate. Given a set of coefficients y,
and for each growth condition i, we assume that the cell fluxes



Applied Data Science Track Paper

vi) e R7 optimize a standard COBRA model:

v e C'(i)(y) 2 arg m(a))( cTw® 4 gD (2)
w i

subject to swid) 4+ z(i)y =p®, (3)

1D < wd) < o, (4)

where 1) and u(?) (known) are the lower and upper flux bounds,
p® (known) is the rate of accumulation or depletion of different
metabolites, ¢ (known) is the relative importance of the different
known chemical reactions in the model, d!) € R (known) is the
relative importance of the new chemical reaction we want to learn,
and S (known) are the stoichiometric coefficients of the known
chemical reactions in the model.

Our goal is to find sparse reaction coefficients y (unknown) for
the new reaction, such that the resulting fluxes {v(i)}f:l explain
the measured fluxes {\7(")}5?:1 as well as possible. For each growth
condition i, we keep track of which of the n fluxes we measure in
a binary matrix F () that, when applied to v, selects the correct
measured components. This leads to the formulation that BIG-BOSS
solves:

min  ~ zk: HF(i)v(i) - e<i>|)2 +8 |yl )
WO,y kS S
subject to v\© € Ci(y),

where § > 0 controls sparsity. Larger § encourages reactions having
few reactants and products.

We reformulate this bilevel optimization problem as a single-
level optimization problem.

THEOREM 2.1. Problem (5), can be written as

k . . NI
{vm},y,{w(lii)lir{{,,<i>},{,,(i)} % ; HF(I)V(I) - {’(l)) 2 Olivily ()
subject to svid) 4+ z(i)y =b, Vi, 7)
STw® — g 4 70 = ¢ i, ®)
vl > 4 vi, ©)
TV 4 20 = T 1O, 0 4 (0T i (10)
1D < v < 4@ v, (11)
D D > 0, vi, (12)

where w?) is the dual variable for constraint (3), and p(i) and q(i)
are dual variables for the upper and lower bounds in (4).

The proof of Theorem 2.1 follows the same ideas as in [17]. In
a nutshell, we write the Karush-Kuhn-Tucker (KKT) conditions
for the convex problem (2), and add constraint (10) to say that the
primal and dual objective values for (2) are equal, which is true by
strong duality.

The bilinear constraints (9) make the problem nonconvex. Fur-
thermore, all of the constraints are coupled by the variable y, the
new chemical reaction that we want to learn. If it were not for
(9), we could decouple problem (6) into independent generalized
LASSO problems [41]. To solve (6)-(12), we use the Alternating
Direction Method of Multipliers (ADMM) [4, 6, 11].
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Table 1: Nomenclature of variables and parameters

Variable Space Description
Model variables
n N number of fluxes in the cell
m N number of metabolites in the cell
k N number of experimental conditions
p {1,...,n} number of measured fluxes
i {1,...,k} condition i
v, vD) R™ all fluxes in model
¥, v R? measured fluxes
c R™ relative importance of reaction
S RMXn stoichiometric coefficients
b, b(®) R™ rate of accumulation or depletion of
metabolites (typically zero)
1, 14 R™ flux lower bounds
u, ud R™ flux upper bounds
y R™ coefficients of the new reaction, which
we want to learn from data
z, 20 R fixed flux through new reaction
w, w® R™ dual variables for linear constraints
u, p(i) R" dual variables for flux lower bounds, [
n, q(i) R"™ dual variables for flux upper bounds, u
d,d® R relative importance of the new reaction
é R sparsity regularization weight
Factor-graph and ADMM variables
QP Quadratic function-node
BI() Bi-linear function-node
BD Boundary function-node
SP L1-norm function-node
FX Fluxes variable-node
NR New reaction Variable-node
DB Dual variable for flux bounds variable-node
DE®)  Dual variable for equilibrium constraint variable-node
¥ Primal iterate
r Consensus iterate
= Dual iterate
Prox  Proximal operator (PO) map
p ADMM PO tuning parameter
% ADMM over-relaxation tuning parameter
a ADMM step-size tuning parameter
n, n?) Input to PO map

3 SUMMARY OF THE NOTATION USED

All of the variables and parameters that we use are defined in Table 1.
Vectors are written in bold, matrices are capitalized, and scalars are
lower-case.

A few variables are defined locally, and their definitions only
hold inside the section, or subsection, where they are defined. These
are the only variables not listed in the notation tables.

4 SOLUTION PROCEDURE USING ADMM

BIG-BOSS’s inner workings are based on the over-relaxed, dis-
tributed consensus, ADMM algorithm [6, 33]. This choice is based
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Function-nodes

Variable-nodes

QD | f1 + fr) + f8) + fao) v} |FX
SP f Y |NR
BIV f((;)) o |DEW

(...) (--)
BI® 1) w® |DE®
) / \ )
BI®) ) w® | DE®
BD fay + faz 9y, (| DB

Figure 1: Representation of (6)-(12) as a factor-graph. Each
function-node, and each variable-node, is labeled by two cap-
ital letters.

on the fact that ADMM (i) allows us to easily parallelize BIG-BOSS,
(ii) has good empirical performance for several nonsmooth, noncon-
vex problems [4, 11, 12, 20, 29, 45], and (iii) has global optimality
guarantees (under mild convexity assumptions) and a convergence
rate that (under proper tuning) equals the convergence rate of
the fastest possible first-order method [16], although itself not a
first-order method.

Let (V) = £ 3, [FOVO 30| and foty) = slylh.
Let f7) be a function that takes the value +oo if the constraint
(7) is not satisfied, and zero if it is. Let f(g), .. -’f(12) be defined
analogously. For the special case of constraints (9), we define one
function f, (9') for each condition i in (9). To explain how we solve
problem (6)-(12) using ADMM, it is convenient to perform two
simple rerepresentations of (6)—(12) using the functions f;.

First, we rewrite problem (6)-(12) as

min fi + fo +f(7)+f(8)+f(f;))+---+f(g;)+ﬁ11)+f(12).

Second, we represent this unconstrained problem in a factor-graph
form, i.e., a bipartite graph connecting objective functions (function-
nodes) to the variables that they depend on (variable-nodes), as
shown in Figure 1. There are 3 + k function-nodes and variable-
nodes in total.

We interpret ADMM as an iterative scheme that operates on iter-
ates that live on the edges/nodes of the factor-graph in Figure 1, simi-
lar to the approaches in [11, 12, 20]. The function-nodes have the fol-
lowing labels: quadratic (QP), sparse (SP), bi-linear (BI(l), . ,BI(k)),
and bound (BD). The variable-nodes have the following labels: flux
(FX), new reaction (NR), dual equilibrium (DEW, ..., DEX)), and
dual bound (DB). Each edge (function-node, variable-node), such as
(BD, DE(i)), has two associated iterates: a primal iterate ¥ and a dual
iterate =. Both iterates are vectors whose dimension matches the
variable in the variable-node that they connect to. Each edge also
has an associated parameter p > 0. For example, the dual iterate and
parameter associated with the edge (BD, DE(i)) are Egpy ppo (di-
mension m) and PBD.DE® respectively. Each variable-node has one
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associated iterate: a consensus iterate I' whose dimension matches
the variable associated with the variable-node. For example, the
consensus iterate associated with node DB is Ipg (dimension 2kn).

Essential to ADMM is the concept of a proximal operator (PO) of
a function f : R® — R with parameter p. This is a map Proxy , :
R® > RS that takes as input n € R® and outputs

. E _ 2
Proxs ,(n) € arg“rllélléls f(w)+ 5 [ln = wl|5. (13)

We denote the POs for the function in each function-node as Proxgp,
Proxgp, Proxpy, and Proxpp respectively. All POs have uniquely
defined outputs.

Given this setup, the over-relaxed distributed-consensus ADMM
algorithm leads directly to Algorithm 1, which is the basis of BIG-
BOSS. In Algorithm 1, if Y is a variable-node, dY represents all edges
incident on Y. Similarly, if X is a function-node, X represents all
edges incident on X. Note that each for-loop in Algorithm 1 can be
computed in parallel.

Algorithm 1 Algorithm for BIG-BOSS

1: while !stopping criteria do

2 for E = (X, Y) € edges of factor-graph do

3 B « Ep +a(y¥p - Ty + (1 - p)rod)

4 end for

5 for X € function-nodes of factor-graph do

6 {¥E}Eeax < Proxx py ({Ty — EE}Eeax)
7 end for

8 for Y € variable-nodes of factor-graph do

9 F;ld — Ty

10 Ty «— (1-y)ly + Yoy PE(yYE+EE)

2EcoY PE
11: end for

12: end while

The rate of convergence of ADMM is influenced by the multiple
p’s, v, and @, and there are various methods for choosing good val-
ues or adapting them while ADMM is running [6, 11, 22, 37, 40-42].
As described in Section 4.6, we implement the residual balancing
method [37]. Although this scheme is not provably optimal, the
algorithm converges very quickly in practice, and the BIG-BOSS
user need not worry about tuning in general. In BIG-BOSS, all of the
p’s corresponding to edges incident on the same function-node X
in the factor-graph have the same value, px, throughout ADMM’s
execution. See Section 4.6 for more details. In this work, we run
ADMM until all of the iterates are identical between iterations to a
numerical absolute tolerance of 107°. This is our stopping criterion.

Most updates in Algorithm 1 are linear. The exceptions are up-
dates involving POs, which require solving (13) for different func-
tions f. A vital part of our work was to find efficient solvers for
each PO. Our decomposition of problem (6)-(12) into the specific
form of Figure 1 is not accidental. It leads to a very small number
of POs, all of which can be evaluated quickly. (Proxgp amounts to
solving a linear system, and the others can be computed in closed
form.) We expand on this in the next sections.

4.1 Proximal operator for node QP

The function-node QP is a quadratic objective subject to some
linear constraints. To explain how we compute Proxgp, we start



Applied Data Science Track Paper

by defining w) = {v(), (D), y() p() y} e R2AnTm)+m f51 each
condition i, writing

G 1 & L 12
Alw O = 2 S [POw® - g0,
i=1

and writing the constraints f(7)+ f(s) + f(10) < +c0 as Cw® = ),
Vie{1,...,k}, where

PO=[FD o o o of,q?=[7],

S 0 0 o z¥ b®
cd=|o sT -1 I 0 |, and ed=| ¢ |.
I —pT 1 OT _yoOT (@)

Evaluating PI’OXQP({n(i)}) for input vectors {nM} e R2k(n+m)+m
now amounts to finding the unique minimizer of a strongly convex
quadratic program with linear constraints, namely,

k k
i - § P _ @2 L £ § (i) _ (D)2
{w(i)}eﬁlgzllf(ln+m)+m k = || w q ”Z * 2 = ”W n ”2

subject to Cw(D) = e(i),Vi e{1,...,k}.

We find this unique minimizer by solving a linear system obtained
from the KKT conditions. We then have k linear systems that are
coupled by the variable y that is common to each w). We can
write each linear system in block form as

w®
o] -

where 1) is the Lagrange multiplier for the linear constraints

%p(i)Tp(i) +pl cwT

2 PO 4 pn®
c® 0

) » (19)

Cw® = ), Finally, we stack the k linear systems into one
large linear system!. For numerical stability reasons, we add —fI,
B = 10712, to the system’s matrix. This ensures a unique solution.
As described in Section 4.5, we also implemented a preconditioner
for this linear system to improve its condition number.

To solve the linear system, we compared two different numerical
libraries. One is the C library UMFPACK, which we called from For-
tran using the Fortran 2003 interface in mUMFPACK 1.0 [19]. The
other is the symmetric indefinite solver MA57 [13] from HSL [23].
For both solvers, the symbolic factorization needs to be computed
only once. When p is updated, only the numerical factorization is
recomputed. As other groups have reported [18], we found that
MAS57’s solve phase was faster than UMFPACK’s. We therefore used
MAS57 for all results in this study.

4.2 Proximal operator for node DB

Observe that the constraint f(11) + f(12) < +oo is equivalent to 3k
constraints of the type et < witi) < q(i’j) for some constant
vectors eli)), q(i’j) € R"™: one for each condition i and each of the
variables v(?) (for index j = 1), y(i) (for index j = 3), and ,,(i) (for
index j = 4). Hence, computing Proxpgp({n‘*-/)}) for some input
{n:1)} € R*™ amounts to solving 3k independent problems

min 2 Hwo,;) _ n(w)” subject to ) < w(i-l) < glisd),
wli-))ern 2 2
Uf k is very large, we can also split the function-node QP into k function-nodes, one
per condition i. This will result in k smaller linear systems, now decoupled, that can
be solved in parallel.
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This problem has a unique minimizer given explicitly by
wibi) = min{q(i’j), max{e(i’j), n(i,j)}}’

where min and max are taken component-wise.

4.3 Proximal operator for node SP

The PO for node SP, which has fa(w) = §||w||1, requires finding
the minimizer of

. P 2
min = [|w—n|5;+ 35w .

weR™ 2

This minimizer is w = Ss/,(n), where S;(-) is the element-wise
soft-thresholding operator [6] defined, for input scalar x, as

if |x| <t

otherwise.

0,
S =
o {sign<x><|x| — ), 49

4.4 Proximal operator for node BI?)
The ith bilinear proximal operator Proxy:) receives input vectors
n, n) ¢ R™, and outputs the minimizer of

min

y,witeRm

2
) (16)

subject to yTw(i) >d%. (17)

To solve this problem, we consider two cases. If n(i)Tn > d(i), we
know that the minimizer is (y, w(i)) = (n, n(i)). Otherwise, we know
that the constraint (17) is active, and we compute the minimizer
from among the set of solutions of the KKT conditions for the (now
constrained) problem. The KKT conditions are

py — pn — Ao = 0, pw(i) _ pn(i) —ly=0, yTw(i) - d(i),

where A is the dual variable for the constraint yTw(i) > dW, By

defining x = A/p and reformulating the KKT system, we arrive at

the following quartic equation that determines the value of A:
dDx* + (—=2d® — nTn@)x? + (nTn + n(i)Tn(i))x
+(d? —nTn) = 0. (18)

We solve this quartic equation in closed form, using the Quartic

Polynomial Program Fortran code [10, 32]. For each real root, x, we

compute y and ') as

n — xn(9) n) — xn

_ S (19)
1 - x2 1 - x2

and we keep the solution that minimizes the objective function

(16).

y= o =

4.5 Preconditioner

The convergence rate of the ADMM can be improved by precondi-
tioning the data matrices associated with the node QP [37, 38].
We use the Ruiz equilibration method [34] to compute positive
definite diagonal matrices, Q and R, with which we scale all of the
variables {w(i) = {v(i), @, y(i), q(i),y}} in our formulation, as
well as the constraints C(Hw(?) = e(i)Vi, associated with the node
QP. The new scaled variables are defined through the change of
variable w(¥) — Qw(i), and the new constraints then transform as
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Cw® = e - RCDQw(D) = Re(DVi. Note that all of the copies
of y inside each wd) get scaled exactly in the same way.

This scaling affects the different proximal operators in different
ways. The node QP, that requires computing Pronp({n(i)}), now
requires solving a modified version of (14), namely, the following
system of linear equations (coupled by y),

w(®
o)
For ProxDB({n(i’j)}), let QO),j = 1,3, 4, be the diagonal block of

Q that scales the variables vid) G=1), u(i) (j = 3), and r](i) G =4).
We now solve 3k problems of the type

T /s .
Q2P + pnld

02p®Tpg 1 o1 c'R
Re(®)

rRcQ 0

. NV
min 2 Hw(”) - n(”j)H subject to (20)
w(i-))ern 2 2
QU i) < i) < 9O (i) 1)

which has a unique minimizer
w® = min{Q" " ¢, max{QW) " elt)), n(i-)yy,

For the node SP, let Q®) be the diagonal block of Q that scales
the variable y. The new Proxsp(n) now outputs

w = SQ(5)_1§/p (n),

where, for the rth component of n, we use the rth diagonal element

of Q(S)_lé /p in the operator S, that is applied component-wise.
For the ith bilinear proximal operator Proxg (n, n®), we now
solve

arg min

. NI
iy 2
y, @) eRm

subject to yTQ(5>Q(2)a)(i) > d®,

where Q(z) is the diagonal block of Q that scales the variable o).
We modify the Ruiz equilibration method such that 0B)0®@ =
constant X1, and hence we can solve this PO using the same method
as before.

4.6 Adaptive penalty

Our ADMM scheme allows for one p per each edge in the factor-
graph in Fig. 1. In BIG-BOSS, these p’s are chosen automatically,
such that a user does not need to worry about tuning. All of the p’s
associated with edges incident on the same function-node have the
same value. Hence, we refer to the different p’s by their respective
PO. We update the p’s for each PO dynamically every 1000 iterations
using the residual balancing method [6], which we now explain.

Similar to [37, 40], we define the vector of relative primal residu-
als at iteration 10° X ¢, and for any proximal operator X, as

{¥e(t) - Ty(D}:E=(xX,Y)e0X
max{{max{|¥e(t)|, [Ty ()|}} :E=(x, v)eax }

rprim(t) =

where, we recall, 0X are all the edges incident on node X.
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The vector of relative dual residuals for the proximal operator
X = QP at iteration 10® x ¢ is defined as follows. Let

2 T .
€= m%x EP(Z)TP(I){‘PEU + D}eeox|| -
1= (o)
2 T ..
Cz = I{EE(t + D} pegxles and Cs = miax -2 PO g0 ‘ :
= )
We define

{Ty(t +1) - Iv(O}y,(x,v)eax
max{Cy, Cy, C3}
If X is a PO other than QP, we define
Tyt + 1) - Ty} y«x,v)eax
&)
since C; and C3 do not exist when X is not QP.
The p update rule is then defined as follows. Once the co-norm
of both the primal and the dual residuals falls below a threshold of
1073, we start updating p as

Taual(t +1) =

Taual(t +1) =

s

p(t + 1) = max{10~3, min{10%, 5(¢t + 1)}}

where

At+1)= {rp(t) if

p(t)

where 7 = \/[[r(t)primlloo/[I(!)dualllo and 7 > 0, which in this
study we set to 2, is a threshold to prevent the p from changing
too frequently. Note that a frequently-changing p requires many
numerical re-factorization for solving the linear system in the node
QP. Furthermore, a frequently-changing p might compromise the
convergence of the ADMM.

10 (i (1) o/ 1t (e )| > ),

otherwise,

4.7 Step size

The step size « in Algorithm 1 can be adjusted to speed up con-
vergence. We used a default step size of 1.0 for all problems. If the
problem did not converge to the desired tolerance within 2 million
iterations, we re-ran the problem with a simple step size heuristic.
We use o = 1 for 10,000 iterations, & = 0.1 for 100,000 iterations,
then & = 0.001 until convergence, or the iteration limit is reached.

5 EXPERIMENTAL RESULTS

5.1 BOSS versus BIG-BOSS

We compare BIG-BOSS with BOSS in terms of running speed, and
accuracy. To make a valid comparison, we set k = 1 and § = 0,
such that BIG-BOSS is doing the same inference as BOSS [17].
BOSS requires choosing an off-the-shelf nonlinear programming
solver, we choose IPOPT [39] (v24.7.1), an open-source, interior-
point solver used to solve large-scale nonlinear programs.

We generate synthetic flux measurements, v, using the latest
metabolic network of E. coli [31] called iML1515. This network
has 1, 877 metabolites and 2, 712 reactions. We then hide one goal
reaction from the network, y, and try to infer it from flux data.

Using a single CPU core (Intel i7, 3.4GHz), BOSS is able to learn
y for this model in 13.3 seconds (wall time) using IPOPT to primal
and dual residuals of 1.05 x 10711 and 7.23 x 10~!!. Using the same
CPU core, BIG-BOSS is able to learn y in 113 seconds to primal and
dual residuals of 2.73 x 1071% and 6.63 x 1071°. In Appendix A.3, we
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report the run-time for other accuracy values. Although BIG-BOSS
is slower than BOSS, it is still fast, and, more importantly, allows
k > 1,8 > 0, and the use of multiple cores for large models.

Now we look at how well the recovered reaction coefficients y
compare to the true coefficients that we hide, both in BOSS and
BIG-BOSS. We do so by (i) directly comparing the ground truth
with the recovered y, as well as, (ii) using the recovered y to predict
measured fluxes (training fluxes).

For BOSS, the recovered goal reaction coefficients y closely re-
semble the true reaction coefficients, with Spearman rank correla-
tion, FSPeArMAN. — 0 996 (Fig, 2a). With the recovered y back into the
model, we then solve (1) to simulate fluxes. For BOSS, the estimated
goal reaction has zero flux, resulting in simulated fluxes that do
not resemble the training fluxes (Fig. 2c). To help BOSS, we make
y sparse by zeroing coefficients with absolute value smaller than
a fixed threshold 0. Since this cannot be done in a real setting, it
shows a limitation in BOSS. We tested thresholds between 0 to 1
and found that values between 1073 to 107! result in accurate flux
predictions (0.98 < R? < 1.0).

We perform the same experiment using BIG-BOSS, which esti-
mates y with rSPerman — o 871 (Fig. 2b). Fluxes predicted using
this new reaction are accurate on the training data to R? = 0.994
without zeroing additional coefficients (Fig. 2d).

@ ; ®

r = 0.996, 6=0
0.001

r=0.871, =0

109 , 0 104 ,

0.871, f=1e-05

BOSS BIG-BOSS

102-10%101071 0 107'10° 10' 102
ytrue

102-10-10°10"" 0 107110° 10" 10%
e

(c
1 R?* =0.994, =0
R? = 0.994, f=1e-05

<)
1 R? = 0.0656, 0=0
R? = 0.999, 6=0.001

BIG-BOSS

—100 0 —100 0 100

Figure 2: Performance of BOSS and BIG-BOSS. Coefficients
of y estimated using BOSS (a) and BIG-BOSS (b) compared
against true coeflicients. Fluxes predicted using the goal re-
action estimated by BOSS (c) and BIG-BOSS (d) compared
against training fluxes v. R?: coefficient of variation. r: Spear-
man rank correlation. 0: threshold for zeroing out elements
of y smaller than 6.

5.2 Experiments with 75 large-scale models

We test our algorithm’s performance on 75 large-scale metabolic
networks in the BiGG database [25]. Model sizes ranged from 95 to
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10, 600 reactions and 72 to 5, 835 metabolites. The median model
size is 2, 727 reactions and 1, 942 metabolites. For each model, we
generate synthetic training fluxes by solving Problem (1) using
the existing cellular goal reaction. To generate test data, we do as
above but in a different simulated nutrient environment. This is
accomplished by changing the bounds 1 and u on nutrient transport
reactions. Our algorithm then receives as input the training fluxes,
the bounds, and an incomplete stoichiometric matrix, which is
missing the column corresponding to the “ground truth” cellular
goal reaction that we want to estimate.

We evaluate our algorithm’s performance based on three metrics:
(i) how well the estimated reaction allows to predict training fluxes,
(i) how well the estimated reaction allows to predict testing fluxes,
and (iii) how close the estimated reaction coefficients are to the
ground truth coefficients. To evaluate metrics (i) and (ii), we insert
the estimated reaction into the metabolic network, having first
removed the true goal reaction, and then simulate fluxes.

Based on the coefficient of determination (R%) between measured
and predicted fluxes, both training and test performances were high
(median R? of 0.993 and 0.977) (Table 2). To assess the significance
of these R? values, we compare them with fluxes generated from
1,000 random goal reactions. These random goal reactions are
obtained by randomly shuffling the coefficients of the ground truth
coefficients. We say that the R? based on our algorithm is significant
if it exceeds 95% of the R? values that were computed using the 1,000
random goal reactions. Overall, R? values are significant for 70.1%
of the models for training data and 67.2% of the models for test data
(Table 2). The ground truth goal reaction is recovered accurately:
across 75 models, the median Pearson correlation was 1.0 (Table 3).
The Spearman rank correlation was lower, with median 0.48. The
fact that predicted fluxes are accurate indicates that metabolic flux
predictions are relatively insensitive to the precise recovery of the
true coeflicients in y.

In biological experiments, the majority of fluxes are unmeasured,
s0 50% missing flux measurements is common [1]. We test the effect
of missing flux measurements by randomly removing 10% and 50%
of measurements, repeated five times. The main consequence of
missing measurements is that recovering the ground truth goal is
more difficult. With 10% and 50% of missing measurements, me-
dian Pearson correlations of —0.023 and 0.0012 are obtained (Table
2). The accuracy of predicted fluxes also deteriorate when mea-
surements are missing (Table 2). However, depending on which
reactions are measured, fluxes can be predicted with R? > 0.90 for
6.67% of the cases with 10% of missing measurements, and for 3.16%
of the cases with 50% of missing measurements, in the case of test
data. This result shows that certain fluxes are more important than
others, and that BIG-BOSS can recover goal reactions when those
important fluxes are measured.

5.3 Effect of multiple data types

Next, we investigate if including data types other than metabolic
fluxes can improve reaction estimation. In particular, the concen-
tration of over 95% of cell proteins and transcripts (RNA) can be
measured [35]. These data types have been used to identify statisti-
cally enriched biological functions [21] but not to estimate reactions.
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Table 2: Performance for 75 BiGG models. R?: coefficient of
determination. By ‘significant’ we mean that the R? based on
our algorithm’s goal reaction exceeds 95% of the R? values
that are based on 1,000 random goal reactions.

% missing R? % cases, % cases,

Data fluxes mean median R% > 0.90 significant
0.0 0.711 0.993 63.8 70.1

Train 10.0  -6.89 0.56 12.2 19.7
50.0 -38.9 0.604 4.98 6.45

0.0 0.666 0.977 59.4 67.2

Test 10.0 -4.7 0.33 6.67 15
50.0 -29.2 0.431 3.16 6.56

Table 3: Goal reaction recovery accuracy for 75 BiGG models.

% missing  Metric min max mean median
fluxes

0.0 Pearson 0.021 1 0.96 1

Spearman 0.1 0.76 0.48 0.48

10.0 Pearson -0.74 1 0.063 -0.023

Spearman  -0.12 0.9 0.59 0.63

50.0 Pearson -0.92 082 -0.032  0.0012

Spearman -0.27 0.76 0.38 0.4

Thus, to include protein concentrations in our algorithm, we extend
(1), similar to [3]. (Details in Supplement A.1.)

We estimated goal reactions with three different data sets: only
metabolic fluxes, only proteins, and both. To reflect realistic data,
we include only metabolic fluxes for central metabolism, and in-
clude all proteins—this is achievable using proteomics, or with RNA
sequencing where RNA is used to estimate protein concentrations.
We then use the estimated goal reaction to predict all metabolic
fluxes and protein concentrations (including values not seen by the
algorithm) in left-out conditions to assess the test performance.

When only metabolic fluxes are provided, the prediction accu-
racy is low (mean R? = 0.281) (Table 4). When only proteins are
provided, the accuracy is even lower (mean R? = —16.4). One rea-
son for the low accuracy is that protein concentrations are not
always directly proportional to flux—they only provide an upper
bound. When both fluxes and proteins are provided, the average
test accuracy is R? = 0.567, which is double the accuracy with only
flux measurements.

Table 4: Test performance of flux and protein predictions
given different coverage of protein and flux measurements.
Coverage refers to the percentage of fluxes or proteins that
are measured and used as input to BIG-BOSS.

Coverage (%) R?

Flux Protein | mean min max
57 100 0.567 0.108 0.77
57 0 0.281 0.225 0.322

0 100 | -16.375 -23.556 -11.293
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Figure 3: Speedup with multiple CPU cores for number of
conditions k = 1 and 2 using the fine-grained implementa-
tion of BIG-BOSS.

54

Problem (5) can grow rapidly in size and can benefit from parallel
computing. BOSS cannot exploit parallel computational resources,
but BIG-BOSS can. We thus tested how BIG-BOSS scales with multi-
ple processors, using the same metabolic network as in Section 5.1.
To maximize parallelism, we implemented a fine-grained version of
our algorithm, similar to [20]. The fact that we are using ADMM is
important to achieve this. This implementation involves splitting
node QP: one for every constraint. By combining this fine-grained
version of QP with BD and BI, we have our fine-grained BIG-BOSS.
This implementation of BIG-BOSS gave 1.6X speedup with 2 CPUs,
and 7x speedup with 64 CPUs (Fig. 3). With k = 2 the speedup was
greater, achieving 8x with 32 and 64 CPUs.

In these experiments, we did not perform preconditioning or
adaptive penalty to prevent factors besides CPU count from affect-
ing speed. To parallelize our code, we used OpenACC and the PGI
compiler 18.10. These tests were performed on Google Compute
Engine virtual machines with 32-core (64-thread) Intel Xeon 2.30
GHz processors and 64 GB RAM.

Multi-core speedup

6 CONCLUSION

In this work, we addressed the problem of estimating cellular goal
reactions from measured fluxes in the context of constraint-based
modeling of cell metabolism. This problem was previously ad-
dressed by the BOSS algorithm [17], which successfully demon-
strated the viability of this approach on a model of Saccharomyces
cerevisiae central metabolism composed of 60 metabolites and 62
reactions. Here, we developed a new method that extends BOSS and
demonstrates its performance on 75 metabolic networks having up
to 10,600 reactions and 5,835 metabolites.

Our method successfully estimated goal reactions that enabled ac-
curate prediction of metabolic fluxes in new nutrient environments
(median coefficient of determination, R? = 0.98). Furthermore, the
stoichiometric coefficients of the estimated reactions matched those
of the ground truth reactions that were used to generate the training
fluxes (median Pearson correlation, r = 0.96).

As with the original BOSS, our algorithm involves a noncon-
vex optimization problem with bilinear constraints. ADMM is an
efficient approach for solving problems with many bilinear con-
straints, and more generally, nonconvex quadratic constraints [24].
For our problem, the number of bilinear constraints can be large, as
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it increases with the number of conditions in the data. Besides scal-
ability, BIG-BOSS allows for regularization, modularity—enabling
extensions, and can use multiple data types (fluxes and protein
concentrations), which improves prediction accuracy.
Genome-scale metabolic network models have been invaluable
in numerous studies including infectious disease and cancer me-
tabolism [5]. The success of these studies depends on the avail-
ability of a reaction representing cellular goals. For many impor-
tant cellular systemss, such as human tissue or microbiomes, such
reactions are still challenging to determine experimentally [14].
Our study shows that a data-driven approach for cellular goal es-
timation is promising. This approach is most effective when we
have high coverage flux measurements or complementary data
types, such as flux measurements for parts of the network and pro-
tein or RNA abundance measurements for most of the metabolic
genes. BIG-BOSS is thus suited for analyzing large gene expres-
sion data sets, e.g., from cancer tissue. BIG-BOSS is available at
https://github.com/laurenceyang33/cellgoal.
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A DETAILS FOR REPRODUCIBILITY

A.1 Model formulation including proteins

Our model formulation for including protein concentrations is
based on [3] and [27]. First, we denote p as the vector of protein
concentrations, whose length is the number of proteins in the meta-
bolic network. Each protein has a molecular weight, which is stored
in a. One or more proteins combine to form enzyme complexes, e,
which are ultimately the molecules that catalyze metabolic reac-
tions. The rate of a metabolic reaction is limited by the catalytic
efficiency of an associated enzyme and that enzyme’s concentration.
Since multiple enzymes can sometimes catalyze the same reaction,
we have a matrix of catalytic efficiencies, K mapping reactions to
all possible enzymes. The total protein mass of a cell, ¢, can be
measured, and this quantity imposes an upper bound on the sum
of individual protein concentrations multiplied by their molecular
weights, a. Finally, each protein can be part of one or more en-
zyme complexes, and each enzyme complex is comprised of a fixed
number of a particular protein. This protein to enzyme mapping is
encoded in the matrix E.

By adding these relationships to (1), we have the following linear
problem:

max clv+f Tp
v,p,e
subjectto  Sv =b,

v—Ke+ oW =0,
an + 0'(2) =1, 22)
Ee—p+0'(3) =0,
I<v<u,
p.e >0,
o > 0,vj € {1,2,3},
where f is the cell’s relative importance of different proteins, and
o) are non-negative slack variables.
By defining w = {v, p, e, 0'(1), 0'(2), 0(3)},

S 0 0 0 0 0
S=|r o -k I o o,
0o -I E 0 0 I

¢={cf}, 1=1{L0,0,0,0,0}, @ = {u, +00, +00, +00 + 00, +c0}, and
b = {b,0,t,0}, we can write (22) as

Tw subject to Sw=b1<w<a,

max ¢ (23)
w

which is (1) with a change of variables. Therefore, BIG-BOSS can

be applied directly to the problem with proteins and fluxes.

The K matrix is typically not known fully. Here, we used a default
value of 65 second ™!, which are in units of enzyme turnover rate and
represents an average catalytic efficiency for all enzymes in E. coli.
Values for matrix E were determined from the gene-protein-reaction
mappings that are included with each metabolic model in the BiGG
database [25]. Without additional information we assumed that
each complex requires one unit of each protein in the gene-protein
mapping. For ¢, we chose a default value of 0.30, indicating that the
model accounts for 30% of the cell’s protein mass. For molecular
weights a, we used a default value of 77 kDa for every protein,
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based on the average molecular weight of proteins in E. coli. (Note
that a can also be determined directly from the protein’s amino
acid sequence.)

A.2 Online Resources

Code and documentation for BIG-BOSS are available at https://
github.com/laurenceyang33/cellgoal. Detailed installation instruc-
tions are available there. Briefly, users will need a Fortran compiler,
CMake, and a linear system solver. We tested our algorithm with
both UMFPACK, which is part of SuiteSparse, and MA57 [13] from
HSL [23]. For parallel computing features, users will need Ope-
nACC and the PGI Compiler. We have tested all code using PGI
Community Edition version 18.10. In the code repository, we in-
clude test suites to run BIG-BOSS on metabolic network models
that users can download from the BiGG database [25].

A.3 Details on solution time

We report details on the run time for BIG-BOSS when solving the
problem shown in Fig. 2. Solutions having modest accuracy are
found quickly, as is expected for ADMM (Fig. 4).
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Figure 4: Maximum of primal and dual residuals versus the
wall time of running BIG-BOSS.



