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ABSTRACT

Optimization-based models have been used to predict cellular be-

havior for over 25 years. The constraints in these models are derived

from genome annotations, measured macromolecular composition

of cells, and by measuring the cell’s growth rate and metabolism

in different conditions. The cellular goal (the optimization problem

that the cell is trying to solve) can be challenging to derive exper-

imentally for many organisms, including human or mammalian

cells, which have complex metabolic capabilities and are not well

understood. Existing approaches to learning goals from data include

(a) estimating a linear objective function, or (b) estimating linear

constraints that model complex biochemical reactions and constrain

the cell’s operation. The latter approach is important because often

the known reactions are not enough to explain observations; there-

fore, there is a need to extend automatically the model complexity

by learning new reactions. However, this leads to nonconvex opti-

mization problems, and existing tools cannot scale to realistically

large metabolic models. Hence, constraint estimation is still used

sparingly despite its benefits for modeling cell metabolism, which

is important for developing novel antimicrobials against pathogens,

discovering cancer drug targets, and producing value-added chemi-

cals. Here, we develop the first approach to estimating constraint

reactions from data that can scale to realistically large metabolic

models. Previous tools were used on problems having less than 75

reactions and 60 metabolites, which limits real-life-size applications.

We perform extensive experiments using 75 large-scale metabolic

network models for different organisms (including bacteria, yeasts,

and mammals) and show that our algorithm can recover cellular

constraint reactions. The recovered constraints enable accurate

prediction of metabolic states in hundreds of growth environments

not seen in training data, and we recover useful cellular goals even

when some measurements are missing.
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1 INTRODUCTION AND RELATEDWORK

Engineered microbial and mammalian cells are used as production

platforms to synthesize commodity or specialty chemicals and phar-

maceuticals. Accurate computational models of cell metabolism and

protein expression are important to design cell factories and to max-

imize product yield and quality [26, 43]. Similarly, mathematical

models of cell metabolism have been used to identify strategies to

improve the efficacy of existing antibiotics [8].

The ability of engineers to predict microbial behavior was fa-

cilitated in 1990 by the observation that overflow metabolismÐ

an industrially-relevant metabolic behaviorÐin Escherichia coli

could be predicted by a relatively simple network of reactions with

capacity-constrained flows [28]. Since then, this constrained opti-

mization model of cellular metabolism (often called COBRA) has

been applied to over 78 species across the tree of life [30]. Metabolic

reconstructions today are łgenome-scaležÐi.e., they account for the

majority of metabolic genes annotated in the organism’s genomeÐ

and consist of hundreds to thousands of biochemical reactions and

metabolites. For example, the most recent reconstruction of human

metabolism includes 13,543 metabolic reactions involving 4,140

metabolites [7], while the latest multiscale model of metabolism

and protein expression for E. coli [27] consists of 12,655 reactions

and 7,031 components including macromolecules like protein, RNA

(ribonucleic acid), and ribosome.

As of mid-2013, over 640 published studies used COBRA for

experimental investigation in various domains of engineering and

health sciences [5]. Successful applications of COBRA include en-

gineering microbes to produce commodity or valuable chemicals

[43], developing novel antimicrobials against infectious disease [8],

and discovering new drug targets against cancer [15].

In its basic form, COBRA predicts n reaction fluxes v ∈ Rn

(reaction rate normalized by dry weight of biomass) in a metabolic
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network, consisting ofm metabolites and n reactions, by solving a

linear program that models cellular goal:

max
v

cTv subject to Sv = b, l ≤ v ≤ u, (1)

where c ∈ Rn is a vector of objective coefficients, (·)T denotes the

transpose, S ∈ Rm×n is a matrix of stoichiometric coefficients (one

column per biochemical reaction), b ∈ Rm is a vector of metabolite

accumulation or depletion rates, and l, u ∈ Rn are lower and upper

flux bounds.

In order to make accurate predictions, these models require an

accurate S matrix, which is nowadays reliably reconstructed from

extensive knowledgebases of enzyme biochemistry, and genome

annotations for thousands of species and strains organisms. The

other key ingredient is the cellular objective function, cTv. Other

objectives, including nonlinear functions, have been tested [36]. For

many microbes cultured in nutrient-limiting conditions, maximiza-

tion of cell growth rate (per unit of limiting nutrient) is an accurate

objective function [36]. This particular function corresponds to a

c that is an indicator vector with a 1 in the component associated

with the reaction that corresponds to the cell growth, and zero

everywhere else.

Currently, system-level understanding of living organisms re-

quires the analysis of large-scale measurements originating from

disparate biological processes operating at multiple length and time

scales. Such measurements are collectively referred to as łomicsž, as

they involve measuring the complete makeup of a given biological

variable (e.g., proteomics attempts to measure the complete protein

composition of a cell). Analysis of such omics measurements has

shown that, despite the complexity inherent in living systems, rel-

atively simple models are accurate enough for several biological

studies. E.g., the gene expression profiles of various cell types can

be described in terms of relatively few biological functions [21].

Similarly, the metabolic fluxes in a cell can be predicted by as-

suming that the cell is solving an optimization problem shaped by

its evolutionary history [14]. The problem includes constraints that

model biochemical łreactionsž consuming and producing metabo-

lites at specific stoichiometric ratios, and an objective that depends

on the fluxes through the reactions. For example, the metabolism

of fast-growing microbes (mid-log phase) is predicted accurately

by a linear problem such as (1). As another example, the metab-

olism of mammalian cells (e.g., hybridoma), is explained well by

minimization of the flux through the reaction that makes reactive

oxygen species [14]. Studies have identified alternative objective

functions that best predict microbial metabolism under different

growth conditions [36]. These objectives include maximizing ATP

yield per flux unit and maximizing ATP or biomass yield.

While the aforementioned studies have focused on using pre-

defined optimization problems, a number of studies have investi-

gated data-driven estimation of cellular goals. Two types of method

exist. Methods of the first type estimate how important the differ-

ent chemical reactions are for the cell’s operation, i.e., estimate

c in (1). For example, ObjFind [9] does this through a nonconvex

optimization formulation, and the more recent invFBA [44] solves

a linear program. The second type, and the focus of our work, es-

timate the stoichiometric coefficients of a new chemical reaction,

i.e., estimate a new column for matrix S in (1). This approach is

important because often the known biochemical reactions are not

enough to explain observed data. We want to extend the model

complexity automatically by learning new chemical reactions, i.e.,

new columns for S .

The main drawback of estimating new reactions is that it re-

quires solving nonconvex optimization problems. Currently, only

the BOSS tool [17] does this. BOSS was shown to recover known

biomass reactions successfully in synthetic experiments involv-

ing less than 70 reactions and 60 metabolites. This is not large

enough for real-life applications, which can involve thousands

of reactions/metabolites. Note that BOSS (a) uses an off-the-shelf

solver (e.g. MINOS) that cannot exploit parallelism, (b) cannot in-

duce sparsity on the learnt reaction, and (c) has not been tested on

large problems.

Here we address these important limitations. Our main contri-

butions are the following.

(1) We develop BIG-BOSS (https://github.com/laurenceyang33/

cellgoal), the first tool that can learn biochemical reactions

in large models (up to 4,456 metabolites and 6,663 reactions).

(2) BIG-BOSS is based on the alternating direction method of

multipliers (ADMM). It employs an adaptive penalty and a

preconditioning scheme, and hence requires no tuning. Fur-

ther, it can exploit multiple CPUs to speed up computations

on large problems.

(3) BIG-BOSS uses a sparsity-inducing regularization to allow

users to control the complexity of inferred reactions.

(4) We test and report the accuracy of BIG-BOSS on 75 genome-

scale models of cell metabolism including prokaryotes, eu-

karyotes, and mammalian cells, using both clean and cor-

rupted input datasets.

2 REACTION ESTIMATION AS AN

OPTIMIZATION PROBLEM

We estimate a cellular goal using measured fluxes (cf. v in (1)) as

input. These fluxes are measured for different cell growth environ-

ments, e.g., growth on glucose, or with/without oxygen. The part of

the cellular goal that we estimate here is one newmetabolic reaction,

in particular its stoichiometric coefficients. In other words, we want

to learn a new column for S in (1) in order to explain observations

better. We focus on one reaction for simplicity, but BIG-BOSS can

be used to estimate simultaneously the stoichiometric coefficients

of multiple new biochemical reactions.

2.1 Bilevel optimization problem

We formulate our problem as a bilevel optimization problem [2].

We start from fluxes {ṽ(i)}ki=1 measured across k growth conditions,

which is accomplished by feeding an organism carbon-13 labeled nu-

trients and tracing their distribution using spectroscopy/spectrometry

[1]. Each vector ṽ(i) contains the fluxes through a subset of all n re-

actions taking place in the cell. We also fix the flux z(i) ≥ 0, z(i) ∈ R,

through the new undefined reaction whose stoichiometric coeffi-

cients y ∈ Rm we want to estimate. Given a set of coefficients y,

and for each growth condition i , we assume that the cell fluxes
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v(i) ∈ Rn optimize a standard COBRA model:

v(i) ∈ C(i)(y) , argmax
w(i )

cTw(i)
+ d(i)z(i) (2)

subject to Sw(i)
+ z(i)y = b(i), (3)

l(i) ≤ w(i) ≤ u(i), (4)

where l(i) and u(i) (known) are the lower and upper flux bounds,

b(i) (known) is the rate of accumulation or depletion of different

metabolites, c (known) is the relative importance of the different

known chemical reactions in the model, d(i) ∈ R (known) is the

relative importance of the new chemical reaction we want to learn,

and S (known) are the stoichiometric coefficients of the known

chemical reactions in the model.

Our goal is to find sparse reaction coefficients y (unknown) for

the new reaction, such that the resulting fluxes {v(i)}ki=1 explain

the measured fluxes {ṽ(i)}ki=1 as well as possible. For each growth

condition i , we keep track of which of the n fluxes we measure in

a binary matrix F (i) that, when applied to v(i), selects the correct

measured components. This leads to the formulation that BIG-BOSS

solves:

min
{v(i ) }ki=1,y

1

k

k∑

i=1




F (i)v(i) − ṽ(i)




2

2
+ δ ∥y∥1 (5)

subject to v(i) ∈ Ci (y),

where δ ≥ 0 controls sparsity. Larger δ encourages reactions having

few reactants and products.

We reformulate this bilevel optimization problem as a single-

level optimization problem.

Theorem 2.1. Problem (5), can be written as

min
{v(i ) },y, {ω (i ) }, {µ(i ) }, {η(i ) }

1

k

k∑

i=1




F (i)v(i) − ṽ(i)




2

2
+ δ ∥y∥1 (6)

subject to Sv(i) + z(i)y = b,∀i, (7)

STω(i) − µ
(i)
+ η

(i)
= c,∀i, (8)

yTω(i) ≥ d(i),∀i, (9)

cTv(i) + z(i) = bTω(i) − l(i)
T
µ
(i)
+ u(i)

T
η
(i),∀i, (10)

l(i) ≤ v(i) ≤ u(i),∀i, (11)

µ
(i),η(i) ≥ 0,∀i, (12)

where ω(i) is the dual variable for constraint (3), and µ
(i) and η(i)

are dual variables for the upper and lower bounds in (4).

The proof of Theorem 2.1 follows the same ideas as in [17]. In

a nutshell, we write the Karush-Kuhn-Tucker (KKT) conditions

for the convex problem (2), and add constraint (10) to say that the

primal and dual objective values for (2) are equal, which is true by

strong duality.

The bilinear constraints (9) make the problem nonconvex. Fur-

thermore, all of the constraints are coupled by the variable y, the

new chemical reaction that we want to learn. If it were not for

(9), we could decouple problem (6) into independent generalized

LASSO problems [41]. To solve (6)ś(12), we use the Alternating

Direction Method of Multipliers (ADMM) [4, 6, 11].

Table 1: Nomenclature of variables and parameters

Variable Space Description

Model variables

n N number of fluxes in the cell

m N number of metabolites in the cell

k N number of experimental conditions

p {1, . . . ,n} number of measured fluxes

i {1, . . . ,k} condition i

v, v(i) R
n all fluxes in model

ṽ, ṽ(i) R
p measured fluxes

c R
n relative importance of reaction

S R
m×n stoichiometric coefficients

b, b(i) R
m rate of accumulation or depletion of

metabolites (typically zero)

l, l(i) R
n flux lower bounds

u, u(i) R
n flux upper bounds

y R
m coefficients of the new reaction, which

we want to learn from data

z, z(i) R fixed flux through new reaction

ω,ω(i)
R
m dual variables for linear constraints

µ, µ(i) R
n dual variables for flux lower bounds, l

η, η(i) R
n dual variables for flux upper bounds, u

d , d(i) R relative importance of the new reaction

δ R sparsity regularization weight

Factor-graph and ADMM variables

QP Quadratic function-node

BI(i) Bi-linear function-node

BD Boundary function-node

SP L1-norm function-node

FX Fluxes variable-node

NR New reaction Variable-node

DB Dual variable for flux bounds variable-node

DE(i) Dual variable for equilibrium constraint variable-node

Ψ Primal iterate

Γ Consensus iterate

Ξ Dual iterate

Prox Proximal operator (PO) map

ρ ADMM PO tuning parameter

γ ADMM over-relaxation tuning parameter

α ADMM step-size tuning parameter

n, n(i) Input to PO map

3 SUMMARY OF THE NOTATION USED

All of the variables and parameters that we use are defined in Table 1.

Vectors are written in bold, matrices are capitalized, and scalars are

lower-case.

A few variables are defined locally, and their definitions only

hold inside the section, or subsection, where they are defined. These

are the only variables not listed in the notation tables.

4 SOLUTION PROCEDURE USING ADMM

BIG-BOSS’s inner workings are based on the over-relaxed, dis-

tributed consensus, ADMM algorithm [6, 33]. This choice is based
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by defining w(i)
= {v(i),ω(i), µ(i),η(i), y} ∈ R2(n+m)+m for each

condition i , writing

f1({w
(i)}) =

1

k

k∑

i=1




P (i)w(i) − q(i)




2

2
,

and writing the constraints f(7)+ f(8)+ f(10) < +∞ asC(i)w(i)
= e(i),

∀i ∈ {1, . . . ,k}, where

P (i) =
[
F (i) 0 0 0 0

]
, q(i) =

[
ṽ(i)

]
,

C(i)
=



S 0 0 0 z(i)

0 ST −I I 0

cT −bT l(i)
T

−u(i)
T

0



, and e(i) =



b(i)

c

−z(i)


.

Evaluating ProxQP({n
(i)}) for input vectors {n(i)} ∈ R2k (n+m)+m

now amounts to finding the unique minimizer of a strongly convex

quadratic program with linear constraints, namely,

min
{w(i ) }∈R2k (n+m)+m

1

k

k∑

i=1

∥P (i)w(i) − q(i)∥22 +
ρ

2

k∑

i=1

∥w(i) − n(i)∥22

subject to C(i)w(i)
= e(i),∀i ∈ {1, . . . ,k}.

We find this unique minimizer by solving a linear system obtained

from the KKT conditions. We then have k linear systems that are

coupled by the variable y that is common to each w(i). We can

write each linear system in block form as
[
2
k
P (i)

T
P (i) + ρI C(i)T

C(i) 0

] [
w(i)

λ(i)

]
=

[
2
k
P (i)

T
q(i) + ρn(i)

e(i)

]

, (14)

where λ(i) is the Lagrange multiplier for the linear constraints

C(i)w(i)
= e(i). Finally, we stack the k linear systems into one

large linear system1. For numerical stability reasons, we add −βI ,

β = 10−12, to the system’s matrix. This ensures a unique solution.

As described in Section 4.5, we also implemented a preconditioner

for this linear system to improve its condition number.

To solve the linear system, we compared two different numerical

libraries. One is the C library UMFPACK, which we called from For-

tran using the Fortran 2003 interface in mUMFPACK 1.0 [19]. The

other is the symmetric indefinite solver MA57 [13] from HSL [23].

For both solvers, the symbolic factorization needs to be computed

only once. When ρ is updated, only the numerical factorization is

recomputed. As other groups have reported [18], we found that

MA57’s solve phase was faster than UMFPACK’s. We therefore used

MA57 for all results in this study.

4.2 Proximal operator for node DB

Observe that the constraint f(11) + f(12) < +∞ is equivalent to 3k

constraints of the type e(i , j) ≤ w(i , j) ≤ q(i , j) for some constant

vectors e(i , j), q(i , j) ∈ Rn : one for each condition i and each of the

variables v(i) (for index j = 1), µ(i) ( for index j = 3), and η(i) (for

index j = 4). Hence, computing ProxDB({n
(i , j)}) for some input

{n(i , j)} ∈ R3kn amounts to solving 3k independent problems

min
w(i , j )∈Rn

ρ

2




w(i , j) − n(i , j)




2

2
subject to e(i , j) ≤ w(i , j) ≤ q(i , j).

1If k is very large, we can also split the function-node QP into k function-nodes, one
per condition i . This will result in k smaller linear systems, now decoupled, that can
be solved in parallel.

This problem has a unique minimizer given explicitly by

w(i , j)
= min{q(i , j),max{e(i , j), n(i , j)}},

where min and max are taken component-wise.

4.3 Proximal operator for node SP

The PO for node SP, which has f2(w) = δ ∥w∥1, requires finding

the minimizer of

min
w∈Rm

ρ

2
∥w − n∥22 + δ ∥w∥1 .

This minimizer is w = Sδ/ρ (n), where St (·) is the element-wise

soft-thresholding operator [6] defined, for input scalar x , as

St (x) =

{
0, if |x | ≤ t

sign(x)(|x | − t), otherwise.
(15)

4.4 Proximal operator for node BI(i)

The ith bilinear proximal operator ProxBI(i ) receives input vectors

n, n(i) ∈ Rm , and outputs the minimizer of

min
y,w(i )∈Rm

ρ

2
∥y − n∥22 +

ρ

2




ω(i) − n(i)




2

2
(16)

subject to yTω(i) ≥ d(i). (17)

To solve this problem, we consider two cases. If n(i)
T
n ≥ d(i), we

know that theminimizer is (y,w(i)) = (n, n(i)). Otherwise, we know

that the constraint (17) is active, and we compute the minimizer

from among the set of solutions of the KKT conditions for the (now

constrained) problem. The KKT conditions are

ρy − ρn − λω(i)
= 0, ρω(i) − ρn(i) − λy = 0, yTω(i)

= d(i),

where λ is the dual variable for the constraint yTω(i) ≥ d(i). By

defining x = λ/ρ and reformulating the KKT system, we arrive at

the following quartic equation that determines the value of λ:

d(i)x4 + (−2d(i) − nTn(i))x2 + (nTn + n(i)
T
n(i))x

+ (d(i) − nTn(i)) = 0. (18)

We solve this quartic equation in closed form, using the Quartic

Polynomial Program Fortran code [10, 32]. For each real root, x , we

compute y andω(i) as

y =
n − xn(i)

1 − x2
, ω

(i)
=

n(i) − xn

1 − x2
, (19)

and we keep the solution that minimizes the objective function

(16).

4.5 Preconditioner

The convergence rate of the ADMM can be improved by precondi-

tioning the data matrices associated with the node QP [37, 38].

We use the Ruiz equilibration method [34] to compute positive

definite diagonal matrices, Q and R, with which we scale all of the

variables {w(i)
= {v(i),ω(i), µ(i),η(i), y}} in our formulation, as

well as the constraints C(i)w(i)
= e(i)∀i , associated with the node

QP. The new scaled variables are defined through the change of

variable w(i) → Qw(i), and the new constraints then transform as
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C(i)w(i)
= e(i) → RC(i)Qw(i)

= Re(i)∀i . Note that all of the copies

of y inside each w(i) get scaled exactly in the same way.

This scaling affects the different proximal operators in different

ways. The node QP, that requires computing ProxQP({n
(i)}), now

requires solving a modified version of (14), namely, the following

system of linear equations (coupled by y),

[
Q 2

k
P (i)

T
P (i)Q + ρI QC(i)TR

RC(i)Q 0

] [
w(i)

λ(i)

]
=

[
Q 2

k
P (i)

T
q(i) + ρn(i)

Re(i)

]

.

For ProxDB({n
(i , j)}), letQ(j), j = 1, 3, 4, be the diagonal block of

Q that scales the variables v(i) (j = 1), µ(i) (j = 3), and η(i) (j = 4).

We now solve 3k problems of the type

min
w(i , j )∈Rn

ρ

2




w(i , j) − n(i , j)




2

2
subject to (20)

Q(j)−1e(i , j) ≤ w(i , j) ≤ Q(j)−1q(i , j), (21)

which has a unique minimizer

w(i)
= min{Q(j)−1q(i , j),max{Q(j)−1e(i , j), n(i , j)}}.

For the node SP, let Q(5) be the diagonal block of Q that scales

the variable y. The new ProxSP(n) now outputs

w = S
Q (5)−1δ/ρ

(n),

where, for the r th component of n, we use the r th diagonal element

of Q(5)−1δ/ρ in the operator S, that is applied component-wise.

For the ith bilinear proximal operator ProxBI(i ) (n, n
(i)), we now

solve

argmin
y,ω (i )∈Rm

ρ

2
∥y − n∥22 +

ρ

2




ω(i) − n(i)




2

2

subject to yTQ(5)Q(2)
ω
(i) ≥ d(i),

where Q(2) is the diagonal block of Q that scales the variableω(i).

We modify the Ruiz equilibration method such that Q(5)Q(2)
=

constant×I , and hence we can solve this PO using the same method

as before.

4.6 Adaptive penalty

Our ADMM scheme allows for one ρ per each edge in the factor-

graph in Fig. 1. In BIG-BOSS, these ρ’s are chosen automatically,

such that a user does not need to worry about tuning. All of the ρ’s

associated with edges incident on the same function-node have the

same value. Hence, we refer to the different ρ’s by their respective

PO.We update the ρ’s for each PO dynamically every 1000 iterations

using the residual balancing method [6], which we now explain.

Similar to [37, 40], we define the vector of relative primal residu-

als at iteration 103 × t , and for any proximal operator X , as

rprim(t) =
{ΨE (t) − ΓY (t)}E :E=(X ,Y )∈∂X

max{{max{|ΨE (t)|, |ΓY (t)|}}E :E=(X ,Y )∈∂X }
,

where, we recall, ∂X are all the edges incident on node X .

The vector of relative dual residuals for the proximal operator

X = QP at iteration 103 × t is defined as follows. Let

C1 =
k

max
i=1






2

k
P (i)

T
P (i){ΨE (t + 1)}E∈∂X






∞

,

C2 = ∥{ΞE (t + 1)}E∈∂X ∥∞, and C3 =
k

max
i=1





−
2

k
P (i)

T
q(i)






∞

.

We define

rdual(t + 1) =
{ΓY (t + 1) − ΓY (t)}Y :(X ,Y )∈∂X

max{C1,C2,C3}
.

If X is a PO other than QP, we define

rdual(t + 1) =
{ΓY (t + 1) − ΓY (t)}Y :(X ,Y )∈∂X

C2
,

since C1 and C3 do not exist when X is not QP.

The ρ update rule is then defined as follows. Once the ∞-norm

of both the primal and the dual residuals falls below a threshold of

10−3, we start updating ρ as

ρ(t + 1) = max{10−3,min{103, ρ̃(t + 1)}}

where

ρ̃(t + 1) =

{
τ ρ(t) if

���ln
(
∥rprim(t)∥∞/∥rdual(t)∥∞

)��� ≥ ln(η),

ρ(t) otherwise,

where τ =
√
∥r (t)prim∥∞/∥r (t)dual∥∞ and η > 0, which in this

study we set to 2, is a threshold to prevent the ρ from changing

too frequently. Note that a frequently-changing ρ requires many

numerical re-factorization for solving the linear system in the node

QP. Furthermore, a frequently-changing ρ might compromise the

convergence of the ADMM.

4.7 Step size

The step size α in Algorithm 1 can be adjusted to speed up con-

vergence. We used a default step size of 1.0 for all problems. If the

problem did not converge to the desired tolerance within 2 million

iterations, we re-ran the problem with a simple step size heuristic.

We use α = 1 for 10,000 iterations, α = 0.1 for 100,000 iterations,

then α = 0.001 until convergence, or the iteration limit is reached.

5 EXPERIMENTAL RESULTS

5.1 BOSS versus BIG-BOSS

We compare BIG-BOSS with BOSS in terms of running speed, and

accuracy. To make a valid comparison, we set k = 1 and δ = 0,

such that BIG-BOSS is doing the same inference as BOSS [17].

BOSS requires choosing an off-the-shelf nonlinear programming

solver, we choose IPOPT [39] (v24.7.1), an open-source, interior-

point solver used to solve large-scale nonlinear programs.

We generate synthetic flux measurements, ṽ, using the latest

metabolic network of E. coli [31] called iML1515. This network

has 1, 877 metabolites and 2, 712 reactions. We then hide one goal

reaction from the network, y, and try to infer it from flux data.

Using a single CPU core (Intel i7, 3.4GHz), BOSS is able to learn

y for this model in 13.3 seconds (wall time) using IPOPT to primal

and dual residuals of 1.05× 10−11 and 7.23× 10−11. Using the same

CPU core, BIG-BOSS is able to learn y in 113 seconds to primal and

dual residuals of 2.73× 10−10 and 6.63× 10−10. In Appendix A.3, we
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it increases with the number of conditions in the data. Besides scal-

ability, BIG-BOSS allows for regularization, modularityÐenabling

extensions, and can use multiple data types (fluxes and protein

concentrations), which improves prediction accuracy.

Genome-scale metabolic network models have been invaluable

in numerous studies including infectious disease and cancer me-

tabolism [5]. The success of these studies depends on the avail-

ability of a reaction representing cellular goals. For many impor-

tant cellular systemss, such as human tissue or microbiomes, such

reactions are still challenging to determine experimentally [14].

Our study shows that a data-driven approach for cellular goal es-

timation is promising. This approach is most effective when we

have high coverage flux measurements or complementary data

types, such as flux measurements for parts of the network and pro-

tein or RNA abundance measurements for most of the metabolic

genes. BIG-BOSS is thus suited for analyzing large gene expres-

sion data sets, e.g., from cancer tissue. BIG-BOSS is available at

https://github.com/laurenceyang33/cellgoal.
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