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List-Decodable Zero-Rate Codes
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Abstract— We consider list decoding in the zero-rate regime
for two cases—the binary alphabet and the spherical codes in
Euclidean space. Specifically, we study the maximal τ ∈ [0, 1]
for which there exists an arrangement of M balls of relative
Hamming radius τ in the binary hypercube (of arbitrary dimen-
sion) with the property that no point of the latter is covered by
L or more of them. As M → ∞ the maximal τ decreases to
a well-known critical value τL . In this paper, we prove several
results on the rate of this convergence. For the binary case,
we show that the rate is �(M−1) when L is even, thus extending
the classical results of Plotkin and Levenshtein for L = 2. For
L = 3, the rate is shown to be �(M−(2/3)). For the similar
question about spherical codes, we prove the rate is �(M−1)

and O(M−(2L/L2−L+2)).

Index Terms— List decoding, error correction codes, Hamming
space, Euclidean space.

I. INTRODUCTION

THIS work concerns list-decoding under worst-case errors
in the zero-rate regime. We consider the case of the binary

alphabet in Sections I-VIII and the case of the unit sphere in
Hilbert space in Section IX.

To motivate our study, we note that the maximum possible
size of a code with given parameters is the most fundamental
combinatorial problem in coding theory. Although the positive
rate region is more interesting for applications, the range just
above the threshold between positive rate and zero rate is
intriguing and leads to challenging combinatorial problems,
exhibiting, as we show in the paper, some interesting behavior.

Specifically, suppose we transmit a sequence of n symbols
from {0, 1} over a channel that can adversarially change less
than a fraction τ of the symbols. The locations of corrupted
symbols are unknown to the receiver. The goal is to find a
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code C ⊂ {0, 1}n such that the receiver can always produce
a list of fewer than L messages containing the transmitted
message. In other words, we seek a code C such that for
every w ∈ {0, 1}n there are fewer than L codewords within
Hamming distance τn from w. We call such code <L-list-
decodable with radius τ . The largest such τ is denoted by
ρ̃L(C) and is called the (normalized) L-radius of the code.

Let

τL
def= 1

2
−
�2k

k

�

22k+1 if L = 2k or L = 2k + 1. (1)

It is known [3] that for radius τ < τL the largest <L-list-
decodable code is exponentially large in n, and for radius
τ > τL the largest <L-list-decodable code is of bounded size
(independent of n). The aim of this paper is to understand how
this constant varies as τ approaches τL from above. We define

maxcodeL(ε)
def= max

�|C| : C ⊂ {0, 1}n

is <L-list-decodable of radius τL + ε
�
.

Note that in this definition we do not restrict the block
length n. The maximum is over all choices of n ∈ N.

We are aware of three results on maxcodeL(ε). First,
a construction due to Levenshtein [9] shows that the so-called
Plotkin bound is sharp in the unique decoding case, namely

maxcode2(ε) = 1

4ε
+ O(1).

Levenshtein’s construction uses Hadamard matrices, and so
requires ε to be of a special form. As a part of Theorem 1
below we present a construction without a condition on ε.

Second, Blinovsky [3] proved that maxcodeL(ε) is finite
for every L and every ε > 0. His proof iterates
Ramsey’s theorem, and gives a very large bound on
maxcodeL(ε) (which is not made explicit in the paper). Finally,
in [5, Th. 1] Blinovsky claims an upper bound on maxcodeL(ε)
of the form maxcodeL(ε) = O(1/ε). Below we construct a
counterexample to this claim for L = 3.1

We next overview our results for the binary alphabet. The
results for spherical codes are in Section IX.

A. Our Results (Binary Alphabet)

Our first result is a version of Levenshtein’s construction for
any fixed L. In comparison to Levenshtein’s result, we have
no restriction on ε, but our codes are longer (the value of n
is larger).

1The mistake appears to stem from the second paragraph of the proof of [5,
Th. 1], which proposes a certain extension procedure for codes and claims
that it does not decrease L-radius. A simple counter-example to the claim
is a code C = {0, 1}2 with 4-radius equal to 1, but its extension results in
reduction of the 4-radius to 1

2 .
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Theorem 1: Let L ≥ 2, suppose m is a positive integer, and
let M = �2m

m

�
. Let cL = 2−L�L/2�� L−1

�L/2�
�
. Then there exists

an <L-list-decodable code in {0, 1}M of size 2m and radius
τ = τL + cL/2m + O(m−2). In particular,

maxcodeL(ε) ≥ cLε−1 + O(1).
Theorem 2: Let L ≥ 2 be even. Then

maxcodeL(ε) = O(ε−1)

We believe that in fact maxcodeL(ε) = cLε−1 + O(1) for even
L.

The case of odd L appears to be significantly harder: the
principal reason for this is Lemma 8(b) below. By a different
method, however, we were able to make progress for L = 3:

Theorem 3: We have maxcode3(ε) = �(ε−3/2).

II. OVERVIEW OF THE PROOF OF THEOREM 2

The bulk of the paper is devoted to the proof of Theorem 2.
In this section, we explain the general structure of the argu-
ment.

A code with ρ̃L(C) = τ is, equivalently, a code in which
all L-tuples of distinct codewords have large circumscribed
radius, where the latter is defined as the radius of the smallest
ball (in Hamming space) containing the L-tuple. First of all,
we show (Prop. 4) that the center of the ball can as well be
sought after in [0, 1]n, instead of {0, 1}n . The resulting quantity
is denoted rad(x), cf. (4). The resulting linear relaxation is
much easier to analyze.

Second, we introduce mean radius mradω(x) of an L-tuple x
with respect to a measure ω on {1, 2, . . . , L}. The significance
of this quantity is that there exists (Lemma 6) finitely many
ω’s such that

rad(x) = max
ω∈��

L

mradω(x) ∀x ∈ ({0, 1}n)L . (2)

Among these ω’s a special one is U[L] – a uniform distribution
on [L].

The mean radii of random independent bits is denoted

as τω,p = E[mradω(X1, . . . , X L)], where Xi
i.i.d .∼ Ber(p).

Properties of τω,p are summarized in Lemma 8, where two
crucial ones are that τL = τU [L],1/2 and that for even L
(!) we have τω,p ≤ τL − δ0 for some δ0 > 0 and all
ω �= U[L], ω ∈ ��

L, p ∈ [0, 1].
To understand why maxcode	(L) = �( 1

	 ) is a natural guess,
we recall a standard averaging argument (Corollary 10):

1
�M

L

�
�

x∈(C
L)

mradω(x) ≤ τω,1/2 + O(1/M). (3)

Thus, averaged over the code the mean radii (with respect to
any ω) can never exceed τL + O(1/M). Our proof shows that
(for even L) and every sufficiently large code with ρ̃L(C) ≥
τL averaging mean radii (with ω = U[L]) is equivalent to
averaging the actual radius.

With these preparations our proof proceeds as follows:

a) We start with showing that a biased code (i.e. one
in which the fraction of 1’s among all codewords is
≤ 1/2 − δ0) with radius ρ̃L(C) ≥ τL can have at most

finite size. This is the content of Lemma 13, which is
proved by appealing to a Ramsey theorem to extract a
large subcode with the property that rad(x) = mradω(x)
for every L-tuple x and some fixed ω. Invocation of a
biased-version of (3) then shows this subcode cannot be
too large.

b) Next, we show (Lemma 11) that there is a dichotomy:
either a code has a large biased subcode (thus con-
tradicting above), or all but O(1/M) fraction of its
L-tuples must have random-like coordinate composition
(i.e. out of n coordinates about 2−Ln have zeros in all L
codewords, and the same holds for each binary pattern).
In particular, this implies that every such L-tuple has
mradω(x) ≈ τω,1/2.

c) Finally, since every ω �= U[L] yields mradω(x) ≈
τω,1/2 < τL we must have that 1 − O(1/M) fraction
of L-tuples satisfy rad(x) = mradU [L](x) and hence
in averaging (3) we can replace mradω(x) with rad(x)
and conclude that rad(x) of a typical L-tuple is at most
τL + O(1/M) as claimed.

We mention that our proof of Theorem 2 also shows why
Theorem 3 is perhaps surprising: for L = 3 we construct a
code such that averaged over the codebook mradω(x) is always
≤ τL + O(1/M) (as it should be), yet the rad(x) of every
L-tuple is ≥ τL + O(1/M2/3). The proof of Theorem 3 relies
on a special relation for radii of triangles in 
1-spaces, see
Prop. 7.

III. MEAN RADII

a) Definitions: For x ∈ R
n , let 
x
 def= (1/n)

�|xi |.
In particular, for x, y ∈ {0, 1}n the quantity 
x − y
 is the
(normalized) Hamming distance between bit strings x and y.

For points x (1), . . . , x (L) ∈ {0, 1}n let

rad(x (1), . . . , x (L)) = min
y∈[0,1]n

max
i


x (i) − y
. (4)

Note that we allow the coordinates of y to be arbitrary real
numbers between 0 and 1. For example, for C = {000, 100}
we have rad(C) = 1/6, but for every y ∈ {0, 1}3 one of the
points of C is at distance at least 1/3. However, this relaxation
makes only slight effect, as the next proposition shows.

Proposition 4: Let x (1), . . . , x (L) ∈ {0, 1}n. If τ =
rad(x (1), . . . , x (L)), then there is a point y ∈ {0, 1}n such that

x (i) − y
 ≤ τ + L

2n for all i .
Proof: For any bit z ∈ {0, 1} and real w ∈ [0, 1] define


(z, w) = w if z = 0 and 
(z, w) = 1 − w if z = 1. Note that
with this notation, for every i , 
x (i)− y
 = 1

n

�n
j=1 
(x (i)

j , y j )
is an affine function of the variables y j .

The assumption rad(x (1), . . . , x (L)) ≤ τ is equivalent to
the fact that the polytope in the variables y j defined by
the inequalities 0 ≤ y j ≤ 1 for all 1 ≤ j ≤ n and
1
n

�n
j=1 
(x (i)

j , y j ) ≤ τ for all 1 ≤ i ≤ L is nonempty. Hence
it contains a vertex y � = (y �

1, . . . , y �
n). In this vertex there

are at most L variables y �
j which are neither 0 nor 1, and

the desired result is obtained by rounding each such y �
j to

the closest integer y j and by taking y j = y �
j for all other

coordinates y �
j . �
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Let �L be the set of all probability measures on the

set [L] def= {1, 2, . . . , L}. Suppose ω ∈ �L is a probability
distribution on [L]. Then for an L-tuple x = (x (1), . . . , x (L)) ∈
({0, 1}n)L of codewords, we define their mean radius with
respect to ω by

mradω(x)
def= min

y∈[0,1]n
E

i∼ω

x (i) − y
. (5)

Because Ei∼ω
x (i) − y
 can be written as a sum over the
individual coordinates, the y attaining minimum in (5) may
be taken to have all of its coordinates in {0, 1}. This leads to
an alternative formula for mradω(x):

mradω(x) = E j∈[n] min

�
�

x (i)
j =0

ωi ,
�

x (i)
j =1

ωi

	
(6)

= 1
2 − 1

2 E j∈[n]







�

x (i)
j =0

ωi −�
x (i)

j =1
ωi







 . (7)

b) Duality: From the comparison of (4) and (5) it is clear
that rad(x) ≥ mradω(x) for any ω. The key observation is that
a suitable converse holds as well.

Lemma 5: For every x = (x (1), . . . , x (L)) ∈ ({0, 1}n)L we
have

rad(x) = max
ω∈�L

mradω(x), (8)

where the maximum is over all probability measures ω on
{1, 2, . . . , L}.

Proof: Notice that (4) can be rewritten as

rad(x) = min
y∈[0,1]n

max
ω∈�L

E
i∼ω


x (i) − y
.

Since the function

(y, ω) �→ E
i∼ω


x (i) − y
,
is convex in y and affine in ω, von Neumann minimax theorem
[13] implies

min
y∈[0,1]n

max
ω∈�L

E
i∼ω


x (i) − y
 = max
ω∈�L

min
y∈[0,1]n

E
i∼ω


x (i) − y
.

Comparing with (5) completes the proof. �
Lemma 6: For every L there exists a finite set of probability

measures ��
L ⊂ �L such that

rad(x) = max
ω∈��

L

mradω(x) for all x ∈ ({0, 1}n)L . (9)

Furthermore, |��
L | ≤ 4L2

.

Proof: Let x ∈ ({0, 1}n
�L be any L-tuple of words.

To each coordinate j ∈ [n] we can then associate the bit
string

T ( j)
def= �

x (1)
j , x (2)

j , . . . , x (L)
j

�
.

For a bit string T ∈ {0, 1}L , put PT = { j ∈ [n] : T ( j) = T }.
Let y be a point that achieves minimum in (4). For each

T , replace coordinates of y indexed by PT by their average.
This does not change 
x (i) − y
 and so the obtained point also
achieves minimum in (4). So, we may assume that y j depends
only on T ( j). Let αT = |PT |/n.

To each probability measure ω ∈ �L we can associate a
signature, which is a function Sω : {0, 1}L → {1,−1} defined
by

Sω(T )
def= sign

⎛

⎝
�

i:Ti =0

ωi −
�

i:Ti =1

ωi

⎞

⎠ for T ∈ {0, 1}L .

Note that ω → Sω is a sign of a linear function on the
�L , which we identify with a simplex in R

L−1. Since 2L

hyperplanes partition R
L−1 into at most

�
j≤L−1

�2L

j

� ≤ 2L2

regions, the number of possible signatures is at most 2L2
. For

each possible signature S, let �S
def= {ω ∈ �L : Sω = S}.

Since �S is an intersection of halfspaces, which, in addition
to Sω = S, includes the additional inequalities ωi ≥ 0 for all i
and

�
i ωi = 1, it is a convex polytope.

By the preceding lemma and (6), we want to maximize
mradω(x) over all probability measures ω ∈ �L . However,
while ω ranges over �S the values of all Sω(T ), T ∈ {0, 1}L

stay constant. Thus the maximum over ω ∈ �S of mradω(x)
is the maximum of the following linear function in the
variables ωi :

�

T

αT f (ω, T )

where

f (ω, T ) =
�

i:Ti =0

ωi if S(T ) = −1

and

f (ω, T ) =
�

i:Ti =1

ωi if S(T ) = +1,

where S(T ) denotes the constant signature Sω(T ). This maxi-
mum is attained at a vertex of the polytope �S . Thus, we may
take ��

L to be the union of the vertex sets of all polytopes �S ,
for all signatures S.

Each �S is defined by m
def= L + 2L inequalities, and so

by McMullen’s upper bound theorem has at most
�m−�L/2�

�L/2�
�+

�m−�L/2�−1
�L/2�−1

� ≤ 2L2
vertices. Multiplying by the 2L2

possible
signatures, we obtain the result. �

The preceding proof gives an algorithm to compute the
set ��

L . The results of this computation for small L can be
found at http://www.borisbukh.org/code/listdecoding17.html.
Interestingly, for L ≤ 4 the result is very nice. For a set
R ⊂ [L] let mradR(x) be the mradω(x) for the probability
measure ω that is uniform on R, i.e., ωi = 1/|R| if i ∈ R.
Then for any x ∈ ({0, 1}n)L

rad(x) = max|R| is even
mradR(x) if L ≤ 4. (10)

Our proof of Theorem 3 will use (10) with L = 3 and so
we establish it formally (generalized to arbitrary 
1-vectors).

Proposition 7: For any set of three vectors x, y, z in R
n

with respect to the 
1-norm, rad(x, y, z) = 1
2 diam(x, y, z).

Proof: Put x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn),
z = (z1, z2, . . . , zn). Let d be the diameter of the set {x, y, z}.
For each i let mi be the median of xi , yi , zi and define m =
(m1, m2, . . . , mn). Put, also, a = 
x − m
, b = 
y − m
,
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c = 
z − m
, where 
 · 
 is the 
1-norm. Note that, crucially

x − y
 = a + b, 
y − z
 = b + c, 
x − z
 = a + c. Thus
each of these three sums is at most d . If each of the quantities
a, b, c is at most d/2 then m is a center of an 
1-ball of radius
d/2 containing x, y, z, showing that in this case the radius is
indeed d/2, as needed. Otherwise one of the above, say a,
is larger than d/2. In this case define w = (1 − d

2a )x + d
2a m.

It is easy to check that x−w = d
2a (x−m) and hence 
x−w
 =

d
2a a = d/2. In addition m − w = (1 − d

2a )(m − x) and hence

m − w
 = a − d

2 .
Thus, by the triangle inequality, 
y −w
 ≤ 
y −m
+
m −

w
 = b + a − d
2 ≤ d

2 , and similarly 
z − w
 ≤ d
2 , completing

the proof. �

IV. AVERAGING

Averaging arguments play a major role in this paper. We col-
lect them in this section.

A. Mean Radii of Random Bit Strings

Averaging arguments will allow us to show that, in a large
code C , mean radii of codewords from C rarely exceed the
mean radius of random bit strings. Because of that, we start by
computing the mean radius of random bit strings for arbitrary
probability measure ω. In particular, we will see that the radius
threshold τL defined in (1) is the average radius of a random
L-tuple of bit strings.

Call a random string w ∈ {0, 1}n p-biased if each bit of w
is 1 with probability p and 0 with probability 1 − p, and the
bits are independent of each other. For a probability measure
ω on [L], we let

τω,p
def= E mradω(w(1), . . . , w(L)),

where w(1), . . . , w(L) ∈ {0, 1}n are independent p-biased. For
brevity, write τω in lieu of τω,1/2. Note that τω,p is independent
of n, in view of (6).

Let U[L] denote the uniform probability measure on [L].
Lemma 8:

a) For every probability measure ω on [L] and every p we
have

τω,p ≤ τU [L],p.

b) If L is even and 0 < p < 1, then the equality holds if
and only if ω = U[L].

c) τU [L],1/2 = τL , where τL is defined in (1).
d) We have τω,p < τL whenever p �= 1

2 .
Proof:

Part (a): Given an ω and a vector of signs ε =
(ε1, . . . , εL) ∈ {1,−1}L , define signed sum fω(ε)

def=�
i εiω(i). By (7), maximization of τω,p is equivalent to

minimization of

E
ε
| fω(ε)| for p-biased ε ∈ {1,−1}L,

i.e. where Pr[εi = −1] = p.
Let �∗

p be the set of all probability measures on [L] that
maximize τω,p . (The maximum is achieved because ω �→ τω,p

is a continuous function on a compact set.) Let ω ∈ �∗
p be

arbitrary. Suppose ω is not uniform. Without loss generality,
ω(L − 1) �= ω(L). Let ω� be obtained from ω by replacing
the values of L − 1 and L by their averages. If εL−1 = εL ,
then fω(ε) = fω� (ε). Also,

| fω(ε1, . . . , εL−2, 1,−1)| + | fω(ε1, . . . , εL−2,−1, 1)|
≥ | fω� (ε1, . . . , εL−2, 1,−1)| + | fω�(ε1, . . . , εL−2,−1, 1)|.

(11)

with equality only if |�i≤L−2 εiω(i)| ≥ |ω(L − 1) − ω(L)|.
Indeed, denoting a = �

i≤L−2 εiω(i) and b = ω(L − 1) −
ω(L) the inequality (11) is just

|a + b| + |a − b| ≥ 2|a|,

which is a consequence of convexity of | · |. Furthermore, it is
clear that equality holds only when a + b and a − b have the
same sign, i.e. |a| ≥ |b|.

Since ω ∈ �∗
p, it follows that the equality does hold in (11)

for every ε, and that ω� ∈ �∗
p as well. From the condition for

equality, we deduce that for any ω ∈ �∗
p we have

|ω(i) − ω(i �)| ≤ min
ε

|
�

j /∈{i,i � }
ε jω( j)| for all i �= i � (12)

From continuity of ω �→ τω, it follows by repeated pairwise
averaging, that if ω� is obtained from ω by replacing the values
of ω on any subset of [L] by their averages, then ω� ∈ �∗

p as
well. In particular, U[L] ∈ �∗

p and so (a) holds.
Part (b): Suppose that L is even and (b) does not hold. Let

ω ∈ �∗
p be non-uniform. Without loss of generality, ω(L −

1) �= ω(L). Let ω� be obtained from ω by replacing values
on [L − 2] by their averages. Since

�
j≤L−2(−1) jω�( j) = 0,

the measure ω� fails (12), and so ω� /∈ �∗
p. Thus, ω �∈ �∗

p and
hence, �∗

p = {U[L]}, as claimed by (b).
Part (c): Consider a random walk on Z starting from 0 that

makes a step to the right with probability p and to the left
with probability 1 − p. Let �s,p be the position of this walk
after s steps. Relation (7) implies that

τU [L],p = 1
2 − 1

2L E|�L ,p|. (13)

From (13) and [14, eqs. (23) and (32)] we obtain the formula
(1) for τL .

Part (d): In view of (a) we may restrict ourselves to the
case ω = U[L]. Because of (13) and the symmetry under
p → (1 − p), it suffices to prove that

Pr[|�s,p| ≥ k] ≥ Pr[|�s,1/2| ≥ k] ∀p > 1
2 , s ≥ 2 (14)

and that (14) is a strict inequality for some k. In fact, we will
show that the inequality is strict whenever k ≥ 2 and s ≡ k
(mod 2).

Since �s,p and �s,1/2 are of the same parity as s, it suffices
to consider only the case s ≡ k (mod 2). If k = 0 or k = 1
and s ≡ k (mod 2), then both sides of (14) are equal to 1.
If (s, k) = (2, 2), then the inequality (14) is strict because
p2 + (1 − p)2 > 1/2 for p > 1/2.
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The general case follows by induction on s from

Pr
�|�s+1,p| ≥ k

�

= 1
2 Pr

�|�s,p| ≥ k − 1
�+ 1

2 Pr
�|�s,p| ≥ k + 1

�

+ (p − 1
2 )
�
Pr[�s,p ∈ {k, k − 1}]

− Pr[�s,p ∈ {−k,−k + 1}]�,
which is valid for k ≥ 2. �

B. Mean Radii in Large Codes

Here we show that the average mradω(·) over L-tuples in a
large C ⊂ {0, 1}n can be only slightly larger than τω. In fact,
we will show a generalization of this to codes of possibly
small radius.

Lemma 9: Let ω be a probability measure on [L]. Suppose
C ⊂ {0, 1}n satisfies rad(C) ≤ p ≤ 1

2 . Then

E
w(1),...,w(L)∈C

mradω(w(1), . . . , w(L)) ≤ τU [L],p,

where the expectation is over uniformly and independently
chosen codewords w(1), . . . , w(L) from C.

Proof: Let p j = Prw∈C [w j = 1]. We have
mradU [C](C) ≤ p from (8). Recall that one can always
take y attaining minimum in the definition of mrad to have
all its coordinates in {0, 1}. So, without loss of generality
(otherwise invert some coordinates), we may assume that
y attaining mradU [C](C) in (6) is y = 0. Then we have
1
n

�
j∈[n] p j ≤ p. Denote by B(q) the distribution on {1,−1}L

where each coordinate is independently 1 with probability
q and −1 with probability 1 − q . Given a vector of signs

ε = (ε1, . . . , εL) ∈ {1,−1}L define fω(ε)
def= �

i εiω(i).
From (7) and the proof of part (a) of Lemma 8 we then

have

1 − 2 E
w∈C L

mradω(w) = E j∈[n] Eε∼B(p j) | fω(ε)|
≥ E j∈[n] Eε∼B(p j )




 fU [L](ε)




 .

By [10, Lemma 8], the function p �→ Eε∼B(p)




 fU [L](ε)






is convex. Jensen’s inequality and the fact that τU [L],p is
an increasing function of p on [0, 1

2 ] then complete the
proof. �

Corollary 10: Let ω be a probability measure on [L].
Suppose C ⊂ {0, 1}n is of size |C| ≥ L2 M and satisfies
rad(C) ≤ p. Then there is an L-tuple w ∈ C L with distinct
codewords such that mradω(w) ≤ τU [L],p + 1/M.

Proof: Let X ⊂ C L be the set of all L-tuples with distinct
codewords. The corollary follows from Pr[w �∈ X] ≤ �L

2

�
/|C|

and Ew∈C mradω(w) ≥ Pr[w ∈ X] Ew∈X mradω(w). �

V. ABUNDANCE OF RANDOM-LIKE L-TUPLES

Lemma 11: Let π : R
n → R

m be an orthogonal projection
on a set of m coordinates. Suppose that C ⊂ {0, 1}n satisfies
rad(π(C)) ≤ 1

2 − ε. Then there is a C � ⊂ C of size |C �| ≥
|C|/2 satisfying rad(C �) ≤ 1

2 − m
n ε.

Proof: Let π � be the projection on the remaining
n−m coordinates. Classify codewords c ∈ C based on whether

π �(c)
 ≤ 1

2 or > 1
2 . Without loss of generality, at least half

of them (call it C �) satisfy 
π �(c)
 ≤ 1
2 . Let y1 ∈ R

m be
the center attaining rad(π(C)) and define y ∈ R

n to be the
solution to π(y) = y1, π �(y) = 0. We have for any c ∈ C �


y − c
 = m
n 
π(y) − π(c)
 + n−m

n 
π �(y) − π �(c)

≤ m

n

� 1
2 − ε

�+ n−m
2n = 1

2 − m
n ε.

�
For an L-tuple x = (x (1), . . . , x (L)) ∈ ({0, 1}n)L , we define

type(x)
def= �

type(x)u
�

u∈{0,1}L to be the probability distribution

on {0, 1}L with type(x)u
def= 1

n #{ j : x (i)
j = ui ,∀i ∈ [L]} (Note

that type(x)u = αT with T = u in the notation of Lemma 6).
The next result shows that the only obstruction to finding a
large number of L-tuples with approximately uniform type(x)
is the existence of a large biased subcode.

Lemma 12: Let L be fixed. For every ε > 0 there is a δ > 0
with the following property. If s is a natural number, there exist
constants M0 = M0(s) and c = c(s) such that for any code

C ⊂ {0, 1}n with M
def= |C| ≥ M0 one of the following two

alternatives must hold:

a) ∃C � ⊂ C such that |C �| ≥ s and rad(C �) ≤ 1
2 − δ, or

b) there exist at least M L − cM L−1 many L-tuples of
distinct codewords from C such that

| type(x)u − 2−L | ≤ ε ∀u ∈ {0, 1}L (15)

and, in particular

| mradω(x) − τω,1/2| ≤ 2Lε for every ω ∈ �L (16)

for each of these L-tuples x.

Consequently, if C does not satisfy a), then the number of
L-tuples of distinct codewords of C violating (15) is of size
at most cM L−1.

Proof: Set 2δ0
def= (1+2Lε)1/L −1 and note that with this

choice we have |( 1
2 ± δ0)

L − 2−L | ≤ ε. Set also μ
def= ( 1

2 −
δ0)

L and δ
def= δ0μ. Finally, set c(s)

def= s2L+3 and M0(s)
def=

s2L+3. Note that (15) implies (16) via (6), and so we only
consider (15) below.

Let us assume that a) does not hold. Then in any C �� with
|C ��| ≥ 4s and for any orthogonal projection πA on a subset
of coordinates A ⊂ [n] there must exist a c ∈ C �� such that


πA(c)
 ∈ (1/2 − δ0, 1/2 + δ0), (17)

provided that δ0
|A|
n ≥ δ. Indeed, if all c ∈ C �� violate (17), then

at least half of c ∈ C should satisfy 
πA(c)
 ≤ 1/2 − δ0, say.
Denote this collection by C0 and observe that rad(πA(C0)) ≤
1/2 − δ0 and |C0| ≥ 2s. By Lemma 11 there must exist
C � ⊂ C0 of size ≥ s such that rad(C �) ≤ 1

2 − δ, contradicting
assumption.

It similarly follows that for any collection of subsets
A1, . . . , Ar with |A j | ≥ μn for all j ∈ [r ], and any C ��
with |C ��| ≥ 4sr there must exist c ∈ C �� such that (17) holds
simultaneously for all A = A j , j ∈ [r ]. Indeed, a given c ∈ C ��
can violate (17) in 2r ways (two ways for each A j ). By the
pigeonhole principle, if all codewords in C �� fail (17), then
there are 2s that fail in the same way, and then we proceed
as in the case above.
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We next show that there are more than

N1 =
L−1�

j=0

(M − j − 4s · 2 j )

L-tuples x of distinct codewords from C that satisfy (15).
Indeed, at least M − 4s codewords x (1) have |
x (1)
 − 1

2 | ≤
δ0. Once one such codeword x (1) is selected, let A0 = { j ∈
[n] : x (1)

j = 0} and A1 = Ac
0. Each of these two subsets has

cardinality ≥ n( 1
2 − δ0) ≥ μn. By the argument above, there

are more than M − 1 − 4s · 2 codewords x (2) not equal to
x (1) such that projections of x (2) on A0 and A1 both have
weights ∈ [ 1

2 − δ0,
1
2 + δ0]. Selecting one such x (2), we define

partitions A0 = A00∪A01 and A1 = A10∪A11 according to the
values of coordinates of x (1) and x (2). Proceeding similarly,
we construct x (3), . . . , x (L). The resulting L-tuple has distinct
elements and satisfies

( 1
2 − δ0)

L ≤ type(x)u ≤ ( 1
2 + δ0)

L ∀u ∈ {0, 1}L,

which by the choice of δ0 implies that it satisfies (15) as well.
Note that for M ≥ max j k j we have

L−1�

j=0

(M − k j ) = M L
L−1�

j=0

(1 − k j/M) ≥ M L − M L−1
L−1�

j=0

k j .

Setting k j = s2 j+3 ≥ j + 4s · 2 j we obtain

N1 ≥ M L − cM L−1,

provided M ≥ M0, completing the proof of the first part.
The final statement of the lemma follows from the

fact that there are at least M L − cM L−1 many L-tuples
satisfying (15). �

VI. PROOF OF THEOREM 2

Let L be even, and suppose C ⊂ {0, 1}n is an
<L-list-decodable code of radius τL + ε (in fact, we consider
a sequence of codes with ε → 0, so more exactly we
should say Cε , but for readability we avoid the subscript ε
everywhere below). We wish to prove that |C| = O(ε−1). Let
ρL(C) = minx∈C L rad(x) with the minimum taken over all
L-tuples x with distinct elements. Unlike ρL(C), the L-radius
of a code (denoted ρ̃L(C)) is not a well-behaved quantity.
Sadly, our assumptions on C do not imply that ρL(C) ≥ τL .
For example, if L = 2 then the radius of {000, 100} is
1/3 > 1/4 = τ2 whereas rad(000, 100) = 1/6. To get around
this, we use the pigeonhole principle to find a subcode C � of
size |C �| ≥ 2−8L |C| consisting of codewords with the same
prefix of length 8L. Removing the common prefix yields a
code of block length n − 8L whose L-radius is at least

n

n − 8L
(τL + ε) ≥ (1 + 8L/n)τL + ε ≥ τL + ε + 2L/n.

By Proposition 4 we have rad(x) ≥ τL + ε for every L-tuple
x of distinct codewords from this new code. With slight abuse
of notation, we rename this new code C (and adjust the value
of n accordingly).

Lemma 13: Let C � be any code with ρL(C �) ≥ τL.
If rad(C �) ≤ 1

2 − δ then |C �| < s for some s depending on δ.

Proof: Identify L-element subsets of C � with ordered
L-tuples by fixing some (arbitrary) ordering on L �. Elements
of such L-tuples are distinct. For every x ∈ (C �)L , which
is an L-tuple with distinct elements, there is ω ∈ ��

L that
solves (9). This gives a coloring of L-element subsets of C �
into |��

L | colors. From finiteness of ��
L and the hypergraph

version of Ramsey’s theorem [7, Th. 2], it follows that, if C � is
large enough, then there is a monochromatic subset C �� ⊂ C �

of size exceeding L2

τL−τU [L],p
, where p

def= 1
2 − δ.

Let ω ∈ ��
l be the color of C ��, i.e., mradω(x) ≥ τL

for any L-tuple x ∈ (C ��)L with distinct elements. Since
rad(C ��) ≤ rad(C �) ≤ p, it follows from Corollary 10 and
the bound τU [L],p < τL of Lemma 8 that |C ��| ≤ L2

τL−τU [L],p
.

The contradiction shows that C � cannot be arbitrarily
large. �

Let H be the set of all L-tuples x ∈ C L such that
mradω(x) > τL for some ω �= U[L].

Lemma 14: We have |H | ≤ cL |C|L−1 for some constant cL

that depends only on L.
Proof: Let ε0 = 2−L min{τL − τω,1/2 : ω ∈ ��

L, ω �=
U[L]}. Since ��

L is finite, part (b) of Lemma 8 implies that
ε0 > 0. So, let δ be as in Lemma 12 applied with ε = ε0. Let
s be the bound from Lemma 13. Note that by the choice of ε0,
the set H consists entirely of the L-tuples violating (16) and
hence (15). By the choice of s, alternative (a) in Lemma 12
is impossible. Therefore, by the last statement of the latter
Lemma, we have |H | ≤ c(s)|C|L−1. �

Proof of Theorem 2: Call an L-tuple x ∈ C L good if
all of its codewords are distinct, and x /∈ H . For a randomly
chosen L-tuple x ∈ C L , the probability that x (i) = x (i �) for
some i �= i � is less than L2/|C|. By the preceding lemma,
the probability that x ∈ H is also O(1/|C|). So a random x
is good with probability 1− O(1/|C|). Lemma 9 then implies
that

Pr[x is good] E
good x

mradU [L](x) ≤ τU [L],1/2 = τL .

On the other hand, for a good L-tuple we have rad(x) =
mradU [L](x) and thus the expectation is lower bounded by
τL +ε. In all, we conclude that ε

τL+ε = O(1/|C|), completing
the proof. �

VII. PROOF OF THEOREM 1

Proof of Theorem 1: Recall that M = �2m
m

�
. Consider an

2m-by-M matrix with {0, 1} entries whose columns are all
possible vectors consisting of exactly m ones. The 2m rows
of the matrix are the codewords of a code C ⊂ {0, 1}M . We
claim that mradU [L](x) ≥ τL + cL/2m + O(m−2) for every
L-tuple x of distinct codewords from C .

By symmetry, mradU [L](x) is independent of the actual
choice of x . So, fix any x , and pick j at random from [M]. Let
0 j be the number of these codewords that have 0 in the j ’th
column. Similarly, let 1 j be the number of these codewords
that have 1 in the j ’th column. Let X j = min(0 j , 1 j )/L. Note
that mradU [L](x) = E X j by (6).
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Suppose L = 2k + 1 is odd. Then

E j X j = 1

2k + 1

�

l≤k

l · Pr[min(0i , 1i ) = l]

=
�

2m

m

	−1�

l≤k

2l

2k + 1

�
2k + 1

l

	�
2m − 2k − 1

m − l

	

=
�

2m

m

	−1 �

1≤l≤k

2

�
2k

l − 1

	�
2m − 2k − 1

m − l

	

=
�

1≤l≤k

2

�
2k

l − 1

	�m
j=m−l+1 j ·�m

j=m−2k+l j
�2m

j=2m−2k j

which, as m → ∞, is

=
�

1≤l≤k

�
2k

l − 1

	
2−2k

�
1 + 1

2m

�
2k + 1

2

	
− 1

m

�
l

2

	

− 1

m

�
2k − l + 1

2

	
+ O(m−2)

�

= τ2k+1 + 2−2k−1k

�
2k

k

	
/2m + O(m−2)

In the last equality here we used the expression for τ2k+1,
the formula for the variance of the binomial random variable
B(2k, 1/2), and the known expression for the expected dis-
tance of a balanced random walk of 2k steps from the origin.

Similar computations hold if L = 2k. Denote by
�� the

sum in which the last summand is halved. The expected value
of X j is
�

2m

m

	−1 1

2k

��

l≤k

2l

�
2k

l

	�
2m − 2k

m − l

	

=
�

2m

m

	−1��

l≤k

2

�
2k − 1

l − 1

	�
2m − 2k

m − l

	

=
�

l≤k

2

�
2k − 1

l − 1

	�m
j=m−l+1 j ·�m

j=m−2k+l+1 j
�2m

j=2m−2k+1 j

=
�

l≤k

�
2k − 1

l − 1

	
2−2k+1

�
1 + 1

2m

�
2k

2

	
− 1

m

�
l

2

	

−
�

2k − l

2

	
+ O(m−2)

�

= τ2k + 2−2kk

�
2k − 1

k

	
/2m + O(m−2).

�

VIII. PROOF OF THEOREM 3

We start with the proof of the upper bound, following the
approach of Konyagin in [8]. Let C be <3-list-decodable code
of vectors in {0, 1}n of radius at most τ3 + ε = 1/4 + ε.
By Proposition 7 this implies that among any 3 codewords
in C there are two of distance at least (1/2 + 2ε)n. For
each codeword x = (x1, x2, . . . , xn) define a vector v =
(v1, v2, . . . , vn) in the Euclidean space Rn by vi = (−1)xi√

n
.

Note that each such vector is of unit norm, and among any
three vectors there are two whose inner product is at most
−4ε. Let V be the set of all the vectors obtained from the

words in C and put |V | = m. Our objective is to show that
m ≤ O(1/ε3/2). Let H = (V , E) be the graph whose set of
vertices is V in which two vertices u, v are connected iff their
inner product is larger than −4ε. Fix a vertex v ∈ V and let
W = N(v) be the set of all its neighbors in H . Note that the
inner product between any two vertices in W is at most −4ε.
Therefore, if d = |W | is the degree of v in H and 
v
 denotes
the Euclidean 2-norm of a vector v, then

0 ≤
�
�
�
�
�

u∈W

u

�
�
�
�

2

≤ d − d(d − 1)4ε (18)

implying that d ≤ 1
4ε + 1 and also implying that

�
�
�
�
�

u∈W

u

�
�
�
�

2

≤ d − d(d − 1)4ε = 1

4ε
(4εd)(1 + 4ε − 4εd)

≤ (1 + 4ε)2

16ε
.

Therefore, by Cauchy–Schwarz, for every v ∈ V

�

u∈N(v)

�v, u� ≤
�
�
��
�

u∈N(v)

u

�
�
�� ≤ 1 + 4ε

4
√

ε
. (19)

This gives the following (which can be slightly improved, but
as this only changes the error term we prefer to present the
simple version below):

0 ≤
�
�
�
�
�

v∈V

v

�
�
�
�

2

= m +
�

v∈V

�

u∈N(v)

�v, u� +
�

u �=v∈V , uv �∈E

�v, u�

≤ m + m
1 + 4ε

4
√

ε
− m

�
m − 1

4ε
− 2

	
4ε.

By the last inequality
�

m − 1

4ε
− 2

	
4ε ≤ 1 + 1 + 4ε

4
√

ε
,

implying that

m ≤ 1

16ε3/2 + O

�
1

ε

	
. (20)

This completes the proof of the upper bound.
We proceed with the proof of the lower bound by describing

an appropriate construction. Let G = (V , E) be a graph on
m vertices, suppose it is a Cayley graph of an elementary
abelian 2-group Z

r
2, let A be its adjacency matrix, and let

d = λ1 ≥ λ2 ≥ · · ·λm = −λ be its eigenvalues, where d
is the degree of regularity and −λ is the smallest eigenvalue.
Assume, further, that G is triangle-free. As G is a Cayley
graph of an elementary abelian 2-group, it has an orthonormal
basis of eigenvectors v1, v2, ..., vm in which each coordinate
of each vector is in {−1/

√
m, 1/

√
m}. Define B = (A+λI )/λ

where I is the m-by-m identity matrix. Then B is a positive
semidefinite matrix, its diagonal is the all-1 vector, its eigen-
values are μi = (λi +λ)/λ and the corresponding eigenvectors
are the vectors vi . Let P be the m-by-m orthogonal matrix
whose columns are the vectors vi , and note that the first v1 is
the constant vector 1/

√
m. Let D be the diagonal matrix whose

diagonal entries are the eigenvalues μi and let
√

D denote the
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diagonal matrix whose entries are
√

μi . Then Pt B P = D and
thus B = (P

√
D)(

√
DPt ).

The rows of the matrix P
√

D are row-vectors
x1, x2, . . . , xm where xi = (xi1, xi2, . . . , xim ). Note that
for each j , xi j ∈ {−�μ j/m,

�
μ j/m} for all i , and that

xi1 is positive for all i . In addition xi x t
j = Bij for all i, j

meaning that the 
2-norm of each vector xi is 1 and that
among any three vectors xi there is an orthogonal pair.
Let yi be the vector obtained from xi by removing its first
coordinate (the one which is

√
μ1/m = √

(d + λ)/mλ). Then
each yi is a vector of 
2-norm 1 − μ1/m and among any
three of them there is a pair with inner product −μ1/m.
We can normalize the vectors by dividing each entry by√

1 − μ1/m to get m unit vectors z1, z2, . . . , zm , where any
three of them contain a pair with inner product −δ, where
δ = μ1/(m − μ1). Moreover, for the vectors zi = (zi j ), for
each fixed j the absolute value of all zi j is the same for
all i , denote this common value by t j . We can now use the
vectors zi to define functions mapping [0, 1] to {1,−1} as
follows. Split [0, 1] into disjoint intervals I j of length t2

j and
define fi to be sign(zi j ) on the interval I j . It is clear that the

2-norm of each fi is 1 and the inner product between fi

and f j is exactly that between zi and z j . In particular, each
three functions fi contain a pair whose inner product is at
most −δ.

One can replace the functions by vectors of 1,−1 with
essentially the same property, using an obvious rational
approximation to the lengths of the intervals.

The graph in [1] is a triangle-free Cayley graph of an
elementary abelian 2-group with d = �

1/4 + o(1)
�
m2/3 and

λ = �
9 + o(1)

�
m1/3. This gives us δ = (1/36 + o(1))m−2/3

and hence the number of vectors is m = �
�
(1/δ)3/2

�
. Setting

δ = 4ε this gives a binary code with m = �
�
(1/ε)3/2

�

codewords of length n so that among any three codewords
there are two such that the Hamming distance between them
is at least (1/2+2ε)n. According to Proposition 7, this means
that the code is <3-list-decodable with τ = 1

4 + ε, and thus

maxcodeε(L = 2) = �(ε− 3
2 ).

IX. SPHERICAL CODES IN THE HILBERT SPACE

Let us now consider a similar question for the case of the
real Hilbert space H (the space of square-summable sequences
of real numbers). Similar to the binary alphabet, we may
motivate the question by the desire to construct a maximal
number M of unit-energy signals, such that when one of them
is sent and adversarial noise of bounded energy is applied,
it is still possible to reconstruct the original signal, to within a
list of size < L. We also note that results on adversarial-noise
lead to bounds for the average-noise variation, as propounded
in [12, Sec. XII]. We proceed to formal definitions.

We shall employ the same notation as in the rest of the
paper, but with the meaning adapted to spherical codes. For
example, we denote the norm in H by 
·
. We redefine rad(x)
similarly: for an arbitrary L-tuple x = (x (1), . . . , x (L)) ∈ HL

we define

rad(x) = min
y∈H

max
j


x ( j ) − y
,

diam(x) = max
i, j


x (i) − x ( j )
.

Recall Jung’s theorem [6, (2.6)]: For any L-tuple x we have

rad(x) ≤
�

L − 1

2L
diam(x) (21)

with equality if and only if x (1), . . . , x (L) are the vertices of
an (L − 1)-simplex, i.e., when x consists of L vectors with
pairwise distances all equal.

A spherical code C is a finite collection of unit-norm vectors
in H and its L-radius ρL(C) is the minimum value of rad(x)
among all L-tuples x of distinct elements of C . We define

maxcodeL(ε)
def= sup

�|C| : ρL(C) ≥ τL + ε
�
,

where in this section τL
def=
�

L−1
L . Our formulation corre-

sponds to the problem of packing balls B(x, r)
def= {y ∈ H :


x − y
 ≤ r} centered on the unit sphere so that no point
of H is covered by more than (L − 1) of them. Another
equivalent way is to consider the problem of packing spherical
caps C(x, α) = {y : 
y
 = 1, �y, x� ≥ cos α}, where 
x
 = 1,
with the requirement that no point of the unit sphere is covered
by more than (L − 1) of them.

A classical result of Rankin [11] solves the case L = 2:

maxcode2(ε) =
�

1 + 1

2
√

2ε + 2ε2

�
= �

�
1

ε

	
. (22)

For L > 2, Blachman and Few [2] proved that if H is
replaced by R

n then codes with ρL(C) > τL have size poly-
nomial in n, while for ρL(C) < τL exponentially large codes
exist. This was improved by Blinovsky [4], who demonstrated
that codes with ρL(C) > τL + ε, ε > 0 have a finite upper
bound on their size independent of n. His proof relied on the
Ramsey theorem and can be condensed as follows:

Proposition 15 [4]: For any ε > 0 maxcodeL(ε) is finite.
Proof: Consider a code C with ρL(C) ≥ τL + ε. Fix an

integer q ≥ 1, and break [0, 2] into q intervals of size 2
q .

Consider a code C and label each pair (c, c�) ∈ �C2
�

according
to the interval which contains 
c − c�
. By Ramsey’s theorem
if C is sufficiently large then there should exist a large subcode
C � whose all pairwise distances are in [a, a + 2

q ). From (22)

we have a ≤ √
2 + O(1/|C �|) and from (21) we get that

ρL(C) ≤ ρL(C �) ≤ τL + O(1/|C �|) + O(1/q) and hence
|C �| ≤ O(1/ε) when q = O(1/ε). Consequently, C cannot
be arbitrary large for a given ε > 0. �

Our main result on spherical codes is the following.
Theorem 16: For any L ≥ 2 there exist constants c1, c2 > 0

such that for all ε > 0

c1ε
−1 ≤ maxcodeL(ε) ≤ c2ε

− L2−L+2
2L . (23)

Before proving the theorem we establish two auxiliary
lemmas.

Definition: Call a collection S of unit vectors an
(m, 	)-system if among any m distinct elements x1, . . . , xm ∈
S there exists a pair with �xi , x j � < −	.
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Lemma 17: For each m there exists Cm > 0, such that the
size of any (m, 	)-system S is at most Cm	− m

2 and



�

x∈S

x
 ≤ Cm	− m−1
2 .

Proof: For m = 2 this follows from (22) and (18). For
m = 3 this was shown above in (19) and (20), essentially by
reducing to m = 2. In general, for arbitrary m we can define
a graph with vertices S as in the proof of (20) and notice that
the neighborhood N (v) is an (m−1, 	)-system and then apply
induction. �

Lemma 18: For any L ≥ 3 there exists a non-negative
function τ (γ ) = 2γ

L2−L−2
+ OL(γ 2), γ ∈ [0, 1], with the

following property. Consider any L-tuple x = (x1, . . . , xL)
of unit-norm vectors with rad(x) ≥ τL . If �x1, x2� ≥ γ ≥ 0
then there exist i, j such that �xi , x j � ≤ −τ (γ ).

Proof: Entirely like in (8) we can prove

rad(x)2 = max
ω∈�L

min
y∈H

E
i∼ω


xi − y
2

= max
ω∈�L

min
y∈H

�

1 − 2
��

i

ωi xi , y
�
+ 
y
2

�

= max
ω

�

1 −
�
�
�
�

i

ωi xi

�
�
�

2
�

= 1 − min
ω∈�L

V (ω), (24)

where V (ω) = �
i, j vi, j ωiω j is the quadratic form corre-

sponding to the Gram matrix of x with vi, j = �xi , x j �.
Fix some 0 ≤ τ ≤ 1

L−1 and suppose now that x is such that
�xi , x j � ≥ −τ for all i, j . We will show that for some function
τ (γ ) if τ < τ(γ ) then rad(x) < τL . To that end, we introduce
another quadratic form U(ω) =�i, j ui, j ωiω j with

ui, j =

⎧
⎪⎨

⎪⎩

1, i = j,

γ , {i, j} = {1, 2},
−τ, otherwise.

(25)

Note that according to assumptions vi, j ≥ ui, j and, therefore,
on �L we have V (ω) ≥ U(ω), and

min
�L

V (ω) ≥ min
�L

U(ω).

We next show that U is non-negative definite for all 0 ≤ τ ≤
1

L−1 and all − 1
L−1 ≤ γ ≤ 1. From convexity of the PSD

cone, it is sufficient to check the four corners. For τ = 0
the statement is clear. For τ = 1

L−1 we consider the two
endpoints: γ = − 1

L−1 , γ = 1. For γ = − 1
L−1 the resulting

quadratic form equals U1(ω) =�i ω2
i − 1

L−1

�
i �= j ωiω j and

corresponds to the Gram matrix of unit-norm vectors forming
an (L − 1)-simplex centered at the origin. Consequently, U1
is positive definite. Similarly, for γ = 1, the quadratic form
corresponds to Gram matrix of the following collection: take
unit-norm vectors forming an (L − 1)-simplex, delete one
vector and add a copy of another. The resulting quadratic form
is non-negative definite.

Since U is convex, we could evaluate minω U(ω) by arguing
that optimal assignment is symmetric (has equal coordinates
3, . . . , n and 1, 2). Instead we prefer to proceed indirectly and
show another useful property of radii in Hilbert space.

Since U � 0, it is a Gram matrix of some other L-tuple x �
of unit-norm vectors and we know

rad(x �) ≥ rad(x). (26)

We temporarily forget about the special form of U , as defined
in (25), and view it as a generic Gram matrix of some L-tuple
x � of unit-norm vectors with the property that |�x �

i , x �
j �| ≤ θ

for i �= j . We will prove

rad(x �)2 = τ 2
L − 1

L2

�

i �= j

�x �
i , x �

j � + O(θ2), (27)

where the O(·) term is uniform in x �. Note that the first two
terms of the expression in (27) correspond to ω = U[L]
in (24). As θ → 0 the L-tuple x � becomes very close to
L orthogonal vectors, and hence in (24) we expect that the
optimal ω = U[L] + O(θ), cf. (28). Since we are operating
near the minimum of the quadratic form, the O(θ) deviation
of ω translates to O(θ2) deviation for the value of U .

Proceeding to a formal proof of (27), first notice that if ω1 =
0 then as θ → 0 we must have 1−U(ω) ≤ τL−1 +o(1) (since
we are considering only L − 1 almost orthogonal vectors).
But 1 − minω U(ω) tends to τL > τL−1, implying that for all
sufficiently small θ , the minimizer of U(ω) is in the interior of
�L . At the optimal point ω∗ the gradient of U is proportional
to a vector of all ones 1, from where we find

ω∗ = c(IL + �)−1 1, (28)

where (IL + �) is the matrix of U , and the normalizing
constant c is found from �ω∗, 1� = 1 yielding c = �(IL +
�)−1 1, 1�−1. Altogether, we get

U(ω∗) = �(IL + �)ω∗, ω∗� = c

= �IL 1, 1� + �� 1, 1� + O(θ2).

Finally, since rad(x �)2 = 1 − U(ω∗) we get (27).
To complete the proof of the Lemma, note that

from (26), (27) and (25) we have

rad(x)2 ≤ τ 2
L − 1

L2

�
2γ − (L2 − L − 2)τ

�+ O(γ 2) + O(τ 2).

Consequently, for appropriately defined τ (γ ), if τ < τ(γ ) we
should have rad(x) < τL . Furthermore, as γ → 0 we have
that τ (γ ) = 2γ

L2−L−2
+ OL (γ 2), as claimed. �

Proof of Theorem 16: Consider a regular (M −1)-simplex

of unit vectors in H. The pairwise distances are equal
�

2M
M−1

and thus from (21) we have that the radius of any L-tuple is

at least τL

�
M

M−1 = τL + �(1/M), proving the lower bound
in (23).

We proceed to the upper bound. Fix a code C with ρL(C) ≥
τL + ε. The main idea is again essentially due to Konyagin:
fixing one point c ∈ C and considering its close neighbors,
we notice that the radius constraint (cf. Lemma 18) introduces
repulsion between these neighbors (that is they should be
widely separated among themselves) and consequently, neigh-
borhoods can not be too large.

We proceed with the argument. First, by (21) any L-tuple

with rad(x) ≥ τL +ε also satisfies diam(x) ≥ √
2+
�

2
τL

ε, and

thus the code C is also an (L, 	�)-system, with 	� = 2√
τL

ε.
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Next, let 	1 = ε
L−1

L and 	2 = τ (	1), where τ (·) is from
Lemma 18. We consider two types of neighbors c of each
point ci ∈ C , depending on

−	� ≤ �c, ci � ≤ 	1, or �c, ci � > 	1. (29)

Let N �(ci ) and N ��(ci ) be the two respective sets of neighbors.
The rest of the points are “far away” from ci and satisfy

�c, ci � < −	�. (30)

First, notice that since C is an (L, 	�)-system, we have that

N �(ci ) ∪ N ��(ci ) is an (m, 	�)-system with m
def= L − 1. Thus

from Lemma 17

|N �(ci )| ≤ |N �(ci ) ∪ N ��(ci )| ≤ Cm	�− m
2 . (31)

Second, take any m = (L − 1) distinct points in N ��(ci ).
Adding ci to this m-tuple and applying Lemma 18 to the
resulting L-tuple, we conclude that N ��(ci ) is an (m, 	2)-
system. Therefore, from Lemma 17 we have

�
�
�
�

c∈N ��(ci )

c
�
�
� ≤ Cm	

− m−1
2

2 . (32)

Consider
�
ci ,
�

c∈C

c
�

= 1 +
�
ci ,

�

c∈N ��(ci )

c
�
+
�
ci ,

�

c∈N �(ci )

c
�

+
�
ci ,

�

c �∈N �∪N ��∪{ci }
c
�

(33)

≤ 1 + Cm	
− m−1

2
2 + Cm	1	

�− m
2

− 	�(|C| − 1 − Cm	�− m
2 ) (34)

where the second term is estimated by Cauchy–Schwarz
and (32), the third term is by the definition of N �(ci ) and (31),
and the fourth term is the combination of (30) and the bound
in (31).

Summing (34) over all ci ∈ C and using
�

ci ,c∈C�ci , c� ≥ 0
we get

	�|C| ≤ 1 + 	� + Cm	
− m−1

2
2 + Cm	1	

�− m
2 + Cm	�1− m

2 ,

from where, recalling that 	1 � 	2 � ε
L−1

L and 	� � ε we get
that the first two terms and the last are negligible compared to

the third and fourth, which are comparable and � ε− (L−1)(L−2)
2L .

Canceling 	� we get an upper bound in (23). �

X. REMARKS AND OPEN PROBLEMS

• The L/2 in Proposition 4 can be improved to O(
√

L)
using a combination of the Beck–Fiala floating colors
argument with Spencer’s six deviations theorem. How-
ever, even with this improvement, we do not see a way
to prove Theorem 2 with a good value of the implicit
constant.

• For odd L ≥ 5, the best upper bound we have is a
tower of exponentials of height L. To that end, one colors
L-tuples of codewords according to the measure ω for
which rad(x) = mradω(x), uses Ramsey’s theorem to get
a monochromatic set, and then proceeds similarly to the
proof of Theorem 2.

• In the <L-list-decodable code in Theorem 1, the code
length is exponential in ε−1. One can restrict that code
to a random subset of O(ε−2 log ε−1) coordinates, and
obtain a code of asymptotically the same size cLε−1 +
O(1).
For L = 2 and L = 4, the Levenshtein’s code has
length O(ε−1) and size cLε−1 + O(1). We do not know
if one can make the code in Theorem 1 of linear size for
general L.

• It should be possible to improve Theorem 16. We con-
jecture that for spherical codes, for all L we have
maxcodeε(L) = O(1/ε) with simplex being the optimal
code.
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