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Abstract

Background: Schizophrenia and autism are examples of polygenic diseases caused by a multitude of genetic
variants, many of which are still poorly understood. Recently, both diseases have been associated with disrupted
neuron motility and migration patterns, suggesting that aberrant cell motility is a phenotype for these neurological
diseases.

Results: We formulate the POLYGENIC DISEASE PHENOTYPE Problem which seeks to identify candidate disease genes
that may be associated with a phenotype such as cell motility. We present a machine learning approach to solve this
problem for schizophrenia and autism genes within a brain-specific functional interaction network. Our method
outperforms peer semi-supervised learning approaches, achieving better cross-validation accuracy across different
sets of gold-standard positives. We identify top candidates for both schizophrenia and autism, and select six genes
labeled as schizophrenia positives that are predicted to be associated with cell motility for follow-up experiments.

Conclusions: Candidate genes predicted by our method suggest testable hypotheses about these genes’ role in cell
motility regulation, offering a framework for generating predictions for experimental validation.

Keywords: Semi-supervised learning, Functional interaction network, Schizophrenia, Autism, Cell motility

Background
Many polygenic diseases, which arise from the action
or influence of multiple genes, are difficult to geneti-
cally characterize despite strong heritability. For example,
schizophrenia and autism are caused by a large number of
genetic and environmental variations that perturb numer-
ous processes, but the relationship between the patho-
physiology of these diseases and their genetic foundations
remains elusive [1, 2]. Genome-wide studies of mutations
and gene expression differences have helped character-
ize the genetic basis of schizophrenia [1, 3–5]. However,
extracting causality for symptoms and pathophysiology
from these genes remains challenging. Gene expression
data reveals minor changes in gene expression levels [3],
and the mutations associated with schizophrenia show
only slight frequency-of-mutation changes from control
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participants [4, 5], indicating that schizophrenia arises
from a multitude of cellular perturbations compounding
their effects.
Schizophrenia and autism have been correlated with

aberrations in cell motility, although the mechanisms are
unknown [6–10]. Cell motility, the movement of cells
through the use of metabolic energy, is vital to numerous
cellular processes and is especially important for growth
and differentiation of cells. Since axon growth directs neu-
ronal connectivity, regulation of motility may be relevant
in neurological diseases. Further, motility assays used in
combination with RNAi depletion can be used to validate
migration phenotypes [11]. Thus, we aim to find neu-
rological disease genes that may also be involved in cell
motility.
Computational methods have been essential to inves-

tigate the genetic basis of polygenic disorders. Over the
past decade, networks that represent relationships among
biological processes have been critical for studying dis-
eases [12]. Functional interaction networks integrate vast
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amounts of genomic and gene interaction data to iden-
tify functional similarity between genes [13–15]. These
networks can be used to identify which genes are most
centrally implicated in a polygenic disease. Given a list of
genes that are known or suspected to be altered in a poly-
genic disease, many methods identify genes that are near
the input genes within a functional interaction network
[14–20]. These methods use network-based classifica-
tion approaches such as naïve Bayes [15], clustering [14],
support vector machines [18], and Gaussian smoothing
[19, 20], which all rely on the connections among genes in
the functional interaction network.
We set out to find candidate genes that are associated

with cell motility and a polygenic disease such as schizo-
phrenia or autism using functional interaction networks.
This application builds upon a classic semi-supervised
learning framework for predicting disease genes that
labels a small subset of the nodes as positives or negatives
and aims to prioritize the remaining unlabeled nodes. Our
problem is a phenotype-focused variation on this formu-
lation: we have a polygenic disease (e.g., schizophrenia
or autism) and a biological process that is known to be
disrupted (e.g., cell motility). Our primary interest is to
produce testable hypotheses for aberrant cell motility in
candidate schizophrenia or autism genes.

Contributions We formulate the POLYGENIC DISEASE
PHENOTYPE Problem, which aims to identify candidate
genes associated with a disease that could be experi-
mentally validated by phenotype assays. We develop a
Gaussian smoothing method to identify genes that are
near known disease genes and cell motility genes in a func-
tional interaction network. Cross validation experiments
demonstrate that our ranked candidate genes are more
accurate across gold-standard schizophrenia, autism, and
cell motility datasets compared to other Gaussian smooth-
ing variants. Further, our method provides a tunable
parameter that removes a low-degree bias observed in
the highest-ranked candidates of other methods. The top-
ranked candidate genes from our method offer a list of
potential genes for testing in a cell-based assay of cell
motility. Our results provide testable hypotheses for a
greater understanding of the relationship between genetic
variants associated with schizophrenia and the resulting
pathophysiology.

Methods
A functional interaction network is described as a
weighted graph G = (V ,E) where the nodes V are genes
and the undirected edges (u, v) ∈ E with weights wuv
describe functional similarity between genes. We define a
curated set of nodes C ⊂ V corresponding to genes anno-
tated to a specific disease or biological process. Curated
sets may also describe genes not associated with a disease

or biological process; we will use C ⊂ V to denote such
sets. Curated sets are typically small, since they are usually
expensive to collect; thus, the majority of the nodes in G
are unlabeled (they do not appear in either set).
We focus on a specific disease D (e.g., schizophrenia)

and a specific biological process P (e.g., cell motility).
We specify curated sets CD ⊂ V and CD ⊂ V that
denote genes associated withD and not associated withD,
respectively, whereCD∩CD = ∅. We also specifyCP ⊂ V
that denotes genes associated withP . We wish to solve the
following problem:
POLYGENIC DISEASE PHENOTYPE (PDP) Problem.

Given a functional interaction network G = (V ,E),
curated sets CD and CD for disease D, and a curated set
CP for biological process P , return a prioritized list of
candidate genes from V predicted to be associated withD
and P that can be experimentally validated using an assay
for P .
As we noted in the Background, our goal is to validate

an aberrant biological process in candidate disease genes.
Our goal implies an asymmetry to the problem – we are
not looking to confirm that genes are involved in a disease;
instead we are focusing on the dysregulation of the biolog-
ical process as a first step towards identifying candidate
disease genes associated with the given phenotype.

Semi-supervised learning methods
There are many network-based classification techniques
that incorporate both positive and negative labels.
Recently, Krishnan et al. trained an evidence-weighted
support vector machine (SVM) classifier to predict candi-
date autism genes from network features [18]. While this
approach was successful, we sought to develop a simpler
approach where prioritized genes are closer to positives
within a global optimization scheme.
We adapt a Gaussian smoothingmethod for graphs with

positive and negative labels on a subset of the nodes,
which aims to find a score for unlabeled nodes that is
smooth over the graph topology [21, 22]. This approach
has been applied to biological network analysis and imple-
mented as a method called SINKSOURCE, which was
originally used to predict HIV dependency factors in a
human protein interaction network [20]. SINKSOURCE
outperformed six other function prediction algorithms for
this task, including methods that use both positive and
negative labels and methods that only use positives [20].
Given a curated set C of positives and C of nega-

tives within a network (the labeled nodes L = C ∪
C), we first describe methods to predict labels on the
remaining unlabeled nodes U = V \ L in G. We
then introduce a method that incorporates two sets
of positives; one from a polygenic disease (e.g. schizo-
phrenia or autism) and one from a biological process
(e.g. cell motility).
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SINKSOURCE [20].
SINKSOURCE models a random Gaussian field on the
graph given labeled positive and negative nodes [21, 22].
Let f : V �→[ 0, 1] be a function where f (v) = 1 if v ∈ C,
f (v) = 0 if v ∈ C, and f (v) over unlabeled nodes is
“smooth” with respect to the topology of G. That is, SINK-
SOURCE chooses values for the unlabeled nodes U that
minimizes the quadratic equation

min
f

1
2

∑

(u,v)∈E
wuv(f (u) − f (v))2, (1)

conditioned on fixing the values of the labeled nodes
L. Note that this optimization function is similar to the
popular GeneMANIA webserver [19], except that here
the labeled nodes have fixed values. The function that
minimizes Eq. 1 is harmonic, and so the value of f at
each unlabeled node is a weighted average of the node’s
neighbors [21, 22]:

f (v) =
∑

u∈Nv wuvf (u)
∑

u∈Nv wuv
, (2)

where Nv is the set of v’s neighbors. SINKSOURCE uses an
iterative method to calculate f (v), since it is known to con-
verge [20]. Let ft(v) be the value of node v at time step t; f0
is initialized as follows:

f0(v) =
⎧
⎨

⎩

1 if v ∈ C
0 if v ∈ C
0.5 otherwise.

(3)

For every unlabeled node v ∈ U , SINKSOURCE updates
ft(v) based on the previous timestep:

ft(v) = 1
dv

∑

u∈Nv

wuvft−1(u), (4)

where

dv =
∑

u∈Nv

wuv

is the weighted degree of node v. Equation 4 can be
divided into two sums: one sum over the unlabeled nodes
U and the other sum over the labeled nodes L:

ft(v) = 1
dv

∑

u∈Nv∩U
wuvft−1(u)

︸ ︷︷ ︸
unlabeled neighbor contrib.

+ 1
dv

∑

u∈Nv∩L
wuvft−1(u)

︸ ︷︷ ︸
labeled neighbor contrib.

.

(5)

The function ft(v) can be written in matrix form for all
unlabeled nodes U [20]:

ft = Mft−1 + c, (6)

where ft and ft−1 are vectors of length |U|. The contribu-
tion from unlabeled neighbors is encoded as a |U| × |U|
matrixM:

Muv = wuv∑
v∈Nu wuv

. (7)

The contribution of from the labeled neighbors is
encoded as a |U|-length vector c:

cv = |Nv ∩ C|∑
v∈Nu wuv

, (8)

where the numerator is simply the number of positive
neighbors (since negative neighbors will contribute a
score of 0). The vector c can be precomputed because
these values are fixed. Since M is sparse, calculating f
using Eq. 6 is more efficient than calculating f using Eq. 4.
We iteratively compute ft to calculate f for every unlabeled
node until either

∑

v∈V

∣∣ft(v) − ft−1(v)
∣∣ ≤ ε

for some small ε (we set ε = 0.001), or 500 iterations are
reached. In practice, the ε threshold is reached before 500
iterations in every run of the method. When the method
terminates, we have a value f (v) ∈[ 0, 1] for every node in
V, where unlabeled nodes have a larger score if they are
“closer” to labeled positives in G.

SINKSOURCE+ [20].
Murali et al. also present SINKSOURCE+, a framework that
only uses positively-labeled nodes. SINKSOURCE+ intro-
duces a node in the graph G that represents a single
negative, and connects this node to all |V | nodes with a
user-defined weight λ. Since the introduced node is a neg-
ative, its value will never be updated. The labeled nodes L
are only positives, and the contribution of negatives comes
from the single negative node. SINKSOURCE+ incorpo-
rates λ into the denominator of Eqs. (7) and (8), rather
than modifying the underlying graph G:

Muv = wuv
λ + ∑

v∈Nu wuv
and cv = |Nv ∩ C|

λ + ∑
v∈Nu wuv

. (9)

When running SINKSOURCE+, we ignore the labels on
negative nodes (we consider them unlabeled).

PSEUDO-SINKSOURCE+.
We compared SINKSOURCE and SINKSOURCE+ to a com-
bination of the two methods that includes positives, neg-
atives, and a λ-weighted negative node. That is, we use
Eq. (9) to add a λ-weighted edge from all nodes to an
introduced negative node, but we also retain the origi-
nal negative labels. We call this combination PSEUDO-
SINKSOURCE+, where the labeled nodes consist of pos-
itives and negatives along with the λ-weighted negative
node. Figure 1 illustrates PSEUDO-SINKSOURCE+ as a
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A B C

Fig. 1 Gaussian smoothing methods for semi-supervised learning. a SINKSOURCE uses negative (red) and positive(blue) node labels. b SINKSOURCE+
uses only positive labels and introduces a single negative (dashed red node) with λ-weighted edges to all unlabeled nodes (dashed edges). c
PSEUDO-SINKSOURCE+ combines SINKSOURCE and SINKSOURCE+ with a λ-weighted sink node and negative node labels

combination of SINKSOURCE and SINKSOURCE+. Note
that PSEUDO-SINKSOURCE+ with λ = 0 is the same as the
original SINKSOURCE.

Solving the PDP problem
Wenow solve the PDP Problem using the semi-supervised
learning formulations described above. Instead of two
curated sets C and C, we now have CD and CD corre-
sponding to diseaseD andCP corresponding to biological
process P . Let learn(G, λ,C,C) be the output of a predic-
tive method (SINKSOURCE, SINKSOURCE+, or PSEUDO-
SINKSOURCE+) on a graph G with λ-weighted negative
edges and curated sets C and C. We run the method
independently forD and P :

fD ← learn(G, λ,CD ,CD)

fP ← learn(G, λ,CP ,CD).

Note that we use the same curated set of negatives
CD , those associated with the disease, because we wish
to identify candidates near biological process genes while
avoiding genes that are not likely to be associated with the
disease.
We finally define a new function g : V �→[ 0, 1] that

combines fD(v) and fP(v) for each node v ∈ V . There are
many forms that g can take; here, we let g be the product
of the two functions:

g(v) = fD(v)fP(v). (10)

Our choice of g offers the following interpretation for
λ = 0: nodes v that are labeled both with the diseaseD and
the biological process P (e.g., CD ∩CP ) will automatically
have g(v) = 1. Nodes v that are labeled with only D will
have g(v) = fP(v). Conversely, nodes v that are labeled
with only P will have g(v) = fD(v). All other nodes will

have some value that is the product of the predicted labels
for both P andD.

Datasets
Functional Interaction Network.
We used a brain-specific functional interaction net-
work from HumanBase [13]. HumanBase, previously
called GIANT, catalogs tissue-specific functional inter-
action networks (http://hb.flatironinstitute.org/). This
undirected network was constructed from nearly 1000
genome-scale datasets consisting of both physical inter-
action and expression measurements, and tissue-specific
knowledge was integrated to calculate a posterior prob-
ability that each edge connects functionally-related pro-
teins in a tissue [13]. The brain-specific network has been
previously used to predict genes associated with autism
[18]. The “top edges” network, filtered to include edges
with evidence supporting a tissue-specific functional
interaction (posterior probability ≥ 0.1), has 333,425,400
edges and 25,825 nodes. Due to the large number of
experiments we ran for this paper (over 2000 experi-
ments mostly for cross validation), we removed edges with
a posterior probability < 0.15, reducing the network to
3,362,057 edges and 18,095 nodes.

Curated Gene Sets.
We compiled two sets of negative genes and three sets of
positive genes (two diseases and one biological process)
from existing literature.

Curated Positive Schizophrenia Genes. Jia et al. [23]
built a curated set of 530 distinct schizophrenia-
associated genes based on an integrative analysis of
genome-wide association evidence in genetics, epigenet-
ics, transcriptomics, and literature mining [24]. Of these

http://hb.flatironinstitute.org/
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genes, 517 were present in the network and did not over-
lap with the curated schizophrenia negative set.

Curated Negative Schizophrenia Genes. Of the genes
with no significant evidence in SZDB 2.0 [24], we iden-
tified those that were not reported to be significantly
differentially expressed in other similar polygenic diseases
(FDR > 0.2) or schizophrenia itself (FDR > 0.5) [25].
These genes comprised the schizophrenia negative set,
and 1561 genes were in the network and did not overlap
with the curated positive schizophrenia set or the positive
cell motility set.

Curated Positive Autism Genes. Krishnan et al. [18]
curated a set of 594 distinct autism-associated genes with
evidence ranging from text mining in PubMed abstracts to
statistically significant mutations; we considered all genes
with evidence as one set of positives. Of these genes, 556
were present in the network and did not overlap with the
curated negative set.

Curated Negative Autism Genes. Of the genes that had
no evidence in the SFARI autism gene database [26], we
identified those that were not reported to be differentially
methylated [27] or differentially expressed in other similar
polygenic diseases (FDR>0.2) or autism itself (FDR>0.7)
[25]. These genes comprised the autism negative set, and
973 genes were in the network and did not overlap with

the curated positive autism set or the curated positive cell
motility set.

Curated Cell Motility Genes. We built a curated set
of 542 distinct cell motility-associated genes from the
KEGG database [28, 29]. We downloaded genes associ-
ated with five key cell motility pathways: the cell adhe-
sion molecule pathway, the focal adhesion kinase path-
way, the ErbB signaling pathway, the regulation of actin
cytoskeleton pathway, and the tight junction pathway. Of
these genes, 526 were present in the network and did
not overlap with the curated schizophrenia and autism
negative sets.

Results and Discussion
Algorithm accuracy and benchmarking
We first evaluated the performance of the Gaussian
smoothing approaches on four sets of labeled positive and
negative nodes: (1) schizophrenia positives and negatives,
(2) cell motility positives with schizophrenia negatives, (3)
autism positives and negatives, and (4) cell motility posi-
tives with autism negatives. For each case, we have a single
set C of curated positives and a single set C of curated
negatives and we rank the nodes by the function f.

SINKSOURCE and SINKSOURCE+.
We used five-fold cross validation to assess performance,
where we hid one fifth of the positives and one fifth
of the negatives from each dataset, ran the smoothing

Fig. 2 Receiver Operator Characteristic (ROC) curves for five-fold cross validation of SINKSOURCE for schizophrenia, cell motility with schizophrenia
negatives, autism, and cell motility with autism negatives. Each plot contains 50 ROC curves
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method, and plotted the Receiver Operator Characteristic
(ROC) curve using assessing labels of the hidden nodes
(Fig. 2). The area under the ROC curve (AUC) val-
ues were approximately normally distributed (Additional
file 1: Figure S3), and the distribution of AUC values was
statistically significant (p < 0.01) for all pairs of datasets
by a two-tailed Welch’s t-test, which tests whether two
samples are drawn from normal distributions with the
same mean but not necessarily the same standard devia-
tion. Welch’s t-test was used for this and all subsequent
statistical tests. The AUC distribution was significantly
different for the two datasets with the closest mean AUC
(schizophrenia vs. cell motility with autism negatives, p =
1.60 × 10−3) and the two datasets that have the same set
of positives (cell motility) but use different negative sets
(schizophrenia negatives vs. autism negatives, p = 4.99 ×
10−7). The cell motility datasets had slightly higher accu-
racy than the disease datasets; this trend was consistent
throughout all analyses. The difference between the cell
motility and disease dataset performance is due, in part, to
the construction of the curated positives. For example, the
cell motility positives had the best accuracy because these
were collected from KEGG signaling pathways. These
positives tended to be near each other in the functional
interaction network since they physically interact with
each other.

We asked whether the curated negative set was impor-
tant for the method’s accuracy in terms of five-fold
cross validation. To assess the impact of the negative
set, we first compared SINKSOURCE to SINKSOURCE+
for five values of λ-weighted negative edges (Fig. 3),
where the SINKSOURCE distribution reflects the ROC
curves in Fig. 2. The AUC performance was better when
considering negatives for every value of λ for all four
datasets (one-tailed p < 0.01), reflecting that the negative
set contains useful information to discriminate between
positive and negative nodes. In some cases, the per-
formance of SINKSOURCE+ depended on the choice of
λ. For example, λ = 50 for the cell motility dataset
with autism negatives increased the average AUC by
0.06 compared to λ = 0.01 (reflecting an 8% increase
in accuracy).
Next, we compared the accuracy of SINKSOURCE with

our curated negative set to other sets of negative nodes
(Fig. 4). We considered a set of 1189 distinct genes that are
likely associated with non-neurological diseases and were
previously used to identify autism-associated genes (the
Krishnan et al. dataset) [18]. We emphasize that running
SINKSOURCE with the Krishnan et al. positives and nega-
tives cannot be compared to the results from the original
publication, since our method does not categorize posi-
tives into evidence levels, we do not run the method on

Fig. 3 Five-fold cross validation performance (AUC across 50 iterations) of the four datasets predicted using SINKSOURCE (blue) and SINKSOURCE+
(green) for five different values of λ. Error bars indicate standard deviation, and asterisks denote significant improvement of SINKSOURCE compared
to SINKSOURCE+ (one-tailed Welch’s t-test, p < 0.01)
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Fig. 4 Five-fold cross validation performance of the four datasets predicted using SINKSOURCE with four different negative sets. Number of iterations,
error bars, and asterisks are the same as Fig. 3

a complete graph, and we are not running their SVM.
With this in mind, SINKSOURCE with the Krishnan et al.
negatives performed worse than SINKSOURCE with our
curated set for all datasets (blue vs. green boxplots in
Fig. 4). We observed the smallest difference in average
AUC performance on the autism dataset, which also uti-
lized the positives gathered from Krishnan et al. However,
the AUC distributions were significantly different (p =
4.8×10−10). The schizophrenia dataset had a much larger
difference in performance using the Krishnan et al. nega-
tives, suggesting that those negatives may not successfully
generalize to other neurological diseases.
We also compared SINKSOURCE with our curated nega-

tives to a random set of negatives from the network and a
random set of negatives that preserve the degree distribu-
tion of our curated negatives (pink and yellow boxplots in
Fig. 4). The random set of negatives performed worse than
the curated set in all datasets, and the degree-preserving
negatives performed worse than three of the four datasets
(one-tailed p < 0.01). Unsurprisingly, constraining the
random negatives by the degree distribution observed in
the curated negatives improves performance over ran-
dom negatives with no degree constraints. In the datasets
that use autism negatives, the degree-preserving random
negative set performs about as well as the curated set of
negatives.

Motivation for a newmethod.
Figures 3 and 4 show that our curated positive and neg-
ative sets are reasonable choices for SINKSOURCE in
terms of k-fold cross validation accuracy. However, when
we inspected the top unlabeled nodes ranked by their
scores, we found that these genes had very low degree
in the network. Figure 5a shows the ranked nodes by
degree for the schizophrenia dataset from SINKSOURCE.
As expected, the positive nodes were ordered first (blue),

then unlabeled nodes (gray), and negative nodes appear
last (red). However, the degree of the top-ranked unla-
beled nodes for the schizophrenia dataset showed a stark
drop compared the labeled positives (Fig. 5b). The other
datasets showed a similar trend (first row of Additional
file 1: Figure S4). The first 100 unlabeled nodes have

A

B C

Fig. 5 a Node ranking (x-axis) by degree (y-axis) of SINKSOURCE run on
the schizophrenia dataset. Black line denotes moving average (15
nodes). b First 500 unlabeled nodes from a illustrating low degree for
top-ranked unlabeled nodes. c First 500 unlabeled nodes from
PSEUDO-SINKSOURCE+ (λ = 1) run on the schizophrenia dataset
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an average degree between 2 and 2.6 across the datasets
when the average degree of the network is 185. These top-
ranked, low-degree unlabeled nodes tended to be con-
nected to positives. If an unlabeled node with degree one
was connected to a positive, SINKSOURCE would assign it
a final value of 1.0.

PSEUDO-SINKSOURCE+.
Based on this observation, we wanted to adjust the
predictions for these low-degree nodes that are skewed
based on their neighbors. There are many ways to make
this adjustment. For example, GeneMANIA predicts the
values of labeled nodes instead of keeping the labeled
scores fixed [19]. However, GeneMANIA will still have
the issue that a degree-one node connected to a posi-
tive will always be given that positive’s score. PSEUDO-
SINKSOURCE+ considers negatives (as SINKSOURCE does)
and makes uses of a λ-weighted negative edge (as SINK-
SOURCE+ does).
We found that SINKSOURCE+ helped correct the high-

ranking, low-degree node issue with large values of λ.
Specifically, very few of the unlabeled nodes of the top 500
candidates had low degree for PSEUDO-SINKSOURCE+
with λ = 1 (Fig. 5c). The average degree of the first
100 unlabeled nodes increased to between 198 and 229
across the four datasets, compared to about 2 for SINK-
SOURCE. This trend was consistent with different values
of λ (Additional file 1: Figure S4).
We next evaluated the accuracy of PSEUDO-

SINKSOURCE+ as λ increases (Fig. 6). In the schizophrenia
and autism datasets, the accuracy remained about the
same for small values of λ and deteriorated for λ ≥ 10.
However, in the cell motility datasets, accuracy held
steady with increasing values of λ, even significantly
outperforming the λ = 0 (original SINKSOURCE)
case (asterisks in Fig. 6). As we increased λ, PSEUDO-
SINKSOURCE+ with the curated negatives usually
outperformed the method with other negative sets (Addi-
tional file 1: Figure S5). These results indicate that λ can
be tuned to allow higher-degree nodes to be ranked earlier
without sacrificing accuracy in terms of AUC values. For
the remaining results we used PSEUDO-SINKSOURCE+
with λ = 1, as this value did not deteriorate accuracy for
the disease datasets and improved accuracy for the cell
motility datasets.

Multi-layer PSEUDO-SINKSOURCE+
PSEUDO-SINKSOURCE+ corrected the low-degree bias by
varying a λ-weighted negative contribution to all nodes.
We also sought to develop a method where a node’s
value of f included contributions from more distantly
labeled nodes whose effect were drowned out by adja-
cent positively-labeled nodes. For example, in Fig. 1a,
the value of node c could be a weighted combination of

the existing graph with the immediately labeled neighbor
(contributing a score of 1) and the graph where the neigh-
bor’s label is hidden, allowing the other labeled nodes to
influence c’s score. Our approach makes l copies of the
original graph G and partitions the labeled nodes across
these l “layers.” The number of layers l is a user-defined
parameter. The copies of node v (e.g., v1, v2, . . . , vl) are
connected to a supernode v0 introduced for each node
from the original graphG. We also include the λ-weighted
negative edges as in PSEUDO-SINKSOURCE+. The same
Gaussian smoothing process determines different values
f (v1), f (v2), . . . , f (vl) for each copied node. The final value
of node v is calculated as f (v0), the weighted average of
v’s copies in the modified graph. More details about the
multi-layer approach, including a motivating example, are
provided in Additional file 1: Section S1.
We ranMULTI-LAYER PSEUDO-SINKSOURCE+ for l = 2

and l = 3 layers and compared the results to PSEUDO-
SINKSOURCE+. When λ = 0, the top nodes ranked by
the multi-layer method have an even worse degree bias
than SINKSOURCE. However, as λ increases, additional
layers helps correct the degree bias more than PSEUDO-
SINKSOURCE+ (Additional file 1: Figure S6). Despite this
further correction, partitioning the labeled nodes across
layers does not improve the cross validation accuracy
compared to PSEUDO-SINKSOURCE+ (Additional file 1:
Figure S7). Further, the size of the modified graph with
multiple layers increases the running time of the Gaus-
sian smoothing method. For these reasons, we returned
to PSEUDO-SINKSOURCE+ because it corrects the low-
degree bias in a simple manner while retaining accuracy
for reasonable values of λ.

Schizophrenia and cell motility predictions
We used PSEUDO-SINKSOURCE+ with λ = 1 to solve the
PDP Problem for schizophrenia and cell motility. We used
the schizophrenia positives CD and the cell motility pos-
itives CP and calculated three ranked nodes: predicted
schizophrenia candidates fD , predicted cell motility candi-
dates fP , and the combined score g (Eq. (10)). The f vectors
were normalized by the largest score for a node in V0, so
they were in the range of [ 0, 1]. The combined score g was
not normalized, but rather a product of fD and fP .

Comparison to the union of the positive sets.
We asked whether running PSEUDO-SINKSOURCE+ with
the union of the schizophrenia and cell motility positives
would produce a better ranking than running the two pos-
itive sets separately and combining them into one final
score g. Thus, we calculated the additional predictor fD∪P
for λ = 1:

fD∪P ← learn(G, λ,CD ∪ CP ,CD), (11)

which was normalized by the largest value of V0.
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Fig. 6 Five-fold cross validation performance of PSEUDO-SINKSOURCE+ for the four datasets across six values of λ. Number of iterations, error bars,
and asterisks are the same as Fig. 3

The predicted scores for these four experiments fol-
lowed relatively similar distributions across all ranked
nodes (Fig. 7 left). The predictor g produced the smallest
scores, which was reasonable because it was the prod-
uct of two of the other predictors. The union predictor
produced many nodes with large scores due to the fact
that the number of positives nearly doubled in this set-
ting. The top-ranked candidates between the combined
predictor g and the union predictor fD∪P were notably
different (Fig. 7 right). In this figure, if the two methods
had generated identical rankings, we would see a diago-
nal line. Nodes that were labeled as both schizophrenia
and cell motility positives appeared at the very top of pre-
dictor g’s ranking compared to predictor fD∪P (dark blue
points). In the combined score method, these nodes had
large fD and fP scores, which distinguished them from
nodes that have only one large score. Note that genes
ranked in the top 1000 for one method may not have
appeared in the top 1000 for the other (points outside the
dotted box); see Additional file 1: Figure S8 for the full
range of values. As expected, the union method promoted
the 997 genes that were labeled as a positive in either
set before ranking a node that was unlabeled in either
set. In comparison, nodes that were unlabeled in either
set were ranked between 900 and 1000 in the combined
method but ranked worse than 1000 in the union method
(the group of gray points). Thus, the combined method
has the potential to promote nodes that are unlabeled in

either set over the nodes that are positive in exactly one
of the sets.

Predicted Candidates.
From Fig. 7, it is clear that many of the top-ranked candi-
dates for the combined score will either be a schizophrenia
positive, cell motility positive, or both. The cases where
the node is a positive in both sets is uninteresting from
a predictive sense. Instead, we focused on the candidates
in the top 70 predictions (sorted by combined score g)
that were unlabeled (bold) in one or both of the positive
sets (Table 1). Note that all these candidates would be tied
using the union method (fD∪P column). The candidates
in the table were labeled as positive in one of the sets;
the first node that was unlabeled in both sets is CD74 at
rank 972. Our approach generalizes beyond schizophrenia
data as well; we performed the same analysis with the
autism dataset and report the top-ranking candidate genes
in Additional file 1: Table S1.
To illustrate the dramatic difference in network topol-

ogy for the candidates determined by SINKSOURCE com-
pared to PSEUDO-SINKSOURCE+, we visualized the neigh-
bors of the top-ranked nodes from the two methods
for schizophrenia using GraphSpace, an interactive web-
based visualization server [30]. Three nodes were tied
for the best-ranked candidates in SINKSOURCE that were
unlabeled in at least one of the curated positive sets
(schizophrenia or cell motility) – these three nodes had a
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Fig. 7 PSEUDO-SINKSOURCE+ runs on different positive sets for λ = 1 for schizophrenia as the disease setD. (Left) Genes ranked by score according
to schizophrenia fD , cell motility fP , union fD∪P and combined score g. (Right) Scatter plot of gene rankings in combined g vs. union fD∪P . Each
point is a gene, and the first 1000 ranked nodes in each method are plotted (dotted box)

Table 1 Candidate genes associated with schizophrenia (D) and cell motility (P ), ordered by their combined score g(v)

Gene Name Entrez Rank Deg fD fP fD∪P g(v)

EMILIN1 11117 47 113 1.00 0.46 1.00 0.46

IFITM3 10410 48 386 1.00 0.45 1.00 0.45

TGM2 7052 49 420 1.00 0.44 1.00 0.44

SEMA3A 10371 50 173 1.00 0.44 1.00 0.44

CLU 1191 51 549 1.00 0.44 1.00 0.44

ADAMTS3 9508 52 113 1.00 0.43 1.00 0.43

AIF1 199 53 223 1.00 0.43 1.00 0.43

LRP4 4038 54 184 1.00 0.43 1.00 0.43

RPTOR 57521 55 8 1.00 0.42 1.00 0.42

HLA-DRB5 3127 56 93 0.42 1.00 1.00 0.42

PMP22 5376 57 558 1.00 0.42 1.00 0.42

DAB2 1601 58 624 1.00 0.42 1.00 0.42

PAK3 5063 59 114 0.42 1.00 1.00 0.42

EGR1 1958 60 317 1.00 0.42 1.00 0.42

CDH13 1012 61 37 1.00 0.42 1.00 0.42

PTPRG 5793 62 325 1.00 0.42 1.00 0.42

GRK5 2869 63 546 1.00 0.41 1.00 0.41

PTGS2 5743 64 202 1.00 0.41 1.00 0.41

SYT11 23208 65 273 1.00 0.41 1.00 0.41

TNFAIP2 7127 66 479 1.00 0.41 1.00 0.41

GPM6B 2824 67 565 1.00 0.41 1.00 0.41

GALNT10 55568 68 322 1.00 0.40 1.00 0.40

LRP1 4035 69 877 1.00 0.40 1.00 0.40

HES1 3280 70 147 1.00 0.40 1.00 0.40

Genes in the top 70 ranking that are unlabeled in either inD andP are shown. Italic font indicates that the gene is positively labeled; bold font indicates that the gene is
unlabeled
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score of 1.0 and a single neighbor that happened to be a
positive in both sets (Fig. 8a). The two top-ranked nodes
determined by PSEUDO-SINKSOURCE+ with λ = 1, on
the other hand, had 113 neighbors and 386 neighbors,
respectively, many of which were unlabeled (cyan nodes in
Fig. 8b and c).
Our overall goal is to identify candidate genes that are

associated with schizophrenia and may exhibit an altered
cell motility phenotype, and we have an RNAi assay in
Drosophila cells to test the effect of a candidate gene on
cell movement. We further examined the list in Table 1
for candidates that were (a) supported in the literature
as being involved in motility [31, 32], (b) highly con-
served in flies by a BLAST sequence alignment [33], (c)
highly expressed in Drosophila D25c cells [32], and (c)
were not involved in a large number of biological pro-
cesses. These aggressive filters removed many of the top
candidates. For example, consider the first three nodes in
Table 1. EMILIN1 is involved in the development of elas-
tic tissues, but it is not highly conserved in flies; IFITM3
is an immunity protein associated with the flu so it is
not directly relevant; and TGM2 interacts with integrins
and other adhesion proteins, but it is poorly expressed in
D25c cells [31, 32].Working through the list of candidates,
we selected six candidates for follow-up investigation,
including AIF1, PTPRG, and GRK5 (ranked 53, 62 and
63 in Table 1, respectively). AIF1, known as Swiprosin-
1 in flies, is an actin-binding protein that plays a role in
Rac signaling [31]. PTPRG, known as Ptp99A in flies, is

a phosphatase that alters motor axon phenotypes and is
associated with motor axon defects [32]. GRK5, known as
GPRK2 in flies, is a kinase that has been reported to be
differentially methylated in schizophrenia studies [23, 32].
Other candidates are SNAP91 (like-AP180 in flies, ranked
107), CLTCL1 (clathrin heavy chain isoform A in flies,
ranked 353) and CNTN4 (LD28757p in flies, ranked 720).

Conclusion
We introduced the POLYGENIC DISEASE PHENOTYPE
Problem to predict disease genes that may be associated
with a phenotype of interest using a functional interac-
tion network. In this work, we focused on schizophrenia
and autism and investigated genes that may be associated
with changes in cell motility patterns, a phenotype that
has been observed in both diseases.We first demonstrated
that our curated positives and negatives perform well in
terms of cross-validation accuracy for SINKSOURCE, a
Gaussian smoothing method. However, the top-ranked
nodes from this approach had very low degree, in part due
to the fact that at least one of their few neighbors was a
positive. This effect placed more emphasis on nodes with
low degree and a few positives, compared to more con-
nected nodes with a larger number of positive neighbors.
We then showed that PSEUDO-SINKSOURCE+, a combina-
tion of previous Gaussian smoothing methods, corrected
this low-degree bias while retaining comparable cross val-
idation accuracy (and, in some settings, improved the
accuracy).

A

B

C

Fig. 8 Representative networks showing top candidates and their neighbors for the combined method on the schizophrenia dataset. a The three
nodes tied for the top ranking according to SINKSOURCE (TENM1, CES1, and ZFAT). b The top-ranked node and c the second-best node according to
PSEUDO-SINKSOURCE+ with λ = 1
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In PSEUDO-SINKSOURCE+, the choice of λ uniformly
dampens the predictions by increasing the denominator
of the score function, while the set of negatives selectively
dampens the predictions for neighbors of negatives. An
outstanding question is how to select λ properly. In our
experiments, λ = 1 produced the most accurate can-
didates; however, it is unclear how to set λ when the
limited amount of labeled data prohibits cross-validation.
One way to select λ is to find a value where the top-
ranked candidates from PSEUDO-SINKSOURCE+ have an
average degree similar to what is observed in the full net-
work (e.g. about 176 neighbors on average), but this would
suggest a single λ that is independent of the disease or
process. Different values of λ may be better for differ-
ent datasets; if there are enough positively-labeled nodes,
one can compare the average degree of the positives (e.g.
about 535 neighbors for schizophrenia) with the aver-
age degree of the same number of top-ranked candidates.
However, the degree distribution of the top unlabeled
nodes is notably different from the degree distribution
of the positive set across all four experiments, indicating
that this approach is likely overly simplistic (Additional
file 1: Figure S9). Compiling a list from multiple runs of
PSEUDO-SINKSOURCE+ with different choices of λ values
may provide a more comprehensive prediction of func-
tional association. Another consequence of our method is
that unlabeled nodes will never be ranked higher than the
labeled positives when considering a single curated set of
positives and negatives; other methods such as GeneMA-
NIA [19] relax this assumption. Ongoing work includes
automatically determining a proper choice of λ, modify-
ing the Gaussian smoothing method to predict top nodes
that reflect the curated positive degree distribution, and
exploring other semi-supervised learningmethods for this
problem.
Based on our results, we have selected six candidates

to experimentally test their effect on cell motility in a
cell-based assay. This selection was based on additional
post-processing steps, and ultimately done with man-
ual checks. Automating this type of downstream analysis
will accelerate the selection of candidates for experimen-
tal screening. Overall, our work presents a framework
for investigating biological processes that may be dis-
rupted in polygenic diseases. The problem formulation
and computational approach opens many directions of
further research that leverages computational knowledge
to inform experiments for complex disease phenotypes.

Additional file

Additional file 1: Details about MULTI-LAYER PSEUDO-SINKSOURCE+,
supplementary figures, and one supplementary table. (PDF 1010 kb)
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