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HIGHLIGHTS

Climate-sensitivity of load is asymmetric; high demand is more sensitive than moderate demand.
Dew point temperature is the key predictor of high- and moderate-intensity demands.
Residential high-intensity demand is more sensitive to precipitation than moderate demand.
Higher wind speeds decrease both the high- and moderate-intensity end-use demands.

Moderate intensity demand is more price-sensitive than high intensity demand.

ARTICLE INFO ABSTRACT

Climatic variations significantly influence the shape of end-use electricity demand curves. Although the climate
sensitivity of end-use electricity demand is well-established, projecting medium- and long-term future demand
remains a significant challenge—mostly due to a multitude of uncertainties involved in the modeling process. In
this paper, we leveraged a state-of-the-art Bayesian approach to develop rigorously validated regional prediction
models of the climate-demand nexus conditioned on the intensity level of demand. The prediction models were
developed for the residential and commercial sectors for the top eight energy-intensive states in the U.S. A key
contribution of this work was to illustrate the asymmetry in the sensitivity of load to climate. More specifically,
our results demonstrated a greater sensitivity of the high-intensity end-use demand to climate variability as
compared to the moderate-intensity end-use demand. In addition, our results helped identify mean dew point
temperature as the key predictor of the climate-sensitive portion of both residential and commercial electricity
demands, irrespective of the demand intensity levels. Wind speed was identified as the second most important
predictor of the high-intensity (i.e., >3rd quartile) end-use demand, while electricity price was found to be the
key predictor of the moderate-intensity (i.e., < 3rd quartile) end-use demand. The influence of precipitation on
the residential and commercial sectors’ moderate end-use demand was found to be more variable. Precipitation
was found to influence the commercial sector’s electricity demand more significantly compared to the residential
sector's demand.
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1. Introduction

Projecting medium- and long-term electricity demand is a challen-
ging task due to the uncertainties associated with both climatic and
non-climatic factors such as regional climate and geographical char-
acteristics, infrastructure types, policy incentives, technological ad-
vancements, socio-economic factors, and population shifts. Many of the
existing energy-economy models can facilitate electricity demand pro-
jections under policy change and technological uncertainties; however,
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such models are unable to adequately account for the influence of cli-
mate variability on the demand [1]. Previous research established
various weather and climate variables such as dew point temperature,
maximum daily temperature, wind speed and precipitation as key
predictors of climate-induced energy demand [2-4]. In addition, cli-
matic factors such as ambient temperature and humidity have been
shown to play an important role in determining the quantity of elec-
tricity consumed by a household or a commercial building [5-7] or an
industrial firm [8]. In fact, a major portion of the climate-influenced
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electricity demand is attributed to space conditioning such as heating or
cooling needs per the season [4,9]. Although the significant influence of
climate variability and climate change on the shape of seasonal demand
curves have been established, evaluating regional climate-demand
nexus still remains a challenging task. End-use demand varies widely
across different regions in the U.S., with some states projected to ex-
perience decreased loads under future warming scenarios, while others
are projected to experience an increase in end-use demands under si-
milar scenarios [5]. The ability to credibly characterize the climate-
induced shifts in end-use demand is critical for devising appropriate
policy decisions at the state and federal levels as well as the regional
electricity markets.

While sectoral electricity demands show significant differences in
their patterns and climate sensitivity, aggregate electricity demand has
been found to be rather insensitive to climate, mostly because of the
composition effects [8]. Thus, we developed prediction models for cli-
mate-sensitive load in the residential and commercial sectors in the
most energy-intensive regions of the country [5]. We focused on the
residential and commercial sectors because the electricity consumption
levels in these two sectors have been found to be most sensitive to
climatic variability and change [10]. However, our methodology can be
easily extended to the industrial or transportation sectors. To develop
our proposed prediction models, we selected the states of California
(CA), Florida (FL), Illinois (IL), Louisiana (LA), New York (NY), Ohio
(OH), Texas (TX), and Washington (WA). The selection of these states
was based on the fact that: (a) they rank the highest in terms of the
fraction of total energy consumption in the U.S., and (b) their diverse
geographical distribution presents a unique case in offering a general-
ized understanding of the climate sensitivity of electricity demand
[11,12].

We developed probabilistic composite predictive models of end-use
demand based on a Bayesian non-parametric tree-ensembles algorithm,
named Bayesian Additive Regression Trees (aka BART) [13,14]. This
modeling approach was established as an effective methodology for
characterizing the complex nexus between climate variability and
electricity demand in previous literature [1-3,9]. We hypothesized the
degree of the climate-sensitivity of load to be different for high-in-
tensity end-users compared to the moderate-intensity end-users. To test
the hypothesis, we developed two separate models, namely, high-in-
tensity consumption model (HCM) (i.e., the end-use demand observa-
tions equal to or greater than the 3rd quartile) and moderate-intensity
consumption model (MCM) (i.e., the observations below the 3rd quar-
tile) for each of the residential and commercial sectors. Contrary to the
previous studies of modeling each state separately [5,6], we developed
a single ‘regional’ model to simultaneously characterize the climate-de-
mand nexus across all the different states included in the analysis. Thus,
each of the HCM/MCM models is referred to as a ‘composite’ model. We
conjecture that the prevalence of separate, single-state models in the
existing literatures [5,6] can be attributed to the commonly used linear
model architectures. Developing composite models for multiple states
using linear methodologies would likely lead to poor prediction cap-
ability. This is because the ‘rigid’ linear structure cannot capture the
complex heterogeneities and non-linear variabilities in demographic
composition, socio-economic patterns and topography across the states.
We hypothesized that our proposed flexible, probabilistic predictive
framework could in fact account for the complex nexus between climate
variability and demand across the different regions. To test this hy-
pothesis, we assessed the statistical performance of the composite
models based on both (i) their goodness-of-fit, and (ii) their predictive
accuracy (aka out-of-sample error estimation). We selected our model
based on the generalizability of the developed models in addition to
their capability in capturing the structure of the data. We also validated
the models through leveraging a validation dataset that was not used in
training and testing the models.

We have organized the article as follows. In Section 2, we start by
presenting a brief overview of the literature on climate-demand nexus
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modeling and highlighting the research gaps in the existing body of
knowledge. We discuss our data in Section 3. Section 4 summarize our
methodologies, followed by Section 5 where we discuss our results and
model validation. We conclude in Section 6 by summarizing our key
findings and delineating future research directions.

2. Prior art of modeling climate-demand nexus

Over the past few decades, there has been a growing interest in
analyzing the residential and commercial electricity demand trends as a
function of different factors such as occupant behavior, equipment ef-
ficiency, climate change and variations, types of the households or
buildings, etc. The studies vary widely in terms of the scale of the as-
sessment, ranging from single and multiple households or buildings to
single and multiple states and regional-level analyses.

Previous research has analyzed the energy demand at the level of
individual commercial buildings under idealized conditions. Energy
benchmarking models have also been developed for office buildings in
all census regions of the U.S. [15]. Another study analyzed commercial
energy consumption per unit floor area, considering 612 prototypical
commercial buildings in a representative district incorporating sto-
chastic occupant behavior, various zoning configurations, HVAC sys-
tems, and building construction characteristics [16]. The key predictors
of the cooling demand intensity in commercial buildings across the U.S.
were identified via leveraging statistical machine learning algorithms in
order to improve building-level operational management policies [17].
Another research analysis simulated the energy consumption in the U.S.
commercial buildings to estimate the cost of overcooling the commer-
cial buildings [18]. Analyzing energy demands at household levels have
also recently become more prevalent in the scientific literature. For
example, one study investigated the relationship between energy de-
mand in a representative residential building and the various factors
such as heating and cooling degree days, total heating and cooling area,
household size, price of electricity, housing type and age, neighborhood
density, ownership and income [19]. Another study analyzed the
cooling demand in residential buildings, considering the behavioral,
physical and socio-economic parameters on cooling load. The objective
of the study was to enable a more informed appraisal of interventions or
incentives to improve energy efficiency [20]. In another article, re-
searchers estimated the building sector’s end-use demand intensity
(Kilowatt-hour per square-meters of floor area, i.e., KWh/m?), con-
sidering the different functions of the building and based on various
building types such as residential single family, residential multi-fa-
mily, office, store, education, health, warehouse and other commercial.
While the above-mentioned studies paved the path to gaining an un-
derstanding of the energy consumption patterns at the individual
commercial building or household level, these studies had a compara-
tively limited scope and spatial coverage. Thus, they did not account for
regional variabilities and did not investigate the influence of the re-
gionally diverse climatic variability on the electricity consumption.

Significant research efforts have been directed towards modeling
the effects of climate variability and climate change on the regional
energy demand in the residential and commercial sectors to help the
electric utilities with more effective integrated adequacy planning
[21-31]. Parametric generalized linear models have been widely used
to establish the relationship between energy demand and climate and/
or non-climatic predictors. Multiple linear regression (MLR) and time-
series analysis have been leveraged to predict the seasonal electricity
demands in the state of New South Wales in Australia under future
climate change scenarios [32]. In a different study, influence of tem-
perature on the energy demand in the residential and commercial
sectors have been assessed leveraging a generalized linear model, while
controlling for socio-economic factors [7]. However, in both the studies
the authors did not consider other potentially relevant climate factors
such as humidity, precipitation or wind speed [7,32]. MLR analysis is
also used to analyze the relationship between the monthly electricity
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demand, and the meteorological variables and calendar effect for Italy
to identify the influence of weather on aggregate national electricity
demand; however, the study did not account for any socio-economic
variabilities in the analysis [33]. MLR modeling approach is adopted to
estimate the influence of various climatic and socio-economic factors on
the monthly regional electricity demand in the Greek interconnected
power systems [34]. Another research focused on developing a two-
stage least square methodology to analyze the energy demand for all 50
states in the continental U.S. The author used the cross-sectional data
collected for the year 1988 to estimate energy demand and price elas-
ticities for the residential, commercial and industrial sectors [35]. Se-
parate parametric linear models were developed to estimate the sensi-
tivity of demand for electricity and natural gas to climate variability in
each of the top eight energy intensive states viz., California, Louisiana,
Texas, Florida, Washington, Illinois, Ohio and New York [6]. The se-
parate, state-level linear regression-based models used the (heating and
cooling) degree-day approach, and did not account for socio-economic
(non-climatic) factors. A follow-up study based on the same metho-
dology conducted a scenario-based sensitivity analysis to estimate the
effect of climate change on the consumption of electricity for the re-
sidential and commercial sectors in each of the top eight energy in-
tensive states in the U.S. [5]. Time series regression model was lever-
aged to analyze the relationship between temperature and energy
demand for the state of Maryland [36].

Despite the advancements in understanding the climate sensitivity
of the electricity demand in the residential or commercial sectors, there
remain several knowledge gaps in the existing body of literature. Some
of the limitations and knowledge gaps are summarized below:

(a) Majority of the household or building-level energy prediction
models do not adequately account for the role of climate variability.
(b) Most of the regional studies used the conventional degree-days
approach (i.e., the heating or cooling degree days) to establish the
link between climate and electricity demand. However, previous
research has demonstrated the inadequacy of the degree-days ap-
proach for capturing the climate sensitivity of electricity demand
[3,4]. Moreover, many of the regional models are based on linear
regression, developed using the highly correlated cooling and
heating degree-days [37] which lead to biased inferencing. This is
because the highly collinear variables might mask the effect of the
others [3].
Many of the existing approaches leverage linear, deterministic
models to characterize the complex and non-linear climate-demand
nexus. However, previous research demonstrated that generalized
linear models often led to reduced predictive performance and
generalizability due to their inadequacy in capturing the complex
nonlinear climate-demand nexus [1-4].
No previous study has assessed the non-uniform sensitivity of end-
use demand to climate variability.

(c

—

d

-

To address the gaps identified above, we propose a generalized,
probabilistic composite model to characterize the stochastic and com-
plex nexus between climate variability and electricity load in the re-
sidential and commercial sectors across the eight most energy intensive
states. Based upon our previous research [1,3,4,9] we hypothesized that
predictive models using a Bayesian, non-parametric, ensemble-of-trees
algorithm could facilitate accurate estimation of the complex clima-
te—end-use electricity demand nexus across multiple different geo-
graphical regions (i.e., eight different states in the U.S.). To test the
hypothesis, we rigorously assessed the statistical performance of the
developed models. In addition, we hypothesize that the climate vari-
ables that govern the sensitivity of electricity load differ for high-in-
tensity demand versus moderate-intensity demand across the states. To
test this hypothesis, we developed two separate ‘composite’ models,
namely, high consumption model (HCM) and moderate consumption
model (MCM) for each sector (refer to Section 1). Leveraging our
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proposed framework, the climate-demand nexus for multiple regions
can be characterized simultaneously using a single model. The advantage
of the proposed composite modeling approach over the cumbersome,
individual state-level approach is that electricity market operators and
policy analysts can implement swift and efficient sensitivity analysis for
multiple regions simultaneously, instead of running separate models for
each state. This is especially useful since state demarcations are not
necessarily accurate boundaries of climate variability. Moreover, while
we developed our models for the top-eight most energy intensive states
in the U.S., any state/region could be used in our generalized modeling
framework. We believe that the proposed composite modeling frame-
work is poised to improve the operational management of regional
electricity markets and enhance reliability levels by better anticipating
climate-induced shifts in demand.

3. Data source, description and visualization

The performance of a statistical machine learning model depends on
various factors including the volume and quality of the empirical data
used during the model development. Hence, it is imperative to assemble
a reasonably sized high-quality database consisting of both electricity
consumption, climate and socio-economic data. The data obtained for
the current analysis covers a 26-year period, starting from 01-Jan-1990
to 31-Dec-2015.

3.1. Input data preparation

3.1.1. Electricity data

Information pertaining to the state-level electricity consumption
was retrieved from the database published by the United States Energy
Information Administration (EIA) [38]. The monthly electricity sales (in
Megawatt hours) and electricity price (in cents/kWh) data for the re-
sidential and commercial sectors in the above-mentioned eight states
were extracted from the EIA-861M database [38].

For each state under consideration, the sectoral electricity sales data
was normalized using the state-wide monthly population to obtain the
per capita monthly electricity sales, denoted by E(m, y) (in Kilowatt
hours). We first obtained the state-level annual population data from
the U.S. Census, and then estimated the state-wide monthly population
through a linear interpolation between the years of interest.
Subsequently, to isolate the influence of climatic factors on the elec-
tricity demand per capita—in other words, to remove the non-climatic
factors’ effect from the time series electricity demand (electricity sales)
data—we trend-adjusted the per capita electricity sales data. The
methodology used to trend-adjust the data is described in the following
section [3,6]:

At first, we calculate the yearly average electricity sales consump-
tion E (y) from the monthly data over the entire period of study.

T S E(m, y)

Nyears

EQ) =

Then, the adjustment factor F,q; for each year was calculated from
the following equation:

12
Fg=EQ@)" ), E(m,y)
m=1
Finally, each month’s electricity data, E (m, y), was trend-adjusted
through a simple division by adjustment factor for that year as shown
below:

Euqj(m, y) = E(m, y)/Fog;(y)

Figs. 1a and 2a show the raw time series of the per capita electricity
sales (consumption) data aggregated across the selected eight states in
the residential and commercial sectors, respectively. Figs. 1b and 2b, on
the other hand, show the trend-adjusted time series of the per capita
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Residential Sector: Raw Electricity Sales Data
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Residential Sector: Detrended Electricity Sales Data
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Fig. 1. Time-series distribution of per capita electricity sales in the residential sector: (a) raw data; (b) trend-adjusted data.

electricity sales data aggregated across the selected eight states in the
residential and commercial sectors, respectively. The values on the x-
axis range from 0 to 312 months, where O represents 01-Jan-1990 and
312 represents 31-Dec-2015. Each y-axis value indicates the per capita
electricity sales for each of the eight states under consideration.

3.1.2. Climate and weather data

The periodicity of the electricity sales data dictated the periodicity
of the climate data. The climate parameters were obtained from various
sources as described in this section. These databases contain daily cli-
mate data from regional monitoring stations throughout the USA.

Monthly climate data was retrieved from the National Digital
Forecast Database maintained by National Oceanic and Atmospheric
Administration (NOAA) [39]. The monthly climate data was obtained
from eleven different regional weather stations in each of the different
states considered in our analysis; we aggregated the station-level data
to compute the state-level climatic variable, leveraging the following
formula:

1 Ns
Xitate (m) = ﬁ Z X

S =1

Here, N; is the number of weather stations in a state and X re-
presents the observed climate variable in the state during a month “m”.
In doing so, we assumed that every weather station reading is re-
presentative of the region in which it is situated. Finally, missing values
in each climatic parameter are replaced via imputation. The climate
data relevant to the current study is — “total precipitation (in mm)”.

Daily weather data, aggregated across all the weather stations in a

(a) Commercial Sector: Raw Electricity Sales Data
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state, was obtained from National Climatic Data Center (NCDC) online
database. We computed the median of the daily values to represent the
monthly values of the following features—(a) Mean dew point tem-
perature (in °C); (b) Mean wind speed (in m/s); and, (c) Maximum wind
gust (in m/s).

Finally, the monthly-level climate and weather data were used in
our analysis.

3.1.3. Socio-economic data

The data pertaining to economic indicators was obtained from the
U.S. Department of Labor, Bureau of Labor Statistics. The dataset in-
cludes variables such as employment, unemployment, unemployment
rate, gross state product (GSP), per capita income of the population and
labor force [3,40]. However, we considered the features: (a) un-
employment fraction, and (b) GSP of the states in our analysis because
they were found to be important control variables in predicting the
climate sensitive state-level electricity demand in previous studies
[3,10]. In addition, since our analysis involved a multi-region time
series analysis, these variables were found to better capture the socio-
economic variabilities across the states during the years of the analysis.
For example, unemployment fraction for the state of Illinois was as low
as 4.1% in 1999 [February] and as high as 11.2% in 2009 [December].
On the other hand, Texas experienced the least variation over the years
[4% in November-2000 to 8.4% in August-2009]. Inclusion of these
control variables in our model was essential to isolate the effect of
climate on end-use electricity demands.

The monthly gross state product of each state was converted to per
capita income of that state by dividing it with appropriate state-wide
population data for that month. Subsequently, the per capita income of

(b) Commercial Sector: Detrended Electricity Sales Data
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Fig. 2. Time-series distribution of per capita electricity sales in the commercial sector: (a) raw data; (b) trend-adjusted data.
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the state and the electricity price was adjusted to account for the in-
flation over the entire period of study using the Consumer Price Index
(specifically CPI Urban or CPI-U). The monthly CPI values were ob-
tained from U.S Bureau of Labor Statistics (BLS) [41]. The standard
baseline set by the BLS indicates that the CPI-U in the U.S. equals to
100, during the period of 1982-1984 [41]. Since our analysis was
conducted at a monthly time-scale, we considered July 1983 (lying
midway between 1982-January and 1984-December) as the baseline
time-period for inflation adjustments. Thus, we adjusted our economic
variables (per capita income of the state and the electricity price) using
the Consumer Price Index (CPI) of 99.9 (i.e., the CPI for the month of
July 1983) and the corresponding monthly CPI values during the period
of our analysis from 1990 to 2015 [41]. The inflation adjustment factor
was calculated as the ratio of the month’s CPI to CPI in July 1983
(99.9). Based on that, the reported prices in all other months were
adjusted by dividing each month’s prices with this inflation adjustment
factor. The benefit of following the standards set by BLS is that it fa-
cilitates direct comparison of the influence of GSP and electricity price
on per capita electricity consumption in the future, irrespective of the
time-period of analysis considered in any research study.

3.2. Description of final data-set used for model development

For each of the residential and commercial sectors, Table 1 sum-
marizes the final dataset:

A portion of the final dataset, ranging from the year Jan 1990 till
Dec 2011, was used to train and test our proposed statistical learning
models, while the rest of the dataset (Jan 2012 till Dec 2015) was re-
served for evaluating the predictive performance and validating our
models.

3.3. Distribution and correlation of the input features and the response

The kernel distributions of the response variable, i.e., the per capita
electricity sales data for the residential and commercial sectors in the
eight states considered in our study are shown in Fig. 3. Kernel density
estimation, refers to the nonparametric estimation of the probability
density function of a random variable, which is the “per capita elec-
tricity sales” in the residential and commercial sector in this research. A
kernel density function is used for representing the probability density
function of a variable to avoid specific assumptions about the type of
distribution of the data. From the individual states’ kernel density plots,
we observe that the distributions of end-use electricity demands are
generally right-skewed (and bi-modal). Figs. 4 and 5 depict the kernel
distributions of the per capita high-intensity and moderate-intensity
electricity consumptions, respectively. The distribution of the high-in-
tensity electricity demands in both the residential (Fig. 4a) and com-
mercial (Fig. 4b) sectors are bi-modal and right-skewed, indicating a
similarity in their distribution patterns. However, for the moderate-
intensity demands, the pattern of residential end-use demand (Fig. 5a)
is significantly different than that of the commercial sector (Fig. 5b);
the former is bi-modal but not skewed, whereas the latter is tri-modal
and left-skewed. In summary, it can be observed that the response
variable, i.e., per capita electricity consumption (demand) aggregated

Table 1
Summary of the final dataset.
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across all the eight states, is not normally distributed in either of the
residential or commercial sectors.

Fig. 6a and Fig. 6b show the seasonal variations of the high-intensity
per capita monthly electricity demands aggregated across all the eight
states in the residential and commercial sectors respectively. On the
other hand, Fig. 7a and Fig. 7b show the seasonal variations of the
moderate-intensity per capita monthly electricity demands in the re-
sidential and commercial sectors respectively, aggregated across all the
eight states. It can be observed that the high-intensity electricity con-
sumption significantly varies seasonally in both the residential (Fig. 6a)
and commercial sectors (Fig. 6b), and it peaks during the summer
months (July-August). On the other hand, the moderate-intensity de-
mand in both the sectors do not show a significant variation across the
different seasons (Fig. 7a, b).

A violin plot is a combination of a boxplot and a kernel density plot.
In other words, in a violin plot a rotated kernel density plot is added on
the two sides of the boxplot [42]. As observed from Figs. 8 and 9, violin
plots provide an efficient visualization tool to compare the kernel dis-
tributions of the response variables—residential and commercial sec-
tor’s electricity demands—on the same plot to help compare the two
sectors’ electricity demand. The violin plots in Fig. 8 show the char-
acteristics of the residential and commercial sectors’ per capita elec-
tricity consumption in the eight states, considered in this study. On the
other hand, Fig. 9 shows the violin plots of the high-intensity and
moderate-intensity per capita end-use electricity consumption in the
residential and commercial sectors, aggregated across all the eight
states. It can be observed from Figs. 8 and 9 that the residential elec-
tricity demand is much more heterogeneous and long-tailed compared
to the commercial sector. For the combined eight states data, we also
observe that the median values of high-intensity (Fig. 9a) and mod-
erate-intensity (Fig. 9b) demands in the commercial sector are lower
than that of the residential sector (Fig. 9). Moreover, in the commercial
sector, the data points are clustered around median whereas in the
residential sector the data points are scattered throughout the range,
with a heavy concentration on the lower end of the range. Similar
trends are also observed in the individual states’ electricity demand
distribution patterns (Fig. 8), except for the states of California and New
York. In both these states, the commercial sector’s median is higher,
and the residential sector’s data-points are clustered around the
median.

Summary statistics of the higher and moderate intensity demands
for the residential and commercial sectors are given in Table 2.

4. Methodology

We propose a composite predictive framework (depicted in Fig. 10)
to evaluate the regional climate-electricity demand nexus. As discussed
before, we collected data on state-level electricity consumption pat-
terns, climate and weather information, and the relevant socio-eco-
nomic information from various publicly available databases for all the
eight states selected in our study. As depicted in Fig. 10, we performed
various data transformations including: (a) trend-adjusting the elec-
tricity consumption data to allow for isolation of the effects of climate
variability and removing the ‘secular trends’; (b) spatiotemporal

Predictors Response Variable Data Sample Size

Electricity price

Total precipitation in a month
Mean dew point temperature
Mean wind speed

Maximum wind gust

Per capita income of the state
Unemployed population share

Electricity sales (consumption)

2495 observations pertaining to 312 months between 01/01/1990 and 31/12/2015, including all the 8 states
considered in our analysis
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Residential Sector: Per Capita Electricity Demand
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Commercial Sector: Per Capita Electricity Demand
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Fig. 3. Kernel distributions of per capita electricity demand (in KWh) in the individual states.

aggregation to aggregate daily data from all climate stations; and (c)
adjusting the economic data based on the consumer price index (CPI) to
remove the effect of inflation. As described earlier in the data section,
the adjusted data for each of the states were aggregated using the year,
month and the U.S. states as the common key variables to render the
“Final Dataset”.

We then leveraged supervised learning theory to develop sectoral
energy-climate prediction models. Supervised learning involves esti-
mating the unknown predictive function f that is able to generate pre-
dictions of the target variable of interest Y (in this case, sectoral per
capita electricity demand) using a p dimensional vector of input vari-
able X (i.e., climate and socio-economic variables in this study); where
Y = f(x) + e. The objective of supervised learning is minimizing the
loss function L which measures the deviation of observed (out-of-
sample records) from the predicted values of Y. To conduct the pro-
posed predictive modeling, the “Final Dataset” was split into the

Residential Sector: High-intensity Consumption Model
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“Model Development Set” and “Model Validation Set”. The model de-
velopment set, which was used to train and test the prediction model,
included all the observations from Jan 1990-Dec 2011, i.e., all the
observations in the first 22 years. The model validation set, on the other
hand, was used to evaluate and validate our models in terms of their
future predictive performance. Each of the model development, in-
cluding training and test sets', and model validation sets’ observations
were categorized into the two levels: (a) “High-intensity Consumption”
(all observations with electricity consumption above the 3rd quartile)
and (b) “Moderate-intensity Consumption” (all observations with
electricity consumption below the 3rd quartile). The high and moderate
consumption categories of training data were trained leveraging the
Bayesian additive regression trees (BART) algorithm [13,14] for both
the residential and commercial sectors. The composite predictive fra-
mework facilitated the identification of the key predictors of the high-
and moderate- electricity consumption in the residential and

Commercial Sector: High-intensity Consumption Model
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Fig. 4. Kernel density plots of the high-intensity end-use consumption in (a) residential and (b) commercial sectors.
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Residential Sector: Moderate-intensity Consumption Model
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- Commercial Sector: Moderate-intensity Consumption Model
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Fig. 5. Kernel density plots of the moderate-intensity end-use consumption in (a) residential and (b) commercial sectors.
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Fig. 7. Seasonal variation of moderate-intensity electricity consumption in the (a) residential and (b) commercial sectors.

commercial sectors for the top energy intensive states considered in this

study.

4.1. Bayesian additive regression trees (BART)

Bayesian additive regression trees (BART) is a nonparametric,

1567

Bayesian tree-ensemble model. Mathematically, it can be represented as
a sum-of-trees model, where the response function Y is approximated
by aggregating the estimates from m ‘shallow’ decision trees as shown
below [13,14,43]:
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Fig. 8. Characteristics of individual states’ per capita electricity demand in the commercial and residential sectors.
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Fig. 9. Characteristics of combined eight states’ (a) higher intensity and (b) moderate intensity consumption patterns in the commercial and residential sectors.

m
Y= (z gX; Ty, Mj)] +e, €~N(0,0%
j=1

In the above equation, g(X; T, M) is the function which assigns the
parameters M of the tree T to the predictor matrix X across all the m
trees. The additive stochastic noise e—referred to as irreducible er-
ror—reflects the dependence of the response variable on quantities

other than the input features that are neither observed, nor measured.
Regularization priors are used on both the tree structures and the
conditional expectations at each terminal node. The regularization

priors

are leveraged to control model complexity and restrict the

overwhelming influence of the large tree components. Regularization

priors

eliminate an individual tree’s effect being unduly influential on

the sum-of-trees model [13,14]. Combining the prior distributions with
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Table 2

Descriptive statistics (i.e., mean, median, minimum (Min), maximum (Max),
interquartile range (IQR) and standard deviation (Std. Dev)) of high- and
moderate-intensity electricity consumption in the residential and commercial
sectors during Jan 1990-Jan 2016.

Demand Sectors Per capita electricity consumption (in KWh) during Jan
levels 1990-Jan 2016

Mean Median Min Max IQR Std.
dev
High Residential ~ 572.7 575.2 454.0 779.0 122.1 75.8
Commercial 395.7  396.0 350.1 480.2 55.5 29.8
Moderate Residential  296.5  301.4 150.0 453.6 163.4 89.9
Commercial 296.3 300.1 199.7 350.1 53.0 34.8

tree-model likelihoods, yields a posterior distribution of the tree
models. The sum-of-trees model is fitted using a Bayesian back-fitting
MCMC algorithm [31].

4.1.1. Model inference

To facilitate model inferencing for the proposed non-parametric
predictive model, we generated variable importance ranking and par-
tial dependence plots (PDPs). The variable importance ranking is
computed based on ‘variable inclusion proportion’, which indicates the
fraction of times a given predictor was used in growing a regression
tree. Unlike the parametric models, where inferences can be made
based on their regression coefficients, partial dependence plots (PDPs)
are used to make inferences in non-parametric models. In general, PDPs
help in understanding the individual effects of the predictor variables x;
in a ceteris paribus condition (i.e., controlling for all the other pre-
dictors). Mathematically, the estimated PDP is given as [11]:

He)=1/nYF 6 x50
i=1

Here, f denotes the statistical model; n denotes the number of ob-
servations in the training dataset; x_; denotes all the variables except x;.
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The estimated PDP of the predictor x; provides the average value of the

function f when x; varies over its marginal distribution keeping x_;
fixed.

4.1.2. Bias-variance tradeoff for assessing the model performance

The generalization performance of a predictive model depends on
its capability to make good predictions on an independent test sample.
Balancing the bias-variance trade-off is the key to minimized general-
ization error [44,45]. Cross validation techniques (e.g., k-fold, leave-
one-out, etc.), bootstrap and validation set approaches are some ex-
amples of resampling techniques widely used for balancing bias and
variance. In this paper, we leveraged k-fold cross validation technique
in addition to the validation set approach to train, test and validate our
models.

Cross validation is one of the most widely used resampling methods
(as mentioned before) in balancing bias and variance. The method of k-
fold cross validation is generally used to estimate predictive accuracy.
k-fold cross-validation involves randomly dividing the data into k
equally-sized subsets. In each iteration, the model is fitted to the subsets
except the kth held-out sample, and the predictive accuracy is calcu-
lated based on the models’ performance on the kth held-out subset.
Training error is the average error over the training sample and is given

as: efr %Z:‘ L(y;, ?(Xi)) [45]; the test error/prediction error is given

as Err; = E[L(y, /f\(xi)) |] [45]. Here, L is the loss function and 7 refers to
the specific training corresponding to which the test error is evaluated.
The model with minimum test error is then assessed against the vali-
dation set to quantify its predictive performance. In this paper, we used
a randomized holdout technique to estimate the models’ predictive
performance. More specifically, we implemented a 30-fold random
holdout validation tests on the training data (Jan 1990-Dec 2011),
where in each iteration, 20% of the data was randomly held out (“Test
Set”) and the model was trained with the remaining 80% data
(“Training Set”), and then tested using the held-out sample, i.e., the test
set (refer to Fig. 10). Since the cross validation is based on randomized
sub-sectioning the data into 80-20% portions, “30 repetitions” is con-
sidered as a conservative measure to ensure that all the observations
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Fig. 10. The schematic of the proposed composite predictive modeling framework.
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have been used at least once [45,46].

On the other hand, the validation set approach is a type of method
that estimates a model error rate by holding out a subset of the data
from the fitting process (creating a validation dataset). Once we de-
veloped our models and selected them based on the model’s perfor-
mance both in terms of in-sample model fit and out-of-sample predic-
tion accuracy (leveraging the model development set), we used the model
validation set (Jan 2012-Dec 2015) to validate the predictive perfor-
mance of our models (refer to Fig. 10). Using the predictor set of the
validation data, we predicted the future per capita electricity con-
sumptions (KWh) in the residential and commercial sectors. Finally, we
compared the predicted values (given by our models) and the actual
observations during the period of Jan 2012-Dec 2015 for validation.

5. Results

In this section, we describe the performance of the prediction
models of the per capita electricity demand in the residential and
commercial sectors developed for the top eight energy intensive states
of California, Florida, Illinois, Louisiana, New York, Ohio, Texas, and
Washington. As discussed before, we developed two types of
models—HCM (high-intensity consumption model) and MCM (mod-
erate-intensity consumption model)—for the residential and commer-
cial sectors. For each model, we assessed the in-sample goodness-of-fit
and out-of-sample predictive accuracy and plotted the percentage
coverage of the observed values within the credible and prediction in-
tervals. The credible interval (aka Bayesian confidence interval) char-
acterizes the posterior distribution of the predicted values [14], while
the prediction interval characterizes the confidence levels related to the
(future) observations that are yet to be observed.

5.1. Model performance

The performance of the developed prediction models was assessed
based upon both in-sample and out-of-sample root mean square error
(RMSE), mean absolute error (MAE), and coefficient of determination
(R?). The error rates reported in Tables 3 and 4 indicate the cross-va-
lidation errors. To benchmark the performance of our predictive
models, we also provided information about the ‘null’ or ‘mean-only’
models. Comparison with the ‘null model’ reveals the extent to which a
predictive model contributes to explaining the variance of the response,
beyond the historical mean values [1-4]. Tables 3 and 4 reveal the
significant predictive performance of both the high consumption model
(HCM) and the moderate consumption model (MCM) in the residential
and commercial sectors compared to the “mean-only” model.

From Table 3, it can be observed that the magnitude of the HCM’s
mean absolute error (MAE) related to the in-sample model fit, improves
by 51.26% and 61.23% in the residential and commercial sectors re-
spectively, compared to the mean-only model. On the other hand, the
out-of-sample prediction errors (in-terms of MAE) of the HCM models
are improved by 40.48% and 50.15% respectively in the residential and

Table 3
Statistical performance related to the high consumption models (HCM) in the
residential and commercial sectors.

Sector Model R? In-sample model fit Out-of-sample
prediction accuracy
MAE RMSE MAE RMSE
Residential ~ BART 0.71 3219 41.50 38.94 50.32
mean-only -NA-  66.04 77.36 65.42 77.57
% Improvement -NA- 51.26 46.35 40.48 35.13
Commercial BART 0.80 10.24 13.47 13.12 17.52
mean-only -NA-  26.41 29.82 26.32 29.72
% Improvement -NA- 61.23 54.83 50.15 41.05
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Table 4
Statistical performance related to the moderate consumption models (MCM) in
the residential and commercial sectors.

Sector Model R? In-sample model fit Out-of-sample
prediction accuracy
MAE RMSE MAE RMSE
Residential ~ BART 0.95 16.20 20.83 19.93 25.95
mean-only -NA-  79.31 89.23 79.47 89.38
% Improvement -NA- 79.57 76.66 74.92 70.97
Commercial BART 092 7.63 9.70 9.65 12.19
mean-only -NA-  28.96 34.70 28.87 34.61
% Improvement -NA- 73.65 72.05 66.57 64.78

commercial sectors, compared to the mean-only model. The lower
predictive performance (i.e., higher error rate) of the HCM model for
the residential sector relative to the commercial sector can be attributed
to the higher level of variation in the residential sector (Fig. 9). This is
consistent with previous research that identified much higher levels of
heterogeneity in the residential sector compared to the commercial
sector [1,47].

Similarly, Table 4 shows the magnitude of the MCM’s performance
in the residential and commercial sectors. In the case of in-sample fit,
the mean absolute error (MAE) of the developed models improves by
79.57% and 73.65%—in the residential and commercial sectors re-
spectively—over the mean-only model. On the other hand, the out-of-
sample prediction errors (in terms of mean absolute error) of the MCM
models are improved by 74.92% and 66.57% respectively in the re-
sidential and commercial sectors. In contrast to the HCMs’ performance
in the residential and commercial sector, the MCM models perform
differently in the two sectors. The lower percentage improvement (both
in terms of goodness of fit and out-of-sample prediction accuracy) in the
MCMs’ performance over the mean-only model in the commercial
sector indicates that moderate level of the commercial electricity de-
mand has higher variations and associated uncertainties compared to
the residential sector’s electricity demand. Thus, moderate-levels of
residential electricity demand can be better predicted compared to that
of the commercial electricity demand. We reason that since moderate-
intensity commercial demand is less sensitive to climate compared to
the residential demand (refer to Fig. 7).

5.2. Model diagnostics

Figs. 11 and 12 depict the normal probability plots of the in-sample
residuals for the HCM and MCM models respectively. Figs. 11a, b and
12b reveal that the residuals of the residential and commercial HCM
models, as well as the residuals of the commercial MCM model follow a
normal distribution with an expected value of zero. However, the
normality assumption is slightly violated at the upper tails of the re-
sidential MCM (Fig. 12a). This minor violation of the assumption sug-
gests that the electricity demand of the residential consumers with
moderate demand intensity may depend on other (non-climatic) fac-
tors—such as human behavior and spatiotemporal hetero-
geneities—that were not accounted for in the presented model.

The model performance of the HCM and MCM in terms of the in-
sample fits are given in Figs. 13-16—using credible and prediction
intervals. In case of the HCM, we observe that the 95% credible inter-
vals provide 63.71% and 70.7% coverage for all the observations in the
residential (Fig. 13a) and commercial (Fig. 13b) sectors, respectively.
This indicates that the commercial HCM has a better in-sample fit
compared to that of the residential sector. From Fig. 14, we observe a
similar trend for the commercial MCM, where 95% credible intervals
provide 63.8% (Fig. 14a) and 67.91% (Fig. 14b) coverage for all the
observations in the residential and commercial sectors respectively.

Fig. 15 shows that the 95% prediction interval of the HCM offers a
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Fig. 11. Residual plots for the high-intensity consumption model (HCM): (a) residential and (b) commercial sectors.

97.16% (Fig. 15a) and 98.3% (Fig. 15b) coverage for the residential and
commercial electricity demand observations respectively.

On the other hand, in case of the MCM (refer to Fig. 16), the 95%
prediction interval provides a 97.54% (Fig. 16a) and 98.55% (Fig. 16b)
coverage for the residential and commercial electricity demand ob-
servations respectively.

5.3. Model validation

As discussed before, we leveraged the developed predictive model
(trained and tested using the data from Jan 1990-Dec 2011) to predict
the per capita electricity consumption in the residential and commercial
sectors for the period of Jan 2012-Dec 2015. We conducted this vali-
dation technique for both the high-intensity and moderate-intensity
consumption models in both the sectors. We observed that the Pearson
correlation coefficients between the predicted and the observed (actual)
values of the high-intensity per capita electricity demand in the re-
sidential sector is p = 0.72 (Fig. 17a) and that in the commercial sector
is p = 0.88 (Fig. 17b). This indicates that our proposed predictive HCM
better captures the complex climate-electricity relationship in the
commercial sector compared to the residential sector for the high in-
tensity consumption levels (refer to Section 5.1, Table 3).

Figs. 18 and 19 show the comparison between the seasonal trends in
the predicted and the actual values of the high-intensity per capita
electricity demand in the residential and commercial sectors respec-
tively, during the years 2012-2015. The predicted values closely follow
the trend of the actual values, which reveals the high predictive power
of the developed models in making predictions of the future end-use
demands under climate variability. It is observed that out of the eight
states considered in this study, only five states—Florida, Louisiana,

(a) Residuals: Residential Sector MCM

residuals

norm quantiles

residuals

Ohio, Texas and Washington—are recorded for high-intensity per ca-
pita electricity consumption in the residential sector (Fig. 18). How-
ever, in case of the commercial sector, we observe that, in addition to
the above mentioned five states, the state of Illinois experiences high-
intensity per capita electricity demand. It is noteworthy that neither the
residential nor the commercial sector in the states of California and
New York experience high-intensity per capita electricity demand
during the period of 2012-2015. This can be attributed to the higher
investments in energy conservation and efficiency in the states of Ca-
lifornia and New York [48,49].

In case of the moderate intensity demand models (residential MCM
and commercial MCM), we observe that the Pearson correlation coef-
ficients between the predicted and the observed values of the per capita
electricity demand in the residential sector is p = 0.96 (Fig. 20a) and
that in the commercial sector is p = 0.94 (Fig. 20b). This indicates that
our proposed MCM model adequately captures the complex climate-
demand relationship and can project the demand into the future. In
other words, we can infer that moderate-intensity demand can be better
predicted than the high-intensity electricity demand. This is attribu-
table to the high-intensity demand being a function of unobserved, non-
climatic heterogeneities such as variations in occupant behavior and
building characteristics, among other factors [47]. In addition, Fig. 20a
and Fig. 20b also indicate that the residential sector’s moderate in-
tensity demand can be better predicted than that of the commercial
sector (also refer to Section 5.1, Table 4 discussed before).

Figs. 21 and 22 show how the predicted values closely follow the
trend of the actual observations for moderate-intensity consumption in
the residential and commercial sector. Unlike the high-intensity con-
sumption trends, we observe that all the eight states—i.e., California,
Florida, Illinois, Louisiana, New York, Ohio, Texas, and

(b) Residuals: Commercial Sector MCM
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Fig. 12. Residual plots for the moderate consumption model (MCM): (a) residential and (b) commercial sectors.
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Fig. 13. In-Sample fit of the HCM models vs. actual values using 95% credible intervals: (a) residential and (b) commercial sectors.

Washington—are present in the moderate-intensity per capita elec-
tricity demand dataset during the period of 2012-2015 (validation
period). It is important to note here that the states of California and
New York are consistently at the bottom level of the seasonal residential
and commercial sectors’ consumption curves during the vyears
2012-2015. As discussed before, this lower intensity of per-capita
electricity demand is mostly attributed to the higher energy efficiency
standards and implementation of several sponsored programs for en-
ergy conservation and efficiency in the states of California and New
York [48-50]. We also observe that the moderate-intensity consump-
tion has a higher variation in the non-summer months; while during the
warmer summer months all the represented states cluster more tightly
close to higher values of demand.

In summary, the significant predictive performance of the HCM and
MCM models for the residential and commercial sectors—as depicted in
Figs. 17-22—confirms our initial hypothesis that the Bayesian tree-
ensemble algorithm can capture the complex and non-linear climate—
demand nexus across all regions and adequately predict the demands
into the future. In this research, although we leveraged the Bayesian
predictive model for medium-term projections, the developed model
can be used to make long-term projections under IPCC climate sce-
narios.

5.4. Model inference

The variable importance plots for the HCM in the residential and
commercial sectors are given in Fig. 23a and Fig. 23b respectively,
while that for the MCM are provided in Fig. 24a and Fig. 24b. The
variable rankings in the variable importance plots are estimated based
on the inclusion proportion of the predictors in the ensemble-of-trees

In-Sample Fitted vs. Actual Values
with 95% Cred. Int.'s (63.8% coverage)

(a)

Fitted Values
150 200 250 300 350 400 450

T T T T T T T
300 350 400 450
Actual Values
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model. In other words, the inclusion proportion for any given predictor
represents the proportion of times that a split using the predictor ap-
pears in the ensemble tree among all splitting variables [13,14]. The
rank of the covariates depicts the degree of influence on the response
variable.

It can be observed from the HCM’s variable importance plots (refer
to Fig. 23) that the mean dew point temperature has the greatest in-
fluence on the per capita electricity demand in both the residential and
commercial sectors; followed by the monthly mean wind speed, peak
wind gust in a month, and the total precipitation in a month. We also
observe that the per capita income of the state is a more significant
predictor of the commercial sector’s per capita electricity demand
compared to that of the residential sector. This makes intuitive sense
because, besides climatic factors, commercial electricity consumption is
dependent on many non-climatic factors such as the commercial
building age and type, lease incentive terms and human capital [47].

Fig. 24a and Fig. 24b once again identify the mean dew point tem-
perature as the most important predictor of the moderate per capita
electricity consumption in both the residential and commercial sectors.
Unlike the residential and commercial HCM models, non-climatic fac-
tors appear to be playing a bigger role in predicting the moderate-in-
tensity residential and commercial demand levels. For instance, elec-
tricity price appears to be the second most important predictor of
moderate per capita electricity demand in both the residential and
commercial sectors. We also observed that in the residential sector, the
per capita electricity demand is comparatively more influenced by an-
other non-climatic predictor, the per capita income of the state, than the
commercial sector. Moreover, the monthly mean wind speed is a more
influential variable in predicting commercial electricity consumption
compared to the residential sector. As initially hypothesized, except for

(b) In-Sample Fitted vs. Actual Values
with 95% Cred. Int.'s (67.91% coverage)
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Fig. 14. In-Sample fit of the MCM models vs. actual values using 95% credible intervals: (a) residential and (b) commercial sectors.
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(b)

In-Sample Fitted vs. Actual Values
with 95% Pred. Int.'s (98.3% coverage)
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Fig. 15. In-Sample fit of the HCM models vs. actual values using 95% prediction intervals: (a) residential and (b) commercial sectors.

the mean dew point temperature, the influence of climate variables on
end-use demand differs across the high-intensity and moderate-in-
tensity consumption levels. The moderate-intensity consumption levels
appear to be more sensitive to non-climatic factors compared to the
high consumption levels, indicating the high-intensity consumption to
be more seasonally variable than the moderate-intensity demand (refer
to Figs. 6 and 7).

It is noteworthy that although we included the state-level un-
employment fraction as one of the predictors in our analysis, it did not
appear in the list of the top six important predictors (refer to Figs. 23
and 24). This indicates that the influence of unemployment fraction on
per capita electricity consumption is suppressed by other economic
predictors' influence, such as the electricity price and per capita monthly
income of the state. Since our analysis was restricted to the top six im-
portant predictors, we have not plotted the marginal effect of un-
employment fraction on the electricity consumption in this paper.

To understand the marginal influence of the important predictors,
we plotted the partial dependencies between electricity demand and the
most important predictors (for details on partial dependence plots refer
to Section 4.1.1). We considered the top five important pre-
dictors—mean dew point temperature, monthly mean wind speed, total
precipitation in a month, electricity price and per capita income of the state.
The PD plots are plotted in black and 95% credible intervals plotted in
blue; the points on both the PD plot and the 95% credible intervals are
plotted at specific quantiles (i.e., 5-, 10-, ..., 95-percentile values of the
predictor). Lines plotted between the points approximate the PDP by
linear interpolation [14].

In-Sample Fitted vs. Actual Values
with 95% Pred. Int.'s (97.54% coverage)

(a)

Fitted Values
150 200 250 300 350 400 450

Fitted Values

250

300
Actual Values

350 400 450

5.4.1. Influence of mean dew point temperature

From the plots of the high- and moderate-intensity electricity con-
sumption in the residential and commercial sectors (Figs. 25 and 26), it
can be observed that there is a distinct non-linear relationship between
the per capita electricity consumption and the mean dew point tem-
perature. Fig. 25 shows that in both sectors, there is a steady increase in
the per capita electricity consumption with increasing dew point tem-
perature, especially at the higher levels of electricity consumption.
Further, note that over the mean dew point temperature range of
0-25 °C, the average residential electricity demand increases by around
200 KWh per month, while the increase in the commercial sector over
the same temperature range is around 80 kWh per month. Thus, the
residential electricity consumption is more sensitive to the ambient
temperature compared to the commercial sector, on average. This is
intuitive because residential electricity consumption is more spatio-
temporally heterogeneous and dependent upon the occupant behavior
compared to that of the commercial sector [3].

However, the dependency between the moderate-intensity per ca-
pita electricity consumption and mean dew point temperature is dis-
tinctively different compared to that of the high-intensity consumption.
Fig. 26 reveals that the monthly per capita consumption first decreases
until a threshold value and then steadily increases. In the residential
sector, the average threshold value (across all the states considered in
this study) is found to be around 8-10°C (equivalent to a surface
temperature of 19-21 °C, with a 50% relative humidity) while that for
the commercial sector is found to be around 3-4°C (equivalent to a
surface temperature of 13-14°C, with a 50% relative humidity). The
threshold temperature refers to the comfortable temperature level when

(b) In-Sample Fitted vs. Actual Values

with 95% Pred. Int.'s (98.55% coverage)
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300

200

300
Actual Values

350

Fig. 16. In-Sample fit of the MCM models vs. actual values using 95% prediction intervals: (a) residential and (b) commercial sectors.
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(b) Commercial HCM: Predicted vs. Observed
(Jan 2012-Dec 2015)

400 420 440

380

360

I T T I T I
440 460

Observed per capita electricity consumption (KWh)

Fig. 17. Predicted vs. actual observations for the high-intensity consumption in the (a) residential and (b) commercial sectors during Jan 2012-Dec 2015.

the amount of electricity needed for space conditioning is the least. The
shape of the curve in the residential sector—steep drop in electricity
demand until the threshold temperature, and then steep increase—is
consistent with our previous research that established the residential
consumption as more heterogeneous and spatiotemporally varied
compared to the commercial sector [3]. The drop in the electricity
demand during colder months (dew point temperature ranging around
—7°C to 7 °C) can be attributed to higher heating requirement that is
mostly supplied by natural gas, in most of the states. Thus, drop in
electricity demand is mostly due to natural gas substitution in the
colder months.

5.4.2. Influence of wind speed
Figs. 27 and 28 depict the marginal influence of wind speeds on the
per capita electricity demands in the residential and commercial

Predicted vs. Actual: Residential HCM

sectors. In the residential sector, we observed that with the increase in
wind speeds from 2m/s to 4m/s, the per capita electricity demand
sharply decreased by about 60 KWh per month on average and did not
show a significant variation on average following that (Fig. 27a).
However, the larger confidence bounds (shaded grey area) around the
higher wind speeds (i.e., wind speed >4 m/s) indicates that the sensi-
tivity of demand to higher wind speeds is more variable across the
different states. Although a similar pattern is observed in the relation-
ship between the per capita electricity consumption and the monthly
mean wind speed in the commercial sector, the magnitude of the de-
crease in demand is much less than that of the residential sector
(Fig. 27b). In the commercial sector, the per capita demand on average
decrease from around 410 KWh to 380 KWH, i.e., by 30 KWh, while that
in the residential sector decrease from around 620 KWh to 560 KWh,
i.e., by 60 KWh.
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Fig. 18. Trends of actual observations vs. predicted values for the high-intensity consumption in the residential sector during Jan 2012-Dec 2015 (the vertical lines
indicate the interpolation of the state-level per capita electricity consumptions, when more than one state is observed in a month). States experiencing high intensity
consumption in the residential sector include: FL (Florida), LA (Louisiana), OH (Ohio), TX (Texas), and WA (Washington).
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Predicted vs. Actual: Commercial HCM
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Fig. 19. Trends of actual observations vs. predicted values for the high-intensity consumption in the commercial sector during Jan 2012-Dec 2015 (the vertical lines
the indicate interpolation of the state-level per capita electricity consumptions, when more than one state is observed in a month). States experiencing high intensity
consumption in the commercial sector include: FL (Florida), IL (Illinois), LA (Louisiana), OH (Ohio), TX (Texas), and WA (Washington).

The influence of wind speed on the moderate-intensity demand
follows a decreasing trend, similar to that of the high-intensity con-
sumption, in both the residential (Fig. 28a) and commercial (Fig. 28b)
sectors. However, in this case, the patterns of dependence (mean values
as well as the uncertainty bounds) of the sectoral end-use electricity
consumption to increasing wind speeds are quite different than that of
the high-intensity electricity demand. Unlike the high-intensity sectoral
demand, the moderate-intensity demand is much less variable with
respect to increasing wind speeds. Over a range of 2-6m/s wind speed,
the mean per capita moderate-intensity electricity demand decreases by
about 15KWh and 7 KWh in the residential and commercial sectors
respectively (as is observed in Fig. 28).

In summary, a decreasing trend in the per capita high- and mod-
erate- intensity of demand is observed with increasing wind speeds in
both the residential and commercial sectors. This is intuitive as

(a) Residential MCM: Predicted vs. Observed
(Jan 2012-Dec 2015)

|
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Predicted per capita electricity consumption (KWH)

increasing wind speeds blow away the heat from the residential and
commercial buildings, leading to a decreasing need for spatial cooling
during warmer months.

5.4.3. Influence of total monthly precipitation

Figs. 29 and 30 show the variations of the residential and com-
mercial sectors’ per capita electricity demand as it relates to the total
monthly precipitation. As observed from Fig. 29, with increasing levels
of total precipitation, the per capita high-intensity electricity con-
sumption decreases in both sectors. As the total monthly precipitation
increases over a range of 10-240 mm, the median electricity demand
decreases by about 30 KWh in the residential sector (Fig. 29a), whereas
in the commercial sector it decreases by approximately 10 KWh
(Fig. 29b). We hypothesized that since precipitation has a moderating
effect on temperatures, with increased precipitation levels, the need for

(b) Commercial MCM: Predicted vs. Observed
(Jan 2012-Dec 2015)
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Fig. 20. Predicted vs. actual observations for the moderate-intensity consumption in the (a) residential and (b) commercial sectors during Jan 2012-Dec 2015.
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Fig. 21. Trends of actual observations vs. predicted values for the moderate-intensity consumption in the residential sector during Jan 2012-Dec 2015 (the vertical
lines indicate interpolation of the state-level per capita electricity consumptions, when more than one state is observed in a month). States experiencing moderate
intensity consumption in the residential sector include: CA (California), FL (Florida), IL (Illinois), LA (Louisiana), NY (New York), OH (Ohio), TX (Texas), and WA

(Washington).
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Fig. 22. Trends of actual observations vs. predicted values for the moderate-intensity consumption in the commercial sector during Jan 2012-Dec 2015 (the vertical
lines indicate the interpolation of the state-level per capita electricity consumptions, when more than one state is observed in a month). States experiencing moderate
intensity consumption in the commercial sector include: CA (California), FL (Florida), IL (Illinois), LA (Louisiana), NY (New York), OH (Ohio), TX (Texas), and WA

(Washington).
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Fig. 23. Predictor importance ranking for the HCM: (a) residential and (b) commercial sectors.

spatial conditioning decreased leading to a reduced consumption of
electricity.

From Fig. 30a, we observe that the variation in the moderate-level
of per capita monthly electricity consumption in the residential sector is
irregular and does not show any specific trends, unlike the high con-
sumption model. We hypothesize that the irregular nature of the
moderate-intensity residential consumption is due to the following
reasons: (a) variation in geographical locations of the states, and (b) the
difference in consumption patterns in these states across the different
seasons. For example, states such as Louisiana, Florida, and Texas are
characterized by hot and humid summer months and temperate winter
months. Higher levels of precipitation in the winter months are asso-
ciated with a cooling effect that might lead to infrequent increases in
the electricity demand for heating requirement on average (indicated
by “spikes” in Fig. 30a). On the other hand, higher precipitation levels
in the warm and humid months bring down the temperature to a
comfortable threshold, leading to a decrease in the electricity demand.
In the commercial sector, the moderate electricity consumption does
not show much variations with respect to precipitation levels, sug-
gesting the residential sector to be more sensitive to seasonal climate
variability. Thus, we can conclude that both the residential and com-
mercial sectors’ end-use electricity demands are insensitive to the dif-
ferent levels in precipitation.

5.4.4. Influence of electricity price

Fig. 31 reveal that the high-intensity electricity consumption in the
residential (Fig. 31a) and commercial (Fig. 31b) sectors are price-in-
sensitive, as variations in price do not change the consumption levels
significantly. On the other hand, in the case of moderate-intensity
electricity consumption (Fig. 32), we observe that both the residential

and commercial sectors are sensitive to the variations in electricity
price. In the residential sector (Fig. 32a), we observe that the mean per
capita moderate-intensity electricity demand decreases from 320 KWh
to 280 KWh, when the electricity price increases from 3.5 cents/KWh to
9 cents/KWh on average. Similarly, in the commercial sector (Fig. 32b),
the mean per capita electricity demand decreases from around 310 KWh
to 280 KWh, when the electricity price increases from 3 cents/KWh to
8 cents/KWh on average.

5.4.5. Influence of per capita income of the state

Figs. 33 and 34 show the variation of per capita high- and moderate-
intensity electricity consumption respectively in the residential and
commercial sectors. We observe a decreasing trend in the per capita
high-intensity electricity demand in both the residential (refer to
Fig. 33a) and commercial (refer to Fig. 33b) sectors, with the increasing
per capita income of the states on average. We hypothesize that the
higher purchasing power of a given state—as reflected by the higher
state income—could suggest higher investments in more energy effi-
cient electrical appliances, and thus the decreasing trend in demand.

From Fig. 34, we observe a lower sensitivity of the moderate-in-
tensity consumption to the monthly state income in both the residential
(Fig. 34a) and commercial (Fig. 34b) sectors, relative to the high-in-
tensity consumption. In the commercial sector (Fig. 34b), we observe
the following trend—with increase in per capita income, the per capita
electricity consumption decreases in the beginning, until a threshold is
reached and then it is followed by a slight increasing trend. However,
the mean per capita electricity demand ranges between 295 KWh and
300 KWh, over the entire range of per capita income from 16,000 USD
to 26,000 USD. This variation in per capita electricity demand being
small, we can conclude that the per capita moderate-intensity
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Fig. 24. Predictor importance ranking for the MCM: (a) residential and (b) commercial sectors.
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a) Residential Sector: High-intensity Consumption b) Commercial Sector: High-intensity Consumption
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Fig. 25. Influence of mean dew point temperature on high levels of per capita electricity consumption in (a) residential and (b) commercial sectors.

a) Residential Sector: Moderate-intensity Consumption

b) Commercial Sector: Moderate-intensity Consumption
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Fig. 26. Influence of mean dew point temperature on moderate levels of per capita electricity consumption in (a) residential and (b) commercial sectors.

electricity demand is relatively insensitive to per capita income varia- demand and climate variability is of wutmost importance.
tion, as compared to the high-intensity electricity demand. Mischaracterizing the climate-demand nexus could lead to incorrect
estimation of capacity margins, leading to over- or under-investments
in capacity expansion plans, which could manifest as inefficient plan-
6. Discussion and conclusion ning or insufficient supplies. In this paper, we presented a methodology

for developing rigorously validated prediction models of “electricity
Analyzing and quantifying the relationship between electricity

a) Residential Sector: High-intensity Consumption b) Commercial Sector: High-intensity Consumption
Model (HCM) Model (HCM)
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Fig. 27. Influence of wind speed on high-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial sectors.
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a) Residential Sector: Moderate-intensity Consumption
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b) Commercial Sector: Moderate-intensity Consumption
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Fig. 28. Influence of wind speed on moderate-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial sectors.
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Fig. 29. Influence of total monthly precipitation on high-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial sectors.
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Fig. 30. Influence of total monthly precipitation on moderate-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial sectors.

demand—climate nexus” for high- and moderate-intensity electricity
consumption in the residential and commercial sectors. We considered
the top eight energy intensive states in the U.S. viz., California, Florida,
Illinois, Louisiana, New York, Ohio, Texas, and Washington. Unlike
previous approaches of developing separate models for different geo-
graphical locations [5,6], we presented a novel composite Bayesian
predictive framework to simultaneously characterize the demand-—cli-
mate nexus in multiple states in the U.S. While we developed models for

1579

the eight most energy intensive states, our proposed methodology can
be easily extended to other states/regions that might be of interest.
Unlike the widely used generalized linear models, our proposed
models were based on a flexible, non-parametric Bayesian tree-en-
sembles approach that was effective in capturing the non-linear and
complex relationship between electricity demand and climate varia-
bility. We considered mean dew point temperature instead of the con-
ventionally used heating and cooling degree day variables (HTDD and
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a) Residential Sector: Moderate-intensity Consumption
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b) Commercial Sector: High-intensity Consumption
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Influence of electricity price on high-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial sectors.
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Influence of electricity price on moderate-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial sectors.
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Fig. 33. Influence of per capita income of the state on high-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial sectors.

CLDD). This is because, our previous research established mean dew
point temperature as a more effective predictor of the climate-sensitive
portion of electricity demand compared to HTDD or CLDD [3]. This
study helped establish the mean dew point temperature as the most
important predictor of both residential and commercial electricity de-
mand irrespective of the intensity of the consumption levels. Mean dew
point temperature was found to have a monotonically direct relation-
ship with the high levels of electricity consumption in both sectors.

1580

However, for moderate consumption levels, the mean dew point tem-
perature—per capita electricity demand partial dependency plots have a
(non-symmetrical) parabolic shape; where the demand first decreases
until a threshold (about 8-10 °C in residential sector or 3-4°C in the
commercial sector) followed by a uniformly increasing trend.

We identified the higher-intensity consumption levels of electricity
to be more sensitive to climate variability compared to the moderate
consumption levels in both the residential and commercial sectors. In
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b) Commercial Sector: Moderate-intensity Consumption
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Fig. 34. Influence of per capita income of the state on moderate-intensity levels of per capita electricity consumption in the (a) residential and (b) commercial

sectors.

addition to the mean dew point temperature, we found that wind
speeds, wind gusts, and precipitation levels also influence the per capita
electricity demand. We found that with increasing wind speeds, both
the high- and moderate-intensity electricity demands show a decreasing
trend in the residential and commercial sectors. We observed monthly
precipitation levels to have a significant influence on the high-intensity
electricity demands in both the residential and commercial demands;
however, moderate-intensity electricity demand was found to be com-
paratively less sensitive to precipitation levels.

Electricity price was found to be the second most important pre-
dictor of the moderate-intensity electricity consumption, after the mean
dew point temperature, in both the residential and commercial sectors.
We observed that the high-intensity electricity consumption is rela-
tively insensitive to the electricity price, whereas the moderate-in-
tensity consumption has a decreasing trend with the increasing elec-
tricity price, in both the residential and commercial sectors. The per
capita income of the states was also found to be an important predictor
for the sectoral electricity demands; although the effect was not sig-
nificant, we found that the electricity demand in both sectors shows a
slight decreasing trend with the increasing per capita income of the
states.

The major contribution of this paper is to illustrate the asymmetry
in the climate sensitivity of electricity load. More specifically, our re-
sults demonstrated that the high-intensity end-use demands are more
climate-sensitive, compared to the moderate-intensity end-use de-
mands. Besides analyzing the asymmetry in climate sensitivity of load,
our proposed composite Bayesian predictive model framework helps to
identify the key climate predictors that significantly influence the high-
and moderate- intensity demands. This framework can be also in-
tegrated with the General Circulation Model (GCM) climate change
scenarios to project the future electricity demands in both the re-
sidential and commercial sectors. Moreover, although our predictive
models are developed for projecting medium-term electricity demands,
they can also be used for long-term demand projections under the IPCC
climate scenarios. Our results also show that electricity sectors in the
top eight energy-intensive states are vulnerable to extreme climate
change and variations during the high demand periods (warmer
summer months and intermediate seasons). If adequate capacity mar-
gins or resource allocations are not planned for in advance considering
such climate effects, the risk of system inadequacy during the high-
demand periods will increase [10], leading to frequent brownouts and
blackouts. Our proposed framework will aid the utility stakeholders in
informed decision making for capacity margins planning and resource
allocations/reallocations, enhancing the resilience of the electricity
sector in face of climate change and variations.
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