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Abstract: Hypothesis testing is one of the most common
types of data analysis and forms the backbone of scien-
tific research in many disciplines. Analysis of variance
(ANOVA) in particular is used to detect dependence be-
tween a categorical and a numerical variable. Here we
show how one can carry out this hypothesis test un-
der the restrictions of differential privacy. We show that
the F-statistic, the optimal test statistic in the public
setting, is no longer optimal in the private setting, and
we develop a new test statistic F} with much higher
statistical power. We show how to rigorously compute a
reference distribution for the F} statistic and give an al-
gorithm that outputs accurate p-values. We implement
our test and experimentally optimize several parame-
ters. We then compare our test to the only previous
work on private ANOVA testing, using the same effect
size as that work. We see an order of magnitude im-
provement, with our test requiring only 7% as much
data to detect the effect.
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1 Introduction

A universal and recurring challenge in scientific research
is determining whether a measured effect is real. That
is, researchers wish to determine if the effect observed
in a particular dataset indicates a similar effect in the
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broader world from which the sample was drawn. The
most common statistical tool to make this determina-
tion is a hypothesis test. The particular form of the
hypothesis test is driven by the scientific question and
the data at hand.

Hypothesis testing is a common tool in population
association studies, where the goal is to identify whether
genetic variation is associated with disease risk [1]. Con-
sider a study looking at the effect of a particular gene’s
mutation on some health outcome (e.g., blood pressure
or weight). The data may include the mutation status
of that gene (which may harbor one or more mutations
on one or both copies of DNA). The researcher’s goal
is to determine if the gene’s mutation status has an im-
pact on that health outcome. When the health outcome
is measured using a numerical variable, the natural hy-
pothesis test to use is the one-way ANOVA (analysis of
variance) test, treating the gene’s mutation status as a
categorical variable.

The first step in conducting the ANOVA is to cal-
culate a single number, the F-statistic, which measures
the variation in group means compared to the variation
in individual data points. The F-statistic is constructed
so that if the expected value of the health outcome is
the same in all groups, the expected value of F is 1. If
this is not the case, the value can be dramatically larger.
Seeing a high value of F, a researcher will compare this
value to the reference distribution, i.e., the distribution
of F that would occur if the gene had no impact on the
health outcome. The result of this comparison is a p-
value, the probability that the observed F' could occur
by chance. If the p-value is low, the analyst can con-
clude that this gene must indeed affect the given health
outcome. (For more detail on how ANOVA is used in
this setting, see [12].)

The analysis described above assumes that the re-
searcher has full access to the database. However, there
are many settings in medicine, psychology, education,
and economics (not to mention private-sector data anal-
ysis) where the database is not available to the analyst
due to privacy concerns. A well-established solution is
to allow the researcher to issue queries to the data which
are proven to satisfy differential privacy. Differential pri-
vacy requires the addition of random noise to statistical
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queries and guarantees that the results reveal very little
about any individual’s data.

In this paper we propose a new statistic for ANOVA,
called Fp, that is specifically tailored to the differen-
tially private setting. This statistic measures the same
variations as the F statistic, but uses |a — b| instead of
(a—b)? to measure the distance between a and b. In the
public setting the F is a worse test statistic than the
traditional F-statistic, but we show that in the private
setting it has much higher power than the previously
published differentially private F-statistic. That is, we
show that it can detect effects with a little as 7% of the
data that was previously required. (In one example, an
effect that took 5300 data points to detect 90% of the
time with € = 1 in the prior work takes only 350 data
points to detect using our new hypothesis test.)

1.1 Contributions and organization

We first review differential privacy, hypothesis testing,
and the body of work that lies at the intersection of the
two fields (Section 2). In Section 3 we then present a
new test statistic, F;, for ANOVA in the private set-
ting. While there is some work on differentially private
hypothesis testing, designing a new test statistic explic-
itly tailored for compatibility with differential privacy
has been done by few others [14].

In Section 3.2 we give a private algorithm for com-
puting an approximation of F} by applying the Lapla-
cian mechanism to the computation of several interme-
diate values. Section 3.3 then describes how to com-
pute the correct reference distribution for Fy to in or-
der to compute accurate p-values, which are the end
result used by practitioners. Computing the reference
distribution is complicated by the fact that, unlike the
traditional F-statistic, F; is not scale-free.

We implement the private F}-statistic and apply the
method to different simulated datasets in Section 4. The
computational experiments allow us to optimize p, a
parameter that determines the allocation of our privacy
budget between the two important intermediate values.
We also compare our method to prior work [3], and show
an order of magnitude improvement in statistical power.

Finally, in Section 5 we present a generalization of
the F} statistic that allows for an arbitrary exponent in
the distance measure (besides the absolute value from
Fy and the L?-norm from the traditional F). We find
that the L'-norm used in the F} statistic is the most
powerful across a wide range of scenarios.
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2 Background

We begin by discussing hypothesis testing in general,
the one-way analysis of variance (ANOVA) test in par-
ticular, and differential privacy. Readers familiar with
one or more of these topics should be able to skip the
relevant sections. We then discuss how these topics come
together in private hypothesis testing and related work
in this area.

2.1 Hypothesis testing

Hypothesis tests are common tools for making statisti-
cal inferences from data. The end goal of a hypothesis
test is to determine whether a data set is consistent with
a proposed model. This model is called the null hypoth-
ests, denoted Hy, and it suggests a mechanism by which
the data could have been generated. The mechanism is
chosen to be scientifically meaningful, for example: the
variable of interest has the same distribution across all
of the treatment groups.

The comparison between Hy and an observed data
set is made using a test statistic. A test statistic f is
simply a function from the data set to the real numbers.
The goal is to design a test statistic with a known dis-
tribution when the data comes from H, but which will
follow a markedly different distribution under other sce-
narios. The question then becomes, for a given database
x with f(x) = t, how likely is a value at least as extreme
as t to occur if x was drawn from Hy. To compute this
probability, we need to compare ¢ to the reference dis-
tribution.

Definition 1 (Reference Distribution). Suppose f is a
function that computes a test statistic. The reference
distribution for f is the probability distribution of the
statistic T when T = f(X) and X is drawn from a dis-
tribution consistent with Hy.

This reference distribution is used to calculate a p-value.
A p-value is the probability, under the reference distri-
bution, of drawing a statistic at least as extreme as the
observed statistic.

Definition 2 (p-value). For a given test statistic t =
f(x) and null hypothesis Hy, the p-value is defined as

Pr[T > ¢|T = f(X) and X + Hy].
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The p-value provides context for the observed statistic
by positioning it in the range of statistics that could be
observed under Hj.

Typically, researchers choose a significance thresh-
old « and reject the null hypothesis when their calcu-
lated p-value is less than a. The a-level determines the
probability of a type I error, which occurs when an an-
alyst rejects the null hypothesis despite it being true.
The value of the statistic that demarcates this rejection
region is called the critical value, denoted by t*. That
is, Pr[T > ¢* | T = f(X) and X + Hy| = a.

When one develops a test statistic, a primary goal is
to maximize statistical power. The power of a test quan-
tifies how effectively it can detect a deviation from H.
It is the probability of rejecting when Hy is false. Gen-
erally, the power depends on both the amount of data
and the effect (i.e., how different the true distribution
H, is from Hy).

Definition 3 (Statistical Power). For a specific alter-
nate hypothesis H 5, the statistical power of a hypothesis
test s

PrT >t* | T = f(X) and X < H4|

2.2 One-way ANOVA

Consider again our example from earlier, where a re-
searcher has, for a set of individuals, both blood pressure
measurements and the mutation status of a particular
gene. This is a classic setting for a one-way analysis of
variance (ANOVA) test.

Index each individual person or observation in a
database x with ¢ € {1,...,N}. Each ¢ is associated
with a group or category ¢; (e.g., mutation status) and
a numerical value y; € R (e.g., blood pressure). We use
y to represent the mean of all N numerical values. In-
dex each group with j € {1,...,k}. Each j is associated
with Cj = {i | ¢; = j}, the set of indices of observations
in group j. Denote the size of the set n; and the mean
of the values in that set y;. (Note that this means g,
is the mean of numerical values in the same group as
observation i.)

The null hypothesis in a one-way ANOVA is that
the y; follow identical normal distributions regardless
of their group. This motivates the test statistic used
in an ANOVA test, the F-statistic, which measures the
ratio of the variation between group means (weighted by
the size of the groups) and the variation of individuals
within each group. If all groups had equal means, the
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variation between group means would be proportional
1

to the variation between individual observations.
Definition 4 (F-Statistic). Given a database x with k
groups and N total entries, the F-statistic is the ratio
of two values, traditionally called SSA(x) and SSE(x).
The Sum of Squared errors of All category means (SSA)
is a measure of variance between group means, weighted
by group size:
k
SSA(x) =Y n;(5; —9)*
j=1

The Sum of Squared Errors of all observations (SSE) is
a measure of variance within groups:

N
SSE(x) = Y (yi — ¥e)*.

i=1
The F-statistic is the ratio of SSA and SSE, each divided
by their respective degrees of freedom. These adjusted
values are called the Mean Sum of All category errors
(MSA) and Mean of Sum of Squared Errors (MSE). We
can now finish defining the F-statistic.

 SSA(x)/(k—1)  MSA(x)

F) = S5m0/ (N = k) ~ MSEx)’

Under the null hypothesis that the y; follow identical
normal distributions regardless of their group, the ref-
erence distribution of the F-statistic is known exactly.
This comes from recognizing that SSA(x) is drawn from
02xi_1, the chi-squared distribution with k£ — 1 degrees
of freedom scaled by within-group variance, and SSE(x)
is drawn from o2x?v_k. The ratio of these values, there-
fore, has a reference distribution that is scale-free (not
dependent on o) and can be calculated knowing only N
and k.

2.3 Differential privacy
Differential privacy is a security definition for the release

of information about a database of private records. Here
we outline the foundational definitions and theorems in

1 Our approach relies upon simulating normally distributed
data in correspondence with the traditional normality assump-
tion. The one-way ANOVA test is known to be robust to devi-
ations from normality [15], so our approach should be applica-
ble even in settings where the normality assumption is suspect.
Readers interested in more about ANOVA generally are referred
to [5].
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differential privacy; everything below first appeared in
the seminal paper of Dwork et al. [8].

Suppose we have a database x containing sensitive
information that we want to study. In particular, we
want to publish the output f(x) of a function f (also
sometimes called a mechanism) on our database while
protecting the privacy of the individuals whose data was
collected. Differential privacy promises that an adver-
sary will learn approximately nothing about an individ-
ual as a result of their presence in x. Informally, this is
done by requiring that the probability of seeing any par-
ticular output is roughly the same regardless of what in-
formation a given individual submitted to the database.

As above, we use N to represent the number of rows
in x, where a “row” is simply the set of data associ-
ated with a single individual. We now define neighboring
databases, which differ in only one row.

Definition 5 (Neighboring Databases). Two
databases x and x' are neighboring if x can be trans-
formed to x’ by changing only one individual’s data
(where a change is an in-place modification, not a full

addition or removal).

To protect the privacy of individuals in a database, dif-
ferentially private requires that the output of a query
on any two neighboring databases should look nearly
identical.

Definition 6 (Differential Privacy). A (randomized)
mechanism f with range R is e-differentially private if
for all S C R and for all neighboring databases x and

X/

Pr[f(x) € S] < ePr[f(x') € S].

The parameter ¢ is called the privacy parameter, and
its choice is a policy decision. The lower the chosen ¢,
the stronger the privacy guarantee. Note that because
neighboring databases are the same size, N can always
be released without compromising privacy.?

Differential privacy has several useful properties.
One of the most useful is composition:

2 Differential privacy can also be defined in terms of databases
that differ by an addition/deletion, rather than by a change
in a row. For most applications these definitions are equivalent
except for a change in € by a factor of two (with the version here
being the more stringent interpretation of ¢). The one significant
difference is that the other definition does not result in N being
public, which is important for our work here.
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Theorem 1 (Composition). Suppose f and g are re-
spectively e1- and eo-differentially private mechanisms.
Then, a mechanism h that returns the results of ap-
plying f and g to x, h(x) = (f(x),9(x)), is (g1 + €2)-
differentially private.

In other words, the privacy guarantee decreases, but
does not disappear, when a database is queried multi-
ple times. Composition allows database administrators
to issue researchers a privacy budget, which researchers
can then divide up as they wish between any number of
different queries.

Another defining feature of differential privacy is its
resistance to post-processing.

Let f be an e-
differentially private mechanism, and let g be an ar-

g(f(x)) is also e-

Theorem 2 (Post-Processing).

bitrary function. Then, h(x) =
differentially private.

This theorem allows us to do any computation we de-
sire on the output of our differentially-private mecha-
nism without diminishing the privacy guarantees. We
will utilize this property to compute p-values of the pri-
vate F-statistic. The p-values will be automatically pri-
vate without additional argument.

Our algorithms are constructed by taking build-
ing blocks and combining them with composition and
post-processing, but the fundamental building blocks
are made private using the Laplace mechanism, the old-
est and maybe simplest method for achieving differen-
tial privacy. The Laplace mechanism allows the conver-
sion of any function f into a private approximation f .
One must first compute (or bound) the sensitivity of
the function, the maximum effect on the output that a
single row can have.

Definition 7 (Seunsitivity). The sensitivity of a (deter-
manistic) real-valued function f on databases is the maz-
imum of |f(x) — f(x')]| taken over all pairs (x,x') of
neighboring databases.>

The Laplace mechanism will use random noise drawn
from the Laplace distribution.

Definition 8 (Laplace Distribution). The  Laplace
Distribution (centered at 0) with scale b is the dis-

3 Sensitivity and the Laplace mechanism can be defined on
functions with output in R™, but we only need the one-
dimensional version.
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tribution with probability density function

1 z
Lap(z | b) = 25 %P <|b|)

We use Lap(b) to represent the Laplace distribution with
scale b.

We can now present the Laplace mechanism.

Theorem 3 (Laplacian Mechanism). Let f be a func-
tion with sensitivity bounded above by s. Let L be a ran-
dom wvariable drawn from Lap(s/e). Then the function
f(x) = f(x) + L is e-differentially private.

2.4 Differentially private hypothesis
testing

In order to create a differentially private hypothesis test,
we need a private function f of a database to serve as
our test statistic. This could be a differentially private
estimate of an existing test statistic, or it could be a
new test statistic altogether. Because randomization is
essential to differential privacy, f will be randomized.
The same statistic on the same database may yield dif-
ferent outputs each time it is computed.

In addition to a test statistic f, we require a suit-
able reference distribution to calculate the correspond-
ing p-value. While it may be tempting to compute the p-
value using the reference distribution for the non-private
statistic one is estimating, this may yield wildly inac-
curate results [3], because adding noise to the statistic
increases the probability of outlier output values. In-
stead, we must compute the reference distribution for
the noisy statistic. Only then can we calculate an accu-
rate p-value.

The goal of differentially private hypothesis testing
is to create a private test statistic and method of com-
puting the p-value that maximizes statistical power, ide-
ally approaching the power of the equivalent test in the
classical non-private setting.

2.5 Related work

There has been a moderate amount of work on differen-
tially private hypothesis testing, but because there are
many hypothesis tests most individual tests have re-
ceived only a small amount of attention, and some very
common tests have not seen a private analogue devel-
oped at all.
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Several papers have addressed testing the value of
a mean or the difference of means [6, 7, 19]. Hypothesis
tests using coefficients of a linear regression to test for
dependence between continuous variables is extremely
common in many academic disciplines, but only recently
has a method for carrying this analysis out privately
been developed [2, 16]. and Nguyén and Hui propose
a test for surival analysis data [13]. There is one prior
work on private ANOVA testing, that of Campbell et
al. [3]. We will discuss this result in greater depth in the
next section.

The chi-squared test, which tests for the indepen-
dence of two categorical variables, has received the most
study. Vu and Slavkovié¢ [21] give an analogue to the
test and also compute accurate p-values. Many private
chi-squared tests have been specifically motivated by
genome-wide association studies (GWAS) [9, 11, 20].
These give p-value calculations, but they are only ac-
curate in the limit as N grows large. Other work has
used Monte Carlo simulations (as we do in this work)
to give more accurate reference distributions for small
N [10, 22]. Rogers and Kifer [14] instead propose a new
statistic with an asymptotic distribution more similar
to its non-private analogue. We note that this is one
of few papers that, like the present work, proposes test
statistics intended for the private setting, rather than
simply approximating the accepted test statistic from
the classic public setting. Very few of these papers care-
fully measure the power of the test they develop. Rogers
and Kifer [14] and Gaboardi et al. [10] are notable ex-
ceptions, giving power curves for several different ap-
proaches.

There is also a significant body of work looking at
how quickly private approximations of test statistics
converge to their limiting distributions (e.g., [17, 18,
23]). These are important theoretical results, but they
do not usually yield practical tests. Unless N is very
large (in which case the details of the test do not matter
very much anyway) the distribution of the test statistic
is not close enough to that of the standard public to
allow accurate computation of p-values.

2.6 Prior work on private ANOVA

The only previous work on differentially private
ANOVA testing that the authors are aware of is Camp-
bell et al. [3] Using the ANOVA test as defined above,
they analyze the sensitivity of the SSA and SSE with
the assumption that all data was normalized to be be-
tween 0 and 1 and add Laplacian noise proportional to
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these sensitivities to the public computation of the SSA
and SSE. Their algorithm then uses post-processing to
calculate the noisy F'-statistic, and returns this in addi-
tion to the noisy SSA and SSE (Algorithm 1).

Algorithm 1 private_F(x,¢€)

Compute SSA = SSA + 71 where Z7 ~ Lap (7;%N>

Compute SSE = SSE + 7o where Z5 ~ Lap (5—E%N)
SSA/(k=1)
SSE/(N—k)

return ﬁ7 S/STX, SSE

Compute F=

Normally, the F' distribution is used to calculate a
p-value for the F-statistic. However, Campbell et al. find
that the distribution of the private estimate F differs too
much from the F' distribution for this to be acceptable.
Furthermore, they find that it is no longer scale-free,
meaning that the distribution depends on the within-
group variance o2.

Fortunately, the SSE is an estimate of o, so using
this estimate they computed an estimated distribution
on F through simulation. They could then compare a
given value of F to this distribution to obtain a p-value.

To assess the power of their private ANOVA al-
gorithm, they simulate databases with three equal-
sized groups with values drawn from AN(0.35,0.15),
N(0.5,0.15), and N(0.65,0.15) respectively. For several
(N, e)-pair choices, they generate many sets of data, ap-
ply the private ANOVA test, calculate the p-value, and
record the percentage of simulations with p-values less
than 0.05. They find that when ¢ = 1, they need over
five thousand data points to detect this effect (compared
to two or three dozen data points in the public setting).
Our goal in this paper is to reduce the gap between the
public and private setting.

3 A new test statistic

In this section we describe our hypothesis test. This be-
gins with the introduction in Section 3.1 of F}, a new
test statistic for the ANOVA setting. In Section 3.2 we
then show how to privately compute a private approx-
imation of Fj. Finally, in Section 3.3 we calculate p-
values for the private Fj statistic. This means simulat-
ing a correct reference distribution against which we can
compare our output.
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3.1 The F; statistic

Our goal is to define a statistic that releases similar in-
formation as the F-statistic, but has higher power (Def-
inition 3) for reasonable privacy guarantees. We focused
on two approaches to improve the power of the ANOVA
calculation: reducing the amount of Laplacian noise by
decreasing sensitivity, and making SSA and SSE numer-
ically larger so that the noise has less influence over the
total value of the statistic. We achieved both goals by
taking the absolute values of the summand terms in the
SSA and SSE, rather than squaring them.

As before, let k denote the number of categories in
the database, ¢; be the category and y; be the numeri-
cal value associated with observation ¢, n; be the size of
category j, and N be the total size of the data set. Ad-
ditionally, ¥ is the grand mean of the entries in database
x and ¥; is the mean of the entries in group j.

Definition 9 (F-statistic). Given a database x with k
groups and N total entries, the SA(x) and SE(x) calcu-
lations are defined as follows:

k
SAX) =Y nly — 3]
j=1

N
SE(X) = Z'yl = Yey |-

i=1
The F-statistic is the ratio of SA and SE, each divided
by their respective degrees of freedom.

_ SAX)/(k - 1)

P09 = S0 v =)

The F-statistic measures variation between group
means compared to variation within groups in essen-
tially the same way as the original F-statistic. The SA
grows as the group means diverge. What constitutes a
“large” variation between group means depends on the
variation between individual items, so SE, which mea-
sures this individual-level variation, provides a sense of
scale for the SA value.

In the next section, we show that the sensitivities
of SA and SE in the Fi-statistic are less than half as
large as the sensitivities of SSA and SSE in the original
F-statistic. Further, because the summand terms are
restricted to [0,1], the SA and SE values are larger,
meaning they can tolerate the addition of more noise
before losing their usefulness.
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3.2 A private approximation of F;

The sensitivity of Fy is very high. (In the worst case,
SE(x) is almost zero and very small changes can have
huge effects on Fj(x).) As a result, we can’t simply ap-
ply the Laplace mechanism to Fj. Instead, we choose
to apply it individually to the SA and SE functions,
and then use composition and post-processing to com-
pute an estimate of F}. We must therefore bound the
sensitivities of SA and SE.

We assume that the number of valid category values,
k, is fixed and public, but the number of entries in each
group is not. (This includes the possibility that one or
more categories exist as valid entries but do not appear
in the actual database.) We also assume that there are
maximum and minimum possible values for the data,
and that the computation first uses these to normalize
the data, mapping it to the interval [0, 1].

Theorem 4 (SE Sensitivity). The sensitivity of the SE
calculation in Definition 9 is bounded above by 3.

Proof. Suppose neighboring databases x and x’ differ by
some row 7 Say that in x, ¢, = a, and in X', ¢, = b. Let
ngq be the size of category a excluding r and let ny be the
size of category b excluding r. We begin by expressing
the SE calculation as nested summations indexing over
group size and entries within each group.

k
SE(x) =Y > lui = el-
j=1ieC;

Callt; = |y;—Yc, |, and let ¢; # a,b. Then, ¢; does not
change between x and x’. Now, suppose i # r but ¢; = a.
It follows that At; < 1/(ns + 1), since the only change
comes from ,. There are n, such terms, so the total
contribution from these terms is at most nq/(ng +1). If
a # b, we must also consider ¢; where i # r but ¢; = b,
for which we have At; < 1/(np + 1). Thus, the terms in
groups a and b excluding row r together contribute

. Y
ng+1 np+1

if a # b and just ng/(ne + 1) < 1 otherwise.

Now, consider At,. Since ¥y, ¥Jq, and 7, are all in
the interval [0, 1], the difference between ¢, in database
x and in x’ is at most 1. Thus, the total sensitivity of
SE is bounded above by 3.

O

Theorem 5 (SA Sensitivity). The sensitivity of the SA
calculation in Definition 9 is bounded above by 4.
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Proof. Again, suppose neighboring databases x and x’
differ by some row r in both the categorical and numeri-
cal values, with ¢, = a in x, and ¢, = b in x’. Denote the
number of entries in groups a and b not including row r
by nq and np, respectively. We begin by expressing the
SA calculation as two sums indexing over groups and
entries within each group.

k

SA) =Y > 177l

j=1i€C;

Consider the change from SA(x) to SA(x') as if it
occurred in two steps. In the first step, the grand mean
y is updated. Note that in the worst case, §y can change
by at most 1/N between x and x’. Then, since there are
N summands, each including the grand mean, this step
changes the value by a maximum of N(1/N) =1 to the
overall sensitivity.

In the second step we change the group means for
groups a and b. There will be n, terms containing ¥,,,
each of which will change by at most 1/n,, changing the
overall value by at most 1. Similarly updating 7, changes
np terms each by at most 1/n; for a total contribution
of 1.

Finally, the change of r between x and x’ con-
tributes 1 to the overall sensitivity, and thus the sen-
sitivity of the SA is bounded above by 4. O

Having proven these sensitivities, we can now introduce
our private algorithm (Algorithm 2) for approximating
F;. The algorithm first estimates SA and SE, allocat-
ing part of the privacy budget to each one. We intro-
duce a parameter p € (0,1) that determines the relative
amount of the privacy budget spent on each intermedi-
ate value. The optimal value of p will be experimentally
determined in Section 4.2. We note that in addition to
using a different test statistic, the prior work by Camp-
bell et al. did not consider p values other than 0.5.

Algorithm 2 private_ F1(x,¢, p)

SA = SA(x) + Ly where Ly ~ Lap (pi)

SE — SE(x) + Ly where Ly ~ Lap ((1f)p)€)

7 _ SA/(k=1)
SE/(N—Fk)
return Fp,SA,SE

Theorem 6. Algorithm 2 is e-differentially private.
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Proof. By the sensitivity bounds of SE and SA in The-
orems 4 and 5 and the Laplace mechanism (Theorem
3), SA is pe-differentially private and SE is (1 - ple-
differentially private. By the composition theorem (The-
orem 1), outputting both is e-differentially private.
Since k£ and N are both public information, computing
T is post-processing (Theorem 2). O

3.3 Reference distribution and p-values

As discussed previously, the test statistic on its own
is not useful; we need a p-value to provide a sense of
scale in the context of the null hypothesis. Computing
a p-value begins with an accurate reference distribution.
We numerically approximate this distribution through
simulation. The intermediate values of the F statistic,
SSA and SSE, are drawn from o%y7 , (for SSA) and
o2x?%_, (for SSE). Campbell et al. [3] used this to easily
sample from the correct distributions for SSA and SSE.

The SA and SFE values needed to compute F; follow
no similarly tractable distribution, so instead we simu-
late full databases according to the null hypothesis and
for each calculate ﬁ The distribution of these ﬁ val-
ues approximates the reference distribution. The goal,
given a database x, is to simulate databases with the
same size N and number of groups k, same standard
deviation o, and same expected value p. The values N
and k are public, so we can use those values. The ex-
pected value p is not, but as long as it is safely inside the
[0, 1] interval, its value has no effect on the distribution,
so we simply always use 0.5.

Unfortunately, using an accurate o is more difficult.
Unlike in the non-private setting, the reference distri-
bution depends on the choice of o, so an inaccurate
value can cause incorrect results. We had two choices:
either we could use some of our e-budget to directly es-
timate the standard deviation of the y; in database x,
or we could devise an indirect method of estimating the
standard deviation given SA and SE. See Appendix D
for further discussion of the first option. (It has higher
power for low n but takes longer to approach full power.)
Here we focus on the second option by deriving an un-
biased estimator & for o that can be computed from

—~ k
SE |« ~ 1
= N\/;, where N = E n; <1 — nj)

SE.
j=1

Q>

See Appendix A for the proof that this is indeed an
unbiased estimator.
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Accuracy of o estimate

0.4

0.2
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0.0

-0.2

0 500 1000 1500 2000

Fig. 1. 6 is unbiased (¢ = .15) with shrinking variance as N

grows large. Each point represents the estimate from a simulated
null database. At small N, there is a non-zero probability of re-
turning a negative estimate.

Computing this estimator requires knowledge of
each of the group sizes, which are private. Fortunately,
N is closely approximated by N — k, which we know. At
the smallest database sizes that we considered (around
N = 100 with three equal-sized groups), this approx-
imation has < 1% error. As the size of the database
grows, this error shrinks to zero. Figure 1 visualizes the
unbiasedness and asymptotically shrinking variance of &
(using the N = N — k approximation). We further con-
firm in Section 4 that it is precise enough to compute
valid p-values.

Another issue presented by the private estimation
of ¢ is that the Laplacian noise can be large enough
to make the estimate negative. Negative standard devi-
ation estimates are more likely to occur when the SE
is small, i.e., when the database is small or when the
within-group standard deviation is small.

This problem is unique to the private setting and
we do the most conservative possible thing — we never
reject the null hypothesis when the estimated standard
deviation was negative. Our reasoning was that a nega-
tive standard deviation has no statistical meaning and
any calculations made from such an estimate would be
uninformative. This method for dealing with negative
standard deviation estimates results in a type I error
rate lower than «, which means that our results are
more conservative. As was mentioned earlier, the SA
increases as the database size and effect size between
groups increases. Thus, negative standard deviation es-
timates tend to occur for database sizes and effect sizes
that are so small that the effect is undetectable anyway.

Brought to you by | Reed College Library
Authenticated
Download Date | 7/30/19 11:16 PM



As a result, this conservative choice does little to reduce
the power of our test.

A formal description of the private F; ANOVA test
in presented in Algorithm 3, which returns a Boolean
indicating whether the null hypothesis Hy is rejected.

Algorithm 3 ANOVA_ test(x, €, a, reps)

Iy, SA, SE = private_ F1(x,e)
if SE < 0 then
return False
end if N
7= iy
significant =0
for i =1 to reps do
x"f = N draws from N(0.5,5) divided into k
equal-sized groups
—~ref —~ref —~ref
F " ,SA " ,SE
—ref —
if Fy > F; then
signi ficant = significant + 1
end if
end for

= private_ F1(x"f,¢)

p-value = significant/reps
if p-value < a then
return True
else
return False
end if

Theorem 7. Algorithm 3 is e-differentially private.

Proof. This follows immediately from Theorem 6 (pri-
vacy of the test statistic) and Theorem 2 (post-
processing). Using the notation of Theorem 2, the call
on line 1 to private_F1 (Algorithm 2) is the function
f, which is proven e-differentially private by Theorem
6. The rest of the computation is the function g, and
uses only the output of f. (Note that later calls to pri-
vate__F1 call it on simulated data.) The whole of Algo-
rithm 3 is therefore the composition of these two func-
tions and as a result is itself private. O

4 Experimental results

In this section we assess the properties and performance
of Algorithm 3 through simulation.
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Validity of p-values

1.00

o
3
o

1
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Probability of Type | error
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0.007 .~
0.00 0.25 0.50 0.75 1.00

Fig. 2. The empirical type | error rate under three private scenar-
ios is less than « while the public error rate is exactly o (within
MC variability). Each point in a line represents 500 simulated
tests, each with N = 180, k = 3, and equal-size groups.

4.1 Properties of the test

A p-value is considered valid if [4]

Pr[p-value < a | X + Hy] < a.

In other words, the actual type I error rate must be
less than or equal to a. This can be assessed by conduct-
ing many tests on simulated data sampled according to
Hy at various v and checking if the proportion of rejec-
tions is less than or equal to a.

Figure 2 presents these simulations for several
choices of ¢ and demonstrates that the Fj test produces
valid p-values. The type I error rate is lowest at low
€ values because the high privacy guarantee requires a
large amount of noise be added to SE, which can lead
to a negative estimate for o, which in turns leads to an
automatic decision to retain Hy (see section 3.3).

We note also that when we simulate data for cal-
culating a reference distribution, we always simulate
data with equal-size groups. l.e., we must confirm that
the critical value of the reference distribution is highest
when groups are of equal size. Fortunately, this appears
to be the case. Appendix B contains both experimental
and theoretical arguments for this claim, though not a
complete analytic proof.

4.2 Optimal p

The computation of the private F statistic requires the
specification of p € (0,1), the parameter that determines
the proportion of the privacy budget that is allocated to
SA relative to SE. We determined an optimal value for p
by constructing power plots comparing database size to
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Effect of p on power
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Fig. 3. Power curves at varying p in a setting where e =1, k = 3,
o = .15, and effect size: 1o. Power is experimentally maximized
when p = .7.

power for different p values. We began by exploring the
full range from 0.1 to 0.9 by 0.1-increments to get a sense
of the range of variability in power. After that initial
pass, we tuned in to the value with higher precision. We
considered many effect sizes and found that in every
case p ~ 0.7 was the most powerful.

Figure 3 is an example of one of the many scenarios
that were considered, which identifies .7 as the optimal
value. The scale of the effect of p on power is not dra-
matic but it was persistent across scenarios.

4.3 Performance of the test: power

There can be many tests for a given scientific setting
that generate valid p-values and have identical type I
error rates. What distinguishes them is their statistical
power, or the probability that they reject Hy when the
database comes from a distribution under H 4.

The most common way to assess the power of a test
is to generate a plot of power as a function either of
database size or of effect size. Figure 4 fixes the effect
size and shows power curves as a function of database
size for four choices of €. An ideal test would very quickly
develop power near 1 with very little data. In our private
setting, it is clear that the cost of high privacy (e = .1)
is roughly an order of magnitude more data than mod-
est privacy (¢ = 1) to achieve high power. Our private
test (for reasonable values of €) still requires much more
data than the public version, hundreds of data points
as opposed to dozens.

Each point in a line of a power curve was com-
puted from 10,000 simulations, each based on a syn-
thetic database of a set sample size and a set ef-
fect size (distance between the group means). We con-
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Power of the F statistic
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Fig. 4. Power curves at varying privacy levels in a simulation
setting where k = 3, 0 = .15, and effect size: 1o.

sidered the effect H4 where k& = 3 groups, each
distributed N (0.35,0.15), M/ (0.5, 0.15), N'(0.65, 0.15) and
equal group sizes, which was the same scenario as Camp-
bell et al. [3]. Each simulation starts with a draw from
H 4 and computes a p-value as described in Algorithm 3.

The most relevant comparison, however, is between
the private F} statistic and the privatized version of the
classical Fy statistic proposed in Campbell et al., the
only prior private version of ANOVA. This comparison
can be seen in Figure 5, and the improvement is sub-
stantial. For example, at ¢ = 1, if one wanted to collect
enough data to detect this effect with 80% probability,
one would need 4500 observations if using the prior best
test, whereas with the F; test presented here one would
need only 300 data points, a 15-fold reduction in the
necessary amount of data.

Figure 5 also demonstrates the degree to which the
F1 is well-suited to the private setting; the greatest im-
provement in power occurs under high privacy (e = 0.1).
As € grows large, the difference between the two statis-
tics shrinks. In the public setting, they are nearly indis-
tinguishable, though the Fy is narrowly more powerful
at every database size.*

The improvement in power is the greatest practi-
cal contribution of our work: the ability to conduct a
private ANOVA with an order of magnitude less data
than the existing approach. This improvement can be
attributed to two key characteristics of our new test.
The first and most important is the notion of measuring
distance using the L' norm. The second is the unequal

4 This empirical result is consistent with theoretical results in
the classical statistics literature that discuss conditions in which
the F» is a most powerful test [5].
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Power comparison of F; and F; statistics
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Fig. 5. Comparison of the power of the new F}-statistic and the
prior state of the art test using F3, for three values of € and in
the public setting.

apportionment of the privacy between the SA and SE
terms.

5 Other considerations

In this section we present a straightforward generaliza-
tion of the classic F' and Fj to allow other exponents.
In Section 5.1 we show that in this generalized class of
statistics F} is indeed optimal. In Section 5.2 we discuss
the experimental exploration of the full parameter space
that guides the formulation of the F} statistic.

5.1 Varying the exponent

As seen is the previous sections, the change from squar-
ing the differences in the original F-test to taking their
absolute value with the Fj-statistic improved power sig-
nificantly in the differentially private setting. It is not
obvious that switching the exponent from 2 to 1 is op-
timal — perhaps some other exponent is superior. An
exponent of 0 is clearly horrible, so there must be a
local maximum in the power of the statistic for some
exponent between 0 and 2.

In order to determine which exponent is in fact op-
timal, we further generalize the notion of an F-test. We
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define SQA and SQE, which are equivalent to SSA and
SSE except that the summand is raised to the ¢'® ex-
ponent, and we call the resulting statistic F;,. Note that
F1 (as defined earlier) is a special case of F, for g = 1,
and F5 is the standard F-statistic.

Definition 10 (F,). Given a database x with k groups
and N total entries, define SQA and SQE as follows:

k
SQAx)=> n; 7, -7
j=1

N
SQE(x) = |y — 7., [*
i=1
Then, Fy is defined as
_ SQA/(k-1)
Fa) = Sop/ v =n)

We must now create a private approximation of Fy for
arbitrary ¢. To do this, we first bound the sensitivity of
the SQA and SQFE with the following two theorems, the
proofs of which can be found in Appendix C.

Theorem 8 (SQF Sensitivity). The sensitivity of SQE
is bounded above by
(1-q)
N
2 — 1
(3)
when g € (0,1) and
2\ ¢
N-N[1-— 1
(1-%) +

when q > 1. Note that both give an upper bound of 3
when ¢ = 1.

Theorem 9 (SQA Sensitivity). The sensitivity of SQA
is bounded above by

3\ ¢
N| —= 1
(3)
when ¢ € (0,1) and

3 q
N-N|1-— 1
(-5) +
when q > 1. Note that both give an upper bound of 4
when g = 1.

Given these sensitivity bounds, we can calculate a pri-
vate approximation of F, for simulated data using the
same algorithm as for F}, but with the sensitivities al-
tered according to the choice of q. We can also simulate
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Effect of q on F4
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Fig. 6. Power curves at varying exponents in a simulation setting
where k = 3, 0 = .15, and effect size: 1o. Power is experimen-
tally maximized when ¢ = 1.

a reference distribution by adapting Algorithm 3, which
was done to construct Figure 6. As is clear from these
results, in terms of power, the optimal value of ¢ is 1.

We note that in the computation shown in Figure
6, we don’t estimate o using SQFE. This is because we
have not developed an estimator for o that can be com-
puted from SQFE (for q # 1,2). If another value of ¢ had
indeed been optimal, the next step would have been
to find such an estimator and confirm it was accurate
enough to produce acceptable p-values. But since the
power cannot possibly improve when switching to an
estimated o value, this result is sufficient to show that
other values of ¢ need not be considered.

5.2 Parameter tuning

With the generalization of the F-statistic, we add ¢ to
the list of parameters that determine the power of a
testing procedure. The parameters can be organized as
follows:

Data Generation: N, k, o, effect size
Private Algorithm: ¢, g, p

The analyst gets to select the parameters corre-
sponding to the private algorithm. While € is set based
on privacy concerns, ¢ and p should be set to maximize
power, which our work suggest occurs at roughly 1 and
0.7, respectively. These conclusions are based upon ex-
tensive exploration of the parameter space, a selection
of which can be found in Appendix E.

The salient feature of these plots is that the choice
of ¢ is much more consequential than the choice of p.
In the setting where ¢ = .1, we found that the result
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seen in Figure 5 — a greater than 10-fold reduction in
database size to get equivalent power — holds across a
range of difference data generation parameters.

By contrast, the effect of p on power is much smaller;
the database size reduction is closer to 1.1- or 1.2-fold
when moving from p = .5 to p = .7 when ¢ = .1.
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A Appendix: An unbiased
estimator for o

We are concerned with finding an unbiased estimator
for o given SE.

k
T (Sl |+

j=14€C;
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Our first goal is to find E(@) We begin by noting
several relevant distributions.

yi ~ N(p,0%)
Ye; ~ N(N: UQ/”C’i)
Yi — e, ~ N(0,72).

The term 72 will be useful in determing the expected
value of each term in SE, so we seek to express it in
terms of known quantities.

= Var(y; — Je;)

Var(yi) + Var(ge,) - 2Cov(y;, ge,)
2
2L

Ci

—2Cov(Yi, Ye, )- (2)

To solve for the covariance, noting that

Cov(X,Y) = E(XY) — 2, we start by finding

~ 1
E(yiye,) = —EWilya +y2 + ... +yi+ ...+ yn,,))

ci

1
= fE(yz‘Q +yiS—i)

Ci

= L (B2) + EwsS), (3)

Ci

where S_; = y1 +y2 + ... + Yi1 + Yig1 + ... +
Yne, - The term yf will be chi-square distributed when
standardized as follows:

2

Yi — 1 1

Z2 = (17) =— (y2 —Qyiu+u2) .
ag ag

Therefore we can write
2 o? 2 2 2
E(y )=E<02 (v* = 2yip + p®) + 2yip — 1 )

= E(0®Z% + 2yip — 1)
= 0’E(Z°) + 2uE(yi) — 1°

— o222 — 2
— 0?42
Continuing from Eq. (3),
1 1
— (B (97) + E (yiS—i)) = — (0° + 4 + E(y;) E(5-1))
nci nci
1
= — (0" +4° + (ne, - 1)p?)
Ne,
_ 12 2
- L (s nea)
Ne,
2
_ e
Ne,
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Now we can return to the covariance term in Eq. (2),

COU(yi, ?jcl) = E(yzgcl) - /L2
2

[

-4 'u2 _ MQ
ci

0_2

Ne,

Now we can finish the calculation of 72.

2
2 2 =
0 =0+ —— —2C0u(y;; e:)
Ci
2 2
o
=0l4 —-2—
Ne, Ne,
2
o
—s2_ 2
N,

The distribution of the absolute value of a normal
is half
normal with a single parameter 7, which should properly

random variable with mean 0 and variance 72

be indexed by the observation. For ease of notation, call
this random variable W;.

W; = |yz _ycil ~ HN(Ti)v

where E(W;) =1 \/g To find E(S/’E)7 we can write it
using the double sum notation as in Eq. (1). Since Lo
is a Laplace distribution centered at zero, we can use
linearity of expectation to further simplify the expecta-

tion:
k
Ey=E|Y > Wi | +E(L)
j=14€C;
=E(Y_ Y Wi|+0
j=14ieC;

k
ZE(”J

The change in indices is justified by realizing that W;
is the same for all n., elements in C; (in expectation).
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Continuing,
k k
D E(nWy) = nE (W)
j=1 j=1

. 2
IZTLJ'TJ'\/;

2

Denote the sum N, which is a number that approaches
N as the group sizes get large. This allows us to express
the expected value more concisely as

E(SE) = a\/zN.

The final step is to correct for this bias in our final

estimator:
SE
0= —— \/7 where
N V2

E(6)=o0.

Using this exact estimator requires knowledge of each of
the group sizes, which are private. Instead of dedicating
part of the € budget to this estimation, we used N —
k in place of N. At the smallest database sizes that
we considered (around N = 100), this approximation
accounts for < 1% error. As the size of the database
grows, this error shrinks to zero.

B Appendix: Validity under
unequal n;

Consider a specific setting in which N = 800, ¢ = 0.1,
and k = 4. Figure 7 shows the reference distributions
of F} in four scenarios, each with a different group al-
location of the 800 observations. The distribution in sg,
the equal group size scenario, generally takes the high-
est values; indeed it exceeds the other scenarios at every
quantile. This represents the distribution that we use to
calculate p-values and reject Hy whenever an observed
statistic is greater than the vertical dotted line (when
a = .05). This means that in the other three scenarios,
featuring unequal allocation, the actual type I error rate
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Reference distributions with unequal n;
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Fig. 7. Distribution of Fy under Hy in four group size allocation
scenarios, each with 10,000 simulations. sg: {200, 200, 200, 200},
s1: {100,100, 100,500}, s2: {5,10,20,765}, s3: {3,3,3,791}.
The vertical dotted line indicates the .95 quantile of the equal
group size distribution.

(the proportion of the distributions beyond the dotted
line) will be less than « and we meet the condition for
valid p-values.

In the following, we show that under any scenario,
the expected value of the F; statistic is maximized when
the group sizes are equal. Recall that the form of the

SA(x)/(k —1)

statistic is

&) = Spo0 /v =y
where .
SA(x) = nyly; — 9l
j=1
and

N
= Z|yz - gcl‘
1=1

Only SA is a function of the n;, so we restrict our
attention to that term as F(F}) for different allocations
will scale with F(SA) by a multiplicative constant.

Denote each term in the summation SA;. By using
the approach used in Appendix A to find the distribu-
— 1 is distributed

tion of y; —y,,, it can be shown that y;
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2
normal mean zero, and variance wjz ==-%-
J

N

k
> 54,
j=1
k
=) E(S4))
j=1
k
= Enly; - yl)
j=1
k _ _
wi(y; —y
= ZE (nj|j(:))|>
j=1 J
k _ _
= njw; B \M| since w; > 0
jW3 o j
j=1 J

b 2
= anwj(\/;)
j=1

@:=9) | is distributed standard half nor-
mal, the expectatlon of each evaluates to the constant

Since each |

%. Now we may also factor out ¢ from w;, providing
the final answer:

k
E(SA) = a(\/Z)an1 /% - %
j=1 I

Proposition 1. The expectation of SA is maximized
when group sizes are all equal, i.e.,

all j # j'

when n; = nj, for

Proof. Tt suffices to show that the sum between any two
summands of the expectation is maximized when the
other k — 2 group sizes are fixed, so we begin by fixing
each n; except for n; and ng, without loss of generality.
Define ¢ = nq1 + ng to be the sum between the two un-
fixed group sizes, so then the sum between the first two
summands becomes:

\/> V —m) \ (c—n1)
—o<\/;><\/1+\/cm C—W)

since n1 and ¢ — n; > 0. Now factoring constants and

differentiating with respect to ni:

! iE(~9A1+SA2)

U(\/:) dny

2(c—n1) nl) ~1 2n1

\/ le=mP "1) +ec—mny 2\/ 1—*
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which has only one solution in nj, when n; = § =
%, which implies n; = ng. This critical point is as-
sociated with a maximum expectation on the first two
summands, as desired. Applying this result across all
nj,njs pairs such that j # j/, will result in maximizing
each summand of the expectation when all n; = n;,
hence maximizing E(SA). O

C Appendix: Sensitivity proofs for
SQA and SQE

Recall that, from Definition 10, we have the following
functions SQA and SQFE:

k
SQA(x) = n; [y, — 7"
j=1

q

N
SQEx) =Y |vi — Ve,
1=1

Our goal here is to bound the sensitivities for SQA and
SQE.

Theorem 7 (SQE Sensitivity). The sensitivity of SQE
is bounded above by

(1-9)
N
2( = 1

when q € (0,1) and

2 q
N-N(1-=) +1

when q > 1. Note that both give an upper bound of 3
when g = 1.

Proof. As in the previous proofs of the sensitivity of SE
and SA, suppose neighboring databases x and x’ differ
by some row r, with ¢, = a in x and ¢, = b in x’.
Rewrite the SQF as a sum that indexes over group size
and entries within each group.

k
SQE(x) =Y > |vi— 7.,

j=1ieC;

q

Let t; = ’yi -, ‘q for any entry i. Note that if ¢; # a, b,
then ¢; will not change between databases x and x’, as
the group means of the other groups are not altered.
Thus, unless i is in group a or b, t; will contribute noth-
ing to the overall sensitivity of the SQE. For notational
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ease, let z = y; — 7., and parameterize t; as a func-
tion of z. The maximum z can change by is 1/n.,. We
now bound the sensitivity by individually bounding the
sensitivity At; of each term with ¢; = a,b.

Case 1: When ¢ is less than 1, ;(z2) is a concave function
with minimum at z = 0 that is symmetric about the y-
axis and which monotonically increases for positive z.
Because the slope of t;(z) is highest near z = 0, the
worst case sensitivity is between z = 0 and z = 1/n,,,
and hence

Aty < [t;(0) — t;(1/ne;)
= (1/n¢,)?.

Note that when ¢; = a and i # r, At; < (1/ng)9.
The analogous statement holds for group b. By multi-

plying these bounds by the number of terms in each
group, we get

ASQE <nl™7+ nll)_q +1,

where the first and second terms are the total change
possible to terms in groups a and b respectively, and the
final term is for the contribution of row r itself, which
we cannot bound other than by noting that its value
both in x and x’ falls inside of [0, 1].

We must now take the worst-case value of this
bound over all possible database sizes n, and n;. Since

ng is a positive integer and ¢ < 1, ne™?

increases for a
given ¢ as n, increases (and the same is true for np).
So, the worst-case sensitivity will occur when as much
of the total database is in groups a and b as possible.

Write np, = N — ngy. Then
né_q + (N —ng)t 4

is a downward facing parabola-like function with max-
imum value when n, = N/2. So, the sensitivity of the
SQF is bounded above by

1—q
ASQE <2 <J;[> + 1.

Case 2: When ¢ is greater than 1, ¢; is a convex func-
tion with maximum at z = 1, symmetric about the y-
axis, and monotonically increasing for positive z. So, the
worst case sensitivity is between z = 1and z = 1—1/n,,,
and hence

Afi S |f1(1) — ti(l — 1/7167)
=1—(1—1/ng,)"

Summing these bounds over all terms, we have

ASQE < ng(1— (1 —1/na)?) +np(1 — (1 —1/np)9) + 1.
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Again, the sensitivity will be maximized when as
much of the database is distributed between n, and ny
as possible. To determine what the worst case allocation
is, let

f=na(1=(1=1/n4)")+(N=na)(1-(1-1/(N=n4))?)+1,

i.e., f is an expression for the upper bound of ASQF
with n; replaced by N — n, to maximize sensitivity.
Then, we can maximize f in terms of ng:

OAf
ong

1-¢q 1—¢q
(N —ng)9 nd

has a critical point at n, = N/2, and

OAZf
on2

_ (1-4q)q

(N —ng)~ 14

(1-4q)q
n;kq

is always negative. So, f is concave down and n, = N/2
is a global maximum. Hence, the worst case sensitivity
occurs when the database is distributed equally between
groups a and b, i.e.,

2 q
ASQE<N(1—(1—N> >+1.

Theorem 8 (SQA Sensitivity). The sensitivity of SQA
is bounded above by

3\ 7
N| = 1
(&)

when ¢ € (0,1) and

3 q
N-N(1-2) +1

when q > 1. Note that both give an upper bound of 4

O

when g = 1.

Proof. Let sj = |y; — y|? for any group j. Le., s; is the
(unweighted) term in the calculation of the SQA that
corresponds to group j. Note that as the grand mean
changes between databases x and x’ in addition to the
group means, all terms, not just those for groups a and
b, will contribute to the sensitivity of the SQA. Recall
that the sensitivity of the grand mean is 1/N, while the
sensitivity of the group mean for groups a and b are
1/nq and 1/ny respectively.

Case 1: When ¢ < 1, s;(z) is a concave function with
minimum at z = 0, symmetric about the y-axis, and
monotonically increasing for positive x. So, the worst
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case sensitivity of As; for j # a,b is between z = 0
and z = 1/N, and the worst case sensitivity of As; for
j=a,bis between z =0 and z = 1/n; +1/N. Then, the
total sensitivity of the SQA for ¢ < 1 is
ASQA < (N —ng—np —1)(1/N)? +ng(1/N + 1/n4)?
+np(1/N 4+ 1/np)? + 1.

The addition of the 1 comes from the fact that our
data point 7 that switches between groups contributes
|Ja — y|? to the calculation of the SQA in database
x, and contributes |7, — y|? to the calculation of the
SQA in database x’; the difference between these two
terms is bounded above by 1. Note that since ¢ < 1,
(1/2)? > 1/z. Hence, (1/N 4+ 1/ng)? > (1/N)? and thus
the worst-case sensitivity occurs when all of N is allo-
cated to groups a and b. Le.,

ASQA < ng(1/N+1/ng)7+(N —na)(1/N+1/(N—ng))".

Then, as in the proof of the SQE’s sensitivity, to deter-
mine the worst-case sensitivity in terms of IV, let

g =na(1/N+1/n4)" + (N = ns)(1/N + 1/(N = na))*?
and maximize this expression in terms of n,.

o9 _ (1, 1 N\ (1, 1Y

ong N N —n, N n,

1 1\ 1 1\t
(i)™ ol

N —nq Ng

+

This is a symmetric expression between N and N —n,.
So, there must be a critical point at n, = N/2. Note

alSO ‘ha‘
q
1 1
(TV + 7”@)

9%g

(% + 7= )2
—= =N?*(q—1)q -

on2 (N —na)(—2N +n4)2  ng(N +ng)?

<0

)

since N > n, and ¢ < 1. So, n, = N/2 is a global
maximum, and hence

3 q
ssanen(2)'

Case 2: When q is greater than 1, s; is a convex func-
tion with minimum at z = 0, symmetric about z = 0,
and monotonically increasing for positive z. So, the
worst case sensitivity of As; for j # a,b is between
z=1and z=1-1/N, and the worst-case sensitivity of
Asj for i =a,bis between z =1 and z =1-1/N—1/n;.
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Then, the total sensitivity of the SPA for ¢ < 1 is

ASQA < (N —ng —np)(1 = (1 =1/N)?)
+ng(1—(1=1/N —1/ng)%)
+np(1— (1 —1/N —1/np)9) + 1.

Note that

1—1/N—1/ny <1-1/N
= (1-1/N = 1/np)? < (1 —1/N)4
=1—-(1—1/N—=1/n)?>1—(1—1/N)9.

Thus, ASQA is maximized when N is maximally allo-
cated to groups a and b. As in the proof for ¢ < 1, this
occurs when n, = N/2 = n;. Then,

ssann(i-(1-2)).

D Appendix: Direct calculation of
o

In our work, we used SE to form an estimator for o
when calculating the null distribution. We developed
another version of a differentially-private ANOVA that
calculates o directly using a portion of the privacy bud-
get. We first define a generalized variance and prove the
sensitivity bounds on this quantity.

Definition 11 (VAR,). Given a database x with k
groups and n; entries in the j-th group, the VAR, cal-
culation is defined as

N
VAR, = |yi — 7
i=1

where q is a positive real number.

Theorem 9 (VAR,-Sensitivity). The

VAR, is bounded above by

sensitivity  of

N-1

Ne

when g < 1, and is bounded above by
(N-1)(1-(1-1/N)9)+1

when q > 1. Note that these both give a bound of 2—1/N
when q = 1.
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Proof. Consider databases x and x’ which differ in en-
try 7. Recall that the sensitivity of the grand mean is
1/N. Let t; = |y; — y|?. When ¢ < 1,¢; is a concave func-
tion with positive range, so the worst case sensitivity is
between y; —y =0 and y; —y = 1/N. That is,

i)

At; =

Every single term can be affected by at most (%)q,
except the term 7, which can change by 1. So,

1

AVAR, < ‘(N— ()" +1’
_N-1
~ v T

When ¢ > 1,¢; is convex. The worst case sensitivity is
between y; —y =1 and y; — gy =1— 1/N Then,

AVAR, <

1 q
(N-1D(1-(1-7) )+1‘.

O

We again use the Laplace mechanism, and the sensitiv-
ity of a database’s variance follows directly from Thm. 9:

Corollary 1. The sensitivity of the wariance of a

database is bounded above by
3+1/N%? -3/N.

Algorithm 4 divides the privacy budget into p; for the
SA, po for the SE, and ps for the VAR calculations re-
spectively. The values of p are provided as input along
with the database x and the ¢ value. When SE is used
as the o estimate, we found a 70-30 split of the privacy
budget between SA and SE was optimal (Figure 3). In
the power analysis of Algorithm 4, we vary the propor-
tion of the privacy budget dedicated to the VAR calcu-
lation. We fixed the proportion of the privacy budget
for p; and p2 to be a 70-30 split budget not used by p3
(the VAR calcuation).

Unsurprisingly, allocating part of the budget to cal-
culating the standard deviation negatively impacts the
statistical power of the test (Fig. 8). However, it is sur-
prising that this allocation does not impact the power
of the test more strongly, since VAR has a larger sensi-
tivity and requires adding noise to smaller values than
the SA and SE.
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Algorithm 4 Differentially private Fj-statistic with di-
rect calculation of variance

Input: Database x, € value, p1, p2, p3
Compute SA = SA + Z, where Z; ~ Lap ( 4 )

€pP1

Compute SE = SE+ Zy where Z ~ Lap ( 3 )

Ep2

Compute VAR=VAR+ Zs where Z3~La p(w)

€p3
SA/(k—1)
SE/(N—k)
Output: ﬁ, g;l, §E’, VAR

Compute ﬁ =

Power comparison of ¢ estimation methods

1.00

0.75

P1: P2: P3s

42, .18, .40
.56, .24, .20

Power
o
@
g

original

0.25

100 1000
Database Size (log scale)

Fig. 8. The power of F for a fixed € value budgeted across SA,
SE, and VAR calculations, with the portion of € not allocated to
p3 allocated between p; and p2 with a 70-30 split.

E Appendix: Parameter selection

Empirical results guiding parameter selection are pre-
sented on the following pages in Figure 9 (¢ = .1) and
Figure 10 (e = 1).
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Fig. 9. Power comparison in settings where ¢ = .1. Within each subplot, each color curve corresponds to a different value of ¢ (blue:

0.75, gold: 1, green: 1.5, red: 2). The two main columns of plots correspond to different VaIBF‘éLFQ‘h{“ta%ﬁIWytf‘ﬁ@eﬂ‘éﬂlréﬂ@LqBY’re?r'y
spond to difference values of p. Note that the scale on the x-axis differs with k (k = 7 requires more data).

Download Date | 7/30/19 11:16 PM

Authenticated

329



0.75

0.50

0.25

0.00
1.00

Power

0.75

0.50

0.25

1.00

0.75

0.50

0.25

0.00
1.00

Power

0.75

0.50

0.00

1.00

0.50

0.25

.85

0.00
1.00

Power

0.75

0.50

sd: 0.1 sd: 0.25
10'° 10? 10%° 10° 10'® 10? 10%° 10°
Database Size (log scale)
sd: 0.1 sd: 0.25
10'° 102 10%° 10° 10'° 10? 102° 10°
Database Size (log scale)
sd: 0.1 sd: 0.25
10'° 10? 10%° 10° 10'® 10? 102° 10°

Database Size (log scale)

S04

S04

S04

Power

Power

Power

0.75

0.50

0.25

0.00
1.00

0.75

0.50

0.25

0.00

1.00

0.75

0.25

0.00
1.00

0.50

0.25

0.00

1.00

0.75

0.50

0.25

0.00
1.00

0.75

0.50

0.25

0.00

sd: 0.1

Differentially Private ANOVA =— 330

sd: 0.25

B
e
&
)
a
10? 10%° 10° 10%° 10? 10%° 10° 10%°
Database Size (log scale)
sd: 0.1 sd: 0.25
&
e
&
2
a
10? 10%° 10° 10%° 10? 10%° 10° 10%°
Database Size (log scale)
sd: 0.1 sd: 0.25
)
o
&
)
a

10?

1025

10° 10%° 10? 10%° 10° 10%°
Database Size (log scale)

Fig. 10. Power comparison in settings where ¢ = 1. Within each subplot, each color curve corresponds to a different value of ¢ (blue:
0.75, gold: 1, green: 1.5, red: 2). The two main columns of plots correspond to different ValBFéL@‘thé%ﬁ'\?ytf‘F?@eﬂ‘@Blréﬁ@LCIB‘Fﬁr'y

spond to difference values of p. Note that the scale on the x-axis differs with k (k = 7 requires more data).
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