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Abstract—Understanding cellular responses via signal trans-
duction is a core focus in systems biology. Tools to automatically
reconstruct signaling pathways from protein-protein interactions
(PPIs) can help biologists generate testable hypotheses about
signaling. However, automatic reconstruction of signaling path-
ways suffers from coarsely-weighted interactions, leading to
many equally good candidates. Further, some reconstructions
are biologically misleading due to ignoring protein localiza-
tion information. We propose LocPL, a method to improve
the automatic reconstruction of signaling pathways from PPIs
by incorporating information about protein localization in the
reconstructions. The method relies on a dynamic program to
ensure that the proteins in a reconstruction are localized in
cellular compartments involved in signaling transduction and that
the interactions are consistent with signaling from the membrane
to the nucleus. LocPL produces more accurate and biologically
meaningful reconstructions on a versatile set of signaling path-
ways. The code, including a newly-released interactome PLNet,
is available at https://github.com/annaritz/localized-pathlinker.

Index Terms—Signal transduction, Biological networks, Data
integration, Pathways, Protein-protein interaction, Protein Lo-
calization

I. INTRODUCTION

A fundamental goal of molecular systems biology is to
understand how individual proteins and their interactions may
contribute to a larger cellular response. Repositories of ex-
perimentally derived human protein-protein interaction (PPI)
information [1]-[4] have been critical for studying the topol-
ogy of signaling pathways. These datasets have enabled the
development of methods that aim to link extracellular signals
to downstream cellular responses, which are characterized as
signaling pathways. Pathway analysis methods conceptualize
the interaction information as a graph, or an interactome,
where edges connect proteins that are known to interact
experimentally. Here, we will focus on methods that identify
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static networks to characterize the potential topology of human
signaling pathways. Approaches for identifying relevant sub-
networks have drawn on different graph theoretic methods,
including shortest paths [5]-[8], Steiner trees and related
formulations [9], [10], network flow [11], [12] and random
walk approaches [13], [14].

PathLinker is a recent pathway reconstruction approach that
returns ranked paths for a specific human signaling pathway
of interest [7]. Given a weighted interactome, a set of known
receptors, and a set of known transcriptional regulators (TRs),
PathLinker returns the k-shortest paths from any receptor to
any transcriptional regulator. PathLinker was shown to have
superior performance over other graph-based methods such as
Steiner trees, network flow, and random walks.

Pathway Reconstruction Challenges. Despite PathLinker’s
success, the problem of identifying accurate pathway recon-
structions remains challenging. PathLinker paths are prior-
itized by their reconstruction scores, and the collection of
these paths constitute a pathway reconstruction. We assessed
PathLinker reconstructions for four well-studied and diverse
signaling pathways: Wnt, Interleukin-7 (IL-7), 684 Integrin
and Epidermal Growth Factor Receptor (EGFR1). Careful
analysis of the ranked paths across these pathways revealed
two main challenges in pathway reconstruction.

First, we found that many PathLinker paths have identical
reconstruction scores. For example, about 52% of the paths
in the Wnt reconstruction had the same score. This feature
was not unique to Wnt; 60%, 82.6%, and 48.2% of the
paths were tied in the IL-7, a684 Integrin, and EGFRI
pathways, respectively. Strikingly, even the top-ranked paths
in the reconstructions were often tied (top 38 paths in Wnt,
top 43 paths in IL-7, top 57 paths in o684 Integrin, and top
330 paths in EGFR1). We found that the tied paths were a
result of many interactions with identical weights in the un-
derlying interactome (Fig. 1). For example, in the PathLinker
interactome (PLNet,), nearly 68% of the interactions have only
two distinct weight values. The coarse interaction weighting
is also apparent in the HIPPIE network [2], where 55% of the
interactions share the same edge weight (Fig. 1).

Second, we noted that paths in the reconstructions contained
a mix of pathway-specific signaling interactions relevant to the
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Fig. 1. Proportion of edges with identical edge weights in the PathLinker and
HIPPIE interactomes. PLNet; is the PathLinker interactome [7], while PLNet,
is the interactome used in this work. The HIPPIE High Quality (HIPPIE_HQ)
interactome includes all HIPPIE edges with a weight > 0.73 [2].

pathway under study (positive interactions) and non-pathway
interactions (we will call them negative interactions, though
they may very well be signaling interactions relevant to other
pathways or pathway-specific interactions that have not been
annotated yet). Paths are rarely comprised solely of positive
interactions: in all four pathway reconstructions, over 95% of
the paths that include at least one positive interaction also
contain a negative interaction. PathLinker does not consider
protein localization in the pathway reconstructions, so interac-
tions within the same path may be unrealistic in terms of com-
partment co-localization. Given the first challenge of coarse
interaction weights, incorporating biologically-motivated path
constraints could be useful for breaking tied path scores (Fig.
2, Left).

To overcome the challenges described above, we sought
to incorporate an independent data type into the pathway
reconstruction problem. Many methods have integrated gene
expression data to uncover signaling pathways relevant to
a particular condition or disease [9], [11], [14] ; however
incorporating gene expression changes may alter the “canoni-
cal” pathways that reconstruction methods such as PathLinker
aim to predict. Instead, we make use of information about a
protein’s localization within the cell to constrain the paths in
a reconstruction.

Contributions. We propose LocPL, an extended version of
PathLinker that reconstructs pathways by incorporating infor-
mation about cellular localization in two ways. First, LocPL
uses localization information to discard likely false positive
interactions from the interactome before running PathLinker,
improving its specificity. Second, LocPL incorporates the
localization information in a dynamic programming scheme
to identify spatially-coherent paths and re-prioritize tied paths.
Previous work (based on a node-coloring scheme) constrained
paths by requiring that the path is partitioned into segments,
where each segment consisted of nodes belonging to a certain
category of proteins [6]. Our approach, on the other hand,
computes the most likely compartments for each node in the

path and outputs a score that reflects this likelihood. The
path length is also considered an input for the node-coloring
method, while LocPL lifts this constraint.

We show that paths with larger proportions of signaling
interactions will be promoted higher in the LocPL k-shortest
paths list. We compare the LocPL pathway reconstructions to
those from PathLinker and illustrate the changes that result
from constraining the paths by cellular compartments. We pro-
vide a new interactome, PLNet,, which quadruples the number
of interactions compared to the PathLinker interactome. In
addition to performing a global performance assessment of
paths, we present a local measure to assess path quality
individually. Visual inspection of the top 100 paths in the
What, IL-7, o654 Integrin, and EGFR1 pathway reconstruc-
tions reveal that the spatially-coherent approach changes the
reconstruction topology, in some cases removing paths that
lead to activation of other pathways. This work demonstrates
that incorporating protein localization information into sig-
naling pathway reconstruction improves predictions that are
necessary for appropriate hypothesis generation.

II. METHODS

We first present an overview of LocPL, which uses infor-
mation from a protein localization database to refine pathway
reconstructions. After describing the model used for signaling
flow, we present a dynamic program for computing scores
that reflect a path’s consistency with the model of signaling.
Finally, we describe the datasets and the means of assessing
pathway reconstruction performance.

A. LocPL: Localized PathLinker

Signaling pathway analysis methods typically take an inter-
actome as input, represented as a graph G = (V, E') where the
nodes V are proteins and the edges E are PPIs. In the case
of LocPL, the graph is directed, each edge (u,v) € E has a
weight wy,,, € [0, 1], and every interaction is predicted to occur
within some cellular compartment according to a database of
protein localization information. LocPL’s core method is a k-
shortest path algorithm previously described as PathLinker [7].
Given a directed, weighted interactome G, a set R of receptors
and a set 7" of transcriptional regulators (TRs) for a pathway of
interest, and a number of paths &, PathLinker outputs a ranked
list of the k shortest paths, P = (Py, Pa, ..., P;), where a path
P, = (v1,va,...,vy,) is comprised of m nodes that begin at a
receptor (v; € R) and ends at a TR (v,, € T'). Each path P; is
ranked by the product of its edge weights (its reconstruction
score r;), and r; > r;4; for every 7.

After running PathLinker on the interactome, LocPL breaks
ties in the candidate list of paths /P by considering a model
of signaling flow based on cellular compartments. For each
path P;, a dynamic program identifies the signaling score s;
of the most likely series of compartments for each node that is
consistent with the signaling flow model. After this step, each
path P; will have two scores: a reconstruction score r; com-
puted by PathLinker and a signaling score s; computed by the
dynamic program. The signaling score is used to re-prioritize



the tied reconstruction scores by partitioning the paths into
ties (e.g. all paths with the same reconstruction score) and
reordering the paths within each group in decreasing order of
the signaling score.

B. Localized Protein-Protein Interactions from ComPPI

ComPPI is a database that predicts cellular compartments
for human proteins and PPIs [15]. For each protein, ComPPI
computes localization scores describing the likelihood of a
protein to be found in one of the major six subcellular
compartments: (i) extracellular fluid, (ii) cell membrane, (iii)
cytosol, (iv) nucleus, (v) secretory pathway (e.g. transport
vesicles), and (vi) mitochondria. ComPPI uses three types
of information to infer the localization scores: experimental
verification, computational prediction, and unknown sources,
resulting in high, medium, and low localization scores, re-
spectively. The interaction score, computed by ComPPI from
localization scores of the participating proteins, represents the
probability that an interaction takes place inside the cell.

LocPL uses the ComPPI database to restrict the interactions
of the interactome by removing edges with an interaction score
of zero — these interactions could take place from a biophysical
perspective, but are less likely to occur within the cell due to
the predicted protein localization. After this filtration step, all
edges in the interactome have a non-zero probabilistic score
aggregated across all cellular compartments. For subsequent
steps of LocPL, we use the ComPPI localization scores that
reflect individual proteins in specific cellular compartments.

C. Signaling Flow Structure and Assumptions

We first state some assumptions about the pathways we aim
to reconstruct, though the model is flexible and the assump-
tions may be customized for a specific pathway of interest.
First, we only consider intracellular signaling that begins
with activation of a membrane-bound protein receptor and
is transmitted to a DNA-binding transcription factor through
PPIs within the cytosol. Second, we focus on three cellular
compartments: a combination of extracellular fluid and cell
membrane (ExtMem), which represents where a receptor may
be located, Cytosol, and Nucleus. Third, we assume a fixed
unidirectional signaling flow that follows a structure composed
of compartmental layers within the cell, from ExtMem through
Cytosol to Nucleus. Fourth, multiple interactions may occur
within the same compartmental layer (e.g. multiple interac-
tions may occur within Cytosol). These assumptions impose
an ordering on the compartments that must be visited, which
we will use in breaking tied paths. Fig. 2. (Right) illustrates
these assumptions with four different paths as examples of
valid and invalid paths/interactions. Paths a and b are valid;
however, path ¢ is not valid because signaling goes directly
from the cellular membrane to the nucleus and path d has
one invalid interaction because signaling goes in a direction
against the assumed signaling flow.

We acknowledge that these assumption may not hold for
many pathways. For example, some pathways are initiated via
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Fig. 2. Left. Illustration of four PathLinker paths from receptors (diamonds) to
transcriptional regulators (yellow boxes) that all have the same reconstruction
score 7. Blue solid edges represent true positive interactions, and red dashed
edges represent false positives. The goal of breaking ties is to re-rank the
tied paths so paths with more positives are ranked higher (black box). Right.
Simplified model diagram for the signaling flow structure. Blue solid edges
represent valid interactions, while the green dotted edges represent invalid
interactions.

nuclear receptors, and would be missed based on our assump-
tion that signaling begins at receptors at the cell membrane.
We also do not consider other compartments beyond ExtMem,
Cytosol, and Nucleus in our model, while the mitochondria and
secretory vesicles play an important role in some signaling
pathways. The model of signaling flow may be customized
to each pathway under study, and a priori information about
the structure of signaling flow may further improve LocPL
predictions.

D. Dynamic Program for Path-Based Signaling Scores

Given a path P = (v1,vg, ..., U,,) that connects m proteins,
our goal is to find a selection of compartments that maximize
the path signaling score (by sum of log-transformed local-
ization scores) while respecting the signaling flow structure
outlined in Section II-C. For each protein v € V' that contains
localization information, we use £5°¢, £<¥t and ¢7“ to denote
the scores of ExtMem, Cytosol, and Nucleus respectively. We
log-transform these scores to be localization costs, that is,
¢ = —log (¢ for each protein v and each cellular compart-
ment c (either ExtMem, Cytosol, or Nucleus). Let s(v;, c) be
the optimal score of the path up to node v; € P, where v;
is in compartment c. The optimal signaling score of the path
must end in the nucleus, which we denote by s(v,,, nuc). The
score can be computed as:

5(Vm, nuc) = min [s(vm—1, cyt), $(Vm—1, nuc)] + £5"¢

This recurrence states that the largest score of the entire path
(to v,,) ending in the nucleus is the sum of the localization
score of protein v,, in the nucleus and the maximum of either
(a) the largest score of the path up to v,,—1 in the nucleus,
or (b) the largest score of the path up to v,,—1 in the cytosol.
This formula is consistent with our assumptions that (1) the
path must end in the nucleus, and (2) the last interaction must
either be in the nucleus or must connect a protein in the
cytosol to a protein in the nucleus. In general, at node vj,



j= .,(m —1), the set of equations for the scores are:
(vj, ext) = (1}] 1,ext) + Kext
s(vj, cyt) = min [s(v;_1, ext), s(v;_1, cyt)] + £
) =

ETL’U,C

s(v;, nuc) = min [s(vj_1, cyt), s(vj—1, nuc)] + £,

Note that we can only reach a protein in ExtMem from another
protein in ExtMem, we can reach a protein in Cyfosol from
another protein in either ExtMem or Cytosol, and we can reach
a protein in Nucleus from another one in either Cytosol or
Nucleus.

To ensure that the path starts with the cellular compartment
ExtMem, the base case for these recurrence relations are:

__ ypext
0,

s(v1, ext) = s(v1, cyt) = oo, and s(vy,nuc) = oco.

These recurrence relations can be efficiently calculated
using a dynamic program, filling an m X 3 table denoting the
number of nodes (m) by the three compartments. The final
score taken will be s(v,,,nuc) since we require the path to
terminate in the nucleus.

E. Interactomes and Pathways

a) PLNet, Interactome: We built PLNet, from both
physical molecular interaction data (BioGrid, DIP, InnateDB,
IntAct, MINT, PhosphositePlus) and annotated signaling path-
way databases (KEGG, NetPath, and SPIKE) [3], [4], [16]-
[18]. PLNet, contains 17,168 nodes, 40,016 directed regula-
tory interactions, and 286,250 bidirected physical interactions,
totaling 612,516 directed edges. We assigned interaction direc-
tion based on evidence of a directed enzymatic reaction (e.g.,
phosphorylation, dephosphorylation, ubiquitination) from any
of the source databases. Each interaction was supported by one
or more types of experimental evidence (e.g. yeast two hybrid
or co-immunoprecipitation) that are available as evidence
codes from the data sources, and/or the name of the pathway
database it is from. Edges were weighted using an evidence-
based Bayesian approach that assigns higher confidence to an
experiment type/pathway database if it identifies interacting
proteins that participate in the same biological process [11].
We chose the GO term “regulation of signal transduction” to
build a set of positive interactions that are likely related to
signaling; this term includes ‘“‘signal transduction” as a child
GO term. Positives are edges whose nodes are both annotated
with this term, and negatives are randomly selected edges
whose nodes are not co-annotated to the term. We chose
IN| = 10 x |P| negative edges. To lessen the influence of
very highly-weighted edges, we applied a ceiling of 0.75 to
all weights [11].

b) Ground Truth Pathways: We considered the o654
Integrin, EGFRI1, IL3, IL6, IL-7, Wnt, RANKL, and
TGF_Beta_Receptor pathways from the NetPath database [16]
as our ground truth. We excluded other pathways such as
Notch since its receptors have intracellular domains that are
also TRs, violating the assumptions outlined in the model of
signaling flow. Receptors and TRs are automatically detected
for each of the eight pathways from lists of 2,124 human

receptors and 2,286 human TRs compiled from the literature;
see [7] for more details.

F. Global and Path-Based Assessment

We assess the performance of LocPL compared to Path-
Linker (PL) using two methods that evaluate global and local
features of the ranked paths.

a) Precision-recall (PR) curves: Given a ranked list
of paths (e.g. returned by LocPL or PL), we order each
interaction by the index of the path in which it first appears.
We compute precision and recall for this ranked list using
the NetPath interactions as positives and a sampled set of
negative interactions that are 50 times the size of the positive
set. We also computed the aggregated precision and recall for
paths from all the eight pathway reconstructions (aggregate
pathways) using PLNet,.

b) Path-based assessment: The PR curves provide a
global quantitative assessment across all the k paths in a
reconstruction, showing how quickly (in terms of k) the tech-
nique can discover new positive edges. However, this approach
considers a positive only once, i.e., the first times it appears
in a path. Thus, this global measure fails to characterize each
path individually in terms of the number of positives contained
in that path. Hence, we introduce a simple way to “locally”
assess paths by computing the within-path percentage of true
positive edges, denoted as PosFrac. Since we compute this
metric value independently for each path, it does not matter
if a positive interaction is detected earlier in another path. We
computed the moving average of PosFrac values, using non-
overlapping intervals of 100 paths each.

c) Statistical significance: For each assessment method,
we use the Mann-Whitney U (MWU) statistical test for
unpaired samples to estimate whether the difference between
PL and LocPL results is statistically significant. The inputs to
the MWU test for the path-based case are the PosFrac values
of PL and LocPL. The global assessment is based on two
concurrent values: precision and recall. These two quantities
are related, so we use their harmonic mean (F} score) to get
a single value summarizing the pair. We use the Fj score
values of PL and LocPL as the inputs to the MWU statistical
test. We acknowledge that PosFrac, precision and recall are
not purely independent between the two methods, so there is
some dependence introduced in the MWU tests.

III. RESULTS
A. Combining Interactomes with Localization Information

Approximately 80% of the proteins in PLNet, have lo-
calization information, producing an interactome with about
44% of the edges (Table I). Focusing on four pathways of
interest (644 Integrin, EGFRI1, IL-7, and Wnt) for space
consideration, 50% of the edges have localization information,
but 27 of 29 receptors and all 53 TRs have localization
information and remain in the network. After filtering PLNet,
using ComPPI, 93% of the proteins have a non-zero ExtMem
localization score, 73% have a non-zero Cytosol localization
score, and 61% have a non-zero Nucleus localization score.



TABLE I
NUMBER OF PROTEINS AND INTERACTIONS IN PLNet,.

Complete Interactome Interactome N ComPPI
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Nodes Edges Nodes Edges
PLNet, 17,168 612,516 13,681 267,403
76 paths with tied r; = 0.340027 in Alpl in 8 paths with tied r; = 0.376704 in in
2 30
N 25
E E20
Sis 3
810 &
3 10
) - | | | l
0 o
Go oz oi _es o8 | is S0 oz X D C—
Path Score Path Score
63 paths with tied r; = 0.376704 in EGFR1 19315 paths with tied r; = 0.316406 in Wnt
12 12000
10 10000
€ 8 € 8000
é 8
© 6 @ 6000
] g
W, ¥ a000
2 2000
. il |
00 o2 o4 oe o8 1o DO DOR—

04 0.6
Path Score Path Score

Fig. 3. Histogram of signaling scores s; for four examples of paths with tied
reconstruction score r; (indicated in the title).

Most of the proteins have multiple non-zero localization scores
for different compartments, though more proteins with a single
non-zero localization score appear in the Nucleus than other
compartments.

Applying PathLinker to the ComPPI-filtered interactome
partially mitigates the problem of tied paths, but many ties
remain. For example, after running PathLinker on the a634
Integrin pathway with the full PLNet, interactome, there
were 82 groups of paths where each group shared the same
reconstruction score. This number was reduced to 38 groups
when running PathLinker on the filtered PLNet, interactome.
However, ties still dominate the reconstruction scores; thus the
need for an approach to break these ties and re-prioritize paths
in a biologically relevant way is still imperative.

B. Assessment of Pathway Reconstructions

We applied PathLinker (PL) and LocPL to signaling path-
ways from the NetPath database to the PLNet, as described
in Section II-E. We computed £ = 20,000 paths for each
approach, similar to the original publication [7]. Paths that
have the same reconstruction score differ substantially in their
signaling scores computed by the dynamic program (Fig. 3).

a) Precision and Recall: Fig. 4 shows the PR curves
used to globally assess PL and LocPL for four signaling
pathways: «654 Integrin, EGFR1, IL-7, and Wnt. LocPL
generally outperforms PL in terms of precision and recall,
where the precision of LocPL is greater than PL at nearly
all values of recall. Moreover, LocPL usually detects higher
proportions of positives than PL as reflected in the larger recall
values for LocPL.

For every value of precision and recall, we plot the harmonic
mean (F; score) of the two values for LocPL and PL (Fig. 5).
The F} curve for LocPL is noticeably higher than that of PL
for a634 Integrin, EGFR1, and Wnt pathways (MWU test p-
value < 0.0044). However, it is slightly higher than that of
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Fig. 4. Precision and recall curves of pathway reconstructions from Path-
Linker (PL) and LocPL on four NetPath signaling pathways. The dashed
vertical lines of the 654 Integrin pathway plot represent the recall value
after reconstructing 5,000 paths.
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Fig. 5. F1 scores for the individual NetPath pathways. The p-value is for the
MWU test (alternative: LocPL > PL).

PL for IL-7, making this difference statistically insignificant
(MWU test p-value of 0.1906).

b) Path-based Assessment: In addition to the global
assessment, we are interested in the quality of subsets of paths.
Plotting PosFrac of non-overlapping windows of 100 reveals
subsets of paths that are enriched for positive interactions
in the four pathway reconstructions (Fig. 6).! In the IL-7
pathway reconstruction, paths produced by LocPL tend to
contain more positive signaling edges than those obtained by
PL over all the 20,000 paths. PosFrac is almost consistent for
LocPL and, despite some spikes (of different widths) for PL,

"Note that PosFrac considers all negative interactions for each path, unlike
the PR curves in Fig. 4 that subsample the negative set of interactions. Thus,
the PosFrac values will be smaller than one would expect based on the PR
curves.
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Fig. 6. Path-based performance of PL and LocPL on four NetPath sig-
naling pathways. PosFrac is the percentage of positives averaged across
non-overlapping windows of 100 paths. The p-value is for the MWU test
(alternative: LocPL > PL).

PosFrac for LocPL dominates the graph. In the IL-7 pathway
reconstruction, this distinction is significant (one-tailed MWU
test, Fig. 6). LocPL is also significantly better than PL for
the EGFR1 pathway, which is due to LocPL’s low variance
in PosFrac values, even though PL has more “peaks” of large
PosFrac values.

The situation is different for the 684 Integrin and Wnt
pathways, where LocPL is not statistically significantly better
than PL, with p-values of 0.1895 and 0.3426, respectively
(Fig.6). However, if we restrict our analysis for the a634
Integrin pathway to the first 50 windows we note that the
PosFrac values for LocPL is higher than for PL. The first
50 windows corresponds to the first 5,000 paths in the o684
Integrin pathway reconstruction. Strikingly, LocPL captures
nearly as many positive interactions by path number 5,000
as PL captures by path 20,000, denoted by the vertical dashed
lines in the PR curves in Fig. 4. On the other hand, the recall
of PL after 5,000 paths is about half its recall after 20,000
paths. LocPL discovers the majority of positives much earlier
than PL; thus, while the PosFrac values are low after path
number 5,000 for LocPL, there are not many new interactions
to discover past this point.

c) Assessment of Aggregate Pathways: To assess overall
effect of LocPL on signaling pathway reconstructions, we
considered precision and recall aggregated over the eight
NetPath signaling pathways for PLNet, (Fig. 7, Left). LocPL
shows better performance over PL at almost all the &k values
used to compute precision and recall. This improvement is
striking at early values of recall, with gains of 30%, 24%, and
25% in precision at recall of 0.05, 0.1, and 0.2 respectively.
While the improvement of LocPL is marginally significant,
the aggregate F; score values are higher at earlier intervals
for LocPL (Fig. 7, Right).
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Fig. 7. Aggregate PR curve (Left) and F score curve (Right) over eight
signaling pathways from the NetPath database compared for PL and LocPL.
The p-value is for the Mann-Whitney U test (alternative: LocPL > PL).

C. Comparison of Pathway Reconstructions

LocPL provides a compartment-aware ranking of paths
connecting receptors to TRs. In addition to the global and
local assessments provided above, we examined the 100 top-
ranking paths in the PL and LocPL pathway reconstructions
for the a6/34 Integrin, IL-7, EGFR1, and Wnt pathways. We
first counted the number of paths with at least one positive
interaction and the number of paths whose all interactions are
positives for PL and LocPL within the first 10 and 100 paths.
In all cases for all pathways, LocPL identifies more positive-
enriched paths than PL.

The reconstructions, defined as the subgraph comprised of
the first 100 paths, contain different numbers of nodes and
edges depending on the amount of protein and interaction
reuse among the paths. For the o654 Integrin pathway, LocPL
produces a smaller reconstruction compared to PL (in terms of
nodes and edges); the opposite effect was observed for the Wnt
pathway; and the IL-7 and EGFR1 pathway reconstructions are
about the same size (Table II). Strikingly, a large proportion
of nodes and edges in each pathway reconstruction are unique
to the method (either PL or LocPL); for example, while IL-
7 and EGFR1 pathway reconstructions are similar in size for
each method, each reconstruction contains between 45-52%
of unique nodes and between 65-78% unique edges.

We also generated networks for each pathway reconstruction
(IL-7 is shown Fig. 8). The signaling flow constraints on
LocPL paths imply two features about these networks: i) the
node colors should change from red (membrane) to green
(cytosol) to blue (nucleus), and ii) no paths of length one are
allowed.

The Interleukin-7 (IL-7) pathway plays a major role in

TABLE 11
NUMBER OF NODES AND EDGES FOR THE FIRST 100 PATHS IN EACH
PATHWAY RECONSTRUCTION. “% UNIQUE” APPEAR IN ONE METHOD.

Pathway  Method # Nodes (% Unique) # Edges (% Unique)
abB4 PL 89 (47%) 182 (52%)
Integrin ~ LocPL 56 (10%) 141 (38%)
EGFR1 PL 52 (50%) 122 (78%)
LocPL 53 (52%) 112 (76%)
IL7 PL 40 (45%) 117 (65%)
LocPL 41 (48%) 116 (65%)
Wt PL 43 (44%) 90 (72%)
LocPL 65 (95%) 134 (81%)




the development and proliferation of the T cells [19]. The
PL reconstruction of IL-7 contains many proteins that are
predicted to be at the membrane, including other interleukin
receptors (IL2RA and IL2RB), Thyroid Stimulating Hormone
Receptor (TSHR), Leptin Receptor (LEPR), Fibroblast Growth
Factor Receptor 1 (FGFR1), and a signal transducer (IL6ST).
In addition to ESRI1, Prolactin Receptor (PRLR) appears in
the PL reconstruction as another nuclear receptor. Many of
these proteins are “downstream” of Janus Kinase 2 (JAK2),
a non-receptor tyrosine kinase. However, since JAK2 is pre-
dicted to appear slightly more in the cytosol than the other
compartments, paths that contain receptors after JAK2 have
a lower signaling score in the LocPL reconstruction. In Fig.
8(bottom), the JAK family tend to appear as the third or fourth
protein in the path, with all interleukin receptors “upstream”
of JAKI, JAK2, and JAK3. LocPL’s pathway reconstruction
focuses more on interleukin signaling and effects, compared to
PL’s reconstruction which includes potential hypotheses about
interleukin’s influence on other signaling pathways.

D. Pathway Reconstructions in the HIPPIE Interactome

We also applied LocPL to HIPPIE (Human Integrated
Protein Protein Interaction rEference), a repository of 16,707
proteins and weighted 315,484 PPIs (version 2.1, July 18",
2017). We do not show these results due to space constraints,
but summarize what we found. We examined four NetPath
signaling pathways (EGFR1, IL-7, IL3, and IL6) that con-
tained enough NetPath positive interactions within HIPPIE
to assess LocPL [16] . Earlier paths of LocPL had more
positive interactions than those of PL, though this trend was
not statistically significant according to the MWU test. Taking
the IL6 pathway as an example, the first 500 paths by PL
contained only 4 paths with at least one positive interaction,
leading to a recall of 0.22. On the other hand, the first 500
paths for LocPL contained 58 paths with at least one positive
interaction, achieving a recall value of 0.67. In addition, final
recall value is higher for LocPL meaning higher proportions
of positives are discovered.

IV. DISCUSSION

We present LocPL, an automatic signaling reconstruction
algorithm that incorporates information about protein localiza-
tion within the cell. Previous reconstructions contained many
tied paths. LocPL overcomes this obstacle with a computa-
tional framework that favors paths that follow specific as-
sumptions of signaling flow. This framework includes filtering
interactions based on their predicted interaction score and
applying a dynamic program to each path that finds the most
likely series of cellular compartments that are consistent with
the model of signaling flow.

Using a new interactome, PLNet,, we have shown that
LocPL pathway reconstructions for four pathways are more
enriched with positive interactions than paths computed by
PL. Precision of LocPL dominates the precision of PL at
nearly every value of recall (Fig. 4), and the resulting F}
scores are significantly better for LocPL in three of the four

I1-7 Reconstruction: PL

(Blue)

Fig. 8. Pathway reconstructions (first 100 paths) for the IL-7 pathway using
PL (top) compared to LocPL (bottom). Receptors are labeled as triangles; TRs
are rectangles, intermediary proteins are ellipses. Color denotes compartment
localization; proteins may belong to multiple compartments (and will be
lighter shades). Networks generated using GraphSpace [20].

pathways (Fig. 5). LocPL dramatically improves precision at
low values of recall across eight signaling pathways, though
this difference is nearly significant by the MWU test (Fig. 7).
Moreover, LocPL ensures that the constituting interactions,
from a receptor to a TR, are spatially-coherent within the
different cellular compartments. This feature increases the
number of paths that contain positives early in the pathway



reconstruction, which supports our hypothesis that LocPL
locally promotes paths with higher proportions of positives
up in the k-shortest paths list.

In this work, we chose to impose an ordering on a sub-
set of the available compartments from ComPPI (ExtMem,
Cytosol, and Nucleus). There are many ways to impose a
compartmental ordering of signaling flow to capture other
features of signaling, including mitochondria-dependent sig-
naling, nuclear receptor signaling and extracellular signaling.
LocPL is generalizable to different signaling models, as long as
the user specifies compartment relationships in a memoryless
manner. To illustrate this point, we developed a model of
signaling that also includes the mitochondria compartment. To
highlight the versatile behavior of interaction the mitochondria
have with the other subcellular components, we allowed the
mitochondria to have direct interactions with, and to be of
order-variant regarding, the other three cellular compartments
in our signaling model. There were very few changes in the
results when we included the mitochondria into our signaling
model, most likely due to the relatively few number of proteins
in PLNet, that had non-zero Mitochondria localization scores
(data not shown).

In addition to the precision and recall assessment used
previously by PathLinker, we proposed a measure to assess
individual paths in terms of proportion of positive signaling
interactions. This measure offers complementary insights to
the pathway reconstructions by PL and LocPL. PR curves
demonstrate how quickly positive interactions are recovered
in a reconstruction, but do not consider the fact that many
paths may contain the same positives. The path-based measure
considers the proportion of positives within a set of paths,
demonstrating that some sets of paths are enriched for positive
interactions that may have appeared in a higher-ranked path.
This signal cannot be captured with the previous global
measure.

The framework that we have developed may be extended
to other graph-theoretic approaches that return subnetworks
of directed structure with an associated reconstruction score,
such as trees [9], [21], [22]. Our approach encourages the
enumeration of many tied results, since incorporating protein
compartment information will help break these ties with
biologically relevant information. In addition, we anticipate
to develop the technique to compare paths in the context of
different conditions, such as dysregulated signaling as a result
of disease or tissue-specific signaling.
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