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Abstract

Peptide-nanoparticle conjugates (PNCs) have recently emerged as a versatile tool for
biomedical applications. Synergism between the two promising classes of materials allows
enhanced control over their biological behaviors, overcoming intrinsic limitations of the
individual materials. Over the past decades, a myriad of PNCs has been developed for various
applications, such as drug delivery, inhibition of pathogenic biomolecular interactions,
molecular imaging, and liquid biopsy. This paper provides a comprehensive overview of
existing technologies that have been recently developed in the broad field of PNCs, offering a

guideline especially for investigators who are new to this field.
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1. Introduction

Peptides have attracted a great deal of interest in biomedical fields as a novel material that can
both exhibit protein functionalities and possess a high degree of modularity in molecular design.
Current strategies for the discovery of artificial bioactive peptides can be broadly divided into
two categories (Fig. 1): 1) the construction and screening of peptide libraries from random
amino acid compositions within a certain macromolecular topology (peptide library screening,
bottom-up approach) and ii) the isolation of bioactive sequences from natural proteins based
on their three-dimensional (3D) structures (structure-based design, top-down approach).[1-4]
Peptide library screening enables the facile development of effective binders against a wide
range of target molecules (e.g. small molecular compounds, peptides, DNAs, RNAs, cells, and
inorganic materials). The top-down method, on the other hand, has an advantage over the
bottom-up approach as peptide sequences aiming to a specific binding site on

biomacromolecules can be discovered based on their structural properties.

Over the past decades, a large number of studies have demonstrated the utility of artificial
bioactive peptides and some of these products have been successfully commercialized.
Specifically, 28 noninsulin peptide drugs have been approved worldwide during the last two
decades with several being highly competitive in the market [5]. In addition, over 150 peptide
drugs are in active clinical development, demonstrating highly promising results for ultimate
translation [6]. Despite the recent strides, most peptides have yet been widely utilized due to:
1) their lower target binding affinity and selectivity than proteins; ii) vulnerability to protease
digestion in biological environments [7]; iii) short circulating half-lives resulting in the
requirement for frequent administrations to sustain their efficacy [8]; and iv) inability to
maintain innate folding structures when isolated from protein contexts, which significantly

limits their function [9].



Many researchers have found that the incorporation of peptides with non-biological materials
(e.g. small molecular compounds, metal chelates, polymers, and hydrogels) is a promising
approach to addressing the intrinsic drawbacks of the peptides [10, 11].  Particularly,
nanoparticles (NPs) have shown their potential to serve as conjugate scaffolds that not only
improve the functionality of peptides but also implement abiotic characteristics, often resulting
in synergistic effects (Section 2). As a result, peptide-NP conjugates (PNCs) have been
considered a promising platform for a variety of biomedical uses. This review therefore
focuses on PNCs, highlighting the recent progress in the PNCs-based technologies and their
uses in diagnostic, imaging, and therapeutic applications. The advantages of employing
PNCs will be briefly discussed first (Section 2), followed by description of examples of their
successful applications to biomedical areas, including targeted drug delivery (Section 3),
pathogenic protein interaction inhibition (Section 4), highly sensitive molecular imaging
(Section 5), and liquid biopsy (Section 6). Finally, we will provide a perspective on the
research applications that have been rapidly developed but still suffer from several challenges

for clinical translation.

2. The peptide-NP conjugation

Nanomaterials (tens to a few hundreds of nanometers in size) possess novel physico-chemical
properties distinct from those of conventional bulk materials. Their ultra-small size and high
surface-area-to-volume ratio are advantageous in the development of engineered materials that
can uniquely interact with a variety of nano- and micro-sized biomaterials [12]. The most
straightforward approach to fabricate peptides-based nanostructures is self-assembly [13, 14].
However, the spontaneity in the thermodynamic process does not allow the construction of
nano-scale constructs having precisely regulated shape, size, and compositions. In contrast,

peptide-NP conjugation offers enhanced control over the structural properties of nanostructures,



allowing facile modification to overall shape, dimension, and size of the conjugates through

engineering NP scaffolds tailored for intended applications.

Another important aspect that the PNCs can provide is multivalency. Most interactions in
biological systems are based on non-covalent interactions such as hydrogen bonds, ionic bonds,
van der Waals forces, m-m stacking forces, and hydrophobic interactions. Although the
individual bindings are relatively weak, their co-operative action enables strong binding
kinetics (typically due to substantial decrease in dissociation kinetics through the multivalent
binding effect) based on the principle that the collective binding strength depends exponentially
on to the number of individual binding pairs (Fig. 2a) [15-17]. In addition to the enhanced
binding strength, multivalent interactions also provide improved selectivity by exploiting the
density of interaction modules on a surface to recognize target polyvalent surfaces (Fig. 2b)

[18].

The presence of multiple binding sites plays a role in allowing the strong multivalent bindings
and in increasing statistical opportunities for multiple monovalent binding events to occur.
As depicted in Fig. 2c, the exposure of peptides in multiple directions results in greater
opportunities to encounter binding partners [19]. During the dissociation process post
binding, peptides on NP scaffolds express many re-binding sites, which can increase the
retention time of target materials on the surface, known as the statistical re-binding mechanism
(Fig. 2d) [20]. Furthermore, co-conjugation with different types of peptides and/or other
biological/non-biological materials offers additional functionalities for the hybrid materials,
such as immune response evasion [21], theranostics [22], stimulus-responsive property [23],
and multi-target directed treatment with a single material [24]. Consequently, displayed on a
nanostructure surface, peptides can potentially compete with or outperform natural proteins

despite their low individual affinity and selectivity [25, 26].



The non-biological characteristics of NPs introduce novel properties and functions that are
otherwise not obtained to their PNCs. For instance, NPs absorbing and emitting near infrared
(NIR, 700-1,100 nm) light have been actively utilized in in vivo imaging due to the advantages
of deep imaging depth and high spatial resolution [27]. Some NPs produce reactive oxygen
species (ROS) upon receiving the light energy, which can oxidize biomacromolecules and
subsequently induce cell ablation (photodynamic therapy) [28]. In addition, the absorbed
light energy can be converted to heat and sound energy using photothermal and photoacoustic
effects of NPs, providing a non-invasive treatment option for diseases like cancer [29, 30].
Magnetic nanoparticles (MNPs) are another promising class enabling the remote and active
treatment of diseases. Responding to external magnetic stimuli, MNPs can be selectively
accumulated at a target site in biological systems and release guest molecules in a dosage-
controlled fashion [31, 32]. Several in vitro studies have shown that MNPs, displaying
multiple binding ligands, effectively discriminate target biomaterials from a mixture solution
[33]. Furthermore, upon exposure to the magnetic field, the arrangement of MNPs on a
surface can be controlled in various ways, resulting in the use of the MNPs for the development

of novel cell culture scaffold [34].



3. Targeted Drug Delivery

Selective delivery of pharmaceutical agents to target sites in the body remains a major
challenge. Peptides have recently emerged as a powerful arsenal that may provide modular
selectivity to drug delivery systems, warranting enhanced performance for the potential
treatment of many serious health problems, such as cancer and brain diseases [35, 36].
Peptides specifically interact with different types of biological systems, allowing them to be
applied in a multitude of scenarios for effective results [37]. However, the short in vivo half-
life time and sub-optimal biodistribution and pharmacokinetics of peptides have hindered their

widespread applications in drug delivery [38].

A simple approach to overcoming the problems of the current peptide-based delivery system
is to combine them with NPs. Upon functionalization with peptides as targeting agents, NPs
can be engineered to selectively deliver the drugs to the target tissue, in addition to their
capability to encapsulate and protect therapeutic agents, increasing the plasma circulation time.
As a result, researchers have conjugated different targeting peptides on different types of NPs
to provide more efficient and adaptable drug delivery systems (Table 1). One of the specific
applications of peptide-mediated targeting is the delivery of cargo to the nucleus of cells.
Delivery to the nucleus is particularly difficult due to the many barriers that must be overcome
once inside the cell, let alone targeting to the correct cell in the first place. Most particles
enter the cell via endocytosis and are thus encapsulated in large vesicles, headed towards a
lysosome for degradation. They must have some means of endosomal escape to avoid being
destroyed before they can reach the nucleus [39]. Once this is achieved, the particle must
bypass the protections afforded to the nucleus. The nucleus is protected by a double
phospholipid membrane, accessible mainly through nuclear pore complexes (NPCs), which
have varied diameters ranging from approximately 20 to 150 nm [40]. Not only must the

particle be small enough to make it through, it must also have a corresponding nuclear



localization signal (NLS), which acts a key card to allow access through the NPC. Pan et al.
developed a solution to these problems in vitro by utilizing mesoporous silica NPs conjugated
with TAT peptide for the delivery of doxorubicin (DOX) to the nucleus of HeLa cells [41].
Their results show that particles smaller than 50 nm were able to achieve TAT peptide-
mediated nuclear uptake and continuous release of DOX into the nucleus over a 24-hour
incubation period. A different approach was taken by Tkachenko et al., who employed a
multi-peptide conjugated gold NP (AuNP)-based system for this purpose [42]. They reported
that the use of two short peptides that are introduced for cellular endocytosis and for nuclear
targeting of the particle is more effective than attempting to use a single lengthy sequence.
The 25 nm AuNP was able to enter the nucleus in 80% of HepG2 cells when incubated for two
hours at 37°C. Li et al. similarly utilized a 13 nm AuNP-based system conjugated with an
NLS peptide although their aim was to deliver siRNA for gene silencing [43]. They reported
that their complex was able to successfully hinder TK1 protein and TK1 mRNA prevalence in
vitro and reduce tumor growth by 250% when compared to a control for an in vivo mouse

model.

Another interesting application for NPCs involves transdermal delivery for the treatment of
melanoma. The main barrier preventing delivery for this application is the stratum corneum,
the outermost layer of skin. Niu et al. designed a AuNP-based system that employed
conjugated TAT peptides for the delivery of plasmid DNA (pDNA) [44]. Their results
confirmed that TAT peptides boost skin infiltration and gene transfection of NPs for an
effective topological delivery system. Patlolla et al. also took advantage of the skin
permeation capabilities of TAT peptides by conjugating them to nano lipid crystal NPs
(NLCNs) with 180 nm in size [45]. They reported that their complexes penetrated up to 120

um into an in vitro rat skin, with higher concentrations of particles accumulated in both the



stratum corneum and epidermal layers, when compared to other complexes tested. Zou et al.
tackled this problem in a different manner, choosing to use a liposome NP conjugated with TD
peptide for the delivery of Vemurafenib [46]. Their data indicates TD peptides’ capacity to

open the paracellular pathways of the stratum corneum for transdermal delivery to melanoma.

Peptides have been also found to be useful for assisting NPs across other physiological barriers,
including the blood brain barrier (BBB) that represents a major hurdle for effective delivery of
pharmaceutical agents to the brain. The BBB acts as a shield surrounding blood vessels with
access to the brain; its main purpose is to prevent non-essential substances from reaching the
delicate system behind it [47]. Researchers have been using peptides to help NPs transport
across the BBB. For instance, Georgieva et al. used G23 peptide-conjugated polymersomes
for both in vitro and in vivo delivery of drugs across the BBB [48]. The 165 nm NPs utilized
(G23 peptide to target ganglioside GM1 and GT1b receptors expressed on hCMEC/D3 cells
(human BBB model), enabling four times greater transcytotic capacity over polymersomes
without G23 peptide. Another group, Yao et al., reported their use of a dendrigraft poly-L-
lysines (DGL) NP conjugated with poly(ethylene glycol) (PEG) and a LIM Kinase 2 derived
cell-penetrating peptide (LNP) for the delivery of pDNA across the BBB [49]. Their novel
system took advantage of LNP that facilitates cellular uptake by peripheral cells present in the

BBB.

The PNC-based approaches have demonstrated a number of successful examples that have
achieved efficient targeting to diseased cells and permeation across physiological barriers.
However, there are many challenges that need to be overcome for ultimate translation of this
approach, such as immunogenicity, long-term toxicity, and off-targeting potential. Upon
addressing those concerns, it is foreseeable that the PNC approach will provide a powerful

method for efficient drug delivery with high therapeutic index.



4. Pathogenic Protein Interaction Inhibition

Drugging the ‘undruggable’ targets is one of the key challenges in pharmacological studies
[50]. Approximately 80% of proteins that involved in human diseases lack binding sites for
small molecule ligands [51]. One potential strategy to address this issue is to implement
protein-based pharmaceuticals. However, low thermal stability and difficulty in preparation

of such proteins have hindered their widespread application [52].

PNCs provide a new insight to tackle these formidable challenges. For instance, the Lim
group demonstrated inorganic NPs that serve as a scaffold for stabilizing peptide folding
structures, which can eventually enhance both target affinity and selectivity [53]. Fig. 3a
illustrates a-helical structure stabilized by reduced conformational entropy cost achieved
through the use of cyclic peptides and interaction with inorganic surface [54]. Based on this
principle, bioactive ci-helical p53 peptides stabilized on AuNP surfaces effectively recognized
their target protein, MDM?2, which is known to suppress the p53-mediated apoptotic pathway.
The therapeutic potential of the cyclic peptide-nanomaterial conjugate system was also
demonstrated by inhibiting the a-helix-mediated interaction between Rev protein and Rev

response element (RRE) RNA, which regulates HIV-1 gene expression [24, 55].

The multivalent property of PNCs is a powerful tool for controlling polyvalent macromolecular
associations that frequently occur in nature. Chaiken and co-workers reported that AuNP-
peptide triazole conjugates inactivates HIV-1 by disrupting the interactions between host
receptor proteins and trimeric envelope glycoprotein (Env) spikes of the virus [56, 57]. As
AuNP diameter and peptide valency increase, the antiviral potency of the PNCs is greatly

enhanced. This implies that a sufficient quantity of peptide triazoles over a large area is



required for effective interaction with the multiple spikes on the viral surface (Fig. 3b).
Protein-misfolding diseases including Alzheimer’s disease (AD) are also difficult to target with
conventional therapeutics [58]. Xiong et al. decorated AuNPs with peptides including two
inhibitory peptide sequences for AP} aggregation, VVIA and LPFFD, in order to develop a
multivalent inhibitor for the aggregation of amyloid-f3 (AB) proteins [59-61]. The two
peptide sequences were conjugated onto the AuNP surfaces and ordered/oriented in optimal
conformation to effectively inhibit A} aggregation. Utilizing the two different peptides on a
single NP was highly synergistic, preventing A} aggregation more strongly with less

cytotoxicity, compared to the free peptides (Fig. 3c).

In some applications, PNC functionality can be significantly improved by precisely controlling
the peptide valency. NPs that are covered with peptides at a higher density typically exhibit
increased binding affinity [62]; however, precisely engineered binding modules that have a
specific spacing or certain ligand density have been shown to further enhance the interaction
with target molecules in a controlled manner [63, 64]. One approach to controlling the ligand
valency is to use dendrimers. Dendrimers are hyper-branched polymers that have precisely
controlled size, surface property, composition, and density of functional groups through
relatively simple chemical reactions [65, 66]. In a recent study, Lauster et al. showed that
polyglycerol dendrimers decorated with peptides targeting hemagglutinin (HA) can inhibit the
infection of influenza A virus (IAV) [25], which uses multiple HAs for enhanced binding to
the host cell surface [67]. Interestingly, despite the improved antiviral activity of the PNC
utilizing the multivalent binding of the HA targeting peptides, the inhibitory capacity was not
proportionally increased with an increase of the peptide density. Instead, higher valency
reduced the inhibitory activity when it exceeded a certain threshold, indicating that

optimization of the surface engineering is required.



Another advantage of PNCs is that they can utilize multiple therapeutic pathways by
incorporating different types of molecules in a single nanoformulation system [68]. Recently,
Blancafort and co-workers conjugated poly(glycidyl methacrylate) NPs with peptides targeting
Engrailed 1 (EN1), an undruggable transcription factor associated with cell proliferation,
metastasis, and chemoresistance of basal-like breast cancer [69]. An anticancer agent,
docetaxel (DTX), was encapsulated in the internal void of this NP.  Both in vitro and in vivo
studies revealed that the combination of peptidic- and chemotherapeutic agents via PNC
induced more apoptosis on cancer cells, compared with using either DTX or EN1 peptide alone.
Alternatively, Jeong et al. demonstrated that conjugation of different types of peptides onto a
nanomaterial is an effective way to maximize therapeutic effect [24]. In their study, two
different peptides were conjugated on carbon nanotubes to inhibit Rev/RRE RNA and
Rev/CRMI1 interactions, resulting in 150-fold enhanced HIV-1 inhibition, compared to

leptomycin B, a commonly used HIV-1 inhibitor [70].

As described above, peptides have shown great potential to overcome their intrinsic limitations
when conjugated onto NP surfaces. It has been reported that PNCs could outperform single
peptides and even proteins, showing higher binding affinity, selectivity, and, in turn,
therapeutic effect. This PNC approach has been also proven useful in other applications, such
as molecular imaging and diagnostic/prognostic applications, including liquid biopsy, which

will be discussed in the following sections.



5. Molecular Imaging
Molecular imaging provides visual information on biological processes at high resolution [71].
It enables detection of pathological cells and tissue, helping both pre-clinical researchers and
clinicians understand the status of diseases in terms of their progression and responsiveness to
treatments [72]. Recent advances in nanobiotechnology further accelerated the development
of molecular imaging by enhancing the targeting efficiency of imaging probes [73]. Among
many agents that have been used to provide selectivity, peptides have been successfully
employed as novel nanoprobes due to their long-term stability, target-specificity, and rapid
clearance from the blood stream [37, 74]. The modular nature of such peptides allows to be
integrated with a variety imaging modalities, resulting in remarkable outcomes in animal

models and preclinical studies.

Despite their advantages, peptides often suffer from weak binding affinity, metabolic instability,
and fast renal clearance due to their small size [75]. These problems can be addressed by
conjugating them to NPs, which have been frequently utilized to improve the pharmacokinetics
of the targeting peptides [37]. NPs can be selected to fit a variety of target sites and imaging
modalities, making them an ideal delivery platform. A major advantage that peptide/NP
complexes provide is their ability to enhance the target-to-background signal. This could be
accomplished by conjugation of multiple imaging probes onto a NP’s surface or by an
increased surface density of specific peptides [76]. Conjugation of different types of peptides,
along with therapeutic agents, would enable PNCs to be applied for multitarget-directed
nanotherapeutics. This section summarizes recent advances achieved through the use of
PNCs as imaging nanoprobes for different applications, including near-infrared (NIR)
fluorescence imaging, computed tomography (CT), positron emission tomography (PET),

magnetic resonance imaging (MRI), and multi-modal imaging (Table 2).



NIR fluorescence imaging utilizes imaging agents with emission spectra in between 700-1100
nm [77]. NIR light penetrates deeper into the tissue than the visible light, allowing enhanced
tissue imaging [77, 78]. Recently, PNCs have been applied for NIR imaging, allowing
sensitive detection of abnormal tissue with high specificity [79, 80]. Fan et al. developed
fluorescent NPs consisting of cyclic peptides that were co-assembled with Zn?* ions to generate
strong NIR fluorescent signals [81, 82]. This imaging agent was further modified with o33
integrin-specific RGD peptides to selectively image the tumor site. This tumor-specific
imaging agent was highly photostable and showed a narrow emission spectrum, resulting in
clear NIR fluorescent signals from the target tissue. Benzo-bis(1,2,5-thiadiazole)
fluorophores have also been exploited for NIR imaging [83]. The fluorophores were coupled
with peptides that are specific to gastrin-releasing peptide receptor (GRPR). Both in vitro and
in vivo data demonstrated that these conjugates effectively accumulate at a target tissue with

high target-to-background signals.

CT scans rely on multiple X-ray beams, generating cross-sectional images of bones, blood
vessels, and soft tissues inside the body. AuNPs are one of the most commonly used imaging
agents for CT scans, due to their high X-ray attenuation capability. Their biocompatibility,
stability, and versatility enable AuNPs to be utilized in a wide range of applications [37].
Conjugated with peptides, AuNPs have been employed as selective CT contrast agents. Zhu
et al. decorated AuNP-entrapped dendrimers (AuDENPs) with RGD peptides and applied these
nanoprobes for CT tumor imaging [84]. X-ray attenuation of AuDENPs was superior to that
of Omnipaque™, a commonly used CT imaging agent. Recently, Hao et al. developed a core-
shell structured NP composed of poly(lactic-co-glycolic acid) (PLGA)-AuNP [85]. This NP
was conjugated with Angiopep-2, a glioma targeting peptide, that enhanced selective cellular

uptake of PLGA-AuUNPs, resulting in increased tumor recognition and improved resolution of



CT images. The PNC-based approach has been also applied for visualizing cerebral
cerebrovascular thrombi.  Glycol-chitosan-coated AuNPs (GC-AuNPs) were incorporated
with fibrin-specific peptides for direct CT-based imaging of cerebrovascular thrombi [86, 87].
This novel imaging agent selectively accumulated to the target site and were retained in the
site for a longer period of time (up to 3 weeks), compared to GC-AuNPs without the peptide.
The improved selectivity and longer imaging capability would allow this system to detect short-

term recurrence without additional injections.

PET is accepted as an excellent, non-destructive imaging tool for screening various diseases.
Incorporation of target-specific peptides and positron emitters to NPs enables highly specific
detection of abnormal tissues [88]. CLPFFD peptides targeting B-Amyloid fibers were
conjugated with '®F-labeled AuNPs to image the biodistribution of the targeted NPs [89, 90].
In another study, Cheng et al. modified the surface of Au-tripod with RGD peptides and **Cu
(®*Cu-RGD-Au-tripods) to provide dual functionalities of integrin-specific targeting and PET
imaging, respectively [91]. The administration of this novel PNCs in tumor bearing mouce
models led to a 3-fold enhancement in photoacoustic imaging (PAI) contrasts compared to the
PNCs co-injected with free RGD peptides. The PET images also revealed that approximately
8% injected dose of the NPs accumulated and remained in the target site, even after 24 h post
injection.  Biodegradable dendritic PET nanoprobes with RGD peptides have also
demonstrated great potential for screening angiogenesis [92]. The binding affinity of the
nanoprobe-peptide conjugates was 50 times higher than that of monovalent peptides due to
multivalent interactions. The study was extended to both in vitro and in vivo PET imaging
after labelling the conjugates with '2°T and "*Br, respectively, demonstrating that the targeted

nanoprobes exhibit enhanced cellular uptake, compared to non-targeted counterparts.



MRI generates high-resolution three-dimensional images of organs and tissues using radio
waves and magnetic fields [93]. Magnetic NPs (MNPs) have been utilized as MR contrast
agents, and their complexation with targeting peptides has been used to image specific organs.
Xie et al. showed that MNPs conjugated with RGD peptides selectively targeted cells that
highly expressed ayf; integrin [94]. Their in vivo MRI results confirmed that the selectivity
of the conjugates were maintained in U§7MG tumor-bearing mice. MNPs have been also
conjugated with polymers for enhanced targeting and prolonged detection. For example,
RGD peptide-conjugated superparamagnetic polymeric micelle (SPPM) nanoprobes have been
used for selective detection of integrin overexpressing cells [95, 96]. These nanoprobes were
found to selectively accumulate into the tumor site, resulting in detection of the MRI signals
from the brain, lung, and breast tumor bearing mice within 5 min post injection.  Alternatively,
Simberg et al. conjugated the fibrin-specific, tumor-homing CREKA peptide to amino dextran-
coated supraparamagentic iron oxides (SPIOs) for targeted imaging and therapy [97]. These
conjugates accumulated at the tumor site, self-amplified, and enabled effective MR imaging

with high selectivity.

Although PNCs have significantly improved the image quality of various modalities, more
accurate and higher resolution imaging is necessary for early diagnosis and effective treatment.
Multimodal contrast agents have been recently developed to help researchers and clinicians
visualize two or more imaging modalities simultaneously. For example, **Cu-labelled hollow
gold nanospheres (**Cu-HAuNSs) were engineered to integrate CT and MRI capabilities into
a single NP system [98]. The RGD peptides were then immobilized onto the surface of %*Cu-
HAuNS:s to achieve selective targeting and increased cellular uptake of the NPs, resulting in
highly selective dual imaging agent for both CT and MRI.  Another common strategy involves

the combination of fluorescence and MR imaging. Dendritic hybrid NPs, functionalized with



activatable cell penetrating peptides (ACPPs) on their branches, were labeled with both Cy5
and Gd for fluorescence and MRI, respectively [99]. ACPPs enhanced cellular uptake of the
NPs by up to 15-fold, demonstrating the potential of this system to be used for sensitive

detection of tumors via NIR and MR integrated imaging.

The examples described above clearly indicate the potential of PNCs as imaging
contrast agents for a variety of modalities. Various peptides have been successfully
employed for site-specific targeting in the field of biomedical imaging, which could be further
improved using multivalent interaction of PNCs, providing high quality images of specific
tissues and organs. Although their potential toxicity and biological instability need to be
addressed for the successful clinical translation, PNC-based molecular imaging holds great

promise to innovate current diagnostic and therapeutic platforms.



6. Liquid Biopsy
Liquid biopsy is of high potential significance as a novel tool for diagnosis and prognosis of
human diseases [100]. It refers to any techniques that examine, detect, and analyze disease
biomarkers in bodily fluids, most notably blood [101]. Given its less invasive nature unlike
conventional solid biopsy, liquid biopsy would substantially decrease the chance to cause
complications while increasing patients’ compliance, allowing more frequent screening, early
detection capability, and more accurate monitoring of diseases [102]. As a result, liquid
biopsy provides more comprehensive information from a disease across multiple time points,

enabling rapid and effective treatment.

Circulating tumor cells (CTCs) [101], exosomes [103], cell-free DNAs (cfDNAs) [104], and
circulating microRNAs (miRNAs) [105] have emerged as potential biomarkers for monitoring
human diseases. A number of studies have reported that the genomic or proteomic profiling
of these biomarkers is associated with progression, proliferation, recurrence, chemo-sensitivity,
and metastatic potential of the disease [106, 107]. However, accurate analysis and sensitive
detection still remain a challenge due to the low concentration of liquid biopsy biomarkers in
human bodily fluids [108]. Moreover, molecular heterogeneity among the biomarkers,
coupled with phenotypic changes that frequently occur during therapeutic treatment and
disease progression, makes separation of the biomarker difficult, limiting further downstream

analysis [109].

This section summarizes several new technologies that use PNCs to detect liquid biopsy
biomarkers with high sensitivity and specificity (Table 3). Antibodies are one of the most
extensively used capture agents for separation of disease-related biomarkers, due to their high
selectivity and strong binding affinity to specific surface receptors [102, 110]. Recent studies

suggest that antibodies could be spliced into shorter peptides that still recognize specific surface



receptors [111, 112]. As molecules that are small, stable, and easy to synthesize, compared
to antibodies, peptides provide an opportunity to potentially replace the whole antibodies by
addressing the reproducibility and productivity issues that current antibody-based approaches
typically have [74]. Despite these advantages, the low binding affinity to specific target
tissues are the major drawbacks of peptides. However, these concerns could be potentially
addressed through the PNC approaches. For example, the multivalent binding effect, as
described above, could be easily incorporated to various PNCs, which would improve

biomarker separation based on the peptide binding to target biomarkers [37, 47].

The Yang and Wang groups utilized peptides that recognize epithelial cell adhesion molecule
(EpCAM) and human epidermal growth factor receptor 2 (HER2) for CTC isolation [111, 112].
These peptides were conjugated to iron oxide magnetic NPs for immunomagnetic separation.
Although peptides themselves displayed lower binding affinity relative to antibodies, the PNC-
based approach demonstrated over 90% and 70-80% of EpCAM-positive and HER2-positive
cancer cell capture efficiencies, respectively, likely due to multivalent interactions. The
epidermal growth factor receptor (EGFR) is another well-recognized tumor-specific antigen
capable of targeting EpCAM-negative CTCs [113]. Ding et al. prepared nanovesicles with
EGFR-targeting GE11 peptides distributed on their bilayers and magnetic NPs embedded into
the vesicles using reverse phase evaporation [114].  The EGFR peptide magnetic vesicles
(EPMVs) were able to bind to a hepatoma cancer cell line, SMMC-7221, showing a capture
yield of 90%. EPMVs subsequently showed significant improvement in CTC isolation from
the blood of lung cancer patients, outperforming both the CellSearch system and EpCAM-
based immunomagnetic separation. The EGFR peptides were also conjugated with surface-
enhanced Raman scattering (SERS) AuNPs to identify and characterize CTCs [115]. The in

vitro results indicated over 90% cancer cell capture efficiency and 10*:1 detection specificity.



Further clinical pilot studies revealed that the EGFR-specific PNCs detected up to 720

CTCs/mL from head and neck cancer patients’ samples.

Exosomes are endosomally derived extracellular vesicles (EVs) that play a major role in in
intercellular signaling [103, 116]. It has been well established that exosomes carry proteins
and genomic information of their parental cells [117]. Thus, great efforts have been made to
isolate tumor-associated exosomes from various EVs in human bodily fluid. Tetraspanin
CD63, a surface protein overexpressed in human exosomes, has been widely used to capture
these vesicles [103].  Gao et al. recently reported a novel NP that has CD63-targeting peptides
coated on its surface [118]. This exosome-targeting NP achieved a 54% capture rate when
compared to the ultracentrifugation method. Clinical trials using human serum samples have
demonstrated overexpression of tumor-related proteins, AFP and GPC-1, on the captured EVs,
which are well-defined indicators of hepatic and pancreatic tumor, respectively.  Other tumor-
specific receptors have also been targeted to identify EVs secreted from tumors. Heat shock
protein 70 (Hsp70), which acts as molecular chaperone, is highly expressed on majority of
tumor cells [119, 120].  Ghosh et al. employed Vn96, a Hsp70-specific peptide, to isolate EVs
derived from cancerous cells [121]. ' Vn96 peptides were densely coated on nanospheres and
incubated with lysates obtained from MCF-7, a Hsp70-positive cancer cell line. The peptide-
NP conjugates successfully isolated Hsp70-presenting EVs from human serum, showing

comparable capture efficiency to ultracentrifugation.

Circulating nucleic acids are another biomarker of interest, encompassing cfDNAs and
miRNAs. The utility of circulating nucleic acids (NAs) has been investigated for several
decades because the NA fragments that are released from the tumor may possess the entire
genomic information of heterogeneous tumor cells [122].  Peptide nucleic acids (PNAs) have

recently been utilized by numerous research groups for detecting specific mutations in



circulating NAs. PNAs are artificially synthesized NA analogues, that have increased long-
term stability and enhanced binding with complementary sequences compared to natural NAs
[123].  Combinations of PNA probes with NPs enable sensitive and selective quantification
of circulating NAs. PNA probes have been coupled with various NPs, including nano metal-
organic frameworks (NMOFs) [124], nano-sized graphene oxides (NGOs) [125], or AuNPs
[126, 127], depending on how they quantify NAs. The most well-established approach
measures changes in fluorescent signals. For example, tight binding between NMOF or NGO
with PNA probes results in fluorescence quenching, which can be recovered when PNA probes
are released from the complex via hybridization with specific miRNA [124, 125].  Using this
methodology, both NMOF- and NGO-conjugated NPs can successfully detect targeted
miRNAs, even at concentrations below 10 pM. AuNPs are also frequently conjugated with
PNA probes. miRNA or ctDNA adsorption on the surface of PNA-AuNP conjugates
subsequently alters the electrical, optical, and plasmonic properties of the conjugates.
Nguyen et al. applied peptides conjugated to AuNPs for the detection of tumor-specific
mutations E542K, E545K, and methylation of PIK3CA gene [127]. Adsorption of ctDNA
onto PNA-AuNP conjugates shifted the localized surface plasmon resonance (LSPR) peak
from 4.3 nm to 11.4 nm, showing 107% LSPR peak-shift compared to the primary response.

This novel strategy allowed the detection of ctDNAs down to 50 fM.

Despite lower binding affinity of free peptides, multivalent binding effect of the PNCs allows
these short chain amino acid compounds to be utilized as capture agents for liquid biopsy with
comparable capture efficiency to the devices using antibodies. However, the majority of
PNC-based liquid biopsy platforms are still in the early stage of development; only a limited

number of such devices have demonstrated clinical utilities. ~ Further downstream analysis



of the captured biomarkers, including molecular characterization and functional assays, would

potentially enhance clinical applicability of the PNC-based liquid biopsy platforms.



7. Summary and Outlook

Molecularly poised between proteins and small molecular compounds, peptides can potentially
exploit structural and functional advantages of the two major materials in pharmacological
research. As summarized above, a number of peptides, combined with NPs, have shown that
their promising potential in the area of drug delivery, inhibition of pathogenic biomolecular
interactions, molecular imaging, and liquid biopsy. Despite the potential, clinical translation
of PNCs still remains elusive due to the following reasons. First, the PNC behaviors in
physiological conditions, such as bloodstream and intracellular space, have not been fully
understood.  Second, peptides are still vulnerable to enzymatic degradation even on
nanomaterial surfaces [128], requiring additional protection strategies to maintain their
functions without increasing the structural and compositional complexity of the conjugates.
Third, the potential immunogenicity of the engineered PNCs should be addressed, which is a
common obstacle for in vivo and clinical application [129]. Lastly, covalent conjugation with
NPs or other functional moieties often results in the loss of the biological functions of the

peptides.

Upon addressing those concerns, it is certain that the PNC systems would provide a novel class
of materials that potentially fill the gap in current biomedical areas, such as drugging
‘undruggable’ targets, combating against multidrug resistant pathogens, isolating rare
biomarkers from human body fluids, and utilizing as submicron-molecular imaging agents.
Particularly along with the rapid advances in nanotechnology, the PNCs will likely become a

new platform that can be used in mainstream therapeutic and diagnostic systems.
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Table 1. Peptide-nanoparticle conjugates for efficient drug delivery

Peptide Nanoparticle (NP) . In Vitro Study In Vivo Study
Application Complex Therapeutic Ref.
PP Name Target Type OSi fee Agents Model Efficacy Model Efficacy '
Target importin alpha & Mesop MTT Assay for S
TAT beta for intranuclear orous 25,50 nm  Doxorubicin DOX-Carrier s V;ablhty' N/A N/A [41]
N o . 30%
translocalization Silica Cytotoxicity
. Interact with nuclear . .
Nuclear- l;(;%li‘g pore complex for nuclear BSA- Preliminary I;(E(Ii-(lzi(tzol;)sr;;rletfrolrc HepG?2 cell viability: <
Tareet Dru uptake coated 25 nm Study C}a]u'riery 5% decrease compared N/A N/A [42]
Dilive € Adenovi For receptor mediated AuNP (N/A) Cviotoxicit to control
Yy ral RME  endocytosis into the cell y Y
Adenovi Targets nuclear pore l\flgfj( é}ii?i;)’ TK1 mRNA tl\lfrg(l):z Inhibited tumor growth.
complex for NP entrance ~ AuNP 13 nm SiRNA L7 expression decreased . ~2.5X lower weight than  [43]
ral NLS . HepG2(Liver) o bearing
into nucleus 10% . control
cancer cells mice
Assists with membrane Nude Mouse Skin P.'.:lst.epldermls and
TAT disruption and cellular ~ AuNP 200 nm DNA within dermal layer N/A N/A [44]
p uptake P Transfection of 1.71 * 107 RLU/mg
P B16F10 Cells (significantly higher)
Targets the Na"/K'-
ARl 0 Liposo Vemurafeni Franz Diffusion .N60 TS VEmGnEiily AL Significant antitumor
Transdermal TD the stratum corneum for 105 nm in receptor after 24 hr. nude [46]
) me b Cell System L . . efficacy
Drug enhanced skin (significantly higher) mice
Delivery permeability
3-fold higher conc. in
Arginine groups in TAT =~ Nano Hairless rat skin stratum corneum.
bind stratum corneum lipid . permeation using Highest epidermal
TAT and assist NP movement  crystal 180 nm Celecoxib Franz diffusion concentration (90 pg/g N/A N/A [43]
into epidermal layers NPs cells of skin). Max depth
120 pm.
Significant accumulation
o Y . ; .
Targets gangliosides Preliminary  hCMEC/D3 cells 30 A). transcytotlc BALB/c in brain parench.ymall.
GM1 & GT1b for the Polym- capacity (4 times Also, accumulation in
G23 . 165 nm Study on transwell : nude . [48]
mediated transport of ersome crease over . cortex, striatum,
(N/A) filters mice . .
. NPs across the BBB nontargeted) midbrain, pons and
Blood Brain cerebellum
Barrier Drug Nude
Delivery Papp achieved 92.43 * orthotop Increased median
. . . 10 cm/s and ~ 275 : o
Cell penetrating peptide =~ DGL- BCEC cells in ic survival time and
LNP 90 nm pDNA pmol total transport . - . [49]
for cellular uptake PEG well plates Lo glioma- statistically significant
(both significantly . . .
higher) bearing survival prolongation

mice




Table 2. Peptide-nanoparticle conjugates for molecular imaging nanoprobes.

Imaging Peptide Nanoparticle (NP) . .
Modality Probe Name Target or Role Type Size Animal Studies Results Ref
DEVD Cleave caspase- it:(:tlnl}—]zlzze(}gl}l’: e
FITC peptide P YASP 100-300 nm (Fluorescent intensity, vs. [80]
sequence = Velnhsip-Cori(SiEm)- SA-FITC)
4 Lys(Biotin)-CBT
Zn?*coordinated Fluorescent cyclic .
NIR cyclic RGD Targets o33 peptide NP 28 nm Xenografted EC mouse Hlﬁggo%loezsiiti)oli& 81, 82]
peptide NP Integrin (f-PNP, self- spectrum ’
(f-PNP) assembled) P
Small-molecule Targets gastrin- US87MG (Glioblastoma) . o
NIR-II organic RM.26 releasing DSPE-mPEG NP 60 nm tumor bearing mouse nghly SR £ [83]
peptide . specific to GRPR
dye peptide receptor
Targets o erll?rilndrelglero_ld 4.0 nm Enhanced X-ray
AuNP RGD TECLS G ppec & : attenuation compared to [84]
integrin nanoparticles (Au core) Omnipaque
(Au DENPs) paq
. 4h
AuNP . . DTX-loaded US87MG (Glioblastoma) o
+TR780 (Fluor) Angiopep-2  Targets glioma PLGA@Au NP 180 nm fmor beating rmice (Whitening effect at the [85]
target site)
CT Fibrin-
targeting s ) 127 nm
peptide Targets fibrin Glycol-chitosan (Pep-GC-AuNP)
coated AuNP (GC- .
AuNP & & AuNP) C57B1/6 mouse model Remained at the target [86, 87]
+ Cy5.5 (Fluor)  Thrombin- Cleave & 39.8 nm site for up to 3 weeks ’
activatable thrombin . (Pep-
fluorescent Si0:@AuNP SiO2@AuNP)
peptide
CK & B NPs were trapped by
18F CLPFFD el o AuNP 12 nm (Hybrids) S Doy e reticuloendothelial [89, 90]
. Amyloid fiber model
peptides system (RES)
. 3-fold enhanced
%4Cu RGD Targets s Au-tripods 10-15 nm U87MG (Glioblastoma) (PAI contrast, [91]
integrin tumor bearing mice .
PET vs. blocking group)
50-fold enhanced
. Affinity,vs. fi ti
= Targets avp3 WhtiEsEs el ( ;T;_%’(;Ys erfﬁeelr?ceerzilde)
76 RGD . . PEO dendrimer 12 nm hindlimb ischemia- . . . [92]
Br integrin . . (Ischemic to nonischemic
induced mice

hindlimb ratio, vs.
nontargeted NP)




Imaging Peptide Nanoparticle (NP) . .
Modality Probe Name Target or Role Type Size Animal Studies Results Ref
<10 nm 42%
. Targets ovf3s . (NP) US87MG (Glioblastoma) (Tumor MR signal
liigin Qs LG integrin Lot NP 8.4 nm tumor bearing mice intensity reduction, 15% [94]
(Hybrid) for free peptide)
Superparamagnetic
polymeric micelles 9.9 nm A549 (Lung), MDA-
MRI . Targets owf3 (SPPM): (SPIO) MB-231 (Breast), 102 mol/L
fron Oxide RGD integrin SPIO NPs inside the 50-75 nm US87MG (Glioblastoma) (Detection Limit) [95,96]
core of a PEG-PLA (SPPM) tumor bearing mice
co-polymer micelle
Amino dextran- NPs accumulates in tumor
Iron Oxide CREKA Targets fibrin 50 nm Mouse model vessel — Self-amplifying [97]
coated SPIO :
tumor homing
Hollow Au
nanosphere . 0.20%
(HAuNS, CT) RGD Targets oufs HAUNS 447 nm VX2 tumor-bearing (Tumor uptake, vs. [98]
e integrin rabbit model 0.099% for non-RGD NP)
Multi-modal (FED Activatable
Cy5 cell HT-1080 4- to 15- fold enhanced
(Fluor) . Targets active G5 PAMAM . (NP uptake, vs.
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Gd . MMP-2 and -9 dendrimer ) . unconjugated peptides)
(MRI) peptides harboring mice

(ACPPs)




Table 3. Peptide-nanoparticle conjugates for biomarker detection.

. Peptide (Pep) Nanoparticle (NP) In vitro Studies . L
Biomarker Target Affinity (Method) Type Size In vitro model Capture / Detection Clinical Application Ref
235 nm
) 6 . MCF-7, SK-BR-3 (Breast), 90% (Capture)
EpCAM KV 2‘?§PXR;O M nf;‘g’ﬁe‘iz‘ﬁp 3gi)m PC3 (Prostate), 93% (Purity) N/A [111]
(Conjugate) Hep G2 (Liver) > 90% (Viability)
Capacity: 70%
Selectivity: 0.7, Iron oxide MCF-7, SK-BR3 (Breast),
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CTC Anti-HER2 Ab)
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(Selectivity)
E542K,
E545K, .
Methylation N/A AuNP 50 nm %‘gﬂgiﬁ?ﬁﬁ (Limit f) (; g:{ec tion) N/A [127]
of PIK3CA

gene




Fig. 1 Discovery of artificial bioactive peptides and their conjugation with nanoparticles for

biomedical applications.
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Fig. 2 a Comparison between monovalent- and multivalent interactions. b Selectivity in
multivalent interactions. ¢ Multidirectional ligand display and d statistical rebinding on a

multivalent object.
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Fig. 3 a Molecular models depicting gold nanoparticle binding-induced stabilization of a-helial
structure. b Interactions of free peptides and peptide-nanoparticle conjugates with HIV-1 spike

proteins. ¢ Peptide hybrid-functionalized gold nanoparticles inhibiting amyloid-3 aggregation.
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