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ABSTRACT

Consider an instance of Euclidean k-means or k-medians clustering.
We show that the cost of the optimal solution is preserved up to a
factor of (1 + ε) under a projection onto a random O(log(k/ε)/ε2)-
dimensional subspace. Further, the cost of every clustering is pre-
served within (1 + ε). More generally, our result applies to any
dimension reduction map satisfying a mild sub-Gaussian-tail con-
dition. Our bound on the dimension is nearly optimal. Additionally,
our result applies to Euclideank-clusteringwith the distances raised
to the p-th power for any constant p.

For k-means, our result resolves an open problem posed by Co-
hen, Elder, Musco, Musco, and Persu (STOC 2015); for k-medians,
it answers a question raised by Kannan.
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1 INTRODUCTION

The Euclidean k-clustering problem with the ℓp -objective is defined
as follows. Given a dataset X ⊂ Rm of n points, the goal is to find
a partition C = {C1,C2, . . . ,Ck } of X into k parts (clusters) that

∗Supported by NSF CCF-1718820 and NSF Career CCF-1150062.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

STOC ’19, June 23ś26, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00
https://doi.org/10.1145/3313276.3316350

minimizes the following cost function:

costp C =
k∑
i=1

min
ui ∈Rm

∑
x ∈Ci

∥x − ui ∥p ,

where ∥ · ∥ from now on denotes the Euclidean (ℓ2) norm, and the
optimal points ui are called centers of clustersCi . This problem is a
generalization of the k-median (p = 1) and the k-means (p = 2) clus-
tering. Algorithms for k-clustering (especially the Lloyd’s heuris-
tic [Llo82] for k-means) are used in virtually every area of data
science (see [Jai10] for a survey), for data compression, quantiza-
tion, and transmission over noisy channels [Far90], and for hashing,
sketching and similarity search [JDS11]. In this paper we study data-
oblivious dimension reduction for k-clustering, which can be used
to speed up clustering algorithms. This line of work has been initi-
ated by Boutsidis, Zouzias, and Drineas [BZD10] and prior to this
work, the best bounds were due to Cohen, Elder, Musco, Musco and
Persu [CEM+15]. Before stating our results, let us briefly recall the
notion of Euclidean dimension reduction (see [Nao18] for a broad
overview of the area).

Dimension reduction. The cornerstone dimension reduction state-
ment for the Euclidean distance is the JohnsonśLindenstrauss
Lemma [JL84]. For positive realsp,q, ε , wewritep ≈1+ε q if

1
1+ε ·p ≤

q ≤ (1 + ε) · p.

Theorem 1.1 ([JL84]). There exists a family of random linearmaps

πm,d : R
m → R

d with the following properties. For every m ≥ 1,
ε, δ ∈ (0; 1/2) and all x ∈ Rm , we have

Pr
π∼πm,d

(∥πx ∥ ≈1+ε ∥x ∥) ≥ 1 − δ ,

where d = O
(
log(1/δ )

ε2

)
.

A straightforward corollary is that one is able to embed any

n-point subset of a Euclidean space into an O
(
logn
ε2

)
-dimensional

space, while preserving all of the pairwise distances up to (1 + ε).
This bound is known to be tight [Alo03, LN17]. The attractive
feature of the dimension reduction procedure given by Theorem 1.1
is that it is data-oblivious i.e., the distribution over linear maps is
independent of the set of points we apply it to.

There are several constructions of families of randommaps πm,d

that satisfy Theorem 1.1: projections on a random subspace [JL84,
DG03] and maps given by matrices with i.i.d. Gaussian and sub-
Gaussian entries [IM98, Ach03, KM+05]. All of these constructions
satisfy a certain additional condition, which we will need later.

Definition 1.2. A family of random linear maps πm,d : R
m →

R
d is called sub-Gaussian-tailed if for every unit vector x ∈ Rm and
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every t > 0, one has:

Pr
π∼πm,d

(∥πx ∥ ≥ 1 + t) ≤ e−Ω(t
2d )
.

Our result. Consider an instance of Euclidean k-clustering. We
show that its cost is preserved up to a factor of (1 + ε) under
dimension-reduction projection into anO(log(k/ε)/ε2)-dimensional
space. Further, the cost of every clustering is preserved within a
factor of (1 + ε). Our result applies to dimension reductions based
on orthogonal and Gaussian projections and, more generally, any
dimension reductions satisfying the sub-Gaussian-tail condition (in
the sense of Definition 1.2). Our bound on the dimension is nearly
optimal.

For k-means, our result resolves an open problem posed by Co-
hen, Elder, Musco, Musco, and Persu [CEM+15]. For a partition

C = (C1,C2, . . . ,Ck ) of X ⊂ Rm and a linear map π : Rm → Rd ,
we denote by π (C) the respective partition of the image of X under
π . We now state our main result formally.

Theorem 1.3. Consider any family of randommaps πm,d : R
m →

R
d that satisfies Theorem 1.1 and is sub-Gaussian-tailed (satisfies

Definition 1.2). Then for everym ≥ 1, ε, δ ∈ (0; 1/4) and p ≥ 1, the
following holds. For every finite X ⊂ Rm we have

Pr
π∼πm,d

(
costp C ≈1+ε costp π (C) for all partitions C

)
≥ 1 − δ ,

where

d = O

(
p4 · log k

εδ

ε2

)
. (1)

In fact, we show that Theorem 1.3 holds under a slightly more
general definition of a standard dimension reduction map (Defini-
tion 2.1), which is implied by sub-Gaussian tails.

Theorem 1.3 readily implies that if one solves the k-clustering
problem after dimension reduction with approximation λ ≥ 1, then
the same solution yields approximation (1+O(ε)) ·λ for the original
instance. It is almost immediate to show the guarantee given by
Theorem 1.3 for a fixed partition C, however the total number of
partitions is exponential, and we cannot afford to take the union
bound over them. In fact, the actual proof of Theorem 1.3 is much
more delicate.

For k-means (p = 2), the dimension bound O(logn/ε2) easily
follows from the JohnsonśLindenstrauss lemma (Theorem 1.1) and
the fact that one can express the cost function of k-means via
pairwise distances. However, in many applications of clustering,
k ≪ n, in which case the bound we obtain is much stronger. For
p , 2, even the weaker O(logn) bound was not known before.

There are a number of dimension reduction maps that essentially
satisfy Theorem 1.1, but not quite, since they depend on ε and
δ , while the family in Theorem 1.1 is parameterized bym and d

only: most notably, sparse constructions [DKS10, KN14] as well
as łfastž constructions based on subsampled randomized Fourier
transform [AC06, AL09, KW11, AL13, NPW14]. For such cases the
conclusion of Theorem 1.3 holds under a certain condition on the
moments (see Definition 2.1).

Finally, let us note that the bound (1) is essentially optimal in
the following two ways. First, if we want to preserve the cost of all
the k-clusterings of a dataset, then one needs at least Ω(logk/ε2)
dimensions for any (possibly non-linear) dimension reduction map.

Reference Dimension d Distortion

Folklore O(logn/ε2) 1 + ε
[BZD10] O(k/ε2) 2 + ε
[CEM+15] O(k/ε2) 1 + ε
[CEM+15] O(logk/ε2) 9 + ε
This work O(log(k/ε)/ε2) 1 + ε

Figure 1: Data-oblivious dimension reduction for k-means

Indeed, if we consider a dataset consisting of k + 1 points, then
preserving the cost of all k-clusterings is equivalent to preserving
all the pairwise distances. The desired lower bound then follows
from the main result of [LN17]. Second, if we use a Gaussian matrix
for dimension reduction, and only care about preserving the optimal

clustering, we still need Ω(logk/ε2) dimensions. Indeed, consider a
set of t pairs of points such that the distance within each pair except
one is 1, the distance within the remaining one pair is 1−Cε , where
C is a large enough constant, and the pairs are very far apart from
each other. Suppose that k = 2t − 1. Then the only approximately
optimal clustering consists of the łspecialž pair and the remaining
points as singletons. But if we reduce dimension using a Gaussian
matrix to much fewer than logk/ε2 dimensions, it is likely that
some other pair will become noticeably closer than the special pair.
This changes the optimal clustering showing the desired lower
bound.

Related work. There is a large body of literature on dimension
reduction for k-means (which corresponds to p = 2). Within this
line of work, there are two kinds of results: data-oblivious and data-
dependent. Data-oblivious results provide guarantees qualitatively
similar to our Theorem 1.3 and are summarized in Figure 1. Let us
now give a brief overview.

Asmentioned previously, the bound on the dimensionO(logn/ε2)
is a simple application of Theorem 1.1. The first bound indepen-
dent of n was obtained by Boutsidis, Zouzias and Drineas [BZD10],
who showed that O(k/ε2) dimensions are enough for distortion
2 + ε . The best bounds prior to the present work are due to Co-
hen, Elder, Musco, Musco and Persu [CEM+15]. They showed two
incomparable bounds: O(k/ε2) dimensions with distortion 1 + ε ,
and O(logk/ε2) dimensions with distortion 9 + ε . The 9 + ε bound
on the distortion follows from all pairwise distance between k op-
timal centers being approximately preserved. Our Theorem 1.3
improves upon both of the bounds shown in [CEM+15]: we get
O(log(k/ε)/ε2) dimensions with distortion 1 + ε , thus resolving an
open problem posed in [CEM+15].

The literature on data-dependent dimension reduction for k-
means is ample [DFK+99, Sar06, BDM09, BZD10, FSS13, BMI13,
BZMD15, CEM+15] and we refer the reader to [CEM+15] for a com-
prehensive overview. Let us note that none of these results obtain
dimension better than k .

For p , 2, even the logn bound was not known previously. The
question of obtaining the logn bound for p = 1 (k-median) was
explicitly posed recently by Kannan [Kan18].

A notion related to dimension reduction is that of a coreset, which
is a small subsample of a dataset that approximately preserves the
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cost of k-clustering. A good overview of this rich line of work
appears in [SW18].

Independently of ourwork, Becchetti, Bury, Cohen-Addad, Grandoni
and Schwiegelshohn [BBCA+19] obtained a result for k-means un-
der dimension reduction. Their result applies only to k-means (p =

2); their bound on the target dimension O
(
logk+log logn

ε6
· log 1

ε

)
is

somewhat weaker than ours and depends on n.

1.1 Proof Overview

As we discussed earlier, it is easy to show that for any fixed cluster-
ing C = (C1, . . . ,Ck ), we have costp (πC) ≈1+ε costp (C) w.h.p. In
particular, for the optimal clusteringC∗, costp (πC∗) ≈1+ε costp (C∗),
and, consequently, the cost of the optimal clustering for πX is upper
bounded by the cost of the optimal clustering for X up to a factor
of (1 + ε) w.h.p. However, it is not at all obvious how to obtain a
lower bound on the cost of the optimal solution for πX since there
may exist a clustering πC′ of πX which is better than πC∗. Note
that we cannot use the union bound to prove Theorem 1.3 as the
number of possible clusterings of X is exponential in n, but the
dimension d does not depend on n.

In this section, we discuss the main ideas we use in the proof of
Theorem 1.3. We show that with high probability the following two
statements hold (a) for all C we have costp (C) ≤ (1 + ε) costp (πC)
and (b) for all C we have costp (πC) ≤ (1 + ε) costp (C). The proofs
of these statements are similar. To simplify the exposition, we focus
on the former inequality in this proof overview.

To illustrate our approach, first consider an easy case when X is
embedded into a d = O(logn/ε2) dimensional space. In this case, all
distances between points in X are approximately preserved w.h.p.
That is, ∥x ′ − x ′′∥ ≈1+ε ∥πx ′ − πx ′′∥ for all x ′, x ′′ ∈ X . We prove
that if all distances inX are approximately preserved then for every
clustering C = (C1, . . . ,Ck ) we have costp (C) ≈1+ε costp (πC). In
fact, we prove a slightly stronger statement: for every clusterC ⊂ X

we have costp (C) ≈1+ε costp (πC). As we shall see in a moment,
the proof is immediate for k-means but requires some work for
k-median and other ℓp objectives.

For the k-means objective (p = 2), we can use the following well
known formula:

cost2(C) =
1

|C |
∑

(x ′,x ′′)∈C×C
∥x ′ − x ′′∥2, (2)

and, similarly,

cost2(πC) =
1

|C |
∑

(x ′,x ′′)∈C×C
∥πx ′ − πx ′′∥2. (3)

Since each term ∥x ′ − x ′′∥2 in (2) approximately equals the cor-
responding term ∥πx ′ − πx ′′∥2 in (3), we have cost2(C) ≈1+O (ε )
cost2(πC).

One-point robust extension. The above proof does not general-
ize to ℓp objectives with p , 2. So our proof relies on the Kirszbraun
theorem [Kir34].

Theorem 1.4 (Kirszbraun theorem). For every subset X ⊂ Rd
and L-Lipschitz map1 φ : X → R

m , there exists an L-Lipschitz

extension φ̃ of φ from X to the entire space Rd .

Let Y = π (C). Observe that the map π : C → R
d and inverse

map π−1 : Y → Rm are (1+ε)-Lipschitz with high probability. Letu
be the optimal center for cluster πC . Using the Kirszbraun theorem,

we extend the map π−1 : Y → Rm to φ̃ : Rd → Rm and then lift

the optimal center u from Rd to Rm by letting v = φ̃(u). Then, for
all y ∈ Y we have ∥v − π−1y∥ ≤ (1 + ε)∥u −y∥ or, equivalently, for
all x ∈ C we have ∥v − x ∥ ≤ (1 + ε)∥u − πx ∥. We pick point v as
the center for the cluster C and obtain the following bound:

costp (C) ≤
∑
x ∈C

∥x −v ∥p ≤
∑
x ∈C

(1 + ε)p ∥πx − u∥p

= (1 + ε)p costp (πC).

We now return to the case when d = cp log(k/(δε))/ε2) (where
cp only depends on p). Observe that when we reduce the dimension
of X to d , while most pairwise distances in X are approximately
preserved, some are distorted. The Kirszbraun theorem does not
hold in this setting. We prove a robust 1-point extension theorem
(Theorem 5.2).

Loosely speaking, this theorem states the following. Consider

a finite set C ⊂ Rd and map φ : C → Rm , satisfying the following
condition (⋆):

• for every x ∈ C , the distance from x to all but a θ fraction of
x ′ ∈ C is (1 + ε)-preserved under φ.

Then, for every point u ∈ Rd , there exists a point v ∈ Rm such
that for all but θ ′ fraction of points x ∈ C , we have ∥x − u∥ ≤
(1 + ε ′)∥φ(x) −v ∥ where ε ′ = O(ε) and θ ′ = O(θ/ε).
Worst cluster for each projection Consider a random dimension

reduction map π : Rm → Rd . We prove that for every cluster C ,

costp C ≤ (1 + ε ′) costp π (C) + ε ′′ costp C∗
, (4)

where costp C∗ is the cost of the optimal k-means clustering. Here,
ε ′ and ε ′′ are some parameters (see (7) for details). For each real-
ization of π , let us pick a subset C ⊂ X for which the gap between
costp (C) and costp (πC) is the largest. We would like to use our new

1-point extension theorem to lift the optimal center of πC from Rd

to the original space Rm . However, we cannot do this directly, since
it may be the case that most pairwise distances in C are distorted.

Everywhere sparse distortion graphs. To deal with this prob-
lem, we define a distortion graph G for map π : X → R

m . The
vertex set of G is X . Two points u,v ∈ X are joined by an edge in
G if π distorts the distance between u and v by a factor of at least
(1+ ε). We say that a subgraph H ofG is θ everywhere sparse if the
degree of all vertices inH are upper bounded by θ |VH |. Observe that
the probability that (u,v) is an edge in G is less than 1/poly(k) if
d & log(k)/ε2. Note that the distortion graphs for π and its inverse
π−1 are the same.

We can now restate condition (⋆) of the 1-point extension theo-
rem as follows: The distortion graph for the map φ is θ everywhere
sparse. Note, however, that the induced distortion graphG[C] for
1Recall that φ is an L-Lipschitz map if for all x ′

, x ′′ ∈ X , we have ∥φ(x ′)−φ(x ′′) ∥ ≤
L ∥x ′ − x ′′ ∥.

1029



STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn

maps π and π−1 is not necessarily θ -everywhere sparse. Neverthe-
less, we show that it is possible to remove some outlier points from
X to make the induced graph G[C] sparse. Specifically, we prove
that there exists a random set B (which depends on π ) such that

(a) the graph G[C \ B] is θ everywhere sparse;
(b) Pr(x ∈ B) ≤ θ for all x ∈ B.

The proof of the existence of B is fairly simple for the special
case when the size of cluster C is approximately n/k . Mark a point
x ∈ X as an outlier if its degree inG is greater than θn/(2k) and let
B be the set of all outliers. Observe that the degree of every vertex
in C \ B is at most θn/(2k) and, thus, the maximum degree in the
induced graph G[C \ B] is at most θn/(2k).

The expected degree of a vertex inG is much smaller than θ2n/k2,
since the probability that the distance between two given points
is distorted is much less than θ2/k2 (if d & log(k/θ )/ε2). Hence,
Pr(x ∈ B) ≪ θ/k for any x ∈ X and, therefore, condition (b) is
satisfied. Also, by linearity of expectation, the expected size of B is
at most θn/k , and by Markov’s inequality, |B | ≪ n/k w.h.p. Thus,
|C\B | ≥ n/(2k)w.h.p. and, consequently,G[C\B] is a θ everywhere
sparse graph w.h.p. The proof for the general case when the size of
the cluster C may be arbitrary is more involved (see Theorem 3.2).
Roughly speaking, we reduce the general case to the case when
|C | ≈ n/k by introducing a carefully chosen measure µ on X that
we use as a proxy for the set sizes.

Outliers.We are now almost done. The distortion graph for the set
C \B is θ -everywhere sparse. Thus, by the robust 1-point extension
theorem applied to the set π (C \ B) and map π−1, we can lift the
optimal center ofC \ B to the space Rm . To finish the proof, it only
remains to take care of two sets of outliers.

The first set is the set B. We slightly modify our data set. We
move each outlier x to the optimal center of the cluster C∗(x) that
the point x is assigned to in the optimal solution to k-means and
then return x back to its cluster C . Since the probability that x is
an outlier is very small, the cost of moving x is also small (see
Theorem 3.4).

The second type of outliers are the points x ∈ C such that
∥x −v ∥ > (1 + ε)∥πx − u∥, where u is the optimal center of C and
v is the optimal center lifted to Rm . The fraction of such outliers
among all points inC is at most θ ′. We charge the connection costs
of these outliers (i.e., the costs of assigning outliers to the centers
of their clusters) to the connection costs of other vertices.

This concludes the proof. In the rest of the paper, we give a
detailed proof of Theorem 1.3.

2 PRELIMINARIES

Let X ⊂ Rd be an instance of Euclidean k-clustering with the
ℓp objective. We denote the optimal k-clustering of X by C∗

=

{C∗
1, . . . ,C

∗
k
} and its optimal centers by c∗1, . . . , c

∗
k
. Given a cluster

S ⊂ X , let costp S = minc ∈Rd
∑
u ∈Rd ∥u − c∥p be its cost. Given

a clustering C = {C1, . . . ,Ck }, let costp C = ∑k
i=1 costp Ci be its

cost. In particular, costC∗ is the cost of the optimal clustering of X .
Given amap π and C = {C1, . . . ,Ck }, denote by π (C) the clustering
π (C1), . . . , π (Ck ) of π (X ).

We denote the indicator of an event E by 1{E } or 1 {E}.

Definition 2.1. Random map π : Rm → Rd is an (ε, δ )-random
dimension reduction if

1

1 + ε
∥x − y∥ ≤ ∥π (x) − π (y)∥ ≤ (1 + ε)∥x − y∥

with probability at least 1 − δ for every x,y ∈ Rm . Given p ∈ [1,∞),
random map π is an (ε, δ , ρ)-dimension reduction if it additionally

satisfies the following property

E

[
1{ ∥π (x )−π (y) ∥>(1+ε ) ∥x−y ∥ }

( ∥π (x) − π (y)∥p
∥x − y∥p − (1 + ε)p

)]
≤ ρ.

(5)
Given ε > 0, we say that a random dimension reduction π : Rm →
R
d is standard if it has parameters (ε, δ , ρ) and δ ≤ exp(−cε2d),

ρ ≤ exp(−cε2d) when d > c ′p/ε2 for some constants c, c ′ > 0.

Definition 2.2. We say that π approximately preserves or (1+ε)-
preserves the distance between x and y if 1

1+ε ∥x − y∥ ≤ ∥π (x) −
π (y)∥ ≤ (1+ε)∥x −y∥. Otherwise, we say that π distorts the distance

between x andy. For brevity, we also say that (x,y) is (1+ε)-preserved
in the former case and distorted in the latter case.

We define the distortion graph G = (X , E) for π as follows. Two

points x,y ∈ X are connected with an edge if π distorts the distance

between them. Note that when π is an (ε, δ )-random dimension reduc-

tion, G is a random graph and Pr((x,y) ∈ E) ≤ δ for every x,y ∈ X .

As we prove in Lemma C.1, every dimension reduction that (1)
satisfies Theorem 1.1 and (2) is sub-Gaussian tailed is standard. We
note that all dimension reduction constructions (satisfying The-
orem 1.1) that we are aware of are sub-Gaussian tailed and thus
standard. In particular, we prove in Claim C.2 that the Gaussian
dimension reduction is sub-Gaussian tailed.

3 DIMENSION REDUCTION PRESERVES

CLUSTER COSTS

In this section, we prove Theorem 1.3, the main result of this pa-
per. The proof relies on Theorems 3.2 and 3.3, which we prove
later in Sections 4 and 5. We note that Theorem 3.2 is a purely
combinatorial theorem about random graphs, which does not deal
with distances or embeddings. On the other hand, Theorem 3.3 is
about a deterministic dimension reduction map φ, it states that φ
approximately preserves the cost of a cluster C loosely speaking
when the maximum degree inG[C] (the graph induced byC on the
distortion graph) is much smaller than |C |.

3.1 Theorems 3.2 and 3.3

We formally state Theorems 3.2 and 3.3.

Definition 3.1. A graph H = (V , E) is θ everywhere-sparse if

degu ≤ θ |V | for every u ∈ V . (We allow V to be empty.)

Theorem 3.2. Consider a finite set X and a random graph H =

(V , E), whereV is a random subset ofX and E is a random set of edges

between vertices inV (we do not make any independence assumptions).

Let θ ∈ (0, 1/2). Assume that Pr ((x,y) ∈ E) ≤ δ for every x,y ∈ X ,

where δ ≤ θ7/600 (if x < V or y < V , then (x,y) < E). Then there

exists a random subset V ′ ⊂ V (V ′ is defined on the same probability

space as H ; in other words, it is jointly distributed with H ) such that

• H [V ′] is θ everywhere-sparse,
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• Pr (u ∈ V \V ′) ≤ θ for all u ∈ X .

Theorem 3.3. Consider a finite multiset of points C̃ ⊂ Rd ′
and

a map φ : C̃ → R
d ′′
. Assume that the distortion graph G for C̃ is

θ -sparse. Then, for every p ≥ 1 and D = (1 + ε)p (1 + 3p+2θ1/(p+1)),
we have

D−1 costp (C̃) ≤ costp (φ(C̃)) ≤ D costp (C̃).

3.2 Cluster costs are approximately preserved

Assume that C ⊂ X is a random subset/cluster of X ; C may depend
on the random projection π . We prove that costp C is approximately
equal costp π (C) up to some multiplicative and additive errors with
high probability.

Theorem 3.4. Consider an instance X of Euclidean k-clustering

with the ℓp -objective. Let π be a (ε, δ , θ )-random dimension reduction,

and C be a random subset/cluster of X (which may depend on π ).

Assume that δ ≤ min(θ7/600, θ/k). Denote the optimal clustering of

X by C∗. Then

costp π (C) ≤ A
(
costp C + cαϵθ costp C∗) (6)

costp C ≤ A
(
costp π (C) + cαϵθ costp C∗) (7)

with probability at least 1 − α −
(k
2

)
δ , where A = (1 + ε)3p−2(1 +

3p+2θ1/(p+1)) and cαϵθ =
5(1+ε )pθ
αεp−1 .

Proof. Let c be the optimal center for cluster C . Denote the
clusters of C∗ byC∗

1, . . . ,C
∗
k
and the optimal centers forC∗

1, . . . ,C
∗
k

by c∗1, . . . , c
∗
k
. Let c∗(x) = c∗i if x ∈ C∗

i . Consider the event E that all

the distances between the centers c∗i are (1+ε)-preserved. Note that
Pr (E) ≥ 1−

(k
2

)
δ . We assume below that E happens. LetC◦

= {x ∈
C : π approximately preserves distance between x and each c∗i }.
Note that

Pr
(
x ∈ C \C◦)
≤ Pr (distance between x and some ci is distorted) ≤ kδ

for all x ∈ X . We apply Theorem 3.2 to H = G[C◦] (the graph
induced by C◦ on the distortion graph G). We get a subset C ′ ⊂ C

such that G[C ′] is θ everywhere-sparse and Pr (x ∈ C◦ \C ′) ≤ θ .
Observe that

Pr
(
x ∈ C \C ′) ≤ Pr

(
x ∈ C \C◦)

+Pr
(
x ∈ C◦ \C ′) ≤ θ+kδ ≤ 2θ .

Let

д(x) =
{
x, if x ∈ C ′

c∗(x), if x < C ′.

Consider multiset C̃ = д(C). By construction, every point in C̃ is
either in C ′ or equal to some c∗i . Let c̃ be the optimal center for

C̃ . Since G[C ′] is θ everywhere-sparse, the map π approximately
preserves the distances from every x ∈ C ′ to at least a (1 − θ )
fraction of the points in C ′ and to all c∗i . Further, since E happens,
all distances between centers c∗i are (1 + ε)-preserved. Therefore,
we can apply Theorem 3.3 to multiset C̃ and map φ = π . We get
that

D−1 costp (C̃) ≤ costp (π (C̃)) ≤ D costp (C̃) (8)

for D = (1 + ε)p (1 + 3p+2θ1/(p+1)). Note that

costp C ≤
∑
x ∈C

∥x − c̃ ∥p and costp C̃ =
∑
x ∈C

∥д(x) − c̃ ∥p ,

since c̃ is the optimal center for C̃ . Compare the summations in the

upper bound for costp C and the formula for costp C̃ term by term.
For x ∈ C ′, д(x) = x and thus the terms in both summations are
equal. For x < C ′, the terms in the first and second summations are
equal to ∥x − c̃ ∥p and ∥c∗(x) − c̃ ∥p , respectively. Therefore,

costp C−(1+ε)p−1 costp C̃ ≤
∑

x ∈C\C ′
∥x−c̃ ∥p−(1+ε)p−1∥c∗(x)−c̃ ∥p .

Observe that ∥x−c̃ ∥ ≤ ∥x−c∗(x)∥+∥c∗(x)−c̃ ∥. Applying LemmaA.1
with r = 1, we get

∥x − c̃ ∥p ≤ (1 + ε)p−1∥c∗(x) − c̃∥p +
(
1 + ε

ε

)p−1
∥x − c∗(x)∥p .

Let τ =
(
1+ε
ε

)p−1
. Then,

costp C − (1 + ε)p−1 costp C̃ ≤ τ
∑

x ∈C\C ′
∥x − c∗(x)∥p .

Similarly,

costp C̃ − (1 + ε)p−1 costp C ≤ τ
∑

x ∈C\C ′
∥x − c∗(x)∥p

costp π (C) − (1 + ε)p−1 costp π (C̃) ≤ τ
∑

x ∈C\C ′
∥π (x) − π (c∗(x))∥p

costp π (C̃) − (1 + ε)p−1 costp π (C) ≤ τ
∑

x ∈C\C ′
∥π (x) − π (c∗(x))∥p

Combining these bounds with inequality (8), we obtain

costp π (C) ≤ A
©­«
costp C + ε

1−p
∑

c ∈X \X ′
Rx

ª®¬
costp C ≤ A

©­«
costp π (C) + ε1−p

∑
c ∈X \X ′

Rx
ª®¬

whereA = (1+ε)2(p−1)D andRx = ∥x−c∗(x)∥p+∥π (c∗(x))−π (x)∥p .

It remains to prove that

ε1−p
∑

x ∈C\C ′
1 {E} Rx ≤ cαϵθ costp C∗

with probability at least 1 − α . To this end, we show that

E


1 {E}

∑
x ∈C\C ′

Rx


≤ 5(1 + ε)pθ costp C∗

and then use Markov’s inequality. From property (5) in Defini-
tion 2.1 we get that for every x ∈ C ,

E
[
max(∥π (c∗(x)) − π (x)∥p − (1 + ε)p ∥c∗(x) − x ∥p , 0)

]
≤ θ ∥c∗(x) − x ∥p .
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Therefore,

E
[ ∑
x ∈C\C ′

∥π (c∗(x))−π (x)∥p
]
≤ (1+ε)pE

[ ∑
x ∈C\C ′

∥c∗(x)−x ∥p
]

+ E
[ ∑
x ∈C\C ′

max(∥π (c∗(x)) − π (x)∥p − (1+ ε)p ∥c∗(x) − x ∥p , 0)
]

Now, we bound the second term as∑
x ∈X
E

[
max(∥π (c∗(x)) − π (x)∥p − (1 + ε)p ∥c∗(x) − x ∥p , 0)

]
≤

∑
x ∈X

θ ∥c∗(x) − x ∥p = θ costp C∗

Thus,E
[∑

x ∈C\C ′ ∥π (c∗(x))−π (x)∥p
]
≤ (1+ε)pE

[∑
x ∈C\C ′ ∥c∗(x)−

x ∥p
]
+ θ costp C

∗. We also have,

E


∑

x ∈C\C ′
∥x − c∗(x)∥p


≤

∑
x ∈X

Pr
(
x ∈ C \C ′) ∥x − c∗(x)∥p

≤ 2θ
∑
x ∈X

∥x − c∗(x)∥p = 2θ costp C
∗
.

Therefore,

E
[
1 {E}

∑
x ∈C\C ′

Rx
]

≤ E
[ ∑
x ∈C\C ′

∥π (c∗(x)) − π (x)∥p + ∥x − c∗(x)∥p
]

≤ 5(1 + ε)pθ costp C∗
.

By Markov’s inequality,

Pr
©­«
1 {E} ε1−p

∑
x ∈C\C ′

Rx ≥ cαϵθ costp C
∗ª®¬

≤ ε1−p ·
5(1 + ε)pθ costp C∗

cαϵθ costp C∗ = α .

We conclude that

Pr ((6) and (7) hold) ≥ 1 − α − Pr (E) ≥ 1 − α −
(
k

2

)
δ .

�

3.3 Proof of main results

Now we prove the main results: Theorem 3.5, Theorem 3.6 and
Theorem 1.3.

Theorem 3.5. Let X be an instance of k-clustering with the ℓp -

objective. Let ε ∈ (0, 1/4) (the distortion parameter) and α ∈ (0, 1)
(the failure probability). Let π : Rm → R

d be a standard random

dimension-reduction map with

d =
c(log k

α + p log
1
ε + p

2)
ε2

(9)

(where c only depends on the parameters of map π in Definition 2.1).

With probability at least 1 − α the following event D happens: for

every clustering C of X inequalities (10) and (11) hold.

costp π (C) ≤ (1 + ε)3p costp C (10)

(1 − ε) costp C ≤ (1 + ε)3p−1 costp π (C) (11)

Proof. Let θ = min(εp+13(p+1)(p+2),αεp/(10k(1 + ε)4p−1). We
choose constant c in (9) so that the parameters (ε, δ , ρ) of dimension

reduction π satisfy δ ≤ min(θ7/600, θ/k),
(k
2

)
δ ≤ α/2, and ρ ≤ θ

(we can do this, since π is a standard dimension reduction). By
our choice of parameters, A ≤ (1 + ε)3p−1 and Acαεθ ≤ ε/k in the
statement of Theorem 3.4.

To apply Theorem 3.4, we define a random cluster C . First, as-
sume that event D does not happen. Then there exists a clustering
C1, . . . ,Ck violating one of the inequalities (10) or (11). Thus, one
of the following inequalities hold.

k∑
i=1

costp π (Ci ) ≥ A

(
k∑
i=1

costp Ci

)
+ ε costp C (12)

k∑
i=1

costp Ci ≥ A

(
k∑
i=1

costp π (Ci )
)
+ ε costp C (13)

Therefore, for some Ci , we have either (14) or (15).

costp π (Ci ) ≥ A costp Ci +
ε

k
costp C (14)

costp Ci ≥ A costp π (Ci ) +
ε

k
costp π (C) (15)

Let C = Ci . If D happens, we let C be an arbitrary cluster (e.g., let
C consist of a single point). Note that if D does not happen then
we have one of the following, since costp C∗ ≤ costp C.

costp π (C) ≥ A costp C +
ε

k
costp C∗ (16)

costp C ≥ A costp π (C) +
ε

k
costp π (C∗) (17)

Applying Theorem 3.4, we get that the probability that one of

the inequalities (16) or (17) holds is at most α/2 +
(k
2

)
δ ≤ α . Thus

Pr (D) ≥ 1 − α . The statement of the theorem follows. �

As a corollary, we get the following formulation of the theorem.

Theorem 3.6. Let X be an instance of k-clustering with the ℓp -

objective. Let ε ∈ (0, 1/4) (the distortion parameter) and α ∈ (0, 1)
(the failure probability). Let π : Rm → R

d be a standard random

dimension-reduction map with

d =
cp log(k/(εα))

ε2
where cp = O(p4).

Then with probability at least 1 − α :

(1−ε) costp C ≤ costp π (C) ≤ (1+ε) costp C for every clustering C

Proof. We apply Theorem 3.5 with ε ′ = (1+ε)1/(3p)−1 = O(ε/p)
and obtain the desired inequality. �

Now we prove Theorem 1.3.

Proof of Theorem 1.3. We apply Lemma C.1 to πm,d . Since
πm,d satisfies the condition of Theorem 1.1 and is sub-Gaussian
tailed, it is a standard dimension reduction. Applying Theorem 3.6,
we get the desired result. �
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4 EVERYWHERE-SPARSE SUBGRAPH

In this section, we prove Theorem 3.2. The main ingredient of the
proof is Lemma 4.1, which we prove in Section 4.1.

4.1 Main Combinatorial Lemma

Lemma 4.1. Let X be a finite set and V ⊂ X be a random subset

of X . Let θ ∈ (0, 1/2). Assume that Pr(x ∈ V ) ≥ 2θ for every x . Then

there exist a random set R ⊂ V (defined on the same probability space

as V ) and a deterministic measure µ on X such that

(1) µ(x) ≥ 1
|V \R | for every x ∈ V \ R (always);

(2) Pr(x ∈ R) ≤ θ for every x ∈ X ;

(3) µ(X ) = ∑
x ∈X µ(x) ≤ Pr(V,∅)

θ 2 .

Proof. We prove this lemma by induction on the size of the
set X . If |X | = 0 i.e. X is empty, then properties 1ś3 trivially hold.
Assume that the statement holds for all sets X ′ of size |X ′ | < |X |
and prove it for X .

Let l = θ |X |. Define a (deterministic) set X ′ and a random subset
V ′ ⊂ X ′ as follows:

X ′
= {x : Pr(x ∈ V and |V | < l) ≥ 2θ } (18)

V ′
=

{
V ∩ X ′, if |V | < l

∅, otherwise
(19)

First, we prove that for some x0 ∈ X , Pr(x0 ∈ V and |V | < l) ≤ θ

and, consequently, |X ′ | < |X |. To this end, we show that the average
value of Pr(x ∈ V and |V | < l) for x ∈ X is at most θ :

1

|X |
∑
x ∈X

Pr(x ∈ V and |V | < l)

=

1

|X |
∑
x ∈X
E[1 {x ∈ V and |V | < l}]

=

1

|X |E
[ ∑
x ∈X

1 {x ∈ V and |V | < l}
]

=

1

|X |E[|V | · 1 {|V | < l}] ≤ l

|X | = θ .

Here we used that the random variable |V | · 1 {|V | < l} is always
less than l .

Since |X ′ | < |X | and Pr(x ∈ V ′) ≥ 2θ for every x ∈ X ′, we
can apply the induction hypothesis to X ′ and V ′. By the inductive
hypothesis, there exist a random set R′ ⊂ X ′ and measure µ ′ on
X ′ satisfying properties 1ś3 for the set X ′ and random subset V ′.
Define a measure µ on X and random subset R ⊂ V as follows:

µ(x) =
{
µ ′(x) + 1/l, if x ∈ X ′

1/l, otherwise
(20)

R =

{
R′ ∪ (V \ X ′), if |V | < l

R′, otherwise
(21)

We verify that R and µ satisfy the desired conditions.

Condition 1: for every x ∈ V \ R, µ(x) ≥ 1/|V \ R | (always). Fix
x ∈ V \ R and consider three cases. If x ∈ X ′ and |V | < l , we
have V \ R = V ′ \ R′ by (21). Thus, µ(x) > µ ′(x) ≥ 1

|V ′\R′ | =
1

|V \R | by the induction hypothesis. If x ∈ X ′ and |V | ≥ l , then

µ(x) ≥ 1/l ≥ 1/|V |. Note that V ′
= ∅ (since |V | ≥ l). Hence,

R
by (21)
= R′ ⊂ V ′

= ∅. In particular, 1/|V | = 1/|V \ R | and thus
µ(x) ≥ 1/|V \ R |.

Finally, if x < X ′, then x ∈ V \ X ′ ⊂ R′ ∪ (V \ X ′) and x < R.
Thus, R , R′ ∪ (V \ X ′). From (21), we get that |V | ≥ l and hence
µ(x) = 1/l ≥ 1/|V |. Again, since |V | ≥ l , we have µ(x) ≥ 1/|V | =
1/|V \ R |.

Condition 2: Pr(x ∈ R) ≤ 2θ . If x ∈ X ′, then Pr(x ∈ R) = Pr(x ∈
R′) ≤ 2θ by the induction hypothesis. If x < X ′, then

Pr(x ∈ R) by (21)
= Pr(x ∈ V and |V | < l)

by (18)
≤ 2θ .

Condition 3: µ(X ) = ∑
x ∈X µ(x) ≤ Pr(V , ∅)/θ2. By the induc-

tive hypothesis, we have µ ′(X ′) ≤ Pr(V ′
, ∅)/θ2. Thus,

µ(X ) = µ ′(X ′) + |X |
l

≤ Pr(V ′
, ∅)

θ2
+

1

θ
.

To finish the proof, we need to show that

Pr(V ′
, ∅)

θ2
+

1

θ
≤ Pr(V , ∅)

θ2
,

or, equivalently, Pr(V , ∅) − Pr(V ′
, ∅) ≥ θ . Note that if |V | ≥ l ,

then V , ∅ and V ′
= ∅. Thus (since V ′ ⊂ V ),

Pr(V , ∅) − Pr(V ′
, ∅) = Pr(V , ∅ and V ′

= ∅) ≥ Pr(|V | ≥ l).

Recall that for some x0 ∈ X , we have Pr(x0 ∈ V and |V | ≤ l) ≤ θ .
Since for all x ∈ X , Pr(x ∈ X ) ≥ 2θ , we have

Pr(|V | ≥ l) ≥ Pr(x0 ∈ V and |V | ≥ l)
≥ Pr(x0 ∈ V ) − Pr(x0 ∈ V and |V | ≤ l) ≥ θ .

This completes the proof. �

Corollary 4.2. Let X be a finite set and V ⊂ X be a random

subset of X . Let θ ∈ (0, 1/2). Then there exist a random set R ⊂ V

and measure µ on X such that

(1) µ(x) ≥ 1
|V \R | for every x ∈ V \ R (always)

(2) Pr(x ∈ R) ≤ 2θ for every x ∈ X

(3) µ(X ) = ∑
x ∈X µ(x) ≤ 1

θ 2

Proof. Let X ′
= {x : Pr(x ∈ V ) ≥ 2θ }. We apply the lemma to

X ′ and then let

R = (R′ ∪ (X \ X ′)) ∩V .

�

We will need the following observation.

Observation 4.3. Let R be as in Corollary 4.2 and V0 = V \ R.
Then for every S ⊂ V0, we have |S | ≤ µ(S)|V0 |.

Proof. By Corollary 4.2, µ(x) ≥ 1/|V0 | for every x ∈ S . There-
fore, µ(S) ≥ |S |/|V0 | and |S | ≤ µ(S)|V0 |. �
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4.2 Proof of Theorem 3.2

Proof. Let β = θ
1+θ and θ ′ = θ/3. Applying Corollary 4.2 with

parameter θ ′, we get a deterministic measure µ onV and a random
set R ⊂ V . Let V0 = V \ R. DenoteM = µ(X ) ≤ 1/θ ′2. Consider the
product measure µ⊗2 on X ×X , defined by µ⊗2((x,y)) = µ(x) · µ(y)
for x,y ∈ X . Then µ(X × X ) = M2.

Since Pr ((x,y) ∈ E) ≤ δ for everyx,y ∈ X , we haveE
[
µ⊗2(E)

]
≤

δM2. By Markov’s inequality,

Pr
(
µ⊗2(E) ≥ β2

)
≤ δM2

β2
≤ θ/3.

If µ⊗2(E) ≥ β2, we let V ′
= ∅. In this case, H [V ′] is empty and

trivially θ -sparse. We now consider the main case when µ⊗2(E) <
β2. We say that x ∈ X is bad if

µ
(
{y ∈ V0 : (x,y) ∈ E}

)
≥ β . (22)

Denote the set of bad points by B (note that B is a random set).
Observe that B ⊂ V , since if x < V then x is not connected to any
y and thus {y ∈ V0 : (x,y) ∈ E} = ∅. Define V ′ as

V ′
= V \ (R ∪ B) = V0 \ B.

Let us verify thatV ′ satisfies the desired properties. First, we check
that H [V ′] is θ everywhere-sparse; that is, degH [V ′] x ≤ θ |V ′ | for
every x ∈ V ′ . That is, | {y ∈ V ′ : (x,y) ∈ E} | ≤ θ |V ′ |. To this end,
we upper bound the measures and cardinalities of sets V0 ∩ B and
{y ∈ V ′ : (x,y) ∈ E}. For every x ∈ B,

µ⊗2
(
{(x,y) ∈ E}

)
= µ(x) · µ

(
{y ∈ V : (x,y) ∈ E}

)
≥

≥ µ(x) · µ
(
{y ∈ V0 : (x,y) ∈ E}

)
≥ µ(x) · β .

Consequently,

µ⊗2(E) ≥
∑
x ∈B

µ⊗2
(
{(x,y) ∈ E}

)
≥ βµ(B)

and µ(B) ≤ µ⊗2(E)/β < β . In particular, µ(V0 ∩ B) ≤ µ(B) ≤ β .
Consider now x ∈ V ′. Since x < B,

µ(
{
y ∈ V ′ : (x,y) ∈ E

}
) ≤ µ({y ∈ V0 : (x,y) ∈ E}) ≤ β .

By Observation 4.3, | {y ∈ V ′ : (x,y) ∈ E} | ≤ β |V0 | and |V0 ∩ B | ≤
µ(V0 ∩ B)|V0 | ≤ β |V0 |. From the latter inequality, we get |V ′ | =
|V0 \ B | ≥ (1 − β)|V0 |. We conclude that

|
{
y ∈ V ′ : (x,y) ∈ E

}
| ≤ β

1 − β
|V ′ | = θ |V ′ |,

as required.
To finish the proof, we need to show that Pr (x < V \V ′) ≤ θ .

Note that x is in V but not in V only if one of the following events
happens:

1. µ⊗2(E) ≥ β2. As we showed above, the probability of this event
is at most θ/3.

2. µ⊗2(E) < β2 and x ∈ R. By Corollary 4.2, the probability of this
event is at most θ ′ = θ/3.

3. µ⊗2(E) < β2 and x ∈ B. By Markov’s inequality, the probability
of this event is at most

Pr (x ∈ B) ≤ E
[
µ
(
{y ∈ V0 : (x,y) ∈ E}

) ]
/β ≤ δM/β ≤ θ/3,

here we used that for x ∈ B, µ
(
{y ∈ V0 : (x,y) ∈ E}

)
/β ≥ 1 see (22),

and that E
[
µ
(
{y ∈ V0 : (x,y) ∈ E}

) ]
is at most∑

y∈X
Pr ((x,y) ∈ E) µ(y) ≤

∑
y∈X

δµ(y) = δM .

Thus, Pr (x ∈ V \V ′) ≤ θ . �

5 ONE POINT EXTENSION

Consider two sets of points X and Y in Euclidean space and a
one-to-one map φ : X → Y . Suppose that for every point x in
X , the distances from x to all but a θ fraction of x ′ in X do not
increase under the map φ. In this section, we show that in this

case, we have costp (Y ) ≤ (1 + O(θ1/(p+1))) costp (X ). We prove
this statement (Lemma 5.3) using a robust version of the classic
Kirszbraun Theorem (Theorem 5.2). To state our results, we need
to define a distance expansion graph for the map φ. This definition
is similar to the definition of the distortion graph.

Definition 5.1 (Distance expansion graph). Consider two

finite metric spaces (X ,dX ) and (Y ,dY ) and a map φ : X → Y .

Define the distance expansion graph for φ on elements of the space X

as follows. A pair of vertices (x ′, x ′′) is an edge in the graph if and

only if

dY (φ(x ′),φ(x ′′)) > dX (x ′, x ′′).

Theorem 5.2 (Robust one point extension theorem for L2
spaces). Consider two finite (multi)sets of points X ⊂ Rd ′

and Y ⊂
R
d ′′

and a map φ : X → Y . LetG = (X , E) be the distance expansion
graph for φ with respect to the Euclidean distance. Suppose that G is

θ everywhere-sparse. Then, for every u ∈ Rd ′
and positive ε , there

exists v ∈ Rd ′′
such that for all but possibly a θ ′(ε) fraction of points

x in X we have

∥φ(x) −v ∥ ≤ (1 + ε)∥x − u∥,
where θ ′(ε) = 2(1 + ε)2 · θ/ε .

First, we show how to derive the main result of this section
(Lemma 5.3) from Theorem 5.2 and then prove Theorem 5.2 itself.

Lemma 5.3. Consider two finite multisets of points X ⊂ Rd ′
and

Y ⊂ Rd ′′
and a one-to-one map φ : X → Y . Let G = (X , E) be the

distance expansion graph for φ with respect to the Euclidean distance.

Suppose that G is θ everywhere-sparse with θ ≤ 1/4p+1. Then, for
every p ≥ 1, we have the following inequality on the cost of the

clusters X and Y :

costp (X ) ≤ (1 + 3p+2θ1/(p+1)) costp (Y ).

Proof. Fix a parameter ε = θ1/(p+1) ≤ 1/4. Letu∗ be the optimal
center for the cluster X . By Theorem 5.2, there exists a point v∗ ∈
R
d ′′

such that for all but possibly a θ ′ = 2(1 + ε)2 · θ/ε fraction of
points x in X we have

∥φ(x) −v∗∥ ≤ (1 + ε)∥x − u∗∥.
Let X̃ be the set of points x for which the inequality above holds.

Then, |X̃ | ≥ (1 − θ ′)|X |. Let us place the center of the cluster Y to
v∗. This will give an upper bound on the cost costp (Y ):

costp (Y ) ≤
∑
y∈Y

∥y −v∗∥p =
∑
x ∈X

∥φ(x) −v∗∥p . (23)
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We now need to estimate the right hand side of (23). For x ∈ X̃ , we
already have a bound: ∥φ(x) −v∗∥p ≤ (1 + ε)p ∥x − u∗∥p . We use

the following claim to bound ∥φ(x) −v∗∥p for x ∈ X \ X̃ .

Claim 5.4. For all x ∈ X , we have

∥φ(x) −v∗∥p ≤ (1 + ε)p ∥x − u∗∥p + 3p

εp−1
· 2

|X |
∑
x ′∈X̃

∥x ′ − u∗∥p .

Proof. Fix x ∈ X . Let Ix be the set of its non-neighbors in the
distance expansion graph. I.e., x ′ ∈ Ix if ∥φ(x) −φ(x ′)∥ ≤ ∥x − x ′∥.
Since the distance expansion graph is θ everywhere sparse, the set

Ix contains at least (1 − θ )|X | points and Ix ∩ X̃ contains at least

(1 − θ − ε)|X | points. Consider an arbitrary x ′ ∈ Ix ∩ X̃ . By the
triangle inequality, we have

∥φ(x) −v∗∥ ≤ ∥φ(x) − φ(x ′)∥ + ∥φ(x ′) −v∗∥.

Now, ∥φ(x)−φ(x ′)∥ ≤ ∥x −x ′∥ because x ′ ∈ Ix and ∥φ(x ′)−v∗∥ ≤
(1 + ε)∥x ′ − u∗∥ because x ′ ∈ X̃ . Thus,

∥φ(x) −v∗∥ ≤ ∥x − x ′∥ + (1 + ε)∥x ′ − u∗∥.

Using the triangle inequality once again, we get

∥φ(x) −v∗∥ ≤
(
∥x − u∗∥ + ∥x ′ − u∗∥

)
+ (1 + ε)∥x ′ − u∗∥

= ∥x − u∗∥ + (2 + ε)∥x ′ − u∗∥.

By Lemma A.1 applied to the inequality above,

∥φ(x) −v∗∥p ≤ (1 + ε)p ∥x − u∗∥p +
( 1 + ε

ε

)p−1
(2 + ε)p ∥x ′ − u∗∥p

≤ (1 + ε)p ∥x − u∗∥p + 3p

εp−1
∥x ′ − u∗∥p , (24)

here we used that (1 + ε)(2 + ε) < 3 for ε ≤ 1/4.
We now average (24) over all x ′ ∈ Ix ∩ X̃ and use the bound

|Ix ∩ X̃ | ≥ (1 − ε − θ )|X | ≥ |X |/2:

∥φ(x) −v∗∥p ≤ (1 + ε)p ∥x − u∗∥p+
3p

εp−1
1

|Ix ∩ X̃ |

∑
x ′∈Ix∩X̃

∥x ′ − u∗∥p

≤ (1 + ε)p ∥x − u∗∥p + 3p

εp−1
· 2

|X |
∑
x ′∈X̃

∥x ′ − u∗∥p .

This concludes the proof of Claim 5.4. �

We now split the right hand side of (23) into two sums:

costp (Y ) ≤
∑
x ∈X

∥φ(x) −v∗∥p (25)

=

∑
x ∈X̃

∥φ(x) −v∗∥p +
∑

x ∈X \X̃
∥φ(x) −v∗∥p .

Write ∑
x ∈X̃

∥φ(x) −v∗∥p ≤ (1 + ε)p
∑
x ∈X̃

∥x − u∗∥p ,

and, using Claim 5.4,∑
x ∈X \X̃

∥φ(x) −v∗∥p

≤ (1 + ε)p
∑

x ∈X \X̃
∥x − u∗∥p + 3p

εp−1
· 2

|X |
∑

x ∈X \X̃
x ′∈X̃

∥x ′ − u∗∥p

= (1 + ε)p
∑

x ∈X \X̃
∥x − u∗∥p + 3p

εp−1
· 2|X \ X̃ |

|X |
∑
x ′∈X̃

∥x ′ − u∗∥p

≤ (1 + ε)p
∑

x ∈X \X̃
∥x − u∗∥p + 3p

εp−1
· 2θ ′

∑
x ′∈X̃

∥x ′ − u∗∥p .

Here we used that |X \ X̃ | ≤ θ ′ |X |. We now have bounds for the
both terms in the right hand side of inequality (25). We plug them
in and obtain the following upper bound on costp (Y ):

costp (Y ) ≤ (1 + ε)p
∑
x ∈X

∥x − u∗∥p + 3p

εp−1
· 2θ ′

∑
x ′∈X̃

∥x ′ − u∗∥p

≤
(
(1 + ε)p + 2θ ′ · 3p

εp−1

)
costp (X ).

Observe that (1 + ε)p ≤ 1 + p(1 + ε)p−1ε < 1 + 3pε and

2θ ′ · 3p
εp−1

=

4θ (1 + ε)2 · 3p
εp

= 4(1 + ε)2 · 3pε ≤ 7 · 3pε .

Therefore,
costp (Y ) ≤ (1 + 3p+2ε) costp (X ).

�

5.1 Proof of Theorem 5.2

We prove Theorem 5.2 using a duality argument. Fix a positive ε ;
and denote the size of X by n. Let η = (θ ′(ε)n)−1. Consider the
following convex polytope:

Λη = {λ ∈ RX :
∑
x ∈X

λx = 1; λx ′ ≤ η for all x ′ ∈ X }.

For every λ ∈ Λη , u
′ ∈ Rd ′

, and v ′ ∈ Rd ′′
, let

f (X , λ,u ′) =
∑
x ∈X

λx ∥u ′ − x ∥2, and (26)

f (φ(X ), λ,v ′) =
∑
x ∈X

λx ∥v ′ − φ(x)∥2.

That is, f (X , λ,u ′) is the cost of a single clusterX with a center inu ′

according to the weighted k-means objective. The weight of a point
x ∈ X is λx . Similarly, f (φ(X ), λ,v ′) is the cost of the cluster φ(X )
with a center in v ′. The optimal centers for clusters X and φ(X )
are located at the centers of mass of X and φ(X ) respectively. Thus,
for a given λ ∈ Λη , X , and φ, the objective functions f (X , λ,u ′)
and f (φ(X ), λ,v ′) are minimized when u ′ =

∑
x λxx and v ′

=∑
x λxφ(x). Consequently (see Section B for details),

min
u′∈Rd′

f (X , λ,u ′) =
∑

(x ′, x ′′)∈P
λx ′λx ′′ ∥x ′ − x ′′∥2; and (27)

min
v ′∈Rd′′

f (φ(X ), λ,v ′) =
∑

(x ′, x ′′)∈P
λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2, (28)

where P is the set of all unordered pairs (x ′, x ′′) with x ′, x ′′ ∈ X .
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Let F (v ′, λ) = (1 + ε)2 f (X , λ,u) − f (φ(X ), λ,v ′). Our goal is to
show that

max
v ′∈Rd′′

min
λ∈Λη

F (v ′
, λ) ≥ 0. (29)

Lemma 5.5. Inequality (29) holds.

Proof. Observe that functions f (X , λ,u) and f (φ(X ), λ,v) are
linear in λ for fixed u and v and convex in u and v respectively
for a fixed λ (see (26)). Hence, v ′ 7→ F (v ′, λ) is a concave function
for every λ; and λ 7→ F (v ′, λ) is a linear function for every v ′.
Therefore, by the von Neumann minimax theorem, we have

max
v ′∈Rd′′

min
λ∈Λη

F (v ′
, λ) = min

λ∈Λη
max

v ′∈Rd′′
F (v ′
, λ).

Thus, it suffices to prove that maxv ′∈Rd′′ F (v ′, λ) ≥ 0 for all λ ∈ Λη .
Fix λ ∈ Λη . Then,

max
v ′∈Rd′′

F (v ′
, λ) = max

v ′∈Rd′′
(1 + ε)2 f (X , λ,u) − f (φ(X ), λ,v ′)

= (1 + ε)2 f (X , λ,u) − min
v ′∈Rd′′

f (φ(X ), λ,v ′)

≥ min
u′∈Rd′′

(1 + ε)2 f (X , λ,u ′) − min
v ′∈Rd′′

f (φ(X ), λ,v ′).

Using formulae (27) and (28) for the minimum of the function f ,
we have

max
v ′∈Rd′′

F (v ′
, λ) ≥ (1 + ε)2

∑
(x ′, x ′′)∈P

λx ′λx ′′ ∥x ′ − x ′′∥2

−
∑

(x ′, x ′′)∈P
λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2

=

∑
(x ′, x ′′)∈P

λx ′λx ′′
[
(1 + ε)2∥x ′ − x ′′∥2 − ∥φ(x ′) − φ(x ′′)∥2

]
.

We now split the sum on the right hand side into two parts: the
sum over pairs (x ′, x ′′) ∈ E and pairs (x ′, x ′′) < E. Then, we upper
bound each term in each of the sums. For (x ′, x ′′) ∈ E, we use a
trivial bound

(1 + ε)2∥x ′ − x ′′∥2 − ∥φ(x ′) − φ(x ′′)∥2 ≥ −∥φ(x ′) − φ(x ′′)∥2.
For (x ′, x ′′) < E, we have ∥x ′ − x ′′∥2 ≥ ∥φ(x ′) − φ(x ′′)∥2 by the
definition of the distance expansion graph, and hence

(1+ε)2∥x ′−x ′′∥2 −∥φ(x ′)−φ(x ′′)∥2 ≥ ((1+ε)2−1)∥φ(x ′)−φ(x ′′)∥2.
Denote ε ′ = (1 + ε)2 − 1. We obtain the following bound:

max
v ′∈Rd′′

F (v ′
, λ) ≥ ε ′

∑
(x ′, x ′′)∈P\E

λx ′λx ′′ ∥φ(x ′) (30)

− φ(x ′′)∥2 −
∑

(x ′, x ′′)∈E
λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2

= ε ′
∑

(x ′, x ′′)∈P
λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2

− (1 + ε ′)
∑

(x ′, x ′′)∈E
λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2.

We estimate the second sum using the following claim.

Claim 5.6. For all x ′, x ′′ ∈ X and λ ∈ Λη , we have

∥φ(x ′) −φ(x ′′)∥2 ≤ 2
∑
x ∈X

λx ∥φ(x) −φ(x ′)∥2 +λx ∥φ(x) −φ(x ′′)∥2.

Proof. The desired inequality is the convex combination of the
relaxed triangle inequalities for squared Euclidean distances (see
Corollary A.2):

∥φ(x ′) − φ(x ′′)∥2 ≤ 2
[
∥φ(x) − φ(x ′)∥2 + ∥φ(x) − φ(x ′′)∥2

]
with weights λx . Note that

∑
x ∈X λx = 1 for each λ ∈ Λη . �

By Claim 5.6,∑
(x ′, x ′′)∈E

λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2 ≤

2
∑

(x ′, x ′′)∈E
λx ′λx ′′

∑
x ∈X

(
λx ∥φ(x) − φ(x ′)∥2 + λx ∥φ(x) − φ(x ′′)∥2

)

= 2
∑

x ,x ′∈X


∑

x ′′:(x ′, x ′′)∈E
λx ′′


λxλx ′ ∥φ(x) − φ(x ′)∥2.

Since the degree of every vertex x ′ in the distance expansion graph
is at most θn and each λx ′′ ≤ η, we have

[∑
x ′′:(x ′, x ′′)∈E λx ′′

]
≤ θηn.

Therefore,∑
(x ′, x ′′)∈E

λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2

≤ 2θηn
∑

x ,x ′∈X
λxλx ′ ∥φ(x) − φ(x ′)∥2

= 4θηn
∑

(x ′,x ′′)∈P
λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2.

Note that 4θηn = 2ε/(1 + ε)2 < ε ′/(1 + ε ′). We plug in the bound
above in Equation (30) and obtain the desired inequality:

max
v ′∈Rd′′

F (v ′
, λ) ≥ ε ′

∑
(x ′, x ′′)∈P

λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2

− (1 + ε ′) · ε ′
1 + ε ′

∑
(x ′, x ′′)∈P

λx ′λx ′′ ∥φ(x ′) − φ(x ′′)∥2 = 0.

�

Letv be the point that maximizes the functional minλ∈Λη F (v, λ).
By Lemma 5.5, minλ∈Λη F (v, λ) ≥ 0 or, in other words, F (v, λ) ≥ 0

for all λ ∈ Λη . Consider the set S = {x ∈ X : ∥φ(x) − v ∥ >
(1 + ε)∥x − u∥}. If S = ∅ then we are done. Otherwise, define a
vector λ∗ as follows

λ∗x =

{
1/|S |, if x ∈ S

0, otherwise.

Note that (1 + ε)2∥x − u∥2 − ∥φ(x) − v ∥2 is negative for all x ∈ S

(by the definition of S). Hence,

F (v, λ∗) = 1

|S |
∑
x ∈S

(1 + ε)2∥x − u∥2 − ∥φ(x) −v ∥2 < 0

and, consequently, λ∗ < Λη . Therefore, 1/|S | > η (otherwise, λ∗

would belong to Λη ) and |S | < 1/η = θ ′(ε)n. This finishes the
proof of Theorem 5.2 since for all x < S , we have ∥φ(x) − v ∥ ≤
(1 + ε)∥x − u∥.

Proof of Theorem 3.3. Let X = C̃ and Y = φ(C̃). We apply
Lemma 5.3 to maps (1 + ε)φ and (1 + ε)φ−1 and get the desired
result. �
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A INEQUALITY FOR THE SUM OF p-TH

POWERS

Lemma A.1. Let x and y1, . . . ,yr be non-negative real numbers,

and ε > 0, p ≥ 1. Then(
x +

r∑
i=1

yi

)p
≤ (1 + ε)p−1xp +

(
(1 + ε)r

ε

)p−1 r∑
i=1

y
p
i .

Proof. Let t = 1
1+ε . Write,(

x +

r∑
i=1

yi

)p
=

1

tp

(
tx +

r∑
i=1

1 − t

r

( r t yi
1 − t

))p
.

The expression in the parentheses on the right is a convex combina-

tion of numbers x,
r ty1
1−t , . . . ,

r tyr
1−t with coefficients t, 1−tr , . . . ,

1−t
r

(which add up to 1). Applying Jensen’s inequality, we get

1

tp

(
tx +

r∑
i=1

1 − t

r

( r t yi
1 − t

))p
≤ txp

tp
+

1 − t

r tp

r∑
i=1

( r t yi
1 − t

)p

= (1 + ε)p−1xp +
(
(1 + ε)r

ε

)p−1 r∑
i=1

y
p
i .

�

Corollary A.2 (Relaxed triangle ineqalities). For any vec-

tors u, v ,w and numbers ε > 0, p ≥ 1, we have
1.

∥u −w ∥p ≤ (1 + ε)∥u −v ∥p +
(
(1 + ε)

ε

)p−1
∥v −w ∥p .

2.

∥u −w ∥2 ≤ 2∥u −v ∥2 + 2∥v −w ∥2.

Proof. Using Lemma A.1, we get ∥u −w ∥p ≤ (∥u −v ∥ + 2∥v −
w ∥)p ≤ (1 + ε)∥u −v ∥p +

(
(1+ε )
ε

)p−1
∥v −w ∥p . Item 2 is a special

case of this inequality with ε = 1 and p = 2. �

B CLOSED-FORM EXPRESSION FOR THE

COST OF A CLUSTER

In this section, we derive a well known formula (27) for computing
the cost of a cluster with respect to the k-means objective. The
optimal center of the cluster formed by points in setX with weights
λx is located in the center of mass of X . Let a and b be i.i.d random
variables such as Pr(a = x) = Pr(b = x) = λx . Then, the cost of the
cluster X equals E[(a − Ea)2] = Var[a] and

∑
(x ′, x ′′)∈P

λx ′λx ′′ ∥x ′−x ′′∥2 = 1

2

∑
(x ′, x ′′)∈X×X

λx ′λx ′′ ∥x ′−x ′′∥2

=

1

2
E∥a − b∥2 = Ea2 − (Ea)2 = Var[a].

C SUB-GAUSSIAN TAILED DIMENSION

REDUCTION

In this section, first we prove that every sub-Gaussian tailed di-
mension reduction is standard. Then we show that the Gaussian
dimension reduction is sub-Gaussian tailed.

Lemma C.1. Let ε < 1/2. Assume that a family of random maps

πm,d : R
m → Rd satisfies the condition of Theorem 1.1 and is sub-

Gaussian tailed (satisfies Definition 1.2). Then πm,d is a standard

dimension reduction (see Definition 2.1).

Proof. Denote the parameters of dimension reduction πm,d by
(ε, δ , ρ). Since πm,d satisfies the condition of Theorem 1.1, δ ≤
exp(−cε2d) for some c .

Let u be a unit vector in Rm and ξ = ∥π (u)∥ − 1. Since πm,d is

sub-Gaussian tailed, Pr (ξ > t) ≤ exp(−ct2d) for some c . We assume
that d ≥ c(p − 1)/ε2. We have,

E

[
1 {{∥π (u)∥ > (1 + ε)∥u∥}}

( ∥π (u)∥p
∥u∥p − (1 + ε)p

)]

= E
[
1 {ξ > ε} ((1 + ξ )p − (1 + ε)p )

]
=

∫ ∞

ε
((1 + t)p − (1 + ε)p )d Pr (ξ ≤ t)

=

∫ ∞

ε
p(1 + t)p−1 Pr (ξ > t)dt

≤
∫ ∞

ε
p(1 + t)p−1e−ct 2ddt

=

∫ ∞

ε
(p(1 + t)p−1e−ct 2d/2)e−ct 2d/2dt

By differentiating д(t) = p(1 + t)p−1e−ct 2d/2 by t , we get that д′(t)
is decreasing when t(1+ t) ≥ p−1

cd
. Since d ≥ c(p−1)

ε2
, д(t) attains its

maximum on [ε,∞) when t = ε . We have

д(t) ≤ p(1 + ε)p−1e−cε2d/2 ≤ e−(p−1)/ε
2
+lnp+(p−1) ln(1+ε ) ≤ 1

(here, we used that ε ≤ 1/2 and d ≥ c(p − 1)/ε2. Therefore,

E
[
1 {ξ > ε} ((1 + ξ )p − (1 + ε)p )

]
≤

∫ ∞

ε
e−ct

2d/2dt

≤
∫ ∞

ε

t

ε
e−ct

2d/2dt

=

1

cdε

∫ ∞

ε2/2
e−cdsds =

1

cdε
e−cdε

2/2
< e−cdε

2/2
.

�

Consider a d × m matrix G whose entries are i.i.d. Gaussian
random variables N(0, 1). Matrix G defines a linear dimension re-
duction π (u) = Gu√

d
[IM98].

Claim C.2. The Gaussian dimension reduction π (defined above)

is sub-Gaussian tailed.

Proof. Let u be a unit vector in Rm , ξ = ∥π (u)∥ − 1 and η =√
d(ξ + 1) =

√
d ∥π (u)∥. Note that η2 has the χ2-distribution with d

degrees of freedom. As was shown by Laurent and Massart [LM00,

Lemma 1, Inequality (4.3)], Pr
(
η2 − d ≥ 2

√
d · x + 2x

)
≤ e−x for
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any positive x . Plugging in x = t2d/2 (where t > 0), we get

Pr (ξ ≥ t) = Pr
(
(ξ + 1)2 ≥ 1 + 2t + t2

)
≤ Pr

(
(ξ + 1)2 − 1 ≥

√
2t + t2

)
= Pr

(
η2 − d ≥ 2

√
dx + 2x

)
≤ e−x = e−t

2d/2
.

�
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