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ABSTRACT

Group meetings can suffer from serious problems that undermine
performance, including bias, “groupthink”, fear of speaking, and
unfocused discussion. To better understand these issues, propose
interventions, and thus improve team performance, we need to
study human dynamics in group meetings. However, this process
currently heavily depends on manual coding and video cameras.
Manual coding is tedious, inaccurate, and subjective, while active
video cameras can affect the natural behavior of meeting partici-
pants. Here, we present a smart meeting room that combines mi-
crophones and unobtrusive ceiling-mounted Time-of-Flight (ToF)
sensors to understand group dynamics in team meetings. We auto-
matically process the multimodal sensor outputs with signal, image,
and natural language processing algorithms to estimate participant
head pose, visual focus of attention (VFOA), non-verbal speech
patterns, and discussion content. We derive metrics from these
automatic estimates and correlate them with user-reported rank-
ings of emergent group leaders and major contributors to produce
accurate predictors. We validate our algorithms and report results
on a new dataset of lunar survival tasks of 36 individuals across 10
groups collected in the multimodal-sensor-enabled smart room.
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1 INTRODUCTION

Management studies report that tens of millions of meetings take
place every day in the US, incurring a tremendous cost in terms of
managers’ and employees’ precious time and salary [39]. Meetings
are often ineflicient, unfocused, and poorly documented. Any steps
to make group meetings for complex, long-term projects more
productive and easier to control would have immediate economic
impact.

Automated group meeting facilitation can be passive or active.
Passive meeting facilitation includes understanding participation
and productivity shifts; when and why a meeting becomes unpro-
ductive; how factors like rapport, emergent team processes, mutual
attentiveness, and coordination affect the productivity of a meeting;
and how participants assume emergent leadership roles. Improved
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measurement of emergent team processes is critical to advance
the theory and understanding of collaborative decision making in
groups [46]. A passive automated meeting facilitator could gener-
ate a retrospective summary of a meeting, as well as analyze the
meeting to provide insights into the human interaction pattern that
occurred.

On the other hand, an active automated meeting facilitator could
aid in group decision making in real time. It could mediate the
meeting by subtly reminding participants to talk more or less based
on the real-time estimated speaking balance in the room. The room
could additionally detect productivity shifts due to inattentiveness
or lack of coordination and instigate a new line of thought. Further-
more, it could keep the meeting on track by correlating the agenda
and the discussion schedule in real time.

A smart service system for passive and active meeting facilitation
needs to automatically estimate participants’ body and head poses,
as well as record their speech. In existing work that analyzes group
meetings, the locations of participants and their head poses and
gaze directions are either manually annotated [37], which can be
extremely time-consuming, or alternatively estimated using special
wearable sensors [42], one or more cameras [10, 27], or front-facing
Microsoft Kinects [40]. However, the presence of visible cameras
can alter participants’ natural behavior [51], and having unusual
sensors directly in front of ones’ face or in the line of sight may
also inhibit natural individual behavior or group interactions. We
posit that a room in which the participants are as unaware of being
sensed as possible is best for studying natural group dynamics.

In this paper, we propose a multimodal-sensor-enabled room to
facilitate group meetings, allowing the automatic extraction of a
wide array of complementary metrics. The participants have natural
conversations across a table with no sensors in their lines of sight
while being recorded from above with ceiling-mounted, downward-
pointed time-of-flight (ToF) distance sensors. We present a novel
method to process the sensors’ data to automatically estimate each
participant’s head pose and visual focus of attention. In parallel,
the participants’ microphone signals are fed through speech-to-text
software and processed with natural language processing algo-
rithms to automatically extract opinions and identify targets, result-
ing in play-by-play minutes of the meeting as it evolves. We tested
the data extraction and multimodal signal processing algorithms
on a new dataset of 36 individuals across 10 groups completing
the lunar survival task in this sensor-instrumented smart room.
We derive several spatial, non-verbal and verbal metrics from the
different modalities and study their correlation with participants’
post-task assessments of individuals’ leadership and contribution,
resulting in a linear regressor that accurately predicts perceived
emergent leaders and perceived major contributors.

2 RELATED WORK

Studying human dynamics in face-to-face small group interactions
is an active area of research. Perez [21] reviewed around a hun-
dred papers dealing with small social interactions with a focus
on non-verbal behavior, computational models, social constructs,
and face-to-face interactions. The range of topics in the automatic
analysis of these social interactions includes interaction manage-
ment (addressee, turn-taking), internal states (interest, other states),
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dominance (extroversion, dominance, locus of control) and roles
(relationships). Murray [38] studied the relationship between the
productivity of a meeting and linguistic and structural features. Lai
et al. [33] showed how turn-taking patterns affect the perception
of satisfaction and cohesion. Kim and Rudin [31] showed how ana-
lyzing local dialogue acts can predict when key decisions are being
made in a group meeting.

However, much of this research heavily depends on human cod-
ing of events from recorded data. For example, Mathur et al. [37]
developed a method for detecting interaction links between partic-
ipants in a meeting using manually annotated video frames. The
participants were asked to wear brightly-colored vests and personal
audio recorders, and manual coding was used to localize each par-
ticipant, record whether they were sitting or standing, and estimate
whether they were speaking.

Automatic analysis of group interactions involves multimodal
recording together with signal processing and computer vision
techniques to derive various metrics for group dynamics analysis.
Several multi-modal corpora have been designed for analysis of
group meetings, using different combinations of modalities. These
include the ICSI Meeting Corpus [26] (head-worn and table-top
microphones), the ISL meeting corpus [14] (microphones), the AMI
corpus [30] (video cameras and microphones), the ATR database
[15] (small 360-degree camera surrounded by an array of high-
quality directional microphones), the NTT corpus [41-43] (video
cameras, microphones and wearable sensors), and the ELEA corpus
[48] (close-talking mono-directional microphones, Kinects, and
GoPro cameras).

Understanding the visual focus of attention (VFOA) of meeting
participants is an important part of the automatic analysis of group
meetings. The head pose (the head position and the head orientation
defined by the pitch, yaw and roll angles) is often taken as a proxy
for estimating the gaze direction. In existing literature, researchers
mostly use front-facing cameras [5, 6, 10, 27, 36, 50], front-facing
Kinects [40], or wearable sensors [42] for the automatic estimation
of VFOA. However, video cameras and Kinects facing meeting
participants is unnatural and could make people uncomfortable or
inhibited, defeating the original purpose of studying natural human
behavior in group interactions. In this paper, we propose a novel
method for head pose and VFOA estimation in group meetings
using ceiling-mounted, downward-facing Kinects. Mounting the
Kinects on the ceiling makes them unobtrusive, well out of the
fields of view of meeting participants. To the best of our knowledge,
there is no work that employs ceiling-mounted Kinects for head
pose and VFOA estimation, but as we show, our VFOA estimation
accuracy is comparable to previous systems.

The correlation between non-verbal metrics (VFOA and speech
signal based) and social-psychological group variables, such as per-
ceived leadership, perceived dominance, and perceived extroversion
was studied by Jayagopi et al. [27]. Beyan et al. studied the predic-
tion of emergent leadership from non-verbal metrics [8, 10], and
further investigated the problem of predicting the leadership style
(autocratic or democratic) of an emergent leader [9]. In existing
work on emergent leadership, researchers often employ personality
trait-based questionnaires (e.g., agreeableness, conscientiousness,
extroversion, neuroticism, openness) [27], such as NEO-FFI [29],
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the General Leader Impression Scale (GLIS) [35], or manual annota-
tion [8, 10]. In contrast, we do not use any personality-trait-based
questionnaire or manual annotation for emergent leadership analy-
sis because we are interested in who the group perceives as a leader.
Such perception of the leader can be subjective and may vary from
individual to individual. For example, someone who helps keep the
discussion on track may be considered as a leader by some people,
while someone who suggests the best answers to a problem may be
considered as a leader by others. We leave this open to interpreta-
tion for the meeting participants and use a leadership score assigned
by the participants as our metric for leadership. Perceptions, and
in particular the convergence of perception, are important shared
properties of the team that have bearings on team performance
[32].

3 THE MULTIMODAL-SENSOR-ENABLED
MEETING ROOM

Our experimental testbed is an 11" X 28’ conference room with
two types of ceiling-mounted, downward-pointed Time-of-Flight
(ToF) sensors [2]. These include 18 low-resolution IRMA Matrix ToF
sensors, designed by Infrared Intelligent Systems (IRIS) and two
higher-resolution Microsoft Kinect sensors, positioned over each
side of the table, in order to capture seated individuals’ head pose.
Since the sensors are all embedded in the ceiling, they are outside
participants’ sight lines and there is no sense of being “watched”.
ToF sensors are advantageous compared to cameras in that (1) they
return distance maps instead of images, enabling the direct creation
of 3D point clouds of the environment, and (2) they are more robust
to variations in the ambient lighting in the environment and the
color/reflectiveness of the participants’ clothing.

We use lapel microphones on each participant to record audio
information. We removed noise from the audio signals in Audac-
ity [4] and then performed automatic speaker identification using
techniques described in [23]. For each lapel microphone record-
ing, speech segments were detected by applying a dynamically
estimated thresholding criterion on the extracted signal energy
and the spectral centroid. Accurate timestamps also allowed us
to downsample the speaker identification information (collected
at 48kHz) to the Kinect frame rate of 15fps. Thus, for a meeting
with P participants, at each Kinect frame, we have a P-bit speaker
label, where each bit denotes whether the participant is speaking
or not. We extract several individual non-verbal metrics from the
segmented speech, similar to [27]. These include speaking lengths,
interruptions, speaking overlap, and backchannels (short responses
like “uh-huh”, “yes”, “hmm”, that are less than 2 seconds in duration,
consistent with the definition in [27]). The first section of Table 1
lists these non-verbal metrics.

The recorded audio was transcribed to text using IBM Watson’s
Speech-to-Text API [49], which uses Long Short-Term Memory
(LSTM) and Residual (ResNet) neural networks. The automatic
transcriptions were further manually touched up to ensure the
transcription was accurate and to compare algorithmic performance
on raw vs. processed text.

Thus, the overall recorded multimodal data included the lower-
resolution depth map from the 18 overhead IRMA Matrix ToF sen-
sors (at 30 fps), the higher-resolution depth map from the 2 overhead
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Kinect sensors (at 15 fps), and audio information collected from in-
dividual lapel microphones on each participant (at 48kHz). We also
collected reference video using two video cameras at the far ends
of the room. The video camera data is not used for any algorithm
development and is purely used for illustrations and ground truth
determination.

In order to synchronize the different modalities, each meeting
discussed below started with a clap from a non-participant. Each
of the lapel microphones, the two Kinects, the IRMA Matrix ToF
sensors and the reference video camera recordings were synced
together using the clap as the audio-visual cue for the start of
the meeting. The VFOA of each of the meeting participants was
manually annotated for 1 of the 10 meetings using the video cam-
era recordings. This resulted in a dataset of approximately 45320
examples of ground-truthed VFOAs.

4 THE LUNAR SURVIVAL TASK DATASET

We recorded 36 individuals across 10 groups who completed the
Lunar Survival Task [24] in the multimodal-sensor-enabled meeting
room, which forms our current dataset for meeting understanding.
The Lunar Survival Task is a widely-used group discussion task that
assesses the effects of deliberation processes on decision-making
quality. In small groups of 3-5, participants discuss a hypothetical
survival scenario on the moon and rank the value of 15 supplies
that may aid in their survival. Each discussion lasts from 10-15
minutes, after which the participants are asked to complete a post-
task questionnaire. In addition to questions relating to the age
and gender of the participants, the post-task questionnaire also
asked the participants to rate on a 5-point scale (not at all, a little,
somewhat, a lot, a great deal) the following questions:

e How well did you know each of your group members before
today?

o To what extent did the following group members contribute
to the discussion? [34]

e To what extent did the following group members act as a
group leader?

e For each of the following pairs of words, please indicate
the point on the scale that best represents your feelings
about the group conversation: engaging-boring, warm-cold,
comfortable—awkward, interesting—dull, friendly—detached.
(7]

The discussions were in English; based on self-reports, 40% of the
participants were White, 46% Asian and 12% Hispanic/Latino. The
ages of the participants ranged from 18 to 29 years and 40% of the
participants were women.

5 HEAD POSE AND VFOA ESTIMATION
USING TIME-OF-FLIGHT SENSORS

The general setup of each meeting is illustrated in Figure 1, which
shows one frame from the reference camera view of a meeting,
the low-resolution ToF depth map, and the corresponding location
tracking and coarse body orientation estimation results.

The sparse ToF sensors are sufficient for occupant tracking
[12, 28] and coarse body orientation estimation [11], but they do
not provide enough information for head pose estimation. Hence,
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Table 1: Automatically extracted non-verbal, visual, and ver-
bal metrics.

Description Symbol
Non-verbal Metrics (NV)
Fraction of speaking length SL
Fraction of silence FS
Fraction of single person speaking F1S
Fraction of two people speaking together F2S
Fraction of three people speaking together F3S
Fraction of four people speaking together F4S
Fraction of successful interruptions FSI
Fraction of unsuccessful interruptions FUI
Fraction of backchannels FBC
Fraction of speaking turns FST
Visual Metrics (VZ)
Attention received by a participant ATR
Attention given by a participant ATG
Attention Quotient (Ratio of ATR and ATG) ATQ
Attention Center (fraction of time a participant islooked ~ATC
at by all other participants)
Attention Center of two people ATC2
Attention Center of at least two people ATCa2
Fraction of mutual gaze FMG
Fraction of shared gaze FSG
Verbal Metrics (VB)
Fraction of times a participant acted as topic proposer  ITP
Fraction of times a participant acted as ranking proposer RAP
Fraction of times a participant mentioned the decision DM
ranking
Relative rate at which a participant mentioned the deci- FDM
sion ranking
Fraction of times a participant proposed the decision DMP
ranking for the first time
Fraction of times a participant summarized the decision DMS
ranking
TF-IDF informativeness score TFIDF
Averaged informativeness INFO
Fraction of number of sentences spoken by a participant  FOS

Figure 1: (a) Camera view, (b) Raw data from the sparse ToF
sensors stitched to form a depth map of the room, (c) Results
of the body orientation estimation algorithm: the red circle
indicates the speaker, detected from the microphone record-
ings. The green arrows indicate the automatically estimated
body orientations.
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we use two ceiling-mounted Kinects for this purpose; Figure 2 illus-
trates an example elevation map from one of these Kinects, which
contains the heads and upper torsos (with the chairs) of the seated
individuals. While head pose estimation from depth sensors is an
active area of research [13, 18, 44, 47], existing literature assumes
that the head is viewed from the front, not from above, so differ-
ent algorithms are required for our system. We now describe our
framework for processing overhead depth data to estimate head
pose and VFOA.

After thresholding based on the table height, the largest two
connected components in Figure 2 correspond to the two human
torsos. Segmenting the heads of people from the elevation map
requires the determination of threshold values that are specific
to each person. This value depends on several factors including
the lengths of people’s heads, their heights, and their pose (sitting
straight/leaning over the table). Thus, it is difficult to determine
a universal value that can be used for every person. In order to
decide the per-person threshold value, we compute a histogram
from the elevation values of the upper torso of each individual over
100 frames spread throughout the meeting duration, as illustrated
in Figure 3. Here, the peak with elevation values around 1400mm
corresponds to the head, and the valley around elevation value
1280mm corresponds to the neck and shoulder region. The rest
of the histogram with lower elevation values corresponds to the
portion of the body below the shoulders. Thus, detecting the mini-
mum point in the first valley from the right in the histogram gives
a threshold value for segmenting the head of an individual. Com-
puting the histogram from 100 frames distributed over the entire
meeting accounts for fluctuations due to movement of the body
(leaning over the table, leaning back on the chair), the position of
the hands with respect to the head (hands placed somewhere on the
head/cheek), or noisy depth data. This dynamic and person-specific
computation of the threshold produces a good head segmentation
for the majority of the frames.

Figure 2: The depth map from one overhead Kinect sensor.

5.1 Ellipsoid Fitting to 3D Heads

The next step is to estimate 3D head orientations of each participant
at each time instant. We compute 3D point clouds from the depth
map of each of the two Kinects, and apply a rigid transformation
that optimally aligns the two point clouds in the least-squares sense
to build a combined 3D point cloud of the entire scene. Each seg-
mented head is mapped from the 2D elevation map to the combined
3D point cloud. We now fit an ellipsoid to these 3D head points in
each frame.

We parameterize a rotated 3D ellipsoid using 9 parameters v =
la,b,c,d,e, f,g,h,i] as

aX? + bY? + cZ% + 2dXY + 2eXZ + 2fYZ + 2gX + 2hY +2iZ = 1



Poster Session 1

4000 - 1

3500 - 1

3000

[ S
o wu S Wu
S o S o
S S S 3

Number of pixels

%)
=)
S

0
900

1200
Elevation values from ground level (mm)

1000 1100 1300 1400 1500 1600

Figure 3: The histogram of elevation values of the upper
torso of an individual over 100 frames. The red line is the
estimated threshold value for head segmentation.

The set of N 3D head data points is used to build an Nx9 data
matrix D in which each row has the form

D = [X2, Y2, 22, 2X: Y, 2Xi 21, 2YiZi, 2X3, 2Y3, 221

The least-squared-error approximation of the unknowns is v =
(DTD)'DT1 ;. The center of the ellipsoid, the three radii, and
the three axes directions can be computed from the vector v. We
choose the ellipsoid axis that is closest to the unit vector pointing
from the head center to the center of the table as the head pose. We
found that several factors including noise, poor reflection from black
hair, different hairstyles, stray hairs, headgear like caps/hoodies,
hands on cheeks, and so on, mean that the segmented head and
the corresponding 3D head points may not all be a good fit for an
ellipsoid. Thus, we use the RANdom SAmple Consensus (RANSAC)
algorithm [20] to get rid of outliers during the fitting process. We
use a threshold inlier ratio of 0.8; that is at least 80% of the selected
head points should be inlier points. Figure 4 illustrates the result of
the ellipsoidal fit and head pose estimation for a sample participant.

Figure 4: Head pose estimation for a sample participant. The
left figure shows the 3D point cloud with the segmented 3D
head points in red. The right figure shows the fitted ellipsoid
with the head pose as a red arrow.

A good ellipsoid fit should have the 3D head points distributed
uniformly all over the surface of the ellipsoid. To test the goodness
of fit, we devised a metric, the ellipsoid score, defined as the sum of
the chi-squared error and the distance between the mean of the 3D
head points and the ellipsoid center. A small chi-squared distance
means that the ellipsoid surface is close to the head points. A small
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distance between the ellipsoid center and the mean of the 3D head
points ensures that the points are more or less uniformly distributed
over the surface of the ellipsoid. Thus, a good fit will have a small
ellipsoid score. We also define a confidence measure as the inverse
of the ellipsoid score. After an initial pass of computation of head
pose for all the Kinect frames of a meeting, we use the normalized
confidence measure to smooth the head arrow directions using a
weighted moving average technique. Figure 5 shows one frame of
the 3D reconstructed point cloud and the fitted ellipsoids and head
pose directions for all participants.

Figure 5: Ellipsoid fitting and head pose for all participants.
Since not all points are good for ellipsoid fitting, we use
RANSAC for removing outliers.

5.2 Estimating VFOA from computed head pose

Figure 6: The VFOA target locations in our meeting scenario.

In our scenario, we posit that the VFOA target locations for
a group meeting participant can either be one of the other par-
ticipants, the piece of paper in front of her/him, or somewhere
completely different. Figure 6 shows the labeled VFOA target lo-
cations for a meeting frame in our dataset. If a participant is not
looking at any of these 8 locations, the VFOA target is taken as
class 9. Thus, for example, the viable VFOAs for Person 1 are loca-
tions 2, 3, 4, 5, or 9. We used one meeting as our training data set
and computed the probabilities of each person looking at another
participant (either a speaker or non-speaker), the paper in front of
them, or elsewhere. The results are listed in Table 2. We see that
meeting participants spend approximately 50% of the time looking
at the paper in front of them. This is because completing the task
requires them to frequently refer to the list of items for comparative
decision making, and to write down the ranking based on the group
consensus for each item.
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Table 2: Annotated VFOA probabilities for a participant
based on training data.

VFOA — speaking | paper | other elsewhere
Participant is | participant participant

!

speaking 0.14 0.50 0.35 0.01
not speaking | 0.33 0.47 0.19 0.01
(someone else

is speaking)

not speaking | 0 0.49 0.50 0.01
(nobody else

is speaking)

Our VFOA estimator is a Bayes classifier that uses both the depth
information from the Kinect sensors and the synchronized speaker
identification information from the microphone recordings. The
likelihood term is computed from the head pose measurements
while the prior term is computed dynamically at each frame based
on the speaker information.

At each Kinect frame, we have the head pose of each participant,
which is represented as a unit vector from the center of the fitted
ellipsoid. We also have the 3D coordinates of all 8 target locations.
We then compute the angle between the head pose and each of the
target locations. The inverses of these angles, normalized to sum
to 1, become our likelihoods. Since the audio and Kinect frames
are synchronized, we can find the speaker/s at each Kinect time
instant by speaker segmentation as described in Section 3. We
compute the prior probability of each participant looking at any of
the VFOA target locations based on her/his role as a speaker or a
listener using the computed probabilities from the training data in
Table 2. Multiplying the likelihood with the prior gives the posterior
probability distribution, and the target that has the highest posterior
probability is considered as the VFOA of the participant. Since the
VFOAs of participants do not change abruptly, we post-process the
estimated target locations with a median filter of window size 15
frames.

We evaluated the performance of our VFOA estimation algorithm
on 1 manually annotated meeting of 13 minutes duration with 4
participants. The total number of frames was 11330x4 = 45320. The
accuracy of our algorithm on this sample was 48.35%. We note that
researchers have reported comparable accuracy (42%) for VFOA
estimation in similar group meeting settings with the same VFOA
target locations using front-facing video cameras [27], while our
sensor configuration is much less obtrusive. Recent work [9] on the
ELEA corpus (which uses front-facing video cameras and Kinects)
reports higher VFOA accuracies in the 80% range, but the target
locations are less complex and not directly comparable to our setup.

After VFOA estimation, we further derive various visual metrics,
such as the attention received and attention given by each partici-
pant, their ratio (attention quotient), and so on, as itemized in the
middle section of Table 1. We demonstrate in the correlation and
regression analyses in Section 7 that our VFOA estimation accu-
racy is sufficient to aid in accurately predicting perceived group
leaders and contributors. A short video clip illustrating the head
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pose and VFOA estimation on a meeting segment can be viewed at
https://youtu.be/kiSUJPSOZdE.

6 VERBAL SPEECH UNDERSTANDING

We now discuss verbal metrics obtained from automatic natural lan-
guage processing algorithms applied to each microphone channel.
Our goal is to extract measurements relevant to the participants’
leadership or influence within the group. In particular, we consider
how participants’ opinions change throughout the conversation,
and the amount and importance of information conveyed to the
group by each speaker. The result is a set of “structured minutes” of
the meeting that dynamically plays back the conversation, automat-
ically highlighting each of the 15 lunar task supply items when they
are discussed, along with the participants’ opinions of their ranking.
This refined “play-by-play” is represented internally as a bipartite
graph [25] as described below. A snapshot of the automatically
generated graphical summary is illustrated in Figure 7.

Rankings of Items at sentence 107
1.life raft

2.o0xygen

3.map
4.milk powder
4.compass
M receiver transmitte
4.water
5.heater
7.food

7.rope

8.First aid kit

Personl:okay cool so how about seven for item_First_aid_kit -
and eight for item_rope - T

Figure 7: A snapshot of the graphical summarization of a
meeting. The areas of the red circles are proportional to the
cumulative speaking time of each participant. Straight lines
connect the participants with their proposed items and item
rankings.

6.1 Opinion extraction and target identification

In the lunar survival task discussion, participants can express their
opinions of item ranks in several ways, including

(1) Explicitly ranking an item (e.g., “The oxygen tank should be
first.”)

(2) Agreement or disagreement (e.g., “Yeah, I agree.”)

(3) Comparison of the items by relative ranking (e.g., “Water
should be higher than the compass.”)

In the first case of a participant proposing an item ranking, we
use the Stanford CoreNLP Named Entity Recognizer (NER) an-
notator to extract the NUMBERs and ORDINALs mentioned in
the discussion [19]. We also eliminated numbers beyond 15 and
numbers that are parts of pronouns like "this one". We address
the second case by observing that people typically express agree-
ment/disagreement with the person who talked immediately before
them [1]. For agreement, we assume the current speaker accepts
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the previous speaker’s stated opinion. For disagreement, we noted
that people typically express their own opinion about a contested
item immediately after disagreement (similar to the first case). We
currently do not capture the third case of relative rankings, since
no definitive ranking can be extracted from such a statement, and
the objects are typically discussed at specific ranks later.

Identifying the target (i.e., object) of a ranking has two steps.
First, we identify the term in a sentence that refers to the same item
by a dictionary of synonyms collected from the observation. We
then use a rule-based algorithm to link the rank closest to the item
as the extracted pair.

To capture the instantaneous state of the discussion, we use
an undirected bipartite graph G = (U U V, E), where the vertices
U represent the participants, the vertices V represent the items,
and the edges E represent user rankings of objects. Each edge
has a weight corresponding to the stated ranking. As the meeting
continues, the bipartite graph is dynamically built up, allowing us
to view the current opinions of items that have been discussed so far
and to observe the opinion changes throughout the conversation.
A short video clip illustrating the the graphical summarization of
the meeting can be viewed at https://youtu.be/9z80fmEtIuw.

6.2 Derived verbal metrics

Finally, we extract two categories of verbal metrics for the purpose
of leadership modeling, as summarized at the bottom of Table 1.

6.2.1 Metrics related to the mentions of items/ranking-item pairs.
To reach group consensus, participants may change their opin-
ions based on the opinions expressed by other participants in the
conversation, which is an influential process that could affect the
leadership scores of these participants. The opinion extraction and
target identification allows us to easily extract metrics related to
this opinion change. In particular, these include the number of times
each participant proposes an item or ranking for the first time, and
the number of times a participant’s expressed opinion agrees with
the final group consensus, which we call decisive mentions. To
explore whether perceived leadership is more related to proposing
items/ranks or summarizing the group consensus, we count the
number of decisive mentions a participant makes in the role of
proposer and summarizer.

6.2.2 Metrics related to the efficiency of conveying information.
We hypothesize that participants who make more informative ut-
terances are perceived by the group as leaders. In the lunar survival
scenario, we observed that emergent leaders often actively men-
tioned items (e.g., to propose a ranking, or to argue or defend
against opinions on item usage), while the other participants made
fewer explicit item mentions and their utterances usually consisted
of expressions of general agreement or disagreement. To reflect
this observation, we computed TF-IDF (term frequency-inverse
document frequency) scores [45].

7 ANALYSIS OF LEADERSHIP AND
CONTRIBUTION

Each meeting was followed by a post-task questionnaire as de-
scribed in Section 4. Using the questionnaire, we define two target
variables: perceived leadership and perceived contribution. Since
each group member rates the leadership and contribution of all
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other group members on a 5-point scale, we compute an individ-
ual’s perceived leadership score as the average of all leadership
scores they receive from their group. The perceived contribution
score is defined similarly.

We computed the Pearson Correlation Coefficient (p) to under-
stand the correlation between the metrics and the target variables.
We then regressed each target variable against the non-verbal audio,
verbal, and visual metrics for each of the 36 participants to test the
predictive power of the metrics that we compute, and to determine
which metrics were most salient. First, single variable regressions
were performed to determine the relationship between each of the
metrics and the target variables.

Verbal metrics were overall the best predictors of leadership and
contribution, as illustrated in Figure 8. DM correlated most strongly
with leadership (p = 0.46, p = 0.005), since the leader is typically
the person driving the discussion and working to finish the task.
Leaders also propose topics, propose ranks, and summarized the
decision ranking at significantly higher rates than other group
members (all p < 0.05), yielding further evidence that leaders were
driving the discussion. The relationship between the verbal metrics
and perceived contribution was qualitatively similar. Even though
FDM was most strongly correlated with perceived contribution (p
=0.52, p < 0.001), DM was also very strongly correlated (p = 0.51,
p <0.001), as were RAP (p = 0.44, p < 0.001) and DMS (p = 0.40, p <
0.001). However, ITP was not strongly correlated with perceived
contribution. Thus top contributors were not likely to propose new
discussion topics, in contrast with leaders.

Nonverbal metrics were much less salient. Among the 10 nonver-
bal metrics we computed, none were significantly associated with
either perceived leadership or contribution. FSI had the strongest
correlation with leadership (p = 0.28, p = 0.1) while FST had the
most correlation with contribution (p = 0.26, p = 0.1). This can be in-
terpreted in the sense that an individual who is able to successfully
interrupt another person is listened to by the other participants
and given importance as a leader.

Within the visual metrics, leadership was most significantly cor-
related with ATQ (p = 0.37, p = 0.07). Leaders tend to receive more
visual attention than they give, though the association is just above
the 0.05 level of significance. This is in line with observations made
in [22], where the authors report that emergent leaders are looked at
more often than other participants. Interestingly, the visual metric
that most strongly correlates with perceived contribution is ATG,
but the relationship is negative (p = —0.44, p = 0.007), suggesting
that high level contributors tend to look at peers in the discussion
less often than others.

We used multiple linear regression to investigate the capabil-
ity of the extracted metrics to predict the post-task questionnaire
variables of leadership and contribution. From the experiments, we
found that a combination of all the visual, non-verbal and verbal
metrics can explain 65% (F = 1.39, p = 0.26) of the variability of the
leadership scores. Similarly, all the metrics combined can explain
63% (F = 1.27, p = 0.32) of the variability of the contribution scores,
as shown in Figure 8.

The leadership scores and the contribution scores have a corre-
lation coefficient of 0.63. Therefore, we can say that groups do not
necessarily choose the participant who contributed the most as the
leader, although the two variables are strongly correlated. Finally,
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we used the linear regression coefficients to predict the leadership
and contribution scores for each participant. Since the actual lead-
ership scores are quantized, we also quantize the predicted scores
to the nearest actual bin and find the participant(s) with the highest
scores. An actual perceived group leader is the participant(s) with
the highest received leadership score. Similarly, a predicted group
leader is the participant(s) with the highest predicted quantized
leadership score. We found that combining the visual, non-verbal
and verbal metrics, we were capable of predicting the perceived
emergent leader with an accuracy of 90% (i.e., for 9 of the 10 meet-
ings). Using a similar method for contribution, we found that we
could predict the major contributor with a 100% accuracy with
the verbal metrics alone. This result is promising and shows that
even without front-facing video cameras, we can analyze group
meetings in terms of leadership and contribution to a plausible level

of accuracy.

Full Model
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Figure 8: Comparison of 4 regression models on the two de-
pendent variables, perceived leadership and perceived con-
tribution to discussion. The first three models (visual, non-
verbal, verbal) take into account all variables in each group,
as specified in Table 1. The full model combines all variables
from the first 3 models.

8 CONCLUSIONS AND FUTURE WORK

We presented a multimodal-sensor-enabled smart room that does
not use video cameras or obtrusive sensing techniques that might
make participants feel “watched”. Our initial analysis of the lunar
survival task experiments in this room provides good results for
passive meeting understanding. We can predict group leaders and
major contributors with 90% and 100% accuracy respectively, using
the automatically extracted metrics. In future work, we plan to
make this room an active meeting facilitator, subtly stepping in
during a meeting to manage the participants and agenda.

One promising avenue for improved analysis involves the auto-
mated identification of the gender of meeting participants. Prior
research has shown significant differences in the way that women
and men interact and are perceived in team meeting environments.
Indeed, controlling for gender in our regression model allows us
to reduce the degrees of freedom of the model from 20 down to
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13, while improving the R? and F-test value. For the perceived
leadership regression, changing the model in this way yields an
R? = 0.686, F = 3.69, p = 0.003. For the perceived contribution
regression, changing the model in this way yields an R? = 0.667,
F = 3.01, p = 0.011. For active meeting facilitation, we can infer
gender from the recorded speech signal.

With regard to the ToF sensing modality, we want to modify
our VFOA estimation algorithm to include supervised learning
techniques with more contextual cues, which should improve the
accuracy. We also want to implement more sophisticated supervised
learning techniques for predicting leadership scores and styles of
leadership by combining other metrics involving coarse body pose
extracted from the lower-resolution ToF sensors, and body and
head activities, as discussed in [9].

Currently, we are using individual lapel microphones for each
participant. However, our ultimate aim is to have a smart room that
is completely unobtrusive and does not require the participants
to wear any specific sensors. We are working towards integrating
custom 16-channel ambisonic (spherical) microphones [16, 17] into
the smart room. The 16 channels can be combined differently to
point at each of the instantaneous participant locations obtained
by the ToF tracking system, allowing us to more clearly understand
the focus of attention of participants in the meeting. A source
segregation model can be used after extracting each auditory signal
source using the beam-forming capabilities, which will further
improve the signal-to-noise ratio. A better audio signal will also
result in a cleaner automatic transcription process, resulting in less
manual annotation effort.

The transcripts and derived bipartite graph summary provide
rich information about what is being spoken. A fusion of natural
language processing of the generated transcripts together with
estimated VFOA can help understand participation shifts, i.e., how
each participant changes role from being a speaker to an addressee
to an unaddressed recipient.

We intend to record more lunar task experiments in the sensor-
enabled smart room, to perform deeper statistical analysis to further
correlate derived metrics with participant opinions, and design fur-
ther studies to investigate team dynamics. We also plan on conduct-
ing further experiments on participants’ perception of front-facing
vs. ceiling-mounted sensors, focusing on intrusiveness/naturalness.
While a tabletop device with more advanced sensing techniques
can provide a richer dataset for analysis, it would not be suitable
for situations where people can move about freely, such as cock-
tail parties or poster sessions. One direction for future research is
to explore the use of ceiling-mounted ToF sensors to study social
interaction patterns for free-standing conversations, similar to [3].
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