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ABSTRACT

Studying group dynamics requires fine-grained spatial and tempo-

ral understanding of human behavior. Social psychologists studying

human interaction patterns in face-to-face group meetings often

find themselves struggling with huge volumes of data that require

many hours of tedious manual coding. There are only a few pub-

licly available multi-modal datasets of face-to-face group meetings

that enable the development of automated methods to study verbal

and non-verbal human behavior. In this paper, we present a new,

publicly available multi-modal dataset for group dynamics study

that differs from previous datasets in its use of ceiling-mounted,

unobtrusive depth sensors. These can be used for fine-grained anal-

ysis of head and body pose and gestures, without any concerns

about participants’ privacy or inhibited behavior. The dataset is

complemented by synchronized and time-stamped meeting tran-

scripts that allow analysis of spoken content. The dataset comprises

22 group meetings in which participants perform a standard collab-

orative group task designed to measure leadership and productivity.

Participants’ post-task questionnaires, including demographic infor-

mation, are also provided as part of the dataset. We show the utility

of the dataset in analyzing perceived leadership, contribution, and

performance, by presenting results of multi-modal analysis using

our sensor-fusion algorithms designed to automatically understand

audio-visual interactions.
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1 INTRODUCTION

Groups are an intriguing social phenomena that form the core of

any organization’s functioning. Kurt Lewin [26, 27] coined the term

group dynamics and defined it as the the verbal and non-verbal

behavior and psychological processes that occur within or between

groups. Group dynamics can change even at a millisecond time

frame, making them notoriously difficult to identify and measure

[11, 23, 24]. Researchers studying group dynamics need to account

for the temporal and spatial resolution of events occurring in a

group at a very fine granularity; this translates to huge amounts

of data. For example, the authors in [25] reported that an analysis

of the verbal communication in a one-hour team meeting required

approximately 7 hours of intense human coding effort. Manually

coding nonverbal behavior like location, gaze, gestures, head and

body movements, posture, speaker segmentation, interruptions and

so on, is even more cumbersome and time-consuming.
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The availability of multi-modal sensors and advances in com-

puter vision, machine learning, and natural language processing

make it possible to automatically analyze several behavior patterns

that are important for the automatic analysis of social interaction.

Gatica-Perez [12] reviewed around a hundred papers dealing with

small social interactions with a focus on non-verbal behavior, com-

putational models, social constructs, and face-to-face interactions.

The fine-grained analyses of group interaction patterns using these

automated methods help in understanding social constructs such as

agreement/disagreement [6], cohesion [15], dominance [16], lead-

ership [3, 18, 38] and emotion [30] in group interactions.

Although many automated methods to analyze human behavior

exist, there are only a few publicly available multi-modal datasets

that can simultaneously help both communities of computer scien-

tists and social scientists [25]. Several researchers from the domains

of social psychology, social signal processing, multimodal interac-

tion, and affective computing have expressed the need for publicly

available multi-modal datasets that enable research in this inter-

disciplinary field [32]. We are also motivated by studying group

interactions where the participants are comfortable and uninhib-

ited, necessitating unobtrusive sensing techniques. Frontal video

cameras or wearable sensors can defeat the purpose of studying

natural human behavior.

In this paper, we present a new small-group interaction dataset

called the UGI Corpus (for Unobtrusive Group Interaction) whose

primary novelty is the use of ceiling-mounted depth sensors in

an unobtrusive and identity-preserving manner, which we believe

to be the first of its kind. Despite their overhead angle and lack

of color information, ceiling-mounted depth sensors allow for the

automatic identification of head pose and visual focus of atten-

tion (VFOA), upper body and head movement analysis, and body

posture and arm pose estimation. We also collected synchronized

audio information and automated, anonymized, time-stamped tran-

scripts of the group meetings. Our dataset additionally contains

demographic information and the results of a post-task participant

questionnaire that allows the correlation of derived multimodal

metrics with emergent leadership and contribution. In the rest of

the paper, we discuss the existing datasets for studying face-to-face

group interactions, our sensing infrastructure and data collection

methods, our automated algorithms for audio-visual understanding

of human behavior, and our preliminary analyses of the dataset.

The dataset is summarized and is publicly available for download

at https://sites.google.com/view/ugirpi/.

2 RELATED WORK

Among the early research efforts to study face-to-face group inter-

actions, the most prominent is work from the Human Dynamics

Research Group at MIT, who explored the use of wearable sensors

such as the łSocioMeter" [10] and the łsociometric badge" [22, 34].

The sociometric badge could be used to understand (1) common

daily activities like sitting, standing, walking, and running in real

time using a 3-axis accelerometer, (2) social signals like interest,

excitement, and interjections from extracted speech features, (3) lo-

cation to an accuracy of 1.5m by measuring received signal strength

and using triangulation algorithms, and (4) whether people wear-

ing the badges are facing one another within a 30◦ cone and 1m

distance by using an IR sensor.

The ICSI [17] and ISL [8] meeting corpora contain audio data

from several natural and scripted meetings collected with the aim of

facilitating research in automatic speech recognition, noise robust-

ness, dialogue modeling, transcription, prosody and speaking styles.

The AMI corpus [20] was collected in the IDIAP smart room for

studying addressing behavior in small, face-to-face conversations.

It contains multi-modal sensor data and hand-annotated meeting

dialogues, gaze directions, addressees, and adjacency pairs. The

ATR database [9] collected meeting data using a table-top sensor

device consisting of a small 360-degree camera surrounded by an

array of high-quality directional microphones. The Mission Sur-

vival (MS-2) corpus [29] contains audio and video recordings of

group discussions on a hypothetical plane crash scenario. This cor-

pus was developed to study personality traits and social behavior

using audio-visual cues. The ELEA corpus [36] was formed with

the goal of analyzing emergent leadership in newly formed groups.

Close-talking mono-directional microphones, Microsoft Kinects,

and GoPro cameras were used to build the corpus [33] for analyzing

conversational behavior in group interviews.

A recent project by Müller et al. for understanding rapport in

conversations [31] is based on a multi-modal dataset in which

each participant is recorded by two external cameras and an omni-

directional microphone. Braley and Murray presented the Group

Affect and Perfomance (GAP) corpus [7], containing thirteen small-

group interactions in which the participants perform the Winter

Survival Task. The Winter Survival task [19, 21] is a group decision

making task where the participants discuss critical survival items

in a plane crash scenario in the woods during a severe winter.

In the GAP corpus, the meetings were recorded with a portable

audio recorder placed in the center of the group members, with

a webcam in front of each participant to record the frontal upper

body view. The publicly available dataset from this corpus contains

audio recordings, meeting transcripts, and post-task questionnaire

answers that included demographic details and perceptions on

cohesion, efficiency, time management, and leadership.

The available datasets for studying group behavior depend heav-

ily on the use of special wearable sensors [22, 34, 35], one or more

cameras [4, 18], or front-facing Kinects [33]. The presence of visible

cameras can alter participants’ natural behavior [39], and having

unusual sensors directly in front of ones’ face or in the line of sight

may inhibit natural group interactions. Also, datasets with frontal

cameras that reveal the identity of the participants are often more

difficult to make publicly available to the research community. We

posit that a room in which the participants are as unaware of being

sensed as possible, and where the data collection approach does

not intrude into the identity and privacy of the participants, is

beneficial for studying natural group dynamics.

As opposed to existing datasets that capture frontal face-to-face

interactions of small groups, we present a multi-modal dataset of

task-based small group interactions, using unobtrusive sensing

techniques. We recorded 22 group meetings of 86 participants, with

group size ranging from 3ś5, using ceiling-mounted Kinect depth

sensors and individual lapel microphones. The depth sensors are

out of the lines of sight of participants and are privacy-preserving.

Participants completed the Lunar Survival Task [14] (described

in Section 3.1), and filled out a post-task questionnaire on their

demographics and perceptions of leadership, contribution, and the
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3.1.3 Demographics. The participants were all undergraduate or

graduate students. From the post-task questionnaire data, 34 par-

ticipants self-identified themselves as ‘White’, 40 participants self-

identified themselves as ‘Asian’, 10 participants self identified as

‘Hispanic’ and 2 participants self-identified as ‘White/Hispanic’.

The age of the participants varied from 18 years to 29 years, with a

mean age of 21 years, median age of 20 years and mode 18 years.

Based on self reports, 51 participants were men and 35 participants

were women.

4 DATA PREPROCESSING

4.1 Synchronizing the different modalities

The overall recorded multi-modal data included the depth map from

the 2 overhead Kinect sensors (at 15 fps), and audio information

collected from individual lapel microphones on each participant (at

48kHz). We also collected reference video using two video cameras

at the far ends of the room. The video camera data is not used for

any algorithm development and is purely used for illustrations and

ground truth determination. The video camera data is not part of

the UGI corpus or being released with this dataset.

In order to synchronize the different modalities, each meeting

started with a clap from a non-participant, visible to one Kinect

and audible in all microphones. The two Kinects are synchronized

by a single host PC. All sensors could thus be synchronized using

the clap as the audio-visual cue for the start of the meeting. The

synchronization process involved the following steps:

Synchronizing audio and reference video:

• Both the audio and video files were opened in Audacity and

the clap (which is our reference sound) was precisely located

in both modalities to a millisecond resolution of accuracy.

• The audio and video tracks were independently shifted back-

wards to have the reference clap as the starting position of

each track, by deleting information before the clap.

• Once shifted, the alignment of audio and video tracks was

checked by playing both modalities together.

Synchronizing audio and Kinect depth information:

• The precise location of the clap was determined by observing

the overhead depth maps from the Kinects.

• Each Kinect frame has an associated time-stamp. The time-

stamp of the clap frame became the zero position of the

shifted Kinect video.

• The Kinect frames are recorded at 15fps, while the audio

recording is at 48kHz. In order to have completely synchro-

nized audio-Kinect data, we needed to down-sample the

audio frames to the Kinect frame-rate. This was done by not-

ing the time-stamp differences between subsequent frames

of the Kinect starting from the clap, and calculating the cor-

responding audio frame number using this time difference.

4.2 Preprocessing the distance maps

The Kinect depth sensing range is approximately 0ś6m. In order

to get the best dynamic range for algorithm development, we per-

formed the following preprocessing steps on the overhead depth

map:

• The distance measurements were subtracted from the room

height (2.8m), so that distance measurements are made from

the floor upwards as opposed to the raw measurements from

the ceiling downwards.

• We noted from the depth maps of our dataset that seated

individuals are not further than 1.3m from the ground. Also,

distance information below 0.6m is not very useful, since

the lower torsos of the participants are covered by the table

(0.9m high). In order to have the maximum dynamic range,

we clipped all measurements below 0.6m from the floor level

to 0.6m and all measurements above 1.3m to 1.3m.

• We performed linear stretching of the distance measure-

ments in the range of 0.6ś1.3m to the grayscale range [0,

255], and formed videos at 15fps with these pre-processed

distance maps. Snapshots of the Kinect distance maps after

these pre-processing steps are shown in Figure 2.

4.3 Non-verbal speech segmentation

We post-processed the aligned, recorded audio signals using noise

reduction in Audacity [1]. We performed speaker segmentation

and silence detection on these synchronized, noise-reduced audio

signals using techniques described in [13]. Essentially, for each lapel

microphone recording, speech segments were detected by applying

a dynamically estimated thresholding criterion on the extracted

signal energy and the spectral centroid. As described in Section 4.1,

accurate timestamps also allowed us to downsample the speaker

identification information (collected at 48kHz) to the Kinect ToF

frame rate of 15 fps.

4.4 Transcription

The recorded audio was transcribed to text using IBM Watson’s

Speech-to-Text API [37], which uses Long Short-Term Memory

(LSTM) and Residual (ResNet) neural networks. In order to boost

the automatic transcription performance, we performed two prepro-

cessing steps on the audio signal. First, the synchronized audio track

corresponding to each individual was independently segmented to

distinguish between speech and silence sections, as described in

Section 4.3, and then the silence sections were zeroed out. Next, we

selected short segments of 1ś2 minutes of each individual audio

track, such that the corresponding individual has a speaking section

during this short segment. The IBM speech-to-text transcription

software was then run several times on this short segment, with

different values of amplitude threshold, to determine the threshold

value that gives a resulting transcript that picks up the maximum

spoken content of the concerned individual and also has accurate

timestamps corresponding to a maximum number of transcribed

lines.

After the threshold has been selected for each track individually,

all the tracks are sent through the IBM speech-to-text transcription

module, which returns individual transcripts for each person. Fi-

nally, each of the individual transcripts was passed through another

script that sorts the time-stamps and accurately merges the tran-

scripts. Each person is anonymized as Person 1, Person 2, etc., and

named mentions of individuals (if any) are also anonymized. Once

the threshold values are decided for each file, the entire process of

transcription, including individual transcription and merging the

multi-person transcription, takes approximately 3 minutes for one
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minute of 4-person discussion, while running on aWindows 10 com-

puter, with 32GB RAM and Intel(R) Xeon(R) E5-2620 v3@2.40GHz

processor. Therefore, for a 4-person 15-minute discussion, the auto-

matic transcription process requires around 45 minutes. After the

automatic transcription, each transcription file is manually touched

up to ensure correctness of the transcription process.

To evaluate the transcription performance, we adopted thewidely

used Word Error Rate (WER). We computed the WER as 26.61% on

average for five randomly selected meetings, since oral representa-

tions are informal and rich in discourse markers. Since transcription

is the foundation for verbal-speech-related secondary tasks, we

also analyzed the effect of transcription performance on these tasks.

Considering that words have widely varying weights for secondary

tasks (e.g., words containing knowledge are more important than

others and less errors are allowed), we considered the difference in

information extraction performance between the automatic tran-

scripts and touched-up transcripts. In this dataset, the knowledge

is mainly about the lunar survival task items. Thus, we extracted

the item and compared extraction results. The average precision

difference is 2.37%, showing that the touched up transcriptions have

the ability to provide support for secondary tasks.

5 AUDIO-VISUAL UNDERSTANDING FROM

THE UGI CORPUS

Our primary purpose in this paper is to propose and disseminate

the UGI Corpus. In the following sections, we discuss the utility

of the dataset in studying emergent leadership, contribution and

performance in task-based group interactions, by briefly describ-

ing our automated algorithms for multimodal understanding and

preliminary analyses.

Visual Understanding: The overhead depth information from

the two Kinects allows us to accurately compute 3D point clouds

enabling tracking of participants, understanding their coarse body

and head poses, and classifying visual focus of attention (VFOA)

target locations. In order to estimate the VFOA of each participant

at each instant of time, we developed a multi-sensor fusion algo-

rithm that leverages the depth information to estimate the head

pose and the synchronized speaker identification information to

derive a contextual understanding of the meeting at that point of

time [5]. The VFOA classifier gives the VFOA target location for

each participant as one of the other participants, the paper in front

of the participant, or łunfocusedž. We achieved an overall VFOA

classification accuracy of 48%, which is comparable to accuracies

using front-facing cameras (42%) in similar group meeting settings

[18]. A short video clip illustrating the VFOA estimation on a meet-

ing segment is at https://youtu.be/s1yaZk3hKFY.

Non-verbal Speech Understanding: We use the synchro-

nized and segmented speech signals to understand individual non-

verbal metrics like speaking length, successful and unsuccessful

interruptions, speaking turns, back-channels, and group level met-

rics such as group silence, and overlapping speaking lengths [5].

Verbal SpeechUnderstanding: We use Natural Language Pro-

cessing (NLP) algorithms on the meeting transcripts to detect and

extract individual opinions as the discussion proceeds, and also

to understand what influence each participant has on the other

members in reaching the consensus. The algorithm picks up ex-

plicit item and ranking mentions, and agreements/disagreements,

and constructs a bipartite graph that captures the current state of

the meeting [5, 40]. A short video clip illustrating this graphical

summarization can be found at https://youtu.be/asLSE1pxTFk.

In order to study the ability of these automatically extracted

metrics to study human perceptions of leadership and contribution,

we extracted 20 audio-visual metrics at the individual level, includ-

ing the amount and ratio of visual attention received and given

by each participant, the speaking length, turns and interruption

patterns, and the role of each participant in proposing items and

ranking, summarizing discussions, and introducing new relevant

information [5]. We studied the correlation of these metrics with

the post-task questionnaire ratings of leadership and contribution,

and used multiple linear regression to explain the variability of the

leadership and contribution scores using these automated metrics.

Our preliminary experiments show that using a combination of

visual, non-verbal and verbal metrics, we can explain 65% and 63%

of the leadership and contribution scores respectively. The metrics

also could predict perceived group leaders and major contributors

with 90% and 100% accuracy respectively [5].

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a multi-modal corpus for studying

face-to-face group interactions. We used the Lunar Survival Task

as our task-based collaborative discussion platform. As opposed

to existing corpora on group meeting analysis that use frontal

video cameras and wearable sensors, we propose the use of ceiling-

mounted unobtrusive and identity-preserving depth sensors to

capture the visual interactions.

We believe this dataset can be used by an interdisciplinary re-

search community for the development of automated multimodal

algorithms for human behavior analysis (e.g., VFOA, body pose,

speech analysis), as well as by social psychology and organizational

behavior researchers interested in group dynamics study. We pre-

sented our algorithms for head pose and VFOA estimation, and NLP

techniques for opinion extraction and graphical summarization. We

also presented preliminary analyses on perceived leadership and

contribution using the automatically extracted audio-visual metrics.

Our initial results show that even in the absence of rich frontal

RGB data, we can derive significant levels of understanding of the

evolving and emerging team patterns in face-to-face interactions.

One of our current research directions using the UGI corpus is the

development of an algorithm to automatically estimate arm and

body pose, which can provide non-verbal correlates of several psy-

chological variables like łtrustž, łlikingž and łrapportž that affect

group performance.

The preliminary analyses give us interesting findings on the

effects of group composition and presence of women on task com-

pletion, group performance and perceived leadership. While each

participant individually completed the item rankings, only 13 out

of the 22 groups could come to a consensus on all 15 items in the

stipulated time. Of the 13 groups that finished the task, 12 of them

had at least 30% women (at least 1 woman in a group of 3, or 2

women in a group of 4 or 5). Of the 9 groups that did not finish, 8

fell short of this threshold. However, the highest performing groups

had exactly 50% women and 50% men, and groups with all women

performed only slightly better than groups with all men; thus, this
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looks like a thresholding effect. This opens up new research ques-

tions about what women and men do differently that can provide

different outcomes on the same task. Having a means to automati-

cally compute audio-visual metrics enables us to study what verbal

and non-verbal behaviors encourage participation, cohesion and

contribution. Understanding these team processes can not only

provide insights into human behavior in groups, but would also

facilitate the development of active meeting facilitation systems

that can help keep meetings on track and improve productivity.
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