
PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, MONTH YEAR 1

Design of Asynchronous Genetic Circuits
Tramy Nguyen, Member, IEEE, Timothy S. Jones, Pedro Fontanarrosa, Jeanet V. Mante, Zach Zundel,

Douglas Densmore, Member, IEEE, Chris J. Myers, Fellow, IEEE

Abstract—Most digital electronic circuits utilize a timing ref-
erence to synchronize the progression of signals and enable
sequential memory elements. These designs may not be realizable
in biological substrates due to the lack of a reliable high frequency
clock signal. Asynchronous designs eliminate the need for a
clock with data encodings and request/acknowledge handshake
protocols. This paper proposes a workflow to automate the design
of asynchronous genetic circuits. This workflow extends genetic
design tools by leveraging asynchronous logic design methods
customized for this technology. This workflow is demonstrated
on a genetic sensor that uses filtering and cellular communication
to improve its reliability.

Index Terms—Asynchronous design, genetic circuits, genetic
design automation, standards, synthetic biology, verification

I. INTRODUCTION

Synthetic biology researchers are exploring the potential of
programming cells to perform useful functions. In particular,
they are designing genetic circuits to produce useful biochem-
ical and pharmaceutical products [1], [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], [12], [13], [14], to help cure genetic
diseases and create therapeutic bacterial agents [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], and to
produce plants that can sense and adapt to a wider range of
environments [28], [29], [30], [31], [32], [33], [34].

Such circuits are often created from biological components
that mimic the behavior of Boolean logic gates. Most genetic
circuits that have been built are combinational circuits (i.e.
the input signals map directly to the output signal). Sequential
circuits, on the other hand, have internal state allowing them
to map a sequence of input signals to a sequence of output
signals. While several genetic memory circuits have been
created [35], [36], [37], [38], [39], general methodologies for
genetic sequential circuit design have not been developed.

In a sequential circuit, the internal state can be updated us-
ing either synchronous or asynchronous timing. Synchronous
designs use a global clock signal to produce a fixed time
schedule for updating the state. Asynchronous designs, on the
other hand, determine when to update their state using data
encodings and request/acknowledge handshaking protocols.
Given the difficulties to create a precise timing reference using
biological components and the fact that most biological sys-
tems are responsive immediately to changes in environmental

T. Nguyen and C. Myers are with the Department of Electrical and
Computer Engineering, University of Utah, Salt Lake City, UT 84112 USA
e-mail: myers@ece.utah.edu.

T. Jones and D. Densmore are with the Department of Electrical and
Computer Engineering, Boston University, Boston, MA 02215 USA.

P. Fontanarrosa, J. Mante, and Z. Zundel are with the Department of
Bioengineering, University of Utah, Salt Lake City, UT 84112 USA.

Manuscript received MONTH DAY, YEAR; revised MONTH DAY, YEAR.

conditions, it seems likely that synthetic genetic circuits should
follow the asynchronous design paradigm.

Nature also makes uses of asynchronous timing. One such
example of an asynchronous sequential circuit that occurs in
nature is the filtering system utilized by the venus flytrap
(Dionaea muscipula). It shows different behaviors depending
on how often prey touches trigger hairs within a period of time
(the circuit is asynchronous as the time element is simply due
to molecular decay). At least two trigger events are required
to close the trap, and at least three to start producing digestion
enzymes [40]. It has been suggested that the memory of
the system works by increasing cytosolic calcium levels in
a quantized manner correlating with the number of triggers
that have been seen [41]. Thus, here the calcium levels are
proposed to act as state memory in an asynchronous sequential
network.

In order to design complex asynchronous genetic circuits, an
automated workflow is required. This workflow begins with a
specification and yields a collection of genetic logic and mem-
ory gates to produce the desired function. While genetic design
automation (GDA) tools exist for the design and technology
mapping of combinational circuits, such as Cello [42] and
iBioSim [43], [44], there are not currently any GDA tools that
support sequential genetic circuits. The only biological design
automation tool that we are aware of that targets sequential
circuits is the one developed in [45]. Rather than genetic
circuits, this work targets chemical reaction networks (CRN),
which potentially can be mapped to DNA strand displacement
circuits [46] that compute using the structural rather than the
functional properties of DNA. In particular, these circuits are
composed of bi-molecular reaction motifs that are capable of
modeling asynchronous logic circuits.

This paper describes a new automated workflow for the
design of asynchronous sequential genetic circuits. This work-
flow builds upon existing tools for asynchronous logic design,
namely ATACS [47], and links them to genetic technology
mapping tools, namely Cello and iBioSim. A key feature is
a new compiler that can translate to/from Verilog to other
standard formats required by the design tools. This workflow
is demonstrated on a genetic sensor that uses filtering and
cellular communication to improve its reliability.

This paper is organized as follows. Section II provides a
brief review of asynchronous circuits, genetic circuits, data
standards, and existing GDA tools. Section III presents our
proposed workflow for asynchronous genetic circuit design.
Section IV describes a genetic sensor case study. Finally,
Section V presents our conclusions and future work.



2 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, MONTH YEAR

module sync_sensor(Clock, Sensor, Actuator);
input Clock, Sensor;
output reg Actuator;
initial begin

Actuator = 1'b0;
end
always @(posedge Clock) begin

Actuator = Sensor;
end

endmodule
(a)

module async_sensor(Start, Sensor, Actuator);
input wire Start, Sensor;
output reg Actuator;
initial begin

Actuator = 1'b0;
end
always begin

wait (Start == 1'b1 && Sensor == 1'b1);
#5 Actuator = 1'b1;
wait (Sensor == 1'b0);
#5 Actuator = 1'b0;

end
endmodule

(b)

Fig. 1. Verilog examples for a simple sensor. (a) Synchronous sensor that
samples the Sensor input on each positive edge of the Clock signal. (b)
Asynchronous sensor that activates the Actuator after receiving both the Start
and Sensor input signals and resets immediately when Sensor goes low.

II. BACKGROUND

This section provides some brief background on asyn-
chronous circuits, genetic circuits, data standards utilized by
our workflow, and existing GDA tools.

A. Asynchronous Circuits

Sequential circuits can be designed synchronously or asyn-
chronously. Synchronous circuits operate on a global timing
reference, called a clock. The internal states of the system are
updated based on a fixed-time schedule. A synchronous design
of a sensor can be described using the Verilog language as
shown in Figure 1(a). This circuit samples the Sensor input
when the clock signal transitions from LOW to HIGH. The
key requirement for synchronous design to operate correctly is
that the period of this clock signal must be long enough that
sufficient time is provided for the logic to respond to each
input change and come to a new stable value before the clock
signal changes again. Otherwise, there are synchronization
problems and the circuit fails to operate correctly.

Glitches on synchronous circuits are not a major concern
as long as the signal is stable before or after the clock
signal is sampled to produce a valid result. However, because
synchronous circuits rely on this global clock, the clock rate is
determined based on the critical path (i.e., longest path from
inputs to an output). As a result, synchronous circuits must
operate at worst-case timing to ensure correctness.

An alternative means of sequential circuit design uses the
asynchronous timing paradigm. In asynchronous design, the
timing of state changes is handled using data encoding and
request/acknowledge handshake protocols. A simple protocol
is the four-phase handshaking protocol. In this protocol, a
request signal starts the operation when it goes from a low to

a high value. When the operation is complete, an acknowledge
signal confirms this by going from a low to a high value. The
protocol then resets to prepare for the next operation by setting
the request signal low followed by the acknowledge signal
going low. Using a similar protocol, a simple asynchronous
sensor is described using the Verilog language in Figure 1(b).
This circuit waits for the Start and Sensor inputs to go high
(i.e., a request), then it sets the Actuator output to high (i.e.,
an acknowledgement). Finally, the Sensor signal going low
immediately results in the Actuator going low. The advantage
of this asynchronous timing paradigm is that no fixed timing
reference must be generated, and the circuit is free to respond
to changes in the Sensor signal that occur at anytime, without
risk of a synchronization problem.

B. Genetic Circuits

In biology, information is generally stored in DNA (deoxyri-
bonucleic acid). The central dogma of biology is that DNA
is used to create RNA (ribonucleic acid) through a process
called transcription. The RNA is in turn used to create proteins
though a process called translation. Some of the proteins
created, called transcription factors, can regulate (i.e., activate
or repress) further protein production. The sequence which is
directly used to create a protein is called the coding sequence
(CDS). Not all of a genetic sequence is directly used in the
creation of proteins. For example, there are sequence regions
called promoters where transcription is initiated and which
include binding sites for transcription factors allowing them
to regulate the speed of transcription. Ribosome binding sites
are sequences where ribosomes can bind to the RNA to initiate
translation. Finally, there are terminators, which are regions of
the DNA that indicate where transcription should stop.

As an example, consider the genetic toggle switch circuit
shown in Figure 2(a), which was one of the two seminal
synthetic biology circuits designs published in 2000 [35] (the
other was the repressilator [48]). The genetic toggle switch
shown in this example is composed of two transcriptional
units; one that produces LacI and another that produces TetR
and GFP (green fluorescent protein). The GFP protein serves
as an output reporter to indicate when the TetR protein is
produced. The output of each of these transcriptional units
represses the production of the other transcriptional unit. TetR
is a protein that can bind to pTet, inhibiting the production of
LacI. Similarly, LacI can bind to the promoter pLac, inhibiting
the production of TetR. TetR and LacI can bind to small
molecules (aTc1 and IPTG2, respectively) to form complexes
that are unable to bind to promoters. This means that when aTc
is present, it acts as an inhibitor of TetR and therefore, TetR
can no longer repress the production of LacI. Similarly, when
IPTG is present, it binds and inhibits LacI, so that LacI is not
able to repress the production of TetR. If neither IPTG or aTc
are present, then the genetic toggle switch holds its state and
continues to produce the TetR if IPTG was the last molecule
present or LacI if aTc was the last molecule present. In other
words, this circuit implements a simple sequential memory

1Anhydrotetracycline
2Isopropyl β-D-1-thiogalactopyranoside



NGUYEN et al.: DESIGN OF ASYNCHRONOUS GENETIC CIRCUITS 3

(a)

(b)

Fig. 2. The genetic toggle switch. (a) SBOL Visual 2 compliant representation
of the genetic toggle switch. The promotors (bent arrows) indicate areas where
transcription starts. They can be repressed by the binding of transcription
factors (indicated with flat headed arrows), which prevents the expression
of downstream proteins. The ribosome binding sites (half circles) indicate
where ribosomes bind to transcripts to start reading the RNA sequence
during translation. The coding sequence (fat arrow) indicates the region of
DNA directly read during translation to create proteins (rounded blobs).
The terminators (T) indicate where a transcriptional unit ends. The diagram
shows that LacI represses the blue promoter (pLac) preventing TetR and
GFP expression (so the cells do not fluoresce). However, the addition of
IPTG leads to LacI forming a complex with the IPTG molecule preventing
it from repressing the blue promoter (pLac) thus allowing TetR and GFP
production (the cell fluoresces green). TetR represses the yellow promoter
(pTet) preventing the production of LacI. Upon the addition of aTC, TetR
forms a complex with aTc lifting the repression on the yellow promoter (pTet)
allowing the production of LacI which represses TetR production. Thus, IPTG
or aTc are required to change state, but once a state is achieved, the circuit
maintains that state. (b) The equivalent electronic circuit diagram composed
of cross-coupled NOR gates forming a set-reset latch.

circuit, which exhibits a bistable behavior. It retains its state
until it detects the addition of a small molecule inducer (IPTG
or aTc). Therefore, the behavior of the genetic toggle switch
is essentially that of a set-reset latch created by cross-coupled
NOR gates as shown in Figure 2(b).

C. Data Standards

In order to design software applications that can automate
the process of designing a genetic circuit and retrieving
information about biological parts, this information must be
encoded using data standards. Normally, a data standard is
depicted in a format that has a core representation and agreed
terminologies to represent the data of interest. Data standards
play a big role in this workflow as they enable the transfer of
data between different stages of our workflow. In particular,
our workflow uses two biological data standards, the Synthetic
Biology Open Language (SBOL) [49], [50] and the Systems
Biology Markup Language (SBML) [51].

SBOL is a data standard that is used to represent genetic
designs in silico (i.e. on a computer). This standard allows
the specification of the structure of the design, such as the
DNA sequences for the DNA components (e.g. pTet and pLac),
protein sequences for the protein components (e.g. LacI and
TetR), and chemical makeup of the small molecules (e.g. IPTG
and aTc). SBOL can also define the qualitative behavior of a
genetic design. For example, it can encode the interactions
between the components, such as the repression of the pTet
promoter by the TetR protein and that the lacI CDS encodes
the LacI protein. This standard is used within our workflow to
represent the essential structure and function of our genetic cir-
cuits. Furthermore, many biological parts have been encoded
into this format and are publicly available to view and use from
online repositories, such as SynBioHub [52]. Finally, another
complimentary standard, SBOL Visual, provides a means for
visualizing a genetic design [53], such as in Figure 2(a).

SBML is a data standard used to describe computational
models of biological processes and pathways. The SBML data
model compliments the SBOL data model in that it allows us
to verify the behavior of our design. Different than SBOL,
SBML has agreed terminologies and rules that define the
quantitative aspect of a biological system. Genetic designs
translated into SBML can express information about biological
entities as chemical species. These species can represent both
DNA and non-DNA components described in SBOL. SBML
represents the processes that create, modify, or destroy these
species as chemical reactions. These reactions quantitatively
model the interactions expressed in SBOL.

In the past, we have developed converters between SBOL
and SBML to navigate between these two data standards [54],
[55]. In particular, our workflow utilizes the SBOL to SBML
converter to create a dynamic model of our design to allow
for verification through simulation.

D. Genetic Design Automation

The challenge with any design process is to efficiently
explore the space of possible designs to find one that functions
correctly and performs the best for some given criteria. Similar
to how electronic design automation (EDA) evolved to address
this challenge, researchers are creating GDA tools with this
goal in mind. Some of the added challenges that these GDA
tools must address for genetic logic devices include crosstalk,
signal mismatch, roadblocking, and genetic context effects
[56]. As shown in Figure 3(a), crosstalk occurs in genetic cir-
cuits when the product of one gate has unintended interactions
with another gate. In design, this is avoided by requiring that a
particular signal carrier (transcription factor) is only assigned
to one node in the circuit. Unlike electrical circuits, the phys-
ical output of each gate is unique. As shown in Figure 3(b),
signal mismatch occurs when the level of product produced
by one gate does not meet the threshold necessary to cause
the correct response in another downstream gate. The problem
of finding a design that implements a specified function can
be defined as finding a set of biological gates such that the
switching threshold of any gate lies within the output range of
the upstream gate. As shown in Figure 3(c), roadblocking can



4 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, MONTH YEAR

occur in gates that use tandem promoters, and the downstream
promoter interferes in transcription initiated at the upstream
promoter [42]. Roadblocking is avoided by finding all such
instances of promoter interference during the gate library char-
acterization, and eliminating these problematic permutations
from the ensemble of DNA sequences that are considered
to fulfill the specification. Finally, as shown in Figure 3(d),
genetic context effects occur when the ordering of neighboring
components changes the behavior of the components. In such
cases where context effects are known to be strong, gates
may be integrated into the host genome at predetermined
locations where each gate’s transcription rate has already been
characterized.

Given that each operation in a Boolean function must
receive a unique biological implementation and that the or-
dering of the biological gates or their sub-components may
be constrained, a GDA tool chooses a particular assign-
ment and ordering of biological gates from a combinato-
rial space. For example, implementing the AND function as
NOR(NOT(p),NOT(q)) in a library of 5 gates, there are 5 ·4 ·3
choices of unique gate assignments, and 3! choices of the
ordering of the choice of gates in a DNA sequence. Within the
NOR gate itself, the inputs may also be permuted in two ways
in the sequence. Some of these assignments or orderings will
be eliminated according to the constraints described above.

Some of the GDA tools that have been developed to search
the design space while addressing these genetic constraints
are shown in Table I. Each of these tools begins with a
specification of the desired behavior. In MatchMaker [57],
SBROME [58], and iBioSim [43], this specification is given
in the form of a graphical representation of an abstract genetic
regulatory network (GRN). GeneTech [59] allows the behavior
to be specified using a set of Boolean expressions. Cello [42]
supports a subset of the Verilog hardware description language
(HDL) for specification. The second input to each of these
tools is a library of genetic logic gates. The SBROME tool
begins with simply a set of genetic parts, while the Cello
and GeneTech tools require a library of NOT and NOR
gates. MatchMaker and iBioSim support a library composed
of any arbitrary logic gates. The goal of each of these GDA
tools is to select from the library a collection of elements
that when composed together produce the specified behav-
ior. Furthermore, the tool should also attempt to address
the genetic design constraints to increase the likelihood that
the selected design actually performs as desired after it is
constructed. Most of these tools at a minimum address the
signal crosstalk issue, but Cello is the only tool that attempts
to address three of the four identified genetic constraints.
Additionally, we would like to highlight the data standards that
the tools support. Unfortunately, SBROME and GeneTech do
not support standard representations for their genetic designs,
making them difficult to connect into a complete workflow.
MatchMaker supports only the out-of-date SBOL1 standard.
iBioSim and Cello support SBOL2, the latest version, and
iBioSim also supports SBML for computational models that
can be used to validate the produced designs. It should be
mentioned that all of these GDA tools are currently restricted
to produce combinational circuits only.

Our workflow extends the Cello and iBioSim tools to sup-
port asynchronous sequential circuits. In this initial workflow,
the Cello tool is leveraged for mapping the next state and
output logic to produce an implementation that satisfies all of
the genetic design constraints. The iBioSim tool is utilized to
produce dynamic computational models encoded in SBML to
validate the designs produced.

III. METHODOLOGY

The proposed workflow for asynchronous genetic circuit
design is shown in Figure 4. The workflow begins with a
high-level specification encoded using the Verilog language.
Verilog was chosen due to its ubiquity in existing electrical
circuit design workflows. There are many tools that exist to
validate and simulate Verilog designs, which can be readily
integrated into this workflow. This high-level specification is
then compiled to a labeled Petri net (LPN) [60] following a
fairly direct syntax-directed translation. This LPN can then be
simulated to check behavior using the iBioSim software [61].
At this point, the asynchronous synthesis tool ATACS is
used to produce logic equations [47], which can also be
expressed in the Verilog language. This synthesis process is
described in Section III-A. This workflow requires a library
of characterized parts described in SBOL [50] and made
available via the SynBioHub repository [52]. These parts are
composed to form the genetic logic gates that are used in the
composite design. This library is described in Section III-B.
Next, the process of technology mapping applies a matching
and covering procedure to select parts from the library to
implement the genetic design while addressing the genetic
design constraints. The technology mapping step can either
use the graph-based covering approach described in [62] or
Cello’s simulated annealing algorithm described in [42]. The
technology mapping step is described in Section III-C. Finally,
the resulting design can then be converted from SBOL to a
computational model expressed in SBML using the model
generation procedure described in [63], [64]. The resulting
simulation of the design is then compared to the simulation of
the specification to verify that the circuit behavior is as desired.
This verification procedure is described in Section III-D.

A. Synthesis

The first step in our workflow is the creation of a behav-
ioral specification for the genetic design. This specification
describes the behavior of the desired circuit independent of the
specific biological parts that are needed to build the circuit.
Similar to the Cello tool, our specification is also constructed
using the Verilog language. In order to express asynchronous
behavior, our workflow makes use of blocking assignments
and wait statements to describe handshaking protocols. In the
example shown in Figure 4, the toggle switch must wait for
IPTG to be applied, which changes the toggle switch to the
high state and produces GFP. Next, it must wait for aTc to be
applied, which changes the toggle switch to the low state and
stops the production of GFP.

In addition to the circuit specification, our workflow also
requires a testbench (not shown) that describes the behavior



NGUYEN et al.: DESIGN OF ASYNCHRONOUS GENETIC CIRCUITS 5

Fig. 3. Four genetic constraints that occur in genetic circuits. (a) Crosstalk: interference of circuit components with each other or the host circuitry. (b) Signal
mismatch: incompatible signal levels of gates composed in series. (c) Roadblock: initiation of transcription from the upstream promoter in a tandem promoter
is impeded by the presence of a transcription factor bound to the downstream promoter. (d) Genetic context effects: the same circuit can act differently based
on the ordering of neighboring components.

TABLE I
THIS TABLE SUMMARIZES THE DIFFERENT EXISTING TECHNOLOGY MAPPING TOOLS. IT SHOWS THE TOOL’S INPUT SPECIFICATION LANGUAGE,

STANDARDS SUPPORTED, THE TYPES OF LIBRARY PARTS USED, AND THE GENETIC CONSTRAINTS ADDRESSED.

MatchMaker [57] SBROME [58] iBioSim [43] Cello [42] GeneTech [59]
Specification language Abstract GRN Abstract GRN Abstract GRN Verilog Boolean expressions
Library Arbitrary logic gates Parts Arbitrary logic gates NOT and NOR gates NOT and NOR gates
Signal Mismatch X 7 7 X 7
Crosstalk 7 X X X X
Context Effects 7 7 7 7 7
Roadblock 7 7 7 X 7
Standard Support SBOL1 7 SBOL2 and SBML SBOL2 7

of the environment. The environment must provide IPTG, wait
for GFP to go high, remove IPTG, add aTc, wait for GFP to
go low, then remove aTc, and repeat. This series of actions
exercises the circuit through the normal steps of operation.
Our synthesis procedure requires that both the circuit and the
environment are fully specified.

Once the specification and the testbench have been tested for
the desired functionality using a Verilog simulator, our work-
flow uses our Verilog compiler to produce equivalent SBML
models, which can also be simulated to validate functionality.
These SBML models can then flattened and complied into
the LPN model, which is required by the asynchronous logic
synthesis tool, ATACS [47], that our workflow uses.

The goal of logic synthesis is to derive Boolean logic
equations that implement the specified behavior. ATACS cre-
ates a state graph from the given LPN model. Next, the

state graph is analyzed to determine the logic necessary to
implement any state and output signals. A key challenge with
asynchronous logic design is the avoidance of logic hazards.
A logic hazard occurs if a signal that is supposed to remain
stable, momentarily changes value, or a signal that is supposed
to change, does so non-monotonically [65]. Unlike electronic
circuit designs where the cost of errors is circuit failure, in
genetic circuits, errors can be tolerated. Since genetic circuits
are deployed in a population of cells, there are multiple copies
of a genetic circuit available. Therefore, if one genetic circuit
fails within a cell due to glitches, it may not highly affect
the entire system if other cells exhibit the correct behavior.
Nikolaev et al. [66] has shown from modeling a genetic toggle
switch that a large population of cells performing the same task
will help average out the expected behavior for the majority
of the genetic toggle switch circuits. While it is important to



6 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, MONTH YEAR

Fig. 4. The proposed workflow illustrated using the genetic toggle switch design. First, the asynchronous design is specified using behavioral Verilog. Next,
the ATACS asynchronous design tool synthesizes logic equations represented using structural Verilog. The synthesized circuit is then realized as a physical
design by a technology mapping procedure that selects gates from a SBOL encoded gate library stored in a SynBioHub repository. In order to verify the
workflow, a model is generated and simulations are performed to verify that the design displays the expected behavior.

address high probability hazards, genetic circuits can likely
tolerate low probability hazards. Exploiting this observation is
an area of future research that we plan to explore.

Synthesis produces Boolean logic functions described in a
structural Verilog representation. This representation contains
assign statements expressed in the form shown below:

Output = Set | (Reset & Output)

In the example shown in Figure 4, for the output GFP, the Set
function is IPTG, and the Reset function is aTc. It should
be noted that this workflow produces expressions that use
feedback to produce state. Many well known genetic circuits
have been built using negative feedback and have been shown
to exhibit bistablity that results in cellular memory capable of
holding state [35], [36], [37], [38].

B. Library
A genetic design workflow requires a collection of well-

characterized parts, and GDA tools require programmatic
access to such part libraries to produce circuit designs. In
particular, part and device model parameters, sequence infor-
mation, and part placement constraints must all be encoded
in a machine-readable library. In the case of the Cello CAD
software [42], [67], the entire library is stored as a “user
constraints file” (UCF) in the JSON format.

Different tools may have different design strategies, but if a
genetic circuit design is to be fabricated and placed in a host
organism, the complete DNA sequence of every part must exist
in the library. If parts and devices are integrated into the cell
together on a plasmid, they may have constraints as to their
placement on the plasmid. For example, in a transcriptional
unit engineered with tandem promoters, one promoter when
repressed may be more likely to impede transcription begin-
ning at the upstream promoter (i.e., roadblocking), inhibiting
the promoters’ ability to act independently, e.g. to exhibit
NOR logic, and indicating that the two promoters should
not be placed in this configuration. Certain genetic devices
may be more demanding on the host organism than others,
and a library may encode optical density measurements for
a host inoculated with every device in the library, one by
one, as a measure of the load on the host. Basic structural
information about what parts (promoters, coding sequences,
etc.) comprise the functional devices in the circuit are also
part of a design library. Finally, as design tools employ
some biological model to compose devices into a circuit that
realizes a given function, a library stores parameterizations
of this model for each of the devices. Cello, for example,
stores Hill function parameters for every gate in the library.
The parameters are fit to dose-response data that has been
transformed into a common unit (i.e., relative promoter units



NGUYEN et al.: DESIGN OF ASYNCHRONOUS GENETIC CIRCUITS 7

(RPUs)) to model signal propagation from one gate to another.
For libraries to be shared and even utilized by different tools,

their format and storage are also important to consider. The
SynBioHub repository is a storage solution not only for design
libraries, but also for assembly plans for circuits, networks of
interactions in circuits, and other information [52]. All data
stored in a SynBioHub instance exists in the SBOL format,
and thus anything that can be represented in SBOL can be
stored in SynBioHub. Furthermore, any data that is not readily
expressed in SBOL can be attached as supplemental files. The
library of TetR homolog based NOR gates in E. coli that
were originally distributed with Cello was translated to SBOL
and exists in the National Science Foundation (NSF) Living
Computing Program (LCP) instance of SynBioHub (https:
//synbiohub.programmingbiology.org). SynBioHub exposes an
HTTP REST API for programmatic access by design tools,
allowing libraries to be retrieved and used on demand.

C. Technology Mapping

As shown in Fig. 4, the logic equations expressed in
structural Verilog must be matched to genetic gates from the
gate library using technology mapping. Our workflow can
use either Cello [42] or iBioSim [43] to perform technology
mapping.

Cello takes the synthesized Verilog file produced from
ATACS and decomposes the expressions into NOT and 2-
input NOR gates. Next, the decomposed expression is mapped
directly to a library of gates that is limited to NOT and NOR
gates. During this matching step, the characterization data
stored within the library is used by Cello to solve the genetic
constraints to increase the likelihood that the design operates
as desired when constructed in the wet lab. Once all Verilog
expressions have been mapped, the physical design can be
exported into the SBOL data format and verified using the
model generation procedure described in [68] and also the
next section.

iBioSim, on the other hand, uses the Verilog compiler that
was built for this workflow to parse and perform decompo-
sition on the Verilog expressions. The decomposed network
is represented as a genetic regulatory network (GRN) using
SBOL components and interactions. This GRN is equivalent
to the NOT and 2-input NOR decomposition. iBioSim uses
a matching and covering procedure that allows for multiple
nodes to be covered by a single gate, allowing for arbitrary
logic gates to be selected for the final implementation [54].
Like Cello, the final design is also produced in the SBOL data
format, and it can be verified using the same model generation
procedure [68].

D. Verification

The workflow described in this paper progresses through
several procedures to translate a high-level description to a
physical design composed of biological parts. The description
of the design uses different forms and formats to perform each
task. To ensure that the behavior that was initially described
in the design specification stays the same throughout the data
format conversions, verification must be performed at each

stage of the workflow as shown in Figure 5. The left-hand-
side of the figure shows the different modeling formats used
throughout the workflow, which include behavioral Verilog,
LPNs, structural Verilog, SBOL, and SBML. The right-hand-
side of the figure shows the simulation results at each step
of the workflow, produced by both Verilog simulators and the
iBioSim simulators. The outcome of this verification process is
to ensure that the behavior that is observed in the simulation is
the same in each step of the workflow. If the behavior observed
in the simulation results changes in one of these verification
steps, then this is a clear indication that the intended behavior
of the user’s design has changed during our workflow. At this
point, the Verilog compiler and/or converters must be fixed
to ensure that information stays consistent and the data are
producing valid results.

Verilog simulations can be done by using any available
Verilog simulation tool. For our workflow, we used ModelSim
to observe the behavior of our Verilog designs. Whereas
for genetic circuits, there are a variety of formal methods
and computational tools for their analysis [69], [70]. For
this workflow, we used iBioSim as the simulation tool to
model and simulate our genetic circuits, since it supports the
SBML data format that is used within our workflow. From the
array of simulation methods supported in iBioSim, we opted
for stochastic simulation for analyzing the behavior of our
circuit since the molecule counts in these circuits are low and
the behavior of these genetic asynchronous circuits must be
analyzed in the presence of noise and hazards.

The final step of our verification procedure leverages the
model generation procedure described in [68]. This procedure
begins with the SBOL representation of the DNA-level design
produced by the technology mapping step. It then enriches
this representation with interaction data stored in SynBioHub.
The resulting qualitative SBOL representation can then be con-
verted into a dynamic SBML model using the SBOL to SBML
converter described in [54]. This SBML representation can
then be simulated and compared with the original simulation
of the Verilog specification.

IV. CASE STUDY

This section presents a case study demonstrating our work-
flow on a genetic sensor that uses filtering and communication
to make a more reliable detection decision. In particular, the
sensor is constructed from three sensors as described in the
Verilog specification shown in Figure 1(b). These sensors
are connected such that the Actuator of the first sensor is
connected to the Start signal of the second sensor, and the
Actuator of the second is connected to the Start signal of
the third sensor. All three sensors share the same Sensor
input. This genetic sensor circuit could be used, for example,
to release pharmaceuticals in specific tissues, after sensing a
cancer-related signal for a prolonged period of time [16], [71].
Examples of tissue specific molecules, or the enzymes that
produce them, are curated by the Human Protein Atlas and
include surfactant protein A1 in the lungs, thyroglobulin in
the thyroid, and uromodulin in the kidney [72], [73]. There
are many examples of possible cancer markers, though often

https://synbiohub.programmingbiology.org
https://synbiohub.programmingbiology.org


8 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, MONTH YEAR

Verilog

Modeling to Simulation

SBML → LPN

Verilog

SBOL → SBML

Verification

Verilog

Verilog

Modeling Simulation

Fig. 5. An example of a verification process applied within our workflow.
Arrows from the modeling box to the simulation box depict output simulations
and arrows between simulations depict comparison. The Verilog simulations
are produced from a Verilog simulator called ModelSim. The two simulations
showing the results produced from the SBML to LPN converter and the
SBOL to SBML converter are simulated in iBioSim. The result of iBioSim’s
simulation was exported to a .csv file and then plotted using Excel. The goal
of our verification process is to ensure that the behavior that is described in the
initial design remains consistent as the design specification goes through the
different levels of our workflow. The first Verilog simulation is created from
the testbench modeling the design specification. The SBML to LPN simulation
is the compiled version of the initial Verilog design before it is synthesized in
ATACS. The third simulation is verified from the logic expression produced
from ATACS. The last simulation is produced from the technology mapping
tools that is used within our workflow; specifically iBioSim or Cello. As
exhibited in the figure, all four simulations are producing the same behavior
that is described in the specification. Notably, GFP turns HIGH when IPTG
is HIGH and GFP goes LOW when aTc is HIGH.

elevation of a marker above normal is also used, examples
include: HURP in prostate cancer cells [74], Carcinoembry-
onic antigen (CEA) in colorectal cancer [75], and CA 19-9
in pancreatic cancer [76]. The initial Start signal would be a
tissue-specific chemical signature and the sensing input would
be a cancer-related chemical. The output Actuator for the third
sensor would be a chemotherapeutic agent. The bacteria would
only produce the payload if they are in the correct tissue, and if
they consistently sense the cancer-related input, thus filtering
and decreasing the chance of false positives. Additionally, this
prevents the release of the chemotherapeutic agent in cancer-

free tissues reducing unwanted side effects.
To exemplify this work, a case study circuit is designed

that uses IPTG as the Sensor input, aTc as the Start input, and
YFP (yellow fluorescent protein) as the output. Each sensor is
going to be transformed into a different cell type to reduce
crosstalk concerns allowing for gate reuse. Essentially, our
circuit is composed of a population of three types of cells
(note that the host cells may be identical but they each include
a different circuit). The cells communicate using quorum
sensing molecules LasI and RhlI, which are molecules that
can diffuse between the cells.

The result of asynchronous logic synthesis is shown in
Figure 6(a). This circuit is composed of three generalized
Muller C-elements (gC), each of which is implemented as an
independent circuit in a different cell. This gC behaves as
follows, its output goes high when both inputs are high, and
its output goes low only after the input not marked with a
“+” goes low. In other words, if the input marked with a “+”
goes low first, it remains high. The complete circuit behaves
as follows. If the first circuit receives the Start signal (aTc)
and the Sensor input (IPTG), it will produce a quorum sensing
signal (LasI). If the Sensor input (IPTG) is still present, the
second circuit would receive the first quorum sensing signal
and the sensor input, thus producing a second quorum sensing
molecule (RhlI). The third circuit, if it receives this second
quorum sensing signal and the Sensor input (IPTG) is still
present, it can produce the Actuator output (YFP). The purpose
of this circuit is to work as a low-pass filter, as the Sensor input
has to be present during the whole process in order to produce
the Actuator. Otherwise, if the Sensor input disappears before
the Actuator is produced, all the gC gates reset to low and
LasI, RhlI, and YFP are no longer produced and are degraded
away. This means that the circuit does not produce an Actuator
output if the Sensor input is present only briefly, “filtering out”
noise on the Sensor input.

The result of technology mapping using Cello is shown in
Figure 6(b). The technology mapping actually produces three
distinct genetic circuit sequences. Each sequence can be used
to construct a plasmid that can be transformed into a separate
culture of cells. The result would be three different cell types,
which when mixed together form a population of cells that
would implement the entire composite circuit.

Using iBioSim, an ODE simulation of the circuit was per-
formed indicating the filtering behavior of the circuit shown in
Figure 7. The simulation produces predictions of in RPUs [77],
since the genetic parts from Cello’s SynBioHub repository
uses this unit for parameterization. In each case, the circuit
was exposed to varying amounts of times in which the signal
IPTG is high, which produces different responses of the system
as a whole (see Figure 7). In those cases where the exposure
time to IPTG is not sufficient, the system acts as a filter and
does not produce the YFP reporter protein (see Figure 7(a-c)).
The YFP reporter protein is only produced when the system
has been exposed to IPTG for sufficient time so that each
subsystem (cell) produces it’s corresponding output before the
signal IPTG is removed (see Figure 7(d)).

Separating the circuits into separate cells has multiple
advantages. First, it reduces crosstalk problems and allows the



NGUYEN et al.: DESIGN OF ASYNCHRONOUS GENETIC CIRCUITS 9

IPTG

aTc +
+

+
LasI

RhII YFP

Cell 2

gC
gC

Cell 3

Cell 1

gC

(a)
Cell 1

T T
TetR LacIpConst pConst

TT T T
pTac QacR pTet pSrpR

PhlF
pPhlF pQacR SrpR pSrpR LasI

TetR

LacI QacR
PhlF

SrpR
LasI

IPTG

aTc

LasI

Cell 2

T T
LasR LacIpConst pConst

TT T T
pTac QacR pLas pSrpR

PhlF
pPhlF pQacR SrpR pSrpR RhII

LasR
LacI QacR

PhlF

SrpR
RhII

LasI

RhII
IPTG

T T
RhIR LacIpConst pConst

TT T T
pTac QacR pRhI pSrpR

PhlF
pPhlF pQacR SrpR pSrpR YFP

YFPSrpR

PhlF
LacI

RhIR

Cell 3
RhII

YFP
IPTG

QacR

(b)

Fig. 6. A genetic sensor that uses filtering and communication to improve its
reliability. (a) The logic diagram produced by logic synthesis. It is composed
of three gC gates which go high when both inputs are high and go low when
the input not marked with a “+” goes low. The output of the second and
third gate are connected to the “+” input of the next gate. The detection
begins when both IPTG and aTc go high, activating Cell 1. This creates the
quorum signal LasI to diffuse to Cell 2, which then activates Cell 2 to produce
the quorum signal RhlI. The RhlI signal diffuses to Cell 3 to activate YFP
production. However, if IPTG goes low at any point during this chain reaction,
the whole circuit resets. (b) The genetic design produced by Cello, which is
composed of three genetic sequences that can be put onto separate plasmids
and transformed into cells to create three cell types.

same gates to be reused. Second, it increases the delay of the
circuit to improve the filtering performance. Third, it enables
further robustness as errors caused by hazards or other noise
sources in a small number of cells can be tolerated, since the
overall behavior is determined by the population dynamics.
The decision to split the circuit across three cells is to create a
delay to filter out momentary pulses of IPTG. In order to create
a realistic design, however, we were limited no more than three
cells, since the number of known orthogonal quorum sensing
molecules is limited (namely, LasI, and RhlI). Even limiting to
three cell types, there are additional challenges in engineering
microbial consortia. Some of these challenges are shared with
engineering of homogeneous cell populations. Others, like
maintaining stable cell proportions, avoiding horizontal gene-
transfer [78] or engineering stable cell-cell communications
[79] are specific for multi-cellular engineering and require
special attention [80].

V. CONCLUSION

This paper demonstrates a workflow to construct asyn-
chronous genetic circuits by leveraging asynchronous logic
design methods. This workflow leverages data standards such
as SBOL and SBML, allowing different tools to be easily com-
posed and potentially replaced with alternatives in the future.
This proposed workflow allows asynchronous genetic circuits

to be described and the resulting designs can be verified
through simulation. The workflow starts with a Verilog design
to describe the specification and a testbench to verify the
specification’s behavior. The Verilog design is then compiled
into an LPN that is fed to ATACS to perform hazard-free
asynchronous logic synthesis. ATACS synthesizes the LPN
design into a logic design also expressed in Verilog. This
Verilog design can then be imported into Cello or iBioSim for
technology mapping to produce a physical design. Finally, the
SBOL data model can be enriched with interaction data stored
in SynBioHub to enable conversion into SBML to validate that
the behavior of the physical design is consistent with the orig-
inal Verilog design. The proposed workflow is demonstrated
on an asynchronous genetic sensor design that can potentially
be substantially more reliable than a combinational sensor.

While this workflow is promising, there is still a lot of work
that needs to be done. Verilog templates should be developed
to help designers who are not familiar with Verilog and/or
asynchronous design. The library should also be expanded
to include gates and characterization data for more types of
logic families and host organisms. Next, while all steps in
the workflow exist, they still need to be completely connected
into a seamless and automated procedure. In particular, the
multi-cellular design optimization is not currently supported
by the tools, but must be created by hand. Also, the dynamic
model generation work needs some refinement to better sup-
port modeling of the diffusion of quorum sensing molecules.
Furthermore, the modeling could be improved through the
support of stochastic analysis and population dynamics by
leveraging techniques such as stochastic model checking [81],
[82]. Such analysis would enable a better understanding of the
effects of hazards in genetic circuits and indeed when and if
they need to be avoided. Finally, some designs produced by
this workflow should be built and tested in the laboratory.

ACKNOWLEDGMENT

The authors of this work are supported by the National
Science Foundation under Grant No., 1522074 (T.J., C.M., and
D.D.), CCF-1748200 (T.N., J.M., and C.M.), DBI-1356041
(T.N. and C.M.), and DARPA FA8750-17-C-0229 (T.J., P.F.,
Z.Z., D.D., and C.M.). Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
funding agencies.

REFERENCES

[1] G. Schendzielorz, M. Dippong, A. Grnberger, D. Kohlheyer, A. Yoshida,
S. Binder, C. Nishiyama, M. Nishiyama, M. Bott, and L. Eggeling,
“Taking control over control: use of product sensing in single cells to
remove flux control at key enzymes in biosynthesis pathways,” ACS
synthetic biology, vol. 3, no. 1, pp. 21–29, 2013.

[2] F. Zhang, J. M. Carothers, and J. D. Keasling, “Design of a dynamic
sensor-regulator system for production of chemicals and fuels derived
from fatty acids,” Nature biotechnology, vol. 30, no. 4, pp. 354–359,
2012.

[3] T.-M. Yi, Y. Huang, M. I. Simon, and J. Doyle, “Robust perfect
adaptation in bacterial chemotaxis through integral feedback control,”
Proceedings of the National Academy of Sciences, vol. 97, no. 9, pp.
4649–4653, 2000.



10 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, MONTH YEAR

IPTG High for 10,000 Seconds

aTc IPTG LasI RhlI YFP

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Time (seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50
O

u
tp

u
t 

(R
P

U
)

IPTG High for 30,000 Seconds

aTc IPTG LasI RhlI YFP

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Time (seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

O
u

tp
u

t 
(R

P
U

)

(a) (b)
IPTG High for 50,000 Seconds

aTc IPTG LasI RhlI YFP

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Time (Seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

O
u

tp
u

t 
(R

P
U

)

IPTG High for 70,000 Seconds

aTc IPTG LasI RhlI YFP

0 10,000 20,000 30,000 40,000 50,000 60,000 70,000 80,000 90,000 100,000

Time (Seconds)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

O
u

tp
u

t 
(R

P
U

)

(c) (d)

Fig. 7. iBioSim ODE Runge-Kutta simulation of the genetic sensor demonstrating the filtering behavior. Note that all results are measured in RPUs. For the
circuit outputs to turn on (LasI, RhlI, and YFP for the three cells respectively) both aTc and IPTG inputs need to be present, however if the IPTG signal is
only briefly present then the circuit filters this and does not show the YFP output. This behavior can be seen in the four different panels where the IPTG is
present for differing amounts of time. (a) IPTG is present for 10,000 seconds and almost no LasI is produced. (b) IPTG is present for 30,000 seconds and
LasI is produced by the first cell but only a little RhlI is produced by the second cell. (c) IPTG is present for 50,000 seconds and both LasI and RhlI are
produced with a clear delay between the two peaks. (d) IPTG is present for 70,000 seconds providing sufficient time for the final circuit output (YFP) to be
produced. Although not shown in these plots, if aTc is removed after about 40,000 seconds, there is no significant change in the overall behavior.

[4] K. Krishnanathan, S. R. Anderson, S. A. Billings, and V. Kadirka-
manathan, “A data-driven framework for identifying nonlinear dynamic
models of genetic parts,” ACS synthetic biology, vol. 1, no. 8, pp. 375–
384, 2012.

[5] P. Carbonell, P. Parutto, C. Baudier, C. Junot, and J.-L. Faulon,
“Retropath: automated pipeline for embedded metabolic circuits,” ACS
synthetic biology, vol. 3, no. 8, pp. 565–577, 2013.

[6] B. L. Adams, K. K. Carter, M. Guo, H.-C. Wu, C.-Y. Tsao, H. O. Sintim,
J. J. Valdes, and W. E. Bentley, “Evolved quorum sensing regulator, lsrr,
for altered switching functions,” ACS synthetic biology, vol. 3, no. 4, pp.
210–219, 2013.

[7] T. Umeyama, S. Okada, and T. Ito, “Synthetic gene circuit-mediated
monitoring of endogenous metabolites: identification of gal11 as a
novel multicopy enhancer of s-adenosylmethionine level in yeast,” ACS
synthetic biology, vol. 2, no. 8, pp. 425–430, 2013.

[8] J. A. Stapleton, K. Endo, Y. Fujita, K. Hayashi, M. Takinoue, H. Saito,
and T. Inoue, “Feedback control of protein expression in mammalian
cells by tunable synthetic translational inhibition,” ACS synthetic biol-
ogy, vol. 1, no. 3, pp. 83–88, 2011.

[9] M. H. Medema, R. Breitling, R. Bovenberg, and E. Takano, “Exploiting
plug-and-play synthetic biology for drug discovery and production in
microorganisms,” Nature reviews. Microbiology, vol. 9, no. 2, p. 131,
2011.

[10] M. Fischbach and C. A. Voigt, “Prokaryotic gene clusters: a rich toolbox
for synthetic biology,” Biotechnology journal, vol. 5, no. 12, pp. 1277–
1296, 2010.

[11] H.-J. Frasch, M. H. Medema, E. Takano, and R. Breitling, “Design-based
re-engineering of biosynthetic gene clusters: plug-and-play in practice,”
Current opinion in biotechnology, vol. 24, no. 6, pp. 1144–1150, 2013.

[12] K. Temme, D. Zhao, and C. A. Voigt, “Refactoring the nitrogen fixation

gene cluster from klebsiella oxytoca,” Proceedings of the National
Academy of Sciences, vol. 109, no. 18, pp. 7085–7090, 2012.

[13] Z. Shao, G. Rao, C. Li, Z. Abil, Y. Luo, and H. Zhao, “Refactoring the
silent spectinabilin gene cluster using a plug-and-play scaffold,” ACS
synthetic biology, vol. 2, no. 11, pp. 662–669, 2013.

[14] C. Oßwald, G. Zipf, G. Schmidt, J. Maier, H. S. Bernauer, R. Mller, and
S. C. Wenzel, “Modular construction of a functional artificial epothilone
polyketide pathway,” ACS synthetic biology, vol. 3, no. 10, pp. 759–772,
2012.

[15] L. Steidler, W. Hans, L. Schotte, S. Neirynck, F. Obermeier, W. Falk,
W. Fiers, and E. Remaut, “Treatment of murine colitis by lactococcus
lactis secreting interleukin-10,” Science, vol. 289, no. 5483, pp. 1352–
1355, 2000.

[16] J. C. Anderson, E. J. Clarke, A. P. Arkin, and C. A. Voigt, “Environmen-
tally controlled invasion of cancer cells by engineered bacteria,” Journal
of molecular biology, vol. 355, no. 4, pp. 619–627, 2006.

[17] W. C. Ruder, T. Lu, and J. J. Collins, “Synthetic biology moving into
the clinic,” Science, vol. 333, no. 6047, pp. 1248–1252, 2011.

[18] J.-P. Motta, L. G. Bermúdez-Humarán, C. Deraison, L. Martin, C. Rol-
land, P. Rousset, J. Boue, G. Dietrich, K. Chapman, P. Kharrat et al.,
“Food-grade bacteria expressing elafin protect against inflammation and
restore colon homeostasis,” Science translational medicine, vol. 4, no.
158, pp. 158ra144–158ra144, 2012.

[19] S. Wang, Q. Kong, and R. Curtiss, “New technologies in developing
recombinant attenuated salmonella vaccine vectors,” Microbial patho-
genesis, vol. 58, pp. 17–28, 2013.

[20] J. H. Huh, J. T. Kittleson, A. P. Arkin, and J. C. Anderson, “Modular
design of a synthetic payload delivery device,” ACS synthetic biology,
vol. 2, no. 8, pp. 418–424, 2013.

[21] S. Gupta, E. E. Bram, and R. Weiss, “Genetically programmable



NGUYEN et al.: DESIGN OF ASYNCHRONOUS GENETIC CIRCUITS 11

pathogen sense and destroy,” ACS synthetic biology, vol. 2, no. 12, pp.
715–723, 2013.

[22] I. Y. Hwang, M. H. Tan, E. Koh, C. L. Ho, C. L. Poh, and M. W.
Chang, “Reprogramming microbes to be pathogen-seeking killers,” ACS
synthetic biology, vol. 3, no. 4, pp. 228–237, 2013.

[23] A. Prindle, J. Selimkhanov, T. Danino, P. Samayoa, A. Goldberg, S. N.
Bhatia, and J. Hasty, “Genetic circuits in salmonella typhimurium,” ACS
synthetic biology, vol. 1, no. 10, pp. 458–464, 2012.

[24] K. Volzing, J. Borrero, M. J. Sadowsky, and Y. N. Kaznessis, “An-
timicrobial peptides targeting gram-negative pathogens, produced and
delivered by lactic acid bacteria,” ACS synthetic biology, vol. 2, no. 11,
pp. 643–650, 2013.

[25] J. Hasty, “Engineered microbes for therapeutic applications,” 2012.
[26] T. Danino, J. Lo, A. Prindle, J. Hasty, and S. N. Bhatia, “In vivo gene

expression dynamics of tumor-targeted bacteria,” ACS synthetic biology,
vol. 1, no. 10, pp. 465–470, 2012.

[27] E. Engineered, “coli that detect and respond to gut inflammation through
nitric oxide sensing archer, eric j.; robinson, andra b.; suel, gurol m,”
ACS Synthetic Biology, vol. 1, no. 10, pp. 451–457, 2012.

[28] M. S. Antunes, K. J. Morey, J. J. Smith, K. D. Albrecht, T. A. Bowen,
J. K. Zdunek, J. F. Troupe, M. J. Cuneo, C. T. Webb, H. W. Hellinga
et al., “Programmable ligand detection system in plants through a
synthetic signal transduction pathway,” PLoS One, vol. 6, no. 1, p.
e16292, 2011.

[29] D. M. Widmaier, D. Tullman-Ercek, E. A. Mirsky, R. Hill, S. Govin-
darajan, J. Minshull, and C. A. Voigt, “Engineering the salmonella type
iii secretion system to export spider silk monomers,” Molecular Systems
Biology, vol. 5, no. 1, p. 309, 2009.

[30] K. Bernhardt, N. S. Chand, E. Carter, J. Lee, Y. Xu, X. Zhu, D. Rowe,
J. W. Ajioka, J. Goncalves, J. Haseloff et al., “New tools for self-
organized pattern formation,” BMC Systems Biology, vol. 1, no. 1, p.
S10, 2007.

[31] X.-X. Xia, Z.-G. Qian, C. S. Ki, Y. H. Park, D. L. Kaplan, and S. Y. Lee,
“Native-sized recombinant spider silk protein produced in metabolically
engineered escherichia coli results in a strong fiber,” Proceedings of
the National Academy of Sciences, vol. 107, no. 32, pp. 14 059–14 063,
2010.

[32] D. M. Widmaier and C. A. Voigt, “Quantification of the physiochemical
constraints on the export of spider silk proteins by salmonella type iii
secretion,” Microbial cell factories, vol. 9, no. 1, p. 78, 2010.

[33] F. Aquea, F. Federici, C. Moscoso, A. Vega, P. Jullian, J. Haseloff,
and P. ARCE-JOHNSON, “A molecular framework for the inhibition
of arabidopsis root growth in response to boron toxicity,” Plant, cell &
environment, vol. 35, no. 4, pp. 719–734, 2012.

[34] M. S. Antunes, S.-B. Ha, N. Tewari-Singh, K. J. Morey, A. M. Trofka,
P. Kugrens, M. Deyholos, and J. I. Medford, “A synthetic de-greening
gene circuit provides a reporting system that is remotely detectable and
has a re-set capacity,” Plant biotechnology journal, vol. 4, no. 6, pp.
605–622, 2006.

[35] T. S. Gardner, C. R. Cantor, and J. J. Collins, “Construction of a genetic
toggle switch in escherichia coli,” Nature, vol. 403, no. 6767, pp. 339–
342, 2000.

[36] J. Sardanyés, A. Bonforti, N. Conde, R. Solé, and J. Macia, “Compu-
tational implementation of a tunable multicellular memory circuit for
engineered eukaryotic consortia,” Frontiers in physiology, vol. 6, 2015.

[37] M. C. Inniss and P. A. Silver, “Building synthetic memory,” Current
Biology, vol. 23, no. 17, pp. R812–R816, 2013.

[38] A. Urrios, J. Macia, R. Manzoni, N. Conde, A. Bonforti, E. de Nadal,
F. Posas, and R. Sol, “A synthetic multicellular memory device,” ACS
synthetic biology, vol. 5, no. 8, pp. 862–873, 2016.

[39] L. Andrews, A. Nielsen, and C. Voigt, “Cellular checkpoint control
using programmable sequential logic,” Science, vol. 361, no. 6408,
2018. [Online]. Available: http://science.sciencemag.org/content/361/
6408/eaap8987

[40] J. Böhm, S. Scherzer, E. Krol, I. Kreuzer, K. von Meyer, C. Lorey, T. D.
Mueller, L. Shabala, I. Monte, R. Solano et al., “The venus flytrap
dionaea muscipula counts prey-induced action potentials to induce
sodium uptake,” Current Biology, vol. 26, no. 3, pp. 286–295, 2016.

[41] M. Escalante-Prez, E. Krol, A. Stange, D. Geiger, K. A. S.
Al-Rasheid, B. Hause, E. Neher, and R. Hedrich, “A special pair
of phytohormones controls excitability, slow closure, and external
stomach formation in the venus flytrap,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 108, no. 37, p. 1549215497, Sep 2011. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174645/

[42] A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov,
E. A. Strychalski, D. Ross, D. Densmore, and C. A. Voigt, “Genetic

circuit design automation,” Science, vol. 352, no. 6281, 2016. [Online].
Available: http://science.sciencemag.org/content/352/6281/aac7341

[43] N. Roehner and C. J. Myers., “Directed acyclic graph-based technology
mapping of genetic circuit models,” ACS Synthetic Biology, vol. 3, no. 8,
pp. 543–555, 2014.

[44] L. Watanabe, T. Nguyen, M. Zhang, Z. Zundel, Z. Zhang, C. Madsen,
N. Roehner, and C. Myers, “ibiosim 3: A tool for model-based genetic
circuit design,” ACS synthetic biology, 2018.

[45] L. Cardelli, M. Kwiatkowska, and M. Whitby, “Chemical reaction
network designs for asynchronous logic circuits,” in International Con-
ference on DNA-Based Computers. Springer, 2016, pp. 67–81.

[46] Y.-J. Chen, S. D. Rao, and G. Seelig, “Plasmid-derived dna strand
displacement gates for implementing chemical reaction networks,”
Journal of Visualized Experiments: JoVE, no. 105, Nov 2015. [Online].
Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692756/

[47] C. J. Myers, W. Belluomini, K. Kallpack, E. Peskin, and H. Zheng,
“Timed circuits: A new paradigm for high-speed design,” in Proceedings
of the 2001 Asia and South Pacific Design Automation Conference.
ACM, 2001, pp. 335–340.

[48] M. B. Elowitz and S. Leibler, “A synthetic oscillatory network of
transcriptional regulators,” Nature, vol. 403, no. 6767, pp. 335–338,
2000.

[49] M. Galdzicki, K. Clancy, E. Oberortner, M. Pocock, J. Quinn, C. Ro-
driguez, N. Roehner, M. Wilson, L. Adam, C. Anderson et al., “The
synthetic biology open language (sbol) provides a community standard
for communicating designs in synthetic biology,” Nature biotechnology,
vol. 32, no. 6, p. 545, 2014.

[50] N. Roehner, J. Beal, K. Clancy, B. Bartley, G. Mısırlı, R. Grünberg,
E. Oberortner, M. Pocock, M. Bissell, C. Madsen, T. Nguyen, M. Zhang,
Z. Zhang, Z. Zundel, D. Densmore, J. Gennari, A. Wipat, H. Sauro, and
C. Myers, “Sharing structure and function in biological design with
SBOL 2.0,” ACS synthetic biology, vol. 5, no. 6, pp. 498–506, 2016.

[51] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano,
and et al., “The systems biology markup language (SBML): a medium
for representation and exchange of biochemical network models.” Bioin-
formatics, vol. 19, no. 4, pp. 524–531, Mar. 2003.

[52] J. McLaughlin, C. Myers, Z. Zundel, G. Mısırlı, M. Zhang, I. Ofiteru,
A. Goñi Moreno, and A. Wipat, “Synbiohub: A standards-enabled design
repository for synthetic biology,” ACS synthetic biology, vol. 7, no. 2,
pp. 682–688, 2018.

[53] J. Y. Quinn, R. S. Cox III, A. Adler, J. Beal, S. Bhatia, Y. Cai,
J. Chen, K. Clancy, M. Galdzicki, N. J. Hillson et al., “Sbol visual: a
graphical language for genetic designs,” PLoS biology, vol. 13, no. 12,
p. e1002310, 2015.

[54] N. Roehner, Z. Zhang, T. Nguyen, and C. J. Myers, “Generating systems
biology markup language models from the synthetic biology open
language,” ACS synthetic biology, vol. 4, no. 8, pp. 873–879, 2015.

[55] T. Nguyen, N. Roehner, Z. Zundel, and C. J. Myers, “A converter from
the systems biology markup language to the synthetic biology open
language,” ACS synthetic biology, vol. 5, no. 6, pp. 479–486, 2016.

[56] P. Vaidyanathan, B. S. Der, S. Bhatia, N. Roehner, R. Silva, C. A.
Voigt, and D. Densmore, “A framework for genetic logic synthesis,”
Proceedings of the IEEE, vol. 103, no. 11, pp. 2196–2207, Nov 2015.

[57] F. Yaman, S. Bhatia, A. Adler, D. Densmore, and J. Beal, “Automated
selection of synthetic biology parts for genetic regulatory networks,”
ACS synthetic biology, vol. 1, no. 8, pp. 332–344, 2012.

[58] L. Huynh, A. Tsoukalas, M. Kppe, and I. Tagkopoulos, “Sbrome:
A scalable optimization and module matching framework for
automated biosystems design,” ACS Synthetic Biology, vol. 2,
no. 5, pp. 263–273, 2013, pMID: 23654271. [Online]. Available:
http://dx.doi.org/10.1021/sb300095m

[59] H. Baig and J. Madsen, “A top-down approach to genetic circuit
synthesis and optimized technology mapping,” 2017.

[60] S. Little, D. Walter, C. Myers, R. Thacker, S. Batchu, and T. Yoneda,
“Verification of analog/mixed-signal circuits using labeled hybrid petri
nets,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 30, no. 4, pp. 617–630, April 2011.

[61] C. Madsen, C. J. Myers, T. Patterson, N. Roehner, J. T. Stevens, and
C. Winstead, “Design and test of genetic circuits using iBioSim,” IEEE
Design Test of Computers, vol. 29, no. 3, pp. 32–39, June 2012.

[62] N. Roehner and C. Myers, “Directed acyclic graph-based technology
mapping of genetic circuit models,” ACS Synthetic Biology, vol. 3,
no. 8, pp. 543–555, 08 2014. [Online]. Available: https://doi.org/10.
1021/sb400135t

[63] G. Mısırlı, T. Nguyen, , J. McLaughlin, , P. Vaidyanathan, T. Jones,
D. Densmore, C. Myers, and A. Wipat, “A computational workflow for

http://science.sciencemag.org/content/361/6408/eaap8987
http://science.sciencemag.org/content/361/6408/eaap8987
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174645/
http://science.sciencemag.org/content/352/6281/aac7341
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4692756/
http://dx.doi.org/10.1021/sb300095m
https://doi.org/10.1021/sb400135t
https://doi.org/10.1021/sb400135t


12 PROCEEDINGS OF THE IEEE, VOL. X, NO. Y, MONTH YEAR

the automated generation of models of genetic designs,” ACS synthetic
biology, 2018.

[64] G. Misirli, J. Hallinan, and A. Wipat, “Composable modular models
for synthetic biology,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 11, no. 3, p. 22, 2014.

[65] C. J. Myers, Asynchronous circuit design. John Wiley & Sons, 2001.
[66] E. V. Nikolaev and E. D. Sontag, “Quorum-sensing synchronization of

synthetic toggle switches: A design based on monotone dynamical sys-
tems theory,” PLoS computational biology, vol. 12, no. 4, p. e1004881,
2016.

[67] P. Vaidyanathan, B. S. Der, S. Bhatia, N. Roehner, R. Silva, C. A.
Voigt, and D. Densmore, “A framework for genetic logic synthesis,”
Proceedings of the IEEE, vol. 103, no. 11, pp. 2196–2207, 2015.

[68] G. Mısırlı, T. Nguyen, J. A. McLaughlin, P. Vaidyanathan, T. Jones,
D. Densmore, C. J. Myers, and A. Wipat, “A computational workflow for
the automated generation of models of genetic designs,” ACS synthetic
biology, 2018.

[69] C. J. Myers, Engineering genetic circuits. Chapman and Hall/CRC,
2009.

[70] ——, “Platforms for genetic design automation,” in Methods in Micro-
biology. Elsevier, 2013, vol. 40, pp. 177–202.

[71] N. Nguyen, C. Myers, H. Kuwahara, C. W., and J. Keener, “Design and
analysis of a robust genetic muller c-element,” Journal of Theoretical
Biology, vol. 264, no. 2, pp. 174 – 187, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022519309005153

[72] “The human proteome the human protein atlas.” [Online]. Available:
https://www.proteinatlas.org/humanproteome/tissue/tissue+specific

[73] J. Zhu, G. Chen, S. Zhu, S. Li, Z. Wen, B. Li, Y. Zheng,
and L. Shi, “Identification of tissue-specific protein-coding and
noncoding transcripts across 14 human tissues using rna-seq,”
Scientific Reports, vol. 6, p. 28400, Jun 2016. [Online]. Available:
https://www.nature.com/articles/srep28400

[74] I. Espinoza, M. J. Sakiyama, T. Ma, L. Fair, X. Zhou, M. Hassan,
J. Zabaleta, and C. R. Gomez, “Hypoxia on the expression of hepatoma
upregulated protein in prostate cancer cells,” Frontiers in Oncology,
vol. 6, Jun 2016. [Online]. Available: https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4908134/

[75] M. J. Duffy, A. van Dalen, C. Haglund, L. Hansson, R. Klapdor,
R. Lamerz, O. Nilsson, C. Sturgeon, and O. Topolcan, “Clinical
utility of biochemical markers in colorectal cancer: European
group on tumour markers (egtm) guidelines,” European Journal of
Cancer, vol. 39, no. 6, p. 718727, Apr 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0959804902008110

[76] K. S. Goonetilleke and A. K. Siriwardena, “Systematic review
of carbohydrate antigen (ca 19-9) as a biochemical marker in the
diagnosis of pancreatic cancer,” European Journal of Surgical Oncology
(EJSO), vol. 33, no. 3, p. 266270, Apr 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0748798306003763

[77] J. R. Kelly, A. J. Rubin, J. H. Davis, C. M. Ajo-Franklin, J. Cumbers,
M. J. Czar, K. de Mora, A. L. Glieberman, D. D. Monie, and D. Endy,
“Measuring the activity of biobrick promoters using an in vivo reference
standard,” Journal of biological engineering, vol. 3, no. 1, p. 4, 2009.

[78] J. Davison, “Genetic exchange between bacteria in the environment,”
Plasmid, vol. 42, no. 2, pp. 73–91, 1999.

[79] A. Pai, Y. Tanouchi, C. H. Collins, and L. You, “Engineering mul-
ticellular systems by cell–cell communication,” Current opinion in
biotechnology, vol. 20, no. 4, pp. 461–470, 2009.

[80] K. Brenner, L. You, and F. H. Arnold, “Engineering microbial consortia:
a new frontier in synthetic biology,” Trends in biotechnology, vol. 26,
no. 9, pp. 483–489, 2008.

[81] C. Madsen, Z. Zhang, N. Roehner, C. Winstead, and C. Myers,
“Stochastic model checking of genetic circuits,” J. Emerg. Technol.
Comput. Syst., vol. 11, no. 3, pp. 23:1–23:21, Dec. 2014. [Online].
Available: http://doi.acm.org/10.1145/2644817

[82] T. Neupane, Z. Zhang, C. Madsen, H. Zheng, and C. J. Myers, “Ap-
proximation Techniques for Stochastic Analysis of Biological Systems,”
arXiv e-prints, p. arXiv:1901.07857, Jan. 2019.

Tramy Nguyen received the B.S. and M.S. degrees
in electrical and computer engineering at the Univer-
sity of Utah, Salt Lake City, UT, USA in 2015 and
2016, respectively. She is currently a Ph.D. student
working in the Myers Research Group. Her research
interest is applying engineering concepts to help
develop CAD tools for automating the process of
designing asynchronous genetic circuits. Her contri-
butions have also taken place in the SBOL commu-
nity where she has represented the community as an
SBOL Editor from 2016 to 2018.

Timothy S. Jones received the B.S.E. degree in
electrical engineering in 2010 and the Ph.D. de-
gree in electrical engineering in 2016, both from
the University of Pennsylvania, Philadelphia, PA.
He is currently a postdoctoral research associate
under Douglas Densmore at Boston University. His
current research involves extensions to the genetic
circuit design software Cello, as well as quantitative
microscopy and modeling spatiotemporal behavior
of cell-cell communication systems.

Pedro Fontanarrosa received his B.S. in Biological
Sciences in 2008 and his M.S. in Evolutionary
Biology in 2011 from the University of Buenos
Aires, Argentina. He continued researching on a
University of Buenos Aire’s scholarship until 2014.
His research was based mainly on speciation of
indigenous species of Drosophila in Argentina. He
received a Fulbright scholarship to pursue a Ph.D.
Degree in Bioengineering and moved to Salt Lake
City, Utah. As Fulbright Scholar at the University of
Utah, he specialized in Synthetic Biology and works

under Chris Myers’ mentorship.

Jeanet V. Mante received her B.A. degree in Natural
Science from the University of Cambridge, United
Kingdom in 2018. Her primary research was on the
quantification of transcription factor localisation in
Marchantia polymorpha gemmae. She is currently
a Ph.D. student working under Chris Myers at the
University of Utah, Salt Lake City, UT, USA.

Zach Zundel is pursuing a dual-BEng in Computer
Science and Biomedical Eningeering at the Uni-
versity of Utah. He is currently an undergraduate
researcher in Chris Myers’ group. His research in-
terests include tooling for synthetic biologists, data
standardization, and the semantic web.

http://www.sciencedirect.com/science/article/pii/S0022519309005153
https://www.proteinatlas.org/humanproteome/tissue/tissue+specific
https://www.nature.com/articles/srep28400
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908134/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4908134/
http://www.sciencedirect.com/science/article/pii/S0959804902008110
http://www.sciencedirect.com/science/article/pii/S0748798306003763
http://doi.acm.org/10.1145/2644817


NGUYEN et al.: DESIGN OF ASYNCHRONOUS GENETIC CIRCUITS 13

Douglas Densmore (Senior Member, IEEE) re-
ceived the B.S.E. degree in computer engineering
from the University of Michigan, Ann Arbor, MI,
USA, in 2001, and the M.S. and Ph.D. degrees
in electrical engineering from the University of
California, Berkeley, CA, USA, in 2004 and 2007,
respectively.

He is a Kern Faculty Fellow at Hariri Institute
for Computing and Computational Science and En-
gineering Junior Faculty Fellow and Associate Pro-
fessor in the Department of Electrical and Computer

Engineering at Boston University, Boston, MA, USA. His research focuses
on the development of tools for the specification, design, and assembly of
synthetic biological systems, drawing upon his experience with embedded
system level design and electronic design automation (EDA). He is the director
of the Cross-disciplinary Integration of Design Automation Research (CIDAR)
group at Boston University, which develops computational and experimental
tools for synthetic biology. His research interests include synthetic biology,
bioelectronic systems, cyber physical systems, digital logic design, and system
level design.

Chris J. Myers (Fellow, IEEE) received the B.S.
degree in Electrical Engineering and Chinese history
in 1991 from the California Institute of Technology,
Pasadena, CA, and the M.S.E.E. and Ph.D. degrees
from Stanford University, Stanford, CA, in 1993 and
1995, respectively. He is a Professor and Associate
Chair in the Department of Electrical and Computer
Engineering, University of Utah, Salt Lake City, UT.
Dr. Myers is the author of over 170 technical pa-
pers and the textbooks Asynchronous Circuit Design
and Engineering Genetic Circuits. He is also a co-

inventor on 4 patents. His research interests include asynchronous circuit
design, formal verification of analog/mixed signal circuits and cyber-physical
systems, and modeling, analysis, and design of genetic circuits. Dr. Myers
received an NSF Fellowship in 1991, an NSF CAREER award in 1996,
and best paper awards at the 1999 and 2007 Symposiums on Asynchronous
Circuits and Systems. Dr. Myers is a Fellow of the IEEE, and he is a Member
of the Editorial Board for ACS Synthetic Biology, Engineering Biology, and
Synthetic Biology, and has served on the Editorial Boards for the IEEE
Transactions on VLSI Systems, IEEE Design & Test Magazine, IEEE Life
Sciences Letters, and Formal Methods in System Design. Dr. Myers has
also served as an editor for the Systems Biology Markup Language (SBML)
standard and is on the steering committee for the Synthetic Biology Open
Language (SBOL) standard.


	Introduction
	Background
	Asynchronous Circuits
	Genetic Circuits
	Data Standards
	Genetic Design Automation

	Methodology
	Synthesis
	Library
	Technology Mapping
	Verification

	Case Study
	Conclusion
	References
	Biographies
	Tramy Nguyen
	Timothy S. Jones
	Pedro Fontanarrosa
	Jeanet V. Mante
	Zach Zundel
	Douglas Densmore
	Chris J. Myers


