1	LRH: Mussels alter fish distributions	G. W. Hopper et al.	
2	RRH: Volume 39	December 2019	
3			
4	Freshwater mussels alter fish distribution	ons through habitat modifications at fine spatial	
5	scales		
6			
7	Garrett W. Hopper 1, Traci P. DuBose ²	⁴ , Keith B. Gido ^{1,5} , and Caryn C. Vaughn ^{2,6}	 Comment [A1]: My current address has changed to
8			Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487, USA
9	¹ Division of Biology, Kansas State University	sity, Manhattan, Kansas 66506, USA	Email: gwhopper@ua.edu
10	² Oklahoma Biological Survey, Department	of Biology and Ecology and Evolutionary Biology	
11	Program, University of Oklahoma, Norm	an, Oklahoma 73019 USA	
12			
13			
14	E-mail addresses: ³ ghopper@ksu.edu, ⁴ trac	cipopejoy@ou.edu; ⁵ kgido@ksu.edu;	
15	⁶ carynvaughn@ou.edu		
16			
17	Received 20 November 2018; Accepted 11	April 2019; Published online XX Month 2019.	Comment [.2]: COMP: Please insert publication date when available.
18			
		1	
		1	

19	Abstract: Aggregations of freshwater mussels create patches that can benefit other organisms
20	through direct habitat alterations or indirect stimulation of trophic resources via nutrient
21	excretion and biodeposition. Spent shells and the shells of living mussels add complexity to
22	benthic environments by providing shelter from predators and increasing habitat heterogeneity.
23	Combined, these factors can increase primary productivity and macroinvertebrate abundance in
24	patches where mussel biomass is high, providing valuable subsidies for some fishes and
25	influencing their distributions. We performed a 12-wk field experiment to test whether fish
26	distributions within mussel beds were most influenced by the presence of subsidies associated
27	with live mussels or the biogenic habitat of shells. We used remote underwater video recordings
28	to quantify fish occurrences at fifty 0.25-m² experimental enclosures stocked with either live
29	$mussels \ (2-species \ assemblages), \ sham \ mussels \ (shells \ filled \ with \ sand), \ or \ sediment \ only. \ The$
30	biomass of algae and benthic macroinvertebrates increased over time but were uninfluenced by
31	treatment. We detected more fish in live mussel and sham treatments than in the sediment-only
32	treatment but found no difference between live mussel and sham treatments. Thus, habitat
33	provided by mussel shells may be the primary benefit to fishes that co-occur with mussels.
34	Increased spatiotemporal overlap between fish and mussels might strengthen ecosystem effects,
35	such as nutrient cycling, and the role of both fish and mussels in freshwater ecosystems.
36	Key words: Spatial subsidies, stream fish, unionid mussels, behavior, remote underwater video

38 Spatial subsidies are resources produced in one habitat that cross over into adjacent habitats (Polis et al. 1997, Nakano and Murakami 2001). Spatial subsidies can occur across discrete habitat boundaries at broad spatial scales such as the reciprocal flux of insects among terrestrial and aquatic habitats (Baxter et al. 2005). However, resources can also be spatial subsidies when they cross fine-scale boundaries within aquatic systems such as from pelagic to benthic habitats (Baustian et al. 2014, Jager and Diehl 2014). The effects of spatial subsidies are most pronounced when they substantially elevate resource abundance above that produced in the recipient habitat (Nakano and Murakami 2001, Marczak and Richardson 2007).

39

40

41

42

43 44

45

46

47

48

49

50

51

52

53

54

55

56 57

58

59

60

Some ecosystem engineers control the availability of spatial subsidies to other organisms by physically modifying, maintaining, or creating habitats (Jones et al. 1997). For instance, tree canopies create habitat suitable for other organisms by mediating understory and soil conditions (Holling 1992, Callaway and Walker 1997), and beavers use dams to create lentic habitat in otherwise flowing streams (Wright et al. 2002). The physical engineering activities of heterogeneously distributed organisms can amplify differences in resource production rates among habitat patches, thereby resulting in resource-rich and resource-poor patches (Wetzel et al. 2005, Chowdhury et al. 2016). Furthermore, mobile animals may track the activities of temporally stable but spatially heterogeneous aggregations of animals that benefit them. For example, prairie dogs (Cynomys ludovicianus) form spatially heterogeneous colonies that trigger numerous compositional, structural, and nutritional changes in the vegetation, and these changes attract bison (Bison bison) through both direct and indirect effects (Coppock et al. 1983). Understanding whether heterogeneous animal aggregations influence the distribution of cooccurring groups is fundamental to ecology because spatial and temporal overlap may enhance ecosystem functions, such as nutrient cycling (Hopper et al. 2018).

Freshwater mussels (family Unionidae) are common in eastern North American streams,
where they are patchily distributed at multiple spatial scales. Mussels typically occur as dense,
multi-species aggregations called mussel beds where mussels are 10 to 100 \times denser than they
are in areas outside of beds (Strayer 2008). Further, mussel densities within these beds can vary
with stream size (Atkinson et al. 2012). Mussel beds often exist in river channels that experience
significant sediment mobility, but beds can persist in the same stream locations and have similar
abundance and species composition for decades, which may provide stable conditions for other
organisms (Sansom et al. 2018b). Mussels are also heterogeneous within beds, with individual
mussels aggregating in dense patches separated by areas with few or no mussels (Strayer and
Ralley 1993, Vaughn and Spooner 2006). Mussels filter-feed and stimulate primary and
secondary production through N excretion and biodeposition of feces and pseudofeces (Atkinson
and Vaughn 2015, Vaughn 2018). Mussel beds, therefore, increase the amount of nutrients and
resources, which provide spatial subsidies that link the water column and benthic foodweb
compartments of streams. These spatial subsidies might facilitate other organisms at both broad
and fine spatial scales.
The distribution and abundance of mussels are closely linked to the distribution and

The distribution and abundance of mussels are closely linked to the distribution and abundance of fishes. Mussels are dependent on fish hosts for dispersal of their ectoparasitic larvae (Barnhart et al. 2008, Strayer 2008, Schwalb et al. 2011) and are, therefore, only abundant and diverse where fish are abundant and diverse (Vaughn and Taylor 2000, Modesto et al. 2018). It has often been assumed that mussels have little effect on fish. However, in marine systems some organisms exploit the shells of mussels to reduce thermal stress (Stephens and Bertness 1991) and injury or to avoid removal by currents or predators (Skilleter 1994). In streams, mussel shells create biogenic habitat for other organisms (Gutiérrez et al. 2003, Spooner and

Vaughn 2006). In addition, nutrients excreted and biodeposited by mussels increase primary
production and can shift the functional composition of algal assemblages (Atkinson et al. 2013).
Densities of benthic macroinvertebrates are higher in sediment patches with mussels than patches
without mussels (Vaughn and Spooner 2006, Spooner and Vaughn 2006). Further, the
composition of benthic macroinvertebrate assemblages is different within mussel patches than in
the surrounding habitat, probably because mussels provide shell habitat, stabilize sediments, and
increase algal food resources (Howard and Cuffey 2006, Vaughn et al. 2008). In the Eel River,
California, the growth of juvenile Pacific lamprey was significantly enhanced when the lamprey
consumed mussel biodeposits (Limm and Power 2011). Thus, heterogeneously distributed
mussels provide an opportunity to test whether fish abundance increases in response to spatial
subsidies produced by freshwater mussels.

We hypothesized that patches of mussels would attract fishes through spatial subsidies that cause alga and invertebrate prey to be concentrated at fine spatial scales (Table 1). Further, we expected that piscivorous fishes would be attracted to increased abundance of prey fishes feeding on increased algal or invertebrate biomass within mussel bed hotspots (Table 1). We hypothesized that spatial subsidies (i.e., trophic resources) generated within patches of live mussels would attract more fishes than would empty shells or bare sediment (Table 1). To test this hypothesis, we manipulated mussel occurrence within enclosures in a field experiment and used remote underwater video to quantify the abundance of fishes across treatments with live mussels, mussel shells filled with sand, and controls (sediment only).

METHODS

Study system

We conducted our experiment in the Kiamichi River, a tributary (watershed area = 4560
km²) of the Red River in the Ouachita Mountains of southeastern Oklahoma known for its high
diversity of fishes and mussels (86 and 31 species, respectively) (Matthews et al. 2005). There is
considerable variation in seasonal discharge in this system (Vaughn et al. 2015; Fig. S1), but
mussels persist as temporally stable aggregations (Sansom et al. 2018b). To avoid confounding
mussel effects within our treatments with effects of established mussels, we installed the
experiment in a river reach without mussels upstream of known mussel beds (Atkinson and
Vaughn 2015). We transplanted mussels to the site (see below) following a method similar to
that of Atkinson et al. (2014). Our study site was a shallow \sim 50-m reach with relatively
homogenous depth and flow (Table 2), and the stream bottom was comprised mainly of sand,
gravel, and cobble. The lentic conditions of the experimental reach were representative of those
in the Kiamichi River in late summer and fall, where mussel beds are contained in shallow,
isolated reaches with long hydrologic residence times (Vaughn et al. 2004, Vaughn et al. 2015).
Experimental design
Mussel treatments We performed a 12-wk field experiment to test whether fish distributions
within mussel beds were most influenced by the presence of subsidies associated with live
mussels or biogenic habitat of shells. Variation in spatial subsidies among mussel patches may
be influenced by the traits of mussels occupying those patches (Howard and Cuffey 2006,
Vaughn et al. 2007). To account for this, we used 2 mussel species that are common in this river
and have traits that can influence food web dynamics and ecosystem function (Spooner and

Vaughn 2012, Atkinson et al. 2013). Actinonaias ligamentina and Amblema plicata are both

characteristic of the Interior Highlands mussel fauna (Haag 2010) and together comprise >70%

of mussel biomass in the Kiamichi River (Vaughn and Pyron 1995, Hopper et al. 2018). The 2
species differ in morphological, physiological, and behavioral characteristics that influence their
functional role in ecosystems (Vaughn 2010, Atkinson et al. 2018). Actinonaias ligamentina has
a smooth shell and is more active than A. plicata, which has a ridged shell and tends to be
sedentary (Vaughn et al. 2004, Allen and Vaughn 2009). Differences in algal and invertebrate
abundances occur on the shells of the 2 species (Vaughn et al. 2008, Atkinson et al. 2013), and
abundances of invertebrates are higher in sediments that surround each species than bare
sediment (Spooner and Vaughn 2006). In addition, they have different temperature-dependent
excretion rates and different tissue and excretion stoichiometry, which can result in differences in
algal production and composition (Atkinson et al. 2018, Spooner and Vaughn 2012).
To represent natural variation in assemblage composition and density in the Kiamichi
River, we created mussel assemblages of 40 individuals (ind)/m ² that were either dominated by
live A. ligamentina (7 A. ligamentina and 3 A. plicata) or by live A. plicata (3 A. ligamentina and
7 A. plicata). In addition, we had treatments that used sham mussels of both species in the same
combinations and density, as well as a sediment-only control. Sham mussels were clean, empty
shells filled with sand and glued together (Spooner and Vaughn 2006). We replicated each
treatment $10 \times (n = 50)$. This design allowed us to separate effects of trophic resources (live
mussels), structural features (sham mussels), and no mussels (sediment control) on fish
distributions. Mussels were collected from a downstream site, transplanted into enclosures, and
returned to their collection site following the experiment.
<i>Enclosures</i> We installed 50 enclosures (50 cm × 50 cm × 20 cm deep) on July 12, 2017.

Enclosure frames were made from 3.3 cm schedule 40 PVC pipe, and the sides and bottom were

enclosed with 2.5 cm diameter poultry wire (Spooner and Vaughn 2006). Enclosures were placed in the stream reach >2 m from shore and \sim 2 m apart in a checkerboard pattern to minimize cage-effects on downstream enclosures. Sediment was removed from the stream bottom and homogenized. We then buried enclosures 20 cm into the streambed and filled them with homogenized sediment so the tops of the enclosures were level with the streambed and mussels could not escape. This method allowed us to maintain constant mussel densities throughout the experiment while still allowing invertebrates and fishes to move freely through both the sediment and water column.

Remote underwater video

We used camera-based methods that allowed detailed observations of many experimental units simultaneously for extended periods. Remote underwater video (RUV) is commonly used in descriptive studies of marine environments and has become increasingly common in freshwater studies (Ebner et al. 2014, 2015, Wilson et al. 2015, Schmid et al. 2017). Few of these studies have exploited the utility of RUV in an experimental setting, but they have demonstrated the benefits of camera-based methods for quantifying ecological interactions among co-occurring organisms.

We used Activeon CX high-definition cameras (San Diego, California) with fixed focal length, continuous video, a wide-angle field of view, and a resolution of 1920 × 1080 pixels. These action cameras are a cost-effective and reliable alternative to the handheld cameras commonly used in marine-baited RUV studies (Struthers et al. 2015). The cameras were powered by Li-ion batteries (1200 mAh) that allowed ~130 min of video recording, which we used for each deployment. The entire camera system was secured in a watertight case and

Comment [.3]: Hopper: We need the city and state/country where products are manufactured. I did some digging on Google and found this information. The website you provided no longer works. Please verify this information.

Comment [A4R3]: This is correct.

attached to a flexible clamp mount (Captain FlexMount; Captain, China). Fish abundances at enclosures were observed by clamping a single camera to a 10-cm PVC segment fitted into a "T" joint fixed to the top, upstream side of each enclosure. We used the 5.0 cm LCD screen on the back of each camera to position the camera to record in the downstream direction and ensure that the entire enclosure was within the field of view (Fig. 1).

We conducted underwater camera surveys at 9 and 12 wk exclusively during daylight between 0800 and 1730 h to avoid light limitation at other times of day. During surveys, each enclosure was filmed for ~5 h/d over 2 periods within a single day: 1 in the morning (~0800–1030 h) and 1 in the afternoon (~1500–1730 h). All video samples were standardized to ~36 min of footage for analysis, beginning after the first ~36 min of filming when water clarity returned to normal following camera deployment. The footage used for the analysis was divided into twelve 30-s segments that were viewed in real time, with 5 min separating each segment (Cousins et al. 2016). The number of fish we detected during morning (20.2 ± 6.7 [mean \pm SD]) and afternoon 14.9 ± 5.7 surveys were similar, so we combined them to increase the number of 30-s samples to 24 for each enclosure. We scored the video quality for each survey by assigning a score from 1 to 10 (zero visibility to highest clarity) to each 30-s sample. Following data collection, we determined the lowest visibility score at which fish were detected and removed all samples below this threshold (3% of 30-s samples, n = 2400).

We determined the percentage of usable video for each enclosure at 9 and 12 wk separately and compared the 2 weeks across treatments (King et al. 2018; Fig. S2). We used 2 different metrics to determine fish response to the treatments. The 1st, total fish detections, is the maximum number of individual fish counted within a particular 30-s segment (MaxN). We summed the MaxN for all 30-s samples for each enclosure to calculate total fish detections. The

Comment [.5]: Hopper: I cannot find the city/country for this product. Please verify this information. After the name of the product, insert a semicolon, then enter Company, City, and State or Country

Comment [A6R5]: Captain is the company. All I am able to find is that it is shipped from China. We ordered them from Amazon com

2nd metric, detection probability, was calculated as the proportion of 30-s segments in which at least 1 fish was detected. For instance, if at least 1 fish was detected in eight 30-s samples out of 24 samples at a single enclosure, the detection probability for that enclosure would be 0.33. These metrics were quantified from the video samples that met the visibility criteria described above. We identified all observed fish to the lowest taxonomic resolution possible and assigned them to a size class (e.g., <50mm, 51–100 mm) by estimating their total length (mm) relative to the known size of substrate baskets within the enclosures.

Quantifying spatial subsidies

To determine if live mussels and their shells increased spatial subsidies to fish, we quantified the biomass of benthic algae, organic matter, and macroinvertebrates in each enclosure 9 and 12 wk after we began the experiment. Benthic algal biomass was measured by burying 2 ceramic tiles (width = 7.6 cm) in each enclosure. Each tile had a glass fritted disk (diameter = 2.8 cm) mounted to it that remained flush with the sediment and, therefore, collected algae. We removed and froze 1 disk from each enclosure during the 9- and 12-wk sampling periods. We later cold-extracted chlorophyll a (Chl a) from these disks with acetone and quantified Chl a with a spectrophotometer (APHA 2005).

We placed 6 square mesh plastic baskets (6 cm deep, 100 cm² surface area) filled with homogenized substrate from the experimental reach in each enclosure to measure the biomass of benthic organic matter and macroinvertebrates (Bertrand and Gido 2007). We removed 3 baskets from each enclosure at 9 and 12 wk. We created a slurry by homogenizing the contents of the collected baskets in a bucket with a known volume of stream water. A subsample of the slurry was filtered (GF/F; 0.7µm pore size), frozen, and ashed to obtain ash-free dry mass (AFDM) of

benthic organic matter. Measurements of AFDM were then standardized to the volume of substrate sampled. The remaining slurry was processed for macroinvertebrates by elutriation followed by pouring it through a 0.175mm mesh sieve and preserving the sieved material in 70% ethanol (Bertrand and Gido 2007). In the laboratory, macroinvertebrates were enumerated, identified to order or family (Merritt and Cummins 2008), and measured for length. We then used standard length–mass relationships (Eckblad 1971, Benke et al. 1999, Johnston and Cunjak 1999, Miserendino 2001, Stoffels et al. 2003, Giustini et al. 2008, Miyasaka et al. 2008, Obaza and Ruehl 2013) to estimate biomass. Length–mass relationships were calculated as dry mass = $a \times \text{length}^b$. Odonates longer than 10 mm were analyzed separately from the total invertebrate biomass because they were rare (<1% of the data set) and, like fish, large odonates could be attracted by treatment effects. Macroinvertebrate biomass was then standardized to the area of substrate sampled.

Statistical analyses

We assessed variation in detection probability among treatments with analysis of variance (ANOVA) and compared total fish detections across treatments with a generalized-linear model with a Poisson distribution (Zuur et al. 2009). Fixed effects included treatment and sample date (wk 9 or 12). We tested assumptions of normality and heterogeneity of variances with Shapiro–Wilks tests and Levene's tests, respectively, for detection probability and total fish detections before we did the statistical tests. We arc-sin \sqrt{x} - transformed detection probabilities to meet assumptions of normality. We used the function Anova to conduct likelihood ratio tests and obtain p-values for the generalized linear model, as implemented in the R package car (Fox and Weisberg 2019).

We tested for differences in benthic invertebrate, large odonate, algal, and particulate organic matter biomass among treatments with ANOVA, with treatment and sampling date as fixed effects. Before analysis, we log₁₀-transformed benthic invertebrate biomass and particulate organic matter data to conform to assumptions of normality and heterogeneity of variances. We used Tukey post-hoc tests to conduct multiple comparisons if the null hypothesis of no difference among treatment means was rejected for a dependent variable. Statistical analyses were done in R (version 3.5.1; R Foundation for Statistical Computing, Vienna, Austria).

RESULTS

We detected 8 fish species from 580.5 h of video samples. Nearly 90% of the detections (total detections = 351) were of juvenile *Lepomis* spp. (total length ~20–50 mm) (Fig. 2A). Detections of darters (Percidae) and minnows (Cyprinidae) were much lower (Fig. 2B) than previous standardized fish surveys in a downstream reach (Hopper et al. 2018). Detection probability for fish did not vary significantly among treatments or sampling periods ($F_{4,90} = 1.36$, p = 0.24), although on average the probability of detection was lower at sediment-only treatments (0.08 ± 0.008 [mean \pm SE]) compared with detection probabilities for live and sham treatments (mean for both assemblages combined 0.14 ± 0.01 and 0.14 ± 0.03 , respectively; Fig. 3A). However, the total number of fish detections varied significantly among treatments ($\chi^2 = 21.20$, p < 0.001). Post-hoc tests indicated total fish detections for live and sham mussel treatments were significantly different than bare sediment treatments, regardless of mussel assemblage composition. Yet, the number of fish detected did not differ significantly among the live or sham mussel treatments and was not influenced by mussel assemblage composition (Fig. 3B). The total number of fish detected at either sham or live mussel treatments (mean for both

assemblages combined 3.6 \pm 0.23 and 4.2 $\pm0.85,$ respectively) was nearly 2 \times higher than
sediment-only treatments (2 \pm 0.69). The total number of fish detected was also influenced by
sampling date, and detections increased from wk 9 (mean =, SE =) to 12 (3.0 \pm 0.23 and 4.1
0.44, respectively; $\chi^2 = 8.65$, $p = 0.003$).
Spatial subsidies were not different among live, sham, or sediment only treatments, but

some were influenced by incubation time. Benthic invertebrate biomass was highly variable across treatments (range = 0.0–2.93 g/m², mean = 0.87 ± 0.44 [SD] g/m²) and did not differ significantly among them (p = 0.32). Benthic invertebrate biomass increased significantly in all treatments from wk 9 to 12 (mean = 0.07 ± 0.33 and 1.05 ± 0.48 g/m², respectively; $F_{1,88}$ = 61.37, p < 0.001). Large odonate biomass did not differ among treatments or weeks (0.27 ± 0.24 g/m²). Biomass of benthic algae was highly variable among treatments (0.96 ± 0.88 µg/cm²) and did not differ significantly among treatments (p = 0.10). Particulate organic matter also did not vary significantly among treatments (p = 0.80), but decreased significantly from wk 9 to 12 (p < 0.001) in all treatments.

DISCUSSION

Mussel shells (live and sham) led to a heterogeneous distribution of fish within our experimental reach and appear to provide habitat for fish at fine spatial scales. The probability of fish detection did not vary significantly among treatments, but the number of fish detections was greatest in the live mussel and sham treatments compared with the sediment-only treatment. Our results are consistent with observations that both mussels and empty shells increase interstitial spaces in the substrate, which are important habitats for fish (Sechnick et al. 2011) and their prey (Cummins and Lauff 1969; Table 1). Specifically, mussels and their spent shells might offer

Comment [CH7]: This information is unrelated to the topic sentence. Easiest solution is to add a more general and inclusive topic sentence that says something general about treatment effects on inverts, algae, and organic matter.

Comment [.8R7]: Hopper: Please rewrite the first sentence in accordance with Charles' suggestion.

Comment [A9R7]: I've added a more general topic sentence

refuge from larger aquatic predators (Moy and Sparks 1991). For instance, small Green Sunfish (Lepomis cyanellus) wedge themselves horizontally beneath cobbles to avoid detection by observers who are confused as predators during snorkel surveys in Brier Creek, Oklahoma (W. J. Matthews, personal communication). Habitat complexity associated with mussel patches might also serve as a critical flow refuge for the small fishes detected in our experiment because mussel patches significantly reduce near-bed flow velocity relative to gravel beds (Sansom et al. 2018a). Furthermore, in previous field studies, we have regularly observed active sunfish nests within mussel beds (C. Vaughn, personal observation). Our previous observation may indicate that the stable stream sediments and the accumulation of dead shell material in and around mussel patches provide preferential spawning, nesting, or nursery habitat to certain fishes observed in other systems (Wisniewski et al 2013). Two species of cavity-spawning madtoms, Noturus gyrinus and N. eleuthurus (Miller and Robison 2004) have been captured inside abandoned mussel shells in this river and others in the region (G. Hopper, personal observation). Thus, habitat modifications by mussels at fine spatial scales may provide a long-term, stable flow refugia, facilitate aspects of fish life histories, and result in the heterogeneous distribution of fish within mussel beds.

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

Contrary to our hypothesis and the findings of previous studies in this river (Spooner and Vaughn 2006, Vaughn and Spooner 2006), live mussel patches did not increase algal or invertebrate resources to fishes relative to sediment patches. Increased nutrient cycling by mussels can modify benthic algal assemblage composition and increase primary production, which can lead to increased invertebrate densities (Spooner and Vaughn 2006, Atkinson et al. 2013). Those effects can differ depending on the mussel species, so we used 2 mussel species with different traits that both have documented effects on foodweb dynamics and ecosystem

function (Spooner and Vaughn 2012, Atkinson et al. 2013). However, trophic resources to fish were not influenced by the physiological, behavioral, or morphological traits of mussels occupying experimental patches.

Mussel effects can change with environmental context (Vaughn et al. 2004). To avoid legacy effects from mussels, we conducted our experiment upstream of known mussel beds, near the headwaters of the Kiamichi River. This area has a higher gradient than areas in which previous experiments have been conducted, which can influence macroinvertebrate assemblage composition and densities (Covich et al. 1996) because such areas experience frequent high shear stress events during high flows. Additionally, this area had relatively large substrate, which often has reduced macroinvertebrate densities compared with smaller substrates (Wise and Molles 1979). Spooner and Vaughn (2006) conducted an experiment similar to ours in the Kiamichi River with the same enclosure design and similar mussel species treatments (they had single species treatments rather than 2-species assemblages), but their experiment was further downstream in a lower gradient area of the river. In their 12-mo experiment Spooner and Vaughn (2006) found that patches of mussels increased benthic invertebrate abundances and that these effects were much greater during low-flow summer periods than higher flows in autumn.

We planned for our experiment to encompass the typical summer low-flow conditions in this river (Allen et al. 2013, Vaughn et al. 2015), but discharge was nearly 6× higher on average than the previous 30 y during the incubation time of the experiment (August). These flows may have homogenized or prevented establishment of invertebrates and algae within the treatments (Fig. S1). Furthermore, continuously high flows through the reach may have reduced light availability to the benthos, reducing the importance of the bottom-up effect of nutrient recycling by mussels. We hypothesize that longer periods of low-flow conditions would increase spatial

subsidies derived in patches of live mussels, as in previous work (Spooner and Vaughn 2006). However, under the high-flow conditions of this experiment, fish were more attracted to the structural features of mussel aggregations rather than their trophic resources.

Throughout the experiment, we did not detect high fish density or diversity. We hypothesized that mussels would increase prey densities and influence the distribution of benthic feeding fish such as darters (Percidae) and grazing minnows (e.g., *Campostoma spadiceum*) that are prevalent in the system (Pyron et al. 1998; Table 1, Fig. 2B). The habitat in which we placed our enclosures, a low-velocity pool with cobble substrate, was dominated by *Lepomis* spp. and a few other species such as darters, which are more abundant in riffles, which could have lowered our chances of detecting them. The daytime deployment of our RUV cameras also greatly reduced the potential to detect nocturnal species, such as madtoms, that may have occurred within enclosures. Indeed, we captured 2 madtoms in live and sham treatments during our basket sampling, indicating that either madtom abundance was low in this reach or our ability to detect their association with our treatments with RUVs was poor. Future studies addressing similar topics might consider sampling diverse habitats with a variety of techniques to better understand species interactions at fine spatial scales.

Like most other sampling techniques, RUV has specific biases and limitations. For example, species identification may be difficult or impossible based solely on video footage (Cappo et al. 2004, Pelletier et al. 2011), especially for smaller individuals, fish with similar body shapes (i.e., *Lepomis* spp.), and fish that can inhabit interstitial spaces (i.e., darters and madtoms). In addition, there is a nonlinear relationship between the abundance metric, MaxN, that we used in our study and true fish abundance, such that fish abundance is increasingly underestimated as fish abundance and mobility increase (Schobernd et al. 2014, Campbell et al.

2015). This system has high fish diversity (Pyron et al. 1998, Matthews et al. 2005; Table 1), so we assume that the abundance of some small, schooling and highly mobile species, such as cyprinids that inhabit the water column, was underestimated in this experiment (Table 1, Fig. 2B). Future studies might build on our results by conducting similar experiments along a gradient of stream conditions (e.g., depth or low flows), which might allow the responses of different suites of species to be quantified.

Activities of animals that modify both habitats and trophic resources can cause other species to aggregate (Coppock et al. 1983, Vaughn and Spooner 2006). We also found this effect in that mussel patches at fine spatial scales (<1 m²) increased fish densities by modifying river habitat in which mussels and fish co-occur. Despite low total fish detections in our experiment, mussel shell presence affected fish distributions at fine spatial scales. This effect may become more apparent in downstream reaches because these reaches have higher mussel densities (Atkinson et al. 2012). Understanding whether fish and mussels aggregate at fine spatial scales is important because they may interact to spatially concentrate the ecosystem effects of each group. We predict the strongest ecosystem effects will occur where both mussel and fish densities are high (Hopper et al. 2018). Our experiment did not find a positive effect of mussel patches on the abundances of fish prey, but under different environmental contexts both habitat and nutrients supplied by mussels might be important. Investigators should seek out these types of interactions because overlapping aggregations of animals can form biogeochemical hotspots (McIntyre et al. 2008, Atkinson and Vaughn 2015) and can have important consequences for ecosystem structure and function (Atkinson et al. 2018).

2	Q	1	

Author contributions: GWH, TPD, KBG, and CCV designed the study. GWH and TPD carried out the experiment. GWH analyzed the data and wrote the manuscript with input from all authors.

We are indebted to K. Murphy, M. Couchman, A. Earl, and A. Hageman for their efforts installing the experiment and J. Grill, C. Pennock, S. Hedden, and B. Tweedy for help with camera deployment, downloading, and organizing videos in the field. J. Hartwell, E. Higgins, A. Holt, J. Lopez, N. Rodríguez, and B. Tweedy helped collect samples on numerous occasions. W. Dodds and M. Tobler provided helpful comments on the manuscript. We are also grateful to R. Rose for access to his property and the Kuntry Kitchen for the use of their facilities throughout the experiment. Funding for this project was provided by the National Science Foundation (DEB 1457542).

396	LITERATURE CITED
397	Allen, D. C., and C. C. Vaughn. 2009. Burrowing behavior of freshwater mussels in
398	experimentally manipulated communities. Journal of the North American Benthological
399	Society 28:93–100.
400	APHA (American Public Health Association). 2005. Standard methods for the examination of
401	water and wastewater. 21st edition. American Public Health Association, American Water
402	Works Association, and Water Environment Federation, Washington, DC.
403	Atkinson, C. L., J. P. Julian, and C. C. Vaughn. 2012. Scale-dependent longitudinal patterns in
404	mussel communities. Freshwater Biology 57:2272–2284.
405	Atkinson, C. L., J. P. Julian, and C. C. Vaughn. 2014a. Species and function lost: role of drought
406	in structuring stream communities. Biological Conservation 176:30–38.
407	Atkinson, C. L., J. F. Kelly, and C. C. Vaughn. 2014b. Tracing consumer-derived nitrogen in
408	riverine food webs. Ecosystems 17:485–496.
409	Atkinson, C. L., B. J. Sansom, C. C. Vaughn, and K. J. Forshay. 2018. Consumer aggregations
410	drive nutrient dynamics and ecosystem metabolism in nutrient-limited systems.
411	Ecosystems 21:521–535.
412	Atkinson, C. L., and C. C. Vaughn. 2015. Biogeochemical hotspots: temporal and spatial scaling
413	of freshwater mussels on ecosystem function. Freshwater Biology 60:563-574.
414	Atkinson C. L., C. C. Vaughn, K. J. Forshay, and J. T. Cooper. 2013. Aggregated filter-feeding
415	consumers alter nutrient limitation: consequences for ecosystem and community
416	dynamics. Ecology 94:1359–1369.

41/	Barnnart, M. C., W. R. Haag, and W. N. Roston. 2008. Adaptations to nost infection and farvai
418	parasitism in Unionoida. Journal of the North American Benthological Society 27:370-
419	394.
420	Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models
421	using lme4. Journal of Statistical Software 67:1-48.
422	Baustian, M. M., G. J. A. Hansen, A. Kluijver, K. Robinson, E. N. Henry, L. B. Knoll, K. C.
423	Rose, and C. C. Carey. 2014. Linking the bottom to the top in aquatic ecosystems:
424	mechanisms and stressors of benthic-pelagic coupling. Eco-DAS X Symposium
425	Proceedings 3:25–47.
426	Baxter, C. V., K. D. Fausch, and W. C. Saunders. 2005. Tangled webs: reciprocal flows of
427	invertebrate prey link streams and riparian zones. Freshwater Biology 50:201-220.
428	Benke, A. C., A. D. Huryn, L. A. Smock, and J. B. Wallace. 1999. Length-mass relationships fo
429	freshwater macroinvertebrates in North America with particular reference to the
430	southeastern United States. Journal of the North American Benthological Society
431	18:308–343.
432	Bertrand, K. N., and K. B. Gido. 2007. Effects of the herbivorous minnow, southern redbelly
433	dace (Phoxinus erythrogaster) on stream ecosystem structure and function. Oecologia
434	151:69–81.
435	Callaway, R. M., and L. R. Walker. 1997. Competition and facilitation: a synthetic approach to
436	interactions in plant communities. Ecology 78:1958–1965.
437	Campbell, M. D., A. G. Pollack, C. T. Gledhill, T. S. Switzer, and D. A. DeVries. 2015.
438	Comparison of relative abundance indices calculated from two methods of generating
439	video count data. Fisheries Research 170:125-133.

440	Cappo, M., P. Speare, and G. De atn. 2004. Comparison of batted remote underwater video
441	stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-
442	reefal areas of the Great Barrier Reef Marine Park. Journal of Experimental Marine
443	Biology and Ecology 302:123–152.
444	Chowdhury, G. W., A. Zieritz, and D. C. Aldridge. 2016. Ecosystem engineering by mussels
445	supports biodiversity and water clarity in a heavily polluted lake in Dhaka, Bangladesh.
446	Freshwater Science 35:188–199.
447	Coppock D. L., J. E. Ellis, J. K. Detling, and M. I. Dyer. 1983. Plant-herbivore interactions in a
448	North American mixed-grass prairie. II. Responses of bison to modification of vegetation
449	by Prairie Dogs. Oecologia 56:10–15.
450	Cousins, S., M. J. Kennard, and B. C. Ebner. 2016. Depth-related composition and structuring of
451	tropical riverine fish assemblages revealed by baited video. Marine and Freshwater
452	Research 68:1965–1975.
453	Cummins, K. W., and G. H. Lauff. 1969. The influence of substrate particle size on the
454	microdistribution of stream macrobenthos. Hydrobiologia 34:145–181.
455	Ebner, B. C., C. J. Fulton, S. Cousins, J. A. Donaldson, M. J. Kennard, JO. Meynecke, and J.
456	Schaffer. 2015. Filming and snorkeling as visual techniques to survey fauna in difficult to
457	access tropical rainforest streams. Marine and Freshwater Research 66:120-126.
458	Ebner, B. C., D. Starrs, D. L. Morgan, C. J. Fulton, J. A. Donaldson, J. S. Doody, S. Cousins, M.
459	Kennard, G. Butler, Z. Tonkin, S. Beatty, B. Broadhurst, R. Clear, M. Lintermans, and C.
460	S. Fletcher. 2014. Emergence of field-based underwater video for understanding the
461	ecology of freshwater fishes and crustaceans in Australia. Journal of the Royal Society of
462	Western Australia 97:287–296.

463	Eckblad, J. W. 1971. Weight-length regression models for three aquatic gastropod populations.
464	American Midland Naturalist 85:271–274.
465	Fox, J., and S. Weisberg. 2019. An R companion to applied regression. 3 rd edition. Sage,
466	Thousand Oaks, California.
467	Giustini, M., F. P. Miccoli, G. De Luca, and B. Cicolani. 2008. Length-weight relationships for
468	some Plecoptera and Ephemeroptera from a carbonate stream in central Apennine (Italy).
469	Hydrobiologia 605:183–191.
470	Gutiérrez, J. L., C. G. Jones, D. L. Strayer, and O. O. Iribarne. 2003. Mollusks as ecosystem
471	engineers: the role of shell production in aquatic habitats. Oikos 101:79-90.
472	Haag, W. R. 2010. A hierarchical classification of freshwater mussel diversity in North America.
473	Journal of Biogeography 37:12–26.
474	Holling, C. S. 1992. Cross-scale morphology, geometry, and dynamics of ecosystems. Ecologica
475	Monographs 62:447–502.
476	Hopper, G. W., K. B. Gido, C. C. Vaughn, T. B. Parr, T. G. Popejoy, C. L. Atkinson, and K. K.
477	Gates. 2018. Biomass distribution of fishes and mussels mediates spatial and temporal
478	dynamics in nutrient cycling in streams. Oecologia 188:1133-1144.
479	Howard, J. K., and K. M. Cuffey. 2006. The functional role of native freshwater mussels in the
480	fluvial benthic environment. Freshwater Biology 51:460-474.
481	Jager, C. G., and S. Diehl. 2014. Resource competition across habitat boundaries: asymmetric
482	interactions between benthic and pelagic producers. Ecological Monographs 84:287-302.
483	Johnston, T. A., and R. A. Cunjak. 1999. Dry mass-length relationships for benthic insects: a
484	review with new data from Catamaran Brook, New Brunswick, Canada. Freshwater
485	Biology 41:653–674.

486	Jones, C. G., J. H. Lawton, and M. Shachack. 1997. Positive and negative effects of organisms as
487	physical ecosystem engineers. Ecology 78:1946–1957.
488	King, A. J., A. George, D. J. Buckle, P. A. Novak, and C. J. Fulton. 2018. Efficacy of remote
489	underwater video cameras for monitoring tropical wetland fishes. Hydrobiologia 807:
490	145–164.
491	Limm, M. P., and M. E. Power. 2011. Effect of the western pearlshell mussel Margaritifera
492	falcata on Pacific lamprey Lampetra tridentata and ecosystem processes. Oikos 120:
493	1076–1082.
494	Lenth, R. V. 2018. Least-squares means: the R package Ismeans. Journal of Statistical Software
495	69:1–33.
496	Marczak, L. B., and J. S. Richardson. 2007. Spiders and subsidies: results from the riparian zone
497	of a coastal temperate rainforest. Journal of Animal Ecology 76:687-694.
498	Matthews W. J., C. C. Vaughn, K. B. Gido, and E. Marsh-Matthews. 2005. Southern plains
499	rivers. Pages 282-325 in A.C. Benke and C. E. Cushing (editors). Rivers of North
500	America. Elsevier, Amsterdam, The Netherlands.
501	Merritt, R. W., K. W. Cummins, and M. B. Berg. 2008. An introduction to the aquatic insects of
502	North America. 4 th edition. Kendall/Hunt, Dubuque, Iowa.
503	Miller, R., and H. Robison. 2004. Fishes of Oklahoma. University of Oklahoma Press, Norman,
504	Oklahoma.
505	Miserendino, M. L. 2001. Length-mass relationships for macroinvertebrates in freshwater
506	environments of Patagonia (Argentina). Ecología Austral 11:3-8.

507	Miyasaka, H., M. Genkai-Kato, Y. Miyake, D. Kishi, I. Katano, H. Doi, S. Ohba, and N. Kuhara.
508	2008. Relationships between length and weight of freshwater macroinvertebrates in
509	Japan. Limnology 9:75–80.
510	Modesto, V., M. Ilarri, A. T. Souza, M. Lopez-Lima, K. Douda, M. Clavero, and R. Souza. 2018
511	Fish and mussels: importance of fish for freshwater mussel conservation. Fish and
512	Fisheries 19:244–259.
513	Moy, P. B., and R. E. Sparks. 1991. Value of mussel beds to sport fisheries. Aquatic Ecology
514	Technical Report 91/17. Center for Aquatic Ecology, Illinois Natural History Survey,
515	Champaign, Illinois.
516	Nakano, S., and M. Murakami. 2001. Reciprocal subsidies: dynamic interdependence between
517	terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences of
518	the United States of America 98:166–170.
519	Obaza, A., and C. Ruehl. 2013. Regressions for estimating gastropod biomass with multiple shell
520	metrics. Malacologia 56:343–349.
521	Pelletier, D., K. Leleu, G. Mou-Tham, N. Guillemot, and P. Chabanet. 2011. Comparison of
522	visual census and high definition video transects for monitoring coral reef fish
523	assemblages. Fisheries Research 107:84–93.
524	Polis, G. A., W. B. Anderson, and R. D. Holt. 1997. Toward an integration of landscape and food
525	web ecology: the dynamics of spatially subsidized food webs. Annual Review of Ecology
526	and Systematics 33:341–370.
527	Pyron, M., C. C. Vaughn, M. R. Winston, and J. Pigg. 1998. The long-term fish assemblage of
528	the Kiamichi River, Oklahoma. Southwestern Naturalist 43:46-53.

529	RStudio Team. 2018. RStudio: integrated development for R. RStudio, Inc., Boston,
530	Massachusetts. (Available from: http://www.rstudio.com/)
531	Sansom, B. J., J. F. Atkinson, and S. J. Bennett. 2018a. Modulation of near-bed hydrodynamics
532	by freshwater mussels in an experimental chamber. Hydrobiologia 810:449-463.
533	Sansom, B. J., S. J. Bennett, J. F. Atkinson, and C. C. Vaughn. 2018b. Long-term persistence of
534	freshwater mussel beds in labile river channels. Freshwater Biology 63:1469-1481.
535	Schmid, K., J. A. Reis-Filho, E. Harvey, and T. Giarrizzo. 2017. Baited remote underwater video
536	as a promising nondestructive tool to assess fish assemblages in clearwater Amazonian
537	rivers: testing the effect of bait and habitat type. Hydrobiologia 784:93-109.
538	Schobernd, Z. H., N. M. Bacheler, and P. B. Conn. 2014. Examining the utility of alternative
539	video monitoring metrics for indexing reef fish abundance. Canadian Journal of Fisheries
540	and Aquatic Sciences 71:464–471.
541	Schwalb, A. N., K. Cottenie, M. S. Poos, and J. D. Ackerman. 2011. Dispersal limitation of
542	unionid mussels and implications for their conservation. Freshwater Biology 56:1509-
543	1518.
544	Sechnick, C. W., R.F. Carline, R. A. Stein, and E. T. Rankin. 2011. Habitat selection by
545	smallmouth bass in response to physical characteristics of a simulated stream.
546	Transactions of the American Fisheries Society 115:314–321.
547	Skilleter, D. 1994. Refuges from predation and the persistence of estuarine clam populations.
548	Marine Ecology Progress Series 109:29–42.
549	Smith, C., M. Reichard, P. Jurajda, and M. Przybylski. 2004. The reproductive ecology of the
550	European bitterling (<i>Rhodeus sericeus</i>). Journal of Zoology 262:107–124.

551	Spooner, D. E., and C. C. Vaughn. 2006. Context-dependent effects of freshwater mussels on the
552	benthic community. Freshwater Biology 51:1016–1024.
553	Spooner, D. E., and C. C. Vaughn. 2012. Species traits and environmental gradients interact to
554	govern primary production in freshwater mussel communities. Oikos 121:403-416.
555	Stephens, E. G., and M. D. Bertness. 1991. Mussel facilitation of barnacle survival in a sheltered
556	bay habitat. Journal of Experimental Marine Biology and Ecology 154:33-48.
557	Stoffels, R. J., S. Karbe, and R. A. Paterson. 2003. Length-mass models for some common New
558	Zealand littoral-benthic macroinvertebrates, with a note on within-taxon variability in
559	parameter values among published models. New Zealand Journal of Marine and
560	Freshwater Research 37:449–460.
561	Strayer, D. L. 2008. Freshwater mussel ecology: a multifactor approach to distribution and
562	abundance. University of California Press, Berkeley, California.
563	Strayer, D. L., and J. Ralley. 1993. Microhabitat use by an assemblage of stream-dwelling
564	unionaceans (Bivalvia), including two rare species of Alasmidonta. Journal of the North
565	American Benthological Society 12:247–258.
566	Struthers, D. P., A. J. Danylchuk, A. D. M. Wilson, and S. J. Cooke. 2015. Action cameras:
567	bringing aquatic and fisheries research into view. Fisheries 40:502-512.
568	Vaughn, C. C. 2010. Biodiversity losses and ecosystem function in freshwaters: emerging
569	conclusions and research directions. BioScience 60:25–35.
570	Vaughn, C. C. 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810:
571	15–27.
572	Vaughn, C. C., C. L. Atkinson, and J. P. Julian. 2015. Multiple droughts lead to long-term losses
573	in mussel-provided ecosystem services. Ecology and Evolution 5:1291-1305.

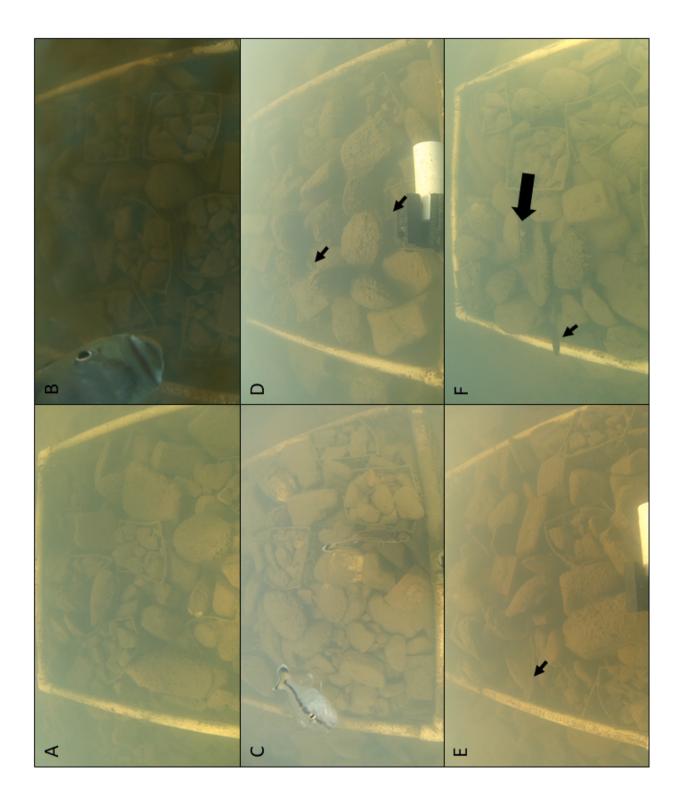
574	Vaughn, C. C., K. B. Gido, and D. E. Spooner. 2004. Ecosystem processes performed by unionid
575	mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia
576	527:35–47.
577	Vaughn, C. C., S. J. Nichols, and D. E. Spooner. 2008. Community and foodweb ecology of
578	freshwater mussels. Journal of the North American Benthological Society 27:409-423.
579	Vaughn, C. C., and M. Pyron. 1995. Population ecology of the endangered Ouachita Rock
580	Pocketbook Mussel, Arkansia wheeleri (Bivalvia: Unionidae), in the Kiamichi River,
581	Oklahoma. American Malacological Bulletin 11:145-151.
582	Vaughn, C. C., and D. E. Spooner. 2006. Unionid mussels influence macroinvertebrate
583	assemblage structure in streams. Journal of the North American Benthological Society
584	25:691–700.
585	Vaughn, C. C., D. E. Spooner, and H. S. Galbraith. 2007. Context-dependent species identity
586	effects within a functional group of filter-feeding bivalves. Ecology 88:1654-1662.
587	Vaughn, C. C., and C. M. Taylor. 2000. Macroecology of a host-parasite relationship. Ecography
588	23:11–20.
589	Wetzel, P. R., A. G. van der Valk, S. Newman, D. E. Gawlik, T. Troxler, G. C. A. Coronado-
590	Molina, D. L. Childers, and F. H. Sklar. 2005. Maintaining tree islands in the Florida
591	Everglades: nutrient redistribution is the key. Frontiers in Ecology and the Environment
592	3:370–376.
593	Wilson, K. L., M. S. Allen, R. N. M. Ahrens, and M. D. Netherland. 2015. Use of underwater
594	video to assess freshwater fish populations in dense submersed aquatic vegetation.
595	Marine and Freshwater Research 66:10–22.

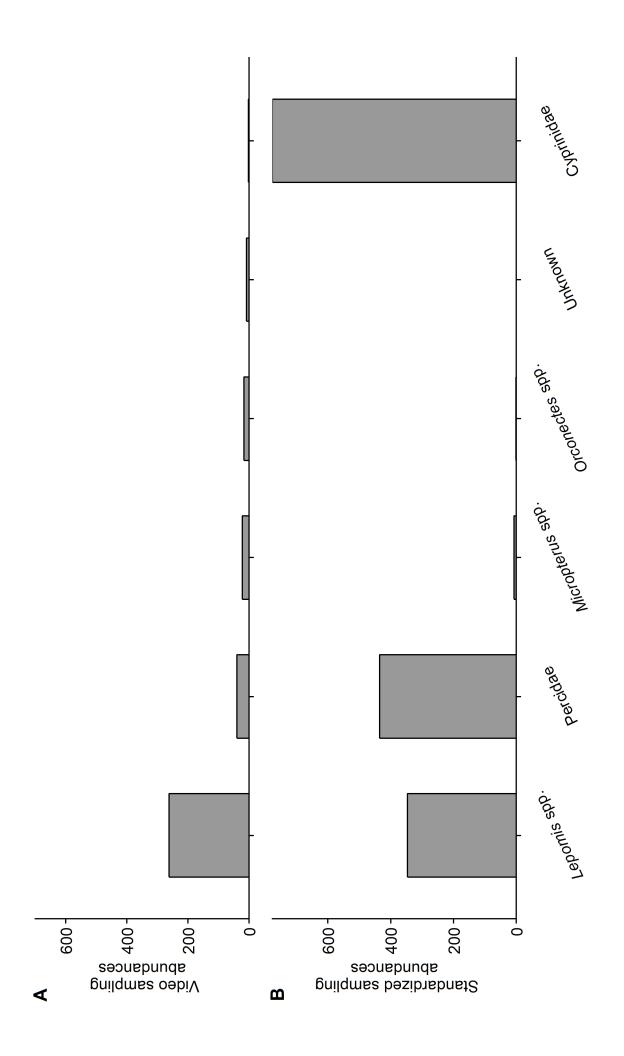
596	Wisniewski, J. M., K. D. Bockrath, J. P. Wares, A. K. Fritts, and M. J. Hill. 2013. The mussel-
597	fish relationship: a potential new twist in North America? Transactions of the American
598	Fisheries Society 142:642–648.
599	Wright, J. P., C. V. Jones, and A. S. Flecker. 2002. An ecosystem engineer, the beaver, increases
600	species richness at the landscape scale. Oecologia 132:96–101.
601	Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects
602	models and extensions in ecology with R. Springer, New York.
603	
604	

606	Fig. 1. A.—Example screen shots from remote underwater video (RUV) camera used to detect
607	fish occurrence and diversity over experimental enclosures. View of live mussel
608	enclosure and positioning of baskets used to quantify spatial subsidies. B.—Adult
609	Longear Sunfish (Lepomis megalotis) detected at a control enclosure (sediment only).
610	C.—Two juvenile Spotted Bass (Micropterus punctatus) detected at a sham enclosure.
611	D.—Two juvenile sunfish (<i>Lepomis</i> spp.) detected feeding on live mussels. Black arrows
612	show the location of individuals. E.—Longear Sunfish detected at a sham enclosure.
613	Black arrow shows the location of the fish. F.—Lepomis spp. detected at a live mussel
614	enclosure; small black arrow shows the location of the fish and a prominent mussel
615	biodeposit is shown with a larger arrow.
616	Fig. 2. A.—Abundances for fishes and crayfish detected with remote underwater video at
617	enclosures placed in the Kiamichi River, Oklahoma. Organisms were categorized to the
618	lowest taxonomic level possible based on visibility and presented in order of their
619	abundance. B.—Abundance of fish and crayfish at a site downstream of the —
620	experimental reach (G. Hopper, personal observation). These data are organized for easy
621	comparison to abundances measured by underwater video.
622	Fig. 3. A.—Detection probabilities for fish at treatments with live mussels, sham mussels, or
623	sediment. B—Total number of fish detected in twenty-four 30-s samples across enclosure
624	treatments. * indicates a significant difference among the treatments and control
625	(sediment only). Black lines indicate the median, black circles indicate the mean, and box
626	ends indicate the 1st through 3rd quartile of the data.

Table 1. Composition of fish communities in the Kiamichi River, Oklahoma, downstream of the experimental reach. These measurements are based on fish collected with standardized seining and electrofishing (Hopper, unpublished). The predicted numerical response (direction and cause) is based on the trophic guilds and vertical stream position for each species. The direction of predicted response is described as either an increase (++) or no change (NA). Trophic guilds are coarsely split into: A = Algivore; D = Detritivore; I = Invertivore; and P = Piscivore. Position in stream is either the surface, stream bottom (Benthic), or water column (WC).

	Predicted numerical			
	response to	Trophic	Position in	Predicted cause of
Species	mussels/shams	guild	stream	numerical response
Etheostoma radiosum ^a	++	I	Benthic	Habitat and invertebrates
Lepomis megalotis ^a	NA or ++	I	WC	Habitat and invertebrates
Lepomis cyanellus ^a	NA or ++	I	WC	Habitat and invertebrates
Lepomis macrochirus ^a	NA or ++	I	WC	Habitat and invertebrates
Etheostoma nigrum ^a	++	I	Benthic	Habitat and invertebrates
Micropterus punctulatus ^a	NA or ++	P/I	WC	Invertebrate and fish
Orconectes palmeri ^a	++	D	Benthic	Habitat and detritus
Percina copelandi ^a	++	I	Benthic	Habitat and invertebrates
Campostoma spadiceum	++	A	Benthic	Habitat and algae
Lythrurus umbratilis	NA	I	WC	
Cyprinella whipplei	NA	I	WC	
Notropis boops	NA	I	WC	
Percina sciera	++	I	Benthic	Habitat and invertebrates
Labidesthes sicculus	NA	I	Surface	
Fundulus notatus	NA	I	Surface	
Gambusia affinis	NA	I	Surface	


Pimephales notatus	++	D/I	Benthic	Habitat and detritus
Etheostoma gracilis	++	I	Benthic	Habitat and invertebrates
Lepomis humilis	NA or ++	I	WC	Habitat and invertebrates
Lepomis gulosus	NA or ++	I	WC	Habitat and invertebrates
Pimephales vigilax	++	I	Benthic	Habitat and detritus
Ameiurus natalis	++	P/I	Benthic	Habitat and invertebrates
Micropterus salmoides ^a	NA or ++	P/I	WC	Invertebrate and fish
Lepomis microlophus	NA or ++	I	WC	Habitat and invertebrates
Moxostoma erythrurum	++	I	Benthic	Invertebrates
Noturus nocturnus	++	I	Benthic	Habitat and invertebrates
Pylodictis olivaris	NA or ++	P	Benthic	Fish


^a Species detected at experimental enclosures at the Kiamichi River, Oklahoma with remote underwater video (RUV).

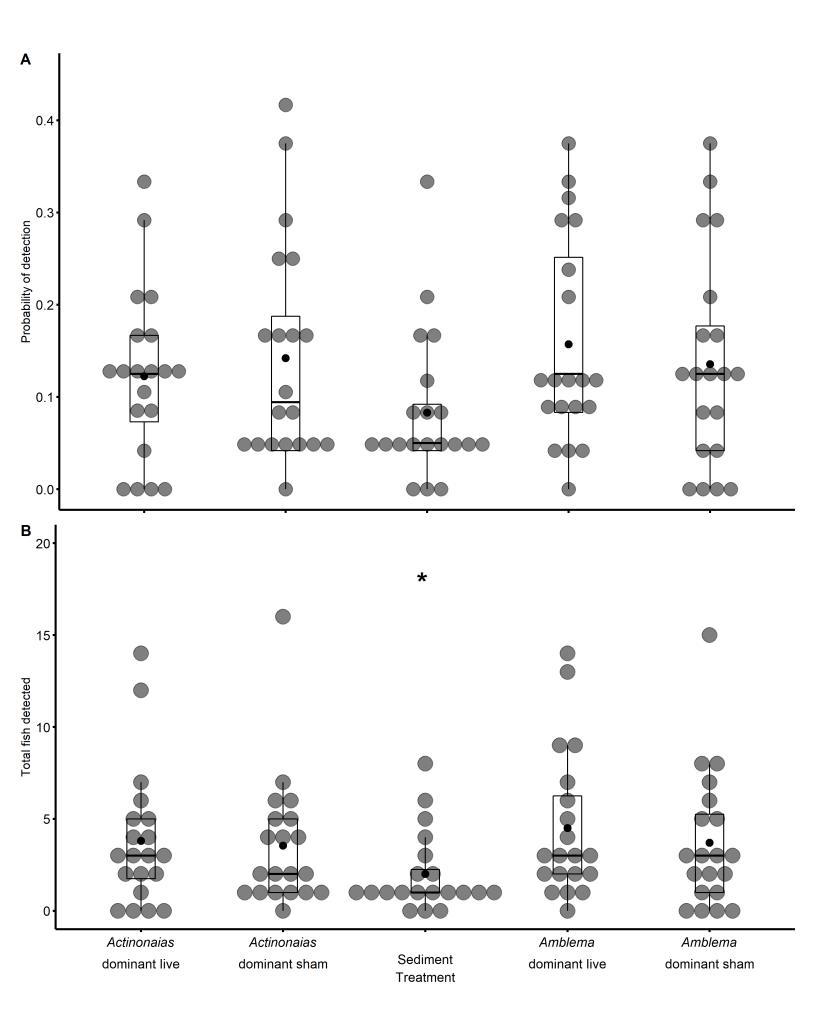

FWS MS 18-165

Table 2. Mean (SD) abiotic and biotic characteristics of each experimental treatment during wk 9 and 12. Od. Biomass = Odonate biomass. Benthic organic matter (BOM) decreased significantly from wk 9 to 12, whereas invertebrate biomass increased significantly from wk 9 to 12.

	Week 9						Week 12					
Treatment	Depth (m)	Current velocity (m³/s)	Chl <i>a</i> (µg/cm ²)	BOM (g/m²)	Invert. biomass (g/m²)	Od. biomass (g/m²)	Depth (m)	Current velocity (m³/s)	Chl a (μg/cm ²	BOM (g/m²)	Invert. biomass (g/m²)	Od. biomass (g/m²)
Actinonaias Dominant Live	0.56	0.02	0.79	1.50	0.54	0.01	0.55	0.02	0.87	0.3	1.00	0.02
	(0.09)	(0.02)	(0.43)	(1.2)	(0.24)	(0.01)	(0.08)	(0.01)	(0.52)	(0.2)	(0.30)	(0.10)
Dominant	0.56	0.01	1.58	1.70	0.66	0.02	0.59	0.02	1.33	0.2	1.06	0.03
Sham	(0.06)	(0.02)	(0.84)	(1.3)	(0.27)	(0.01)	(0.06)	(0.01)	(1.20)	(0.1)	(0.34)	(0.03)
Amblema Dominant Live	0.54	0.01	0.79	1.10	0.88	0.03	0.56	0.01	1.20	0.4	1.21	0.05
	(0.07)	(0.01)	(0.35)	(0.4)	(0.43)	(0.03)	(0.06)	(0.01)	(1.05)	(0.1)	(0.71)	(0.04)
Dominant	0.52	0.02	1.10	1.30	0.74	0.03	0.55	0.02	0.35	0.6	1.08	0.02
Sham	(0.09)	(0.02)	(0.72)	(0.6)	(0.29)	(0.03)	(0.07)	(0.02)	(1.63)	(0.16)	(0.63)	(0.01)
Sediment	0.58	0.02	1.08	1.30	0.69	0.02	0.59	0.01	0.80	0.4	0.88	0.02
	(0.09)	(0.01)	(0.08)	(3.0)	(0.37)	(0.01)	(0.08)	(0.02)	(0.34)	(0.3)	(0.32)	(0.01)

