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Abstract. Stochastic model checking is a technique for analyzing systems that
possess probabilistic characteristics. However, its scalability is limited as proba-
bilistic models of real-world applications typically have very large or infinite state
space. This paper presents a new infinite state CTMC model checker, STAMINA,
with improved scalability. It uses a novel state space approximation method to
reduce large and possibly infinite state CTMC models to finite state representa-
tions that are amenable to existing stochastic model checkers. It is integrated with
a new property-guided state expansion approach that improves the analysis accu-
racy. Demonstration of the tool on several benchmark examples shows promising
results in terms of analysis efficiency and accuracy compared with a state-of-the-
art CTMC model checker that deploys a similar approximation method.
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1 Introduction

Stochastic model checking is a formal method that designers and engineers can use
to determine the likelihood of safety and liveness properties. Checking properties us-
ing numerical model checking techniques requires enumerating the state space of the
system to determine the probability that the system is in any given state at a desired
time [18]. Real-world applications often have very large or even infinite state spaces.
Numerous state representation, reduction, and approximation methods have been
proposed. Symbolic model checking based on multi-terminal binary decision diagrams
(MTBDDs) [24] has achieved success in representing large Markov Decision Process
(MDP) models with a few distinct probabilistic choices at each state, e.g., the shared
coin protocol [3]. MTBDDs, however, are often inefficient for models with many differ-
ent and distinct probability/rate values due to the inefficient representation of solution
vectors. Continuous-time Markov chain (CTMC) models, whose state transition rate is a
function of state variables, generally contain many distinct rate values. As a result, sym-
bolic model checkers can run out of memory while verifying a typical CTMC model
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with as few as 73,000 states [24]. State reduction techniques, such as bisimulation min-
imization [15,7, 8], abstraction [21, 15, 6, 13], symmetry reduction [17,5], and partial
order reduction [9] have been mainly extended to discrete-time, finite-state probabilis-
tic systems. The three-valued abstraction [15] can reduce large, finite-state CTMCs. It
may, however, provide inconclusive verification results due to abstraction.

To the best of our knowledge, only a few tools can analyze infinite-state probabilistic
models, namely, STAR [20] and INFAMY [10]. The STAR tool primarily analyzes bio-
chemical reaction networks. It approximates solutions to the chemical master equation
(CME) using the method of conditional moments (MCM) [12] that combines moment-
based and state-based representations of probability distributions. This hybrid approach
represents species with low concentrations using a discrete stochastic description and
numerically integrates a small master equation using the fourth order Runge-Kutta
method over a small time interval [2]; and solves a system of conditional moment equa-
tions for higher concentration species, conditioned on the low concentration species.
This method has been optimized to drop unlikely states and add likely states on-the-fly.
STAR relies on a well-structured underlying Markov process with small sensitivity on
the transient distribution. Also, it mainly reports state reachability probabilities, instead
of checking a given probabilistic property. INFAMY is a truncation-based approach that
explores the model’s state space up to a certain finite depth k. The truncated state space
still grows exponentially with respect to exploration depth. Starting from the initial
state, breadth-first state search is performed up to a certain finite depth. The error prob-
ability computed during the model checking depends on the depth of state exploration.
Therefore, higher exploration depth generally incurs lower error probability.

This paper presents a new infinite-state stochastic model checker, STochastic Ap-
proximate Model-checker for INfinite-state Analysis (STAMINA). Our tool also takes
a truncation-based approach. In particular, it maintains a probability estimate of each
path being explored in the state space, and when the currently explored path probability
drops below a specified threshold, it halts exploration of this path. All transitions ex-
iting this state are redirected to an absorbing state. After all paths have been explored
or truncated, transient Markov chain analysis is applied to determine the probability of
a transient property of interest specified using Continuous Stochastic Logic (CSL) [4].
The calculated probability forms a lower bound on the probability, while the upper
bound also includes the probability of the absorbing state. The actual probability of the
CSL property is guaranteed to be within this range. An initial version of our tool and
preliminary results are reported in [23]. Since that paper, our tool has been tightly inte-
grated within the PRISM model checker [19] to improve performance, and we have also
developed a new property-guided state expansion technique to expand the state space
to tighten the reported probability range incrementally. This paper reports our results,
which show significant improvement on both efficiency and verification accuracy over
several non-trivial case studies from various application domains.

2 STAMINA

Figure 1 presents the architecture of STAMINA. Based on a user-specified probability
threshold s« (kappa), it first constructs a finite-state CTMC model C | ,, from the original



STAMINA: A New Infinite-state CTMC Model-checker 3

infinite-state CTMC model C using the state space approximation method presented in
Section 2.1. C],, is then checked using the PRISM explicit-state model checker against a
given CSL property P.,(¢), where ~¢ {<, >, <, >} and p € [0, 1] (for cases where
it is desired that a predicate be true within a certain probability bound) or P_-(¢) (for
cases where it is desired that the exact probability of the predicate being true be calcu-
lated). Lower- and upper-bound probabilities that ¢ holds, namely, P,,;, and P, are
then obtained, and their difference, i.e., (Pynaz — Pmin ), is the probability accumulated
in the absorbing state x5 Which abstracts all the states not included in the current state
space. If p € [Prin, Prmaz), it is not known whether P~p(¢) holds. If exact probability
is of interest and the probability range is larger than the user-defined precision e, i.e.,
(Prmaz — Pmin) > €, then the method does not give a meaningful result.

Property-
Il Prp() |, ¢l Prr(@ Guided
PRISM Expansion

Cly,®

[Prin, Pmax]

\L true

false non-nested

1t? .

— until P~y (¢)?
true
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Fig. 1: Architecture of STAMINA.

For an inconclusive verification result from the previous step, STAMINA applies
a property-guided approach, described in Section 2.2, to further expand C|,,, provided
Pp(¢) is a non-nested “until” formula; otherwise, it uses the previous method to ex-
pand the state space. Note that s also drops by the reduction factor s, to enable states
that were previously ignored due to a low probability estimate to be included in the
current state expansion. The expanded CTMC model C|,, is then checked to obtain a
new probability bound [Py, Pra.]- This iterative process repeats until one of the fol-
lowing conditions holds: (1) the target probability p falls outside the probability bound
[Prnin, Pmaz)» (2) the probability bound is sufficiently small, i.e, (Praz — Prmin) < €,
or (3) a maximal number of iterations /N has been reached (r > N).

2.1 State Space Approximation

The state space approximation method [23] truncates the state space based on a user-
specified reachability threshold s¢. During state exploration, the reachability-value func-
tion, & : X — R™, estimates the probability of reaching a state on-the-fly, and is com-
pared against s to determine whether the state search should terminate. Only states with
a higher reachability-value than the reachability threshold are explored further.
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Figure 2 illustrates the standard breadth first search (BES) state exploration for
reachability threshold sc = 0.25. It starts from the initial state whose reachability-value
i.e., &(xp), is initialized to 1.0 as shown in Figure 2a. In the first step, two new states
x; and x4 are generated and their reachability-values are 0.8 and 0.2, respectively, as
shown in Figure 2b. The reachability-value in xq is distributed to its successor states,
based on the probability of outgoing transitions from x to its successor state. For the
next step, only state x; is scheduled for exploration because /(x1) > 3. Note that the
transition from x4 to X is executed because X is already in the explored set. Expand-
ing x; leads to two new states, namely x, and x5 as shown in Figure 2c, from which
only x5 is scheduled for further exploration. This leads to the generation of x¢ and xg
shown in Figure 2d. State exploration terminates after Figure 2e since both newly gener-
ated states have reachability-values less than 0.25. States x2, x4, Xg and xg are marked
as terminal states. During state exploration, the reachability-value update is performed
every time a new incoming path is added to a state because a new incoming path can add
its contribution to the state, potentially bringing the reachability-value above s, which
in turn changes a terminal state to be non-terminal. When the truncated CTMC model
C|.. is analyzed, it introduces some error in the probability value of the property under
verification, because of leakage the probability (i.e., cumulative path probabilities of
reaching states not included in the explored state space) during the CTMC analysis. To
account for probability loss, an abstract absorbing state x,; is created as the sole suc-
cessor state for all terminal states on each truncated path. Figure 2e shows the addition
of the absorbing state.
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Fig. 2: State space approximation.
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2.2 Property Based State Space Exploration

This paper introduces a property-guided state expansion method, in order to efficiently
obtain a tightened probability bound. Since all non-nested CSL path formulas ¢ (except
those containing the “next” operator) derive from the “until” formula, ¢ U’ ¥, con-
struction of the set of terminal states for further expansion boils down to eliminating
states that are known to satisfy or dissatisfy ¢ &/ ¥. Given a state graph, a path starting
from the initial state can never satisfy @ U V¥, if it includes a state satisfying ~® A~ V.
Also, if a path includes a state satisfying ¥, satisfiability of @ ¢/ ¥ can be determined
without further expanding this path beyond the first ¥-state. Our property-guided state
space expansion method identifies the path prefixes, from which satisfiability of & U ¥
can be determined, and shortens them by making the last state of each prefix absorbing
based on the satisfiability of (- @V ¥). Only the non-absorbing states whose path prob-
ability is greater than the state probability estimate threshold s are expanded further.
For detailed algorithms of STAMINA, readers are encouraged to read [22].

3 Results

This section presents results on the following case studies to illustrate the accuracy and
efficiency of STAMINA: a genetic toggle switch [21, 23]; the following examples from
the PRISM benchmark suite [16]: grid world robot, cyclic server polling system, and
tandem queuing network; and the Jackson queuing network from INFAMY case stud-
ies [1]. All case studies are evaluated on STAMINA and INFAMY, except the genetic
toggle switch >. Experiments are performed on a 3.2 GHz AMD Debian Linux PC with
six cores and 64 GB of RAM. For all experiments, the maximal number of iterations N
is set to 10, and the reduction factor k., is set to 1000. All experiments terminate due
t0 (Pmaz — Pmin) < € where ¢ = 1073, before they reach N. STAMINA is freely
available at: https://github.com/formal-verification-research/stamina.

We compare the runtime, state size, and verification results between STAMINA
and INFAMY using the same precision ¢ = 1072, For all tables in this section, col-
umn ¢ reports the probability estimate threshold used to terminate state generation in
STAMINA. The state space size is listed in column |G|(K), where K indicates one
thousand states. Column T'(C'/A) reports the state space construction (C) and analy-
sis (A) time in seconds. For STAMINA, the total construction and analysis time is the
cumulation of runtime for all »¢ values for a model configuration. Columns P,,;, and
P, list the lower and upper probability bounds for the property under verification,
and column P lists the single probability value (within the precision ¢) reported by IN-
FAMY. We select the best runtime reported by three configurations of INFAMY. The
improvement in state size (column |G|(X)) and runtime (column 7'(%)) are represented
by the ratio of state count generated by INFAMY to that of STAMINA (higher is better)
and percentage improvement in runtime (higher is better), respectively.

Genetic toggle switch. The genetic toggle switch circuit model has two inputs, aTc
and IPTG. It can be set to the OFF state by supplying it with aTc and can be set to
the ON state by supplying it with IPTG [21]. Two important properties for a toggle

3 INFAMY generates arithmetic errors on the genetic toggle switch model.
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switch circuit are the response time and the failure rate. The first experiments set IPTG
to 100 to measure the toggle switch’s response time. It should be noted that the input
value of 100 molecules of IPTG is chosen to ensure that the circuit switches to the
ON state. The later experiments initialize IPTG to 0 to compute the failure rate, i.e.,
the probability that the circuit changes state erroneously within a cell cycle of 2,100
seconds (an approximation of the cell cycle in E. coli [25]). Initially, Lacl is set to 60
and TetR is set to 0 for both experiments. The CSL property used for both experiments,
P_; [true US?1 (TetR > 40 A Lacl < 20)], describes the probability of the circuit
switching to the ON state within a cell cycle of 2, 100 seconds. The ON state is defined
as Lacl below 20 and TetR above 40 molecules.

Table 1: Verification results for genetic toggle switch.
STAMINA
rere » | 1G] [T(C/A) | Pmin | Pmax |Remark
10~3]1,127]0.15/0.67]0.000000{0.999671
100 [107°[4,461]0.43/2.84]0.966947/0.992908
10~7(7,163]0.43/5.25[0.991738[0.991797
10-9(5,171[0.17/1.90{0.977942[0.992850 | Property
1077[8,908]0.18/3.74[0.991739[0.991797| Agnostic
10-3] 182 0.05/0.07|0.000000/0.697500
0 [107°]2,438[0.16/1.08]0.008814(0.060424
10~7[4,284]0.09/2.12[0.013097[0.013609
10~ 9[2,446[0.16/1.05/0.009169]0.060420]| Property
10~ 7[4,820[0.13/2.13[0.013097|0.013609| Agnostic

Property
Guided

100

Property
Guided

The property-agnostic state space is generated with the probability estimate thresh-
old 5 = 1073, Table 1 shows large probability bounds: [0,0.999671] for IPTG = 100
and [0,0.6975] for IPTG = 0. It is obvious that they are significantly inaccurate w.r.t.
the precision € of 1073, The  is then reduced to 10~ and state generation switches
to the property-guided state expansion mode, where the CSL property is used to guide
state exploration, based on the previous state graph. Each state expansion step reduces
the »¢ value by a factor of x,, = 1000. To measure the effectiveness of the property-
guided state expansion approach, we compare state graphs generated with and without
the property-guided state expansion, as indicated by the “property agnostic” and “prop-
erty guided” rows in the table. Property-guided state expansion reduces the size of the
state space without losing the analysis precision for the same value of s. Specifically,
the state expansion approach reduces the state space by almost 20% for the response
rate experiment.

Robot World. This case study considers a robot moving in an n-by-n grid and a
janitor moving in a larger grid K'n-by-Kn, where the constant K is used to signifi-
cantly scale up the state space. The robot starts from the bottom left corner to reach the
top right corner. The janitor moves around randomly. Either the robot or janitor can oc-
cupy one grid location at any given time. The robot also randomly communicates with
the base station. The property of interest is the probability that the robot reaches the
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top right corner within 100 time units while periodically communicating with the base
station, encoded as P [ (P05 [ true UST communicate |) US' goal |.

Table 2 provides a comparison of results for K = 1024,64 and n = 64, 32. For
smaller grid size i.e, 32-by-32, the robot can reach the goal with a high probability of
97.56%. Where as for a larger value of n = 64 and K = 64, the robot is not able to
reach the goal with considerable probability. STAMINA generates precise results that
are similar to INFAMY, while exploring less than half of states with shorter runtime.

Table 2: Comparison between STAMINA and INFAMY.

STAMINA INFAMY Improvement
Model |Params
|g‘ T szn Pma,z ‘g‘ T P |g| T
(K) |(€/A) (K) [(C/A) X) | %)
32/ 41/ 492/
64 696 279 0.975 | 0.975 || 1,591 18 09751 2.3 | 37.3
32/ 41/ 501/
Robot 1024 696 258 0.975 | 0.975 || 1,591 18 0.975(| 2.3 | 424
64/ 135/ 1,625/
(n/K) 64 2,273 669 1.46e-4(1.68e-4|| 5,088 53 1.5e-4|| 2.2 | 52.1
64/ 132/ 1,625/
1024 2,273 621 1.46e-4|1.68e-4|| 5,088 53 1.5e-4|| 2.2 | 55.2
Jackson 4/ 201 22/ 0.865 | 0.865 635 109/ 0.8651| 3.2 | 36.1

5 51 5

5/ 990/ 1668/
(N/X) 2,539| "o | 0819 | 0.819 || 7,020 | 7 o

0.819( 2.8 | —11.8

Polling | 12 19 ;’{ 1.0 1.0 74 12/ 1.0 3.9 |—-732.2

18/ 5/
(N) 16 57 70 1.0 1.0 1,573 54 1.0 27.6 | —48.2
30/ 151/
20 113 77 1.0 1.0 31,457 1347 1.0 ||278.4| 92.9
1/ 3/
Tandem| 2047 33 11 0.498 | 0.498 || 2,392 38 0.498 || 72.5 | —1.4
(c) 4095 66 1/ 0.499 | 0.499 || 9,216 11/ 0.499 ([139.6] 48.7
141 ’ ’ ’ 265 ’ ’ ’

Jackson Queuing Network. A Jackson queuing network consists of N intercon-
nected nodes (queues) with infinite queue capacity. Initially, all queues are considered
empty. Each station is connected to a single server which distributes the arrived jobs to
different stations. Customers arrive as a Poisson stream with intensity A for N queues.
The model is taken from [14, 11]. We compute the probability that, within 10 time units,
the first queue has more that 3 jobs and the second queue has more than 5 jobs, given
by P—s [ true US10 (jobs 1 >4 A jobs2 > 6)].
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Table 2 summarizes the results for this model. STAMINA uses roughly equal time
to construct and analyze the model for NV = 5, whereas INFAMY takes significantly
longer to construct the state space, making it slower in overall runtime. For N = 4,
STAMINA is faster in generating verification results In both configurations, STAMINA
only explores approximately one third of the states explored by INFAMY.

Cyclic Server Polling System. This case study is based on a cyclic server attending
N stations. We consider the probability that station one is polled within 10 time units,
P_; [ true USY stationl_polled ]. Table 2 summarizes the verification results for
N = 12,16, 20. The probability of station one being polled within 10 seconds is 1.0 for
all configurations. Similar to previous case studies, STAMINA explores significantly
smaller state space. The advantage of STAMINA in terms of runtime starts to manifest
as the size of model (and hence the state space size) grows.

Tandem Queuing Network. A tandem queuing network is the simplest intercon-
nected queuing network of two finite capacity (c) queues with one server each [19].
Customers join the first queue and enter the second queue immediately after complet-
ing the service. This paper considers the probability that the first queue becomes full in
0.25 time units, depicted by the CSL property P—s [ true US925 queuel_full ].

As seen in Table 2, there is almost fifty percent probability that the first queue is full
in 0.25 seconds irrespective of the queue capacity. As in the polling server, STAMINA
explores significantly smaller state space. The runtime is similar for model with smaller
queue capacity (¢ = 2047). But the runtime improves as the queue capacity is increased.

4 Conclusions

This paper presents an infinite-state stochastic model checker, STAMINA, that uses
path probability estimates to generate states with high probability and truncate unlikely
states based on a specified threshold. Initial state construction is property agnostic, and
the state space is used for stochastic model checking of a given CSL property. The
calculated probability forms a lower and upper bound on the probability for the CSL
property, which is guaranteed to include the actual probability. Next, if finer precision of
the probability bound is required, it uses a property-guided state expansion technique to
explore states to tighten the reported probability range incrementally. Implementation
of STAMINA is built on top of the PRISM model checker with tight integration to
its API. Performance and accuracy evaluation is performed on case studies taken from
various application domains, and shows significant improvement over the state-of-art
infinite-state stochastic model checker INFAMY. For future work, we plan to investigate
methods to determine the reduction factor on-the-fly based on the probability bound.
Another direction is to investigate heuristics to further improve the property-guided
state expansion, as well as, techniques to dynamically remove unlikely states.
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