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Abstract
Terrains are a crucial component of three-dimensional scenes and are present in many Computer Graphics applications. Terrain
modeling methods focus on capturing landforms in all their intricate detail, including eroded valleys arising from the interplay
of varied phenomena, dendritic mountain ranges, and complex river networks. Set against this visual complexity is the need
for user control over terrain features, without which designers are unable to adequately express their artistic intent. This
article provides an overview of current terrain modeling and authoring techniques, organized according to three categories:
procedural modeling, physically-based simulation of erosion and land formation processes, and example-based methods driven
by scanned terrain data. We compare and contrast these techniques according to several criteria, specifically: the variety of
achievable landforms; realism from both a perceptual and geomorphological perspective; issues of scale in terms of terrain
extent and sampling precision; the different interaction metaphors and attendant forms of user-control, and computation and
memory performance. We conclude with an in-depth discussion of possible research directions and outstanding technical and
scientific challenges.

Categories and Subject Descriptors (according to ACM CCS): Shape Modeling [Computer Graphics]: —

1. Introduction

Terrain plays a fundamental part in many virtual scenes across a
broad range of applications, including games, films, training, and
simulation.

For example, open-world computer games often include large-
scale natural environments for players to explore, films sometimes
require scenic locations that either do not exist or are difficult or
dangerous to film, particularly in the science fiction and fantasy
genres, and training applications, such as combat, driving and flight
simulators, rely on realistic environments to be effective. In such
applications a bare earth terrain is usually the first part of the au-
thoring pipeline to be subsequently augmented with props that rep-
resent rocks, trees, plants and buildings.

The shape of real-world terrains is complex and varied. Di-
verse landforms ranging from featureless plains to mountain ranges
crumpled by tectonics and scored by erosion can co-exist within a
single scene. Terrain formation is a combination of long-term influ-
ences, such as gradual erosive forces, and occasional catastrophic
events, such as landslides and lightning strikes on bedrock. Fur-
thermore, specific features appear at different scales, spanning tens
to hundreds of kilometers in the case of tectonics and glaciation,
whereas only evident over a few meters for certain forms of hy-
draulic and aeolian erosion. It is no wonder then that, despite more
than four decades of research, there remain many unsolved chal-
lenges in terrain modeling.

A particular challenge is that Computer Graphics applications in-

variably require iterative authoring of the final terrain shape. Real-
world terrains emerge from complex geomorphological processes
for which simulation seems like a natural fit. Unfortunately, a di-
rect simulation with only boundary and initial conditions is often at
odds with user intent and rarely suffices.

In this paper, we present an overview and critical comparison of
terrain generation methods in Computer Graphics. We begin with
a consideration of the different terrain representations (including
elevation and volumetric models), followed by coverage of ter-
rain generation under three broad headings: procedural generation
methods, which rely on algorithms (noise, faulting, subdivision,
and the like) that do not directly emulate erosive processes; simu-
lation techniques, which iteratively apply computer simulations of
geomorphological processes, and example-based methods, which
extract and combine scanned data of real-world terrains.

Finally, we compare existing methods on the basis of a number
of practical considerations: the range of different landforms that
can be represented (variety); the perceptual or geomorphological
accuracy with which they are reproduced (realism); specific lim-
its on feature extent and detail (scale); the types of user control
available (authoring), and memory and computation overheads (ef-
ficiency). If a generated terrain is used in an application where
rendering speed is important, there is a choice among several level-
of-detail methods to improve performance, as described in the sur-
vey of [PG07]. These criteria serve two intended purposes: first, to
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help developers select a terrain modeling method that best fits their
particular application.

For instance, efficiency is vital for terrains generated on the fly
(as opposed to pre-designed), while authoring is secondary, since
there is no opportunity for direct designer involvement. Another
consideration is whether the terrain is to be modeled entirely from
scratch, dropped into a cut-out region in a broader terrain, or up-
sampled from low-resolution input. The most appropriate technique
will depend in part on such requirements.

Second, these criteria could be used to guide future research by
identifying failings exhibited by current approaches. For ease of
reference, Tables 2 and 3 provide a comparison of terrain modeling
methods on the basis of achievable landforms variety, underlying
method and model, and the supported authoring, scale, and effi-
ciency.

2. Terrain representation

In this section, we present an overview of the underlying models
used to represent and synthesize terrains. We focus on definitions
of the terrain surface, and not on volumetric representations of the
underlying geology. An overview of models for representing ter-
rains and their subsurface geology can be found in [NLP∗13] and
a survey of cellular data representations for the entire globe (the
digital Earth) in [MAAS15].

2.1. Elevation models

The terrain elevation can be defined as a function h :R2→R, which
is at least C0 and represents the altitude at any point in R2. Such a
definition restricts modeling to terrains without overhangs, arches,
or caves. Let T denote the terrain defined over a domain Ω ⊂ R2.
The surface area of Ω, expressed in m2 or km2 depending on the
size of the domain, will be referred to as the extent. In general, and
unless stated otherwise, Ω will be a rectangular domain R(a,b)
where a and b are points in the plane representing opposite corners
of Ω. Let h : R2→R define the elevation of T . The slope is defined
as the norm of the gradient:

s(p) = ‖∇h(p)‖

The normal at a given point on the terrain is derived from the
gradient of the elevation function ∇h by projecting it to R3 as
(−∇h(p),1), and then normalizing it:

n(p) = (−∇h(p),1)/‖(∇h(p),1)‖

Function representation The elevation can be represented by a
procedural or closed-form expression of the function h. While this
representation is compact in terms of memory and has infinite pre-
cision, but the evaluation of h(p) at a given point may be computa-
tionally demanding. While in theory any suitable function h can be
used for representing elevation, the construction of a function for
representing large terrains with realistic landforms and characteris-
tics is a complex task (Section 3).

Discrete heightfields defined over regular grids are undoubtedly
the most common representation for terrains. Heightfields consist

∇h(p)
h(p)

Discrete heightfieldElevation function h

p

zij

pij

Interpolated h(p)n(p)

Figure 1: Elevation can be represented by an analytic or procedu-
rally defined function, or by discrete heightfield data, in which case
the elevation at any point is reconstructed by interpolation.

of a collection of altitudes arranged on a regular 2D grid. They can
be captured by remote sensing and are often referred to as Digital
Elevation Models (DEMs). A regular square grid is defined by its
rectangular regionR(a,b)⊂ R2 with n subdivisions. Without loss
of generality, we consider square grids of side length a with (n+1)2

elevation samples. In this representation, only the altitudes zi j are
stored at the vertices of the grid pi j = a+(b−a)• (i/n, j/n), with
(i, j)∈ [0,n]2 and where • denotes the pairwise product of elements
(Figure 1).

The accuracy or precision of the heightfield in the domain Ω is
limited to a/n and a continuous surface for the terrain needs to be
reconstructed by interpolation of the elevation of grid points zi j. A
simple way to reconstruct the surface is to use two linear interpola-
tions for the two triangles inside a cell, which matches the triangle
polygonization of the surface of the terrain. Bi-linear interpolation
produces elevation of class C1 inside the cells, but is only C0 at
their borders. Higher order interpolations, e.g. , bi-cubic, define Ck,
k≥ 1 continuous functions, but may generate elevations outside the
range of the inputs zi j. They are more computationally demanding,
and require retrieving the values zi j on a larger neighborhood to
compute the elevation h(p) of a point p inside a grid cell.

In contrast to functions, this data-oriented representation sup-
ports different forms of elevated terrain at the expense of increased
memory overheads (Figure 1, right), as it requires O(n2) storage.
Reducing the accuracy of elevation data by quantization (in general
using 8-bit or 16-bit) is one means of reducing memory costs. How-
ever, 8-bit quantization does not provide sufficient accuracy for pro-
cedural generation and simulation algorithms, and introduces visi-
ble step patterns when displayed. Heightfields are the most com-
mon data representation for digital terrains in the industry. They
are used in many applications such as GIS, authoring tools, erosion
simulations and video games. In the film industry, they are also
used as bare terrains and usually completed with representations
that allow true 3D features. Because heightfields are represented as
grids, they also lend themselves to texture synthesis and machine
learning methods.

Layered representations encode the different material layers of
the terrain as a collection of ordered functions describing thick-
nesses in a pre-established layer layout. Material layers were pro-
posed in [MKM89] as a way of modeling different sediments, and
developed in [BF01,CGG∗17] to represent different layers of gran-
ular materials, such as sand or rocks on top of the bedrock. The
layered data representation has been widely used in erosion sim-
ulation ever since (Section 4). Layers can be represented as a set
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of functions [GGP∗15], where the bottom layer represents the el-
evation of bedrock hB , and each subsequent layer represents the
thickness of other materials, including rocks hR, sand hS , or water
hW (Figure 2, left).

Stones
Water

SandRock

Discrete layer stacks

h  (p)

Elevation functions

B

h   (p)W

Figure 2: Layered models represent different types of materials
organized in a predefined sorting order (bedrock, then sand and
rocks, followed by water).

A discrete layer representation consists of an ordered collection
of discrete grids (Figure 2, right) and the data structure reduces to a
stack of heightfields. This data-structure is a compromise between
single-layer heightfields and voxels, for which every layer is fur-
ther regularly divided. Moreover, the vertical resolution of layered
heightfields is potentially infinite, whereas voxels are grid limited.
Alternatively, the ordering of the layers can be explicitly defined at
every grid position, at the expense of more complex dynamic stack
management of the different materials.

2.2. Volumetric models

Elevation alone cannot manifest internal structure. Instead, volu-
metric representations must be used to capture the folds and faults
of different geological strata allowing terrains with overhangs,
caves, and arches.

Volumetric models are defined by a function µ : R3 → M,
where M⊂ N denotes the index of the material at any point in
space. Single material models use only one type of solid material,
i.e.M= {0,1}, where 0 refers to air and 1 to bedrock.

Function representations define the terrain as an implicit surface
extracted from a field function f and defined as:

S = {p ∈ R3 | f (p) = 0}

A given elevation function h can be easily converted to a corre-
sponding implicit representation by defining: f (p) = h(pxy)− pz,
where pxy denotes the projection of the point p onto the plane, and
pz denotes its elevation. The material function µ can be derived
from the field function f as µ(p) = 1 if f (p) > 0, i.e. inside the
bedrock, and µ(p) = 0, otherwise. The field function f : R3 → R
should be at least of class C0, although functions with higher con-
tinuity are often preferred since then implicit surface algorithms
that require C1 can be applied. Although this representation can, in
theory, represent various complex landforms with concavities, it is
seldom used in practice likely because of the complexity of author-
ing implicit surfaces and additional costs incurred in reconstructing
the surface of the terrain through polygonization (Section 3.2.3).

Voxels

Stones
Sand

Rock Air

Layer stacks with overhangs 

Figure 3: Voxel representations allow the modeling of arches,
caves or overhangs, but are limited by their discrete nature.

Voxels offer a way to describe volumetric terrains, but at a high
memory cost because of their explicit spatial enumeration. Space is
partitioned into a 3D regular grid, and each cell is assigned a mate-
rial index (Figure 3, left). The data structure can be optimized using
compression techniques such as a Sparse Voxel Octrees [LK11]
in order to reduce the memory cost. Further compression can be
achieved by generalizing the tree structure to a directed acyclic
graph [KSA13] and introducing symmetry transforms [VMG16].

Voxels are often used for representing terrains involving com-
plex simulation processes, such as erosion (Section 4) or for repre-
senting complex and detailed landforms such as arches and caves
(Section 3). Although the material function µ(p) can be evaluated
efficiently, in addition to the disadvantage of their memory cost,
their discrete nature does not lend itself to modeling continuous
features such as gentle slopes.

Hybrid representations are inspired by layered-material repre-
sentations, and exploit vertical run-length encoding of the differ-
ent layer stacks to compress layers into intervals of constant mate-
rial [PGMG09a].

Layer stacks

p

Kernel Ω

VM

Figure 4: Overview of the computation of the convolution µ~k(p),
defined as the volume of material VM(p) inside the compact sup-
port VΩ of the kernel function. Convolution produces a smooth im-
plicit surface from the discrete layer stacks.

The uppermost terrain is defined as a continuous implicit surface
whose field function f is derived from the discrete layer stacks µ
by computing a convolution, denoted by ~, between a character-
istic function of the layer stack and a box filter k. In spirit, this
convolution plays the same smoothing role as interpolation does in
heightfields. The field function f : R3→ [−1,1] is defined as:

f (p) = 2µ~ k(p)−1 µ~ k(p) = VM(p)
VΩ

Here, the term VΩ = σ
3 denotes the volume of the cubic compact

support Ω, which is a box of side length σ and VM(p) is the vol-
ume of material (Figure 4). Unlike voxels, which are by definition a
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discrete structure, the implicit surface representation derived from
the layered representation generates a smooth continuous surface,
at the expense of computationally demanding field functions.

3. Procedural generation

In this review, we call procedural any technique that is not directly
related to a physical simulation and that does not use real data as
exemplars. Instead of simulating the physical processes that sculpt
the terrain such as hydraulic erosion, procedural approaches are
phenomenological and aim at directly reproducing the effects of
the phenomena. They often rely on the properties of terrains, such
as the fractal characteristics, and construct terrain from the obser-
vations of the real world without taking real data as input.

Procedural generation methods can be classified into two cate-
gories. Large scale terrain generation methods synthesize a terrain
over the entire plane R2 or a large domain Ω ⊂ R2, focus on the
fractal and self similar properties of the relief at different scales,
and in general provide only little indirect control over the generated
features (Section 3.1). In contrast, procedural landform methods
target the synthesis of a specific landforms such as rivers, canyons,
or hills, operate at a smaller scale and provide several direct or in-
direct control parameters to tune the resulting shapes (Section 3.2).

Both large scale and landform methods often rely on fractional
Brownian motion [MVN68] (fBm), which is one of the most com-
monly used procedural models due to its simplicity. It can be
synthesized in many ways, including random walk, subdivision
schemes or additive synthesis of functions [EMP∗98].

3.1. Large scale terrain generation

Those methods build on the observation that some terrains such as
eroded mountain ranges or coastlines show dendritic structures that
have fractal properties, i.e. self-similarities at several scales. Early
works on terrain modeling often rely on fractal models; therefore
most large scale terrain generation algorithms are a-dimensional,
i.e. the fractal nature of the underlying structures allows the cre-
ation of an infinity of details that look similar at every scale.

3.1.1. Subdivision schemes

Subdivision schemes iteratively refine an input terrain in order to
introduce more and more details. They are used to produce frac-
tal features, although not every subdivision algorithm follows the
statistical fractional Brownian motion process. The recursive mid-
point displacement subdivision algorithm [FFC82a, FFC82b] pro-
gressively refines an input grid by adding fractal details. Let k the
current level of the grid, new points pk+1 are introduced by aver-
aging existing neighbor points pk and by displacing them with a
random value. As the iterations progress, the standard deviation of
the random value distribution decreases, and the decreasing factor
is directly related to the fractal dimension of the result.

Authors have proposed several modified subdivision and averag-
ing schemes (including, triangle, square, and diamond-square) in
order to limit visual directional artifacts [Mil86, Lew87, Man88].
The most popular is the diamond-square [FFC82b], even though it
suffers from local extrema artifacts visible at the first subdivisions

locations (Figure 5).The square-square [Mil86] scheme solves the
problem of local extrema by using a more balanced subdivision.
Different types of polygons have also been used in subdivisions
with mixed types [DKW94], which necessitates maintaining both
topology and geometric consistency in the subdivision process.

2 Steps 4 Steps

6 Steps 8 Steps

Figure 5: Several iterations of the diamond square algorithm.

3.1.2. Faulting

The faulting algorithm was introduced in [Man82] and developed
in [Vos91, EMP∗98]. Starting from a flat terrain, the algorithm it-
eratively generates random vertical faults as lines: point on either
side are displaced upwards or downwards according to the distance
to the fault (Figure 6). Let d(p,φi) denote the distance to the fault-
ing line φi, and g a smooth step function parametrized by a radius
of influence R, such as the following quartic:

g(r) =
(

1− (r/R)2
)2

if r < R g(r) = 0 otherwise

The elevation function can be defined by summing the influence
of the faults as:

f (p) =
i<n

∑
i=0

fi(p) fi(p) = ai g◦d(p,φi)

The coefficients ai represent the random vertical displacement ap-
plied at every iteration, and are in general decreasing in the same
way as recursive subdivision with the Hurst exponent (1/2H ,0 <
H < 1) and then D = 3−H is the fractal dimension. While the line
cuts the surface in an arbitrary position and the divided parts will
be different in size, it is important that in average the random faults
select each side with the same probability, otherwise the terrain will
either sink or bloat.

500 Faults50 Faults

Figure 6: The faulting algorithm generates random faults as lines
and raises or lowers the terrain on either side of the fault line.
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The method can be generalized to other faulting geometries such
as curves or circles, and scales to any size and can be extended
to generate fractal planets [FFC82b] when applied to a sphere.
[KSU07] proposed a variation of the faulting algorithm to control
the shape of procedurally generated terrain by prescribing control
parameters such as the height and extent of the base region at a
given location.

3.1.3. Noise

Noise functions [Per85,Per89,Wor96,LLDD09] have been widely
studied and used for a variety of natural phenomena, including ter-
rain modeling. A complete description of noise functions is beyond
the scope of this paper, we refer the reader to [LSC∗10] for an
overview of procedural noise functions.

Noise functions have been proposed as basis functions for rep-
resenting infinite terrains, i.e. defined over R2, as a set of scaled
and warped noise functions [MKM89, EMP∗98]. By adding sev-
eral noises at different scales and amplitudes, it is possible to build
a function that locally resembles a real terrain. Fractional Brownian
motion, also sometimes referred to as turbulence and denoted as t,
can be implemented as a combination of multiple steps of noise
each with a different frequency and amplitude. In the context of
procedural generation, the variation in frequency from a step to the
next is called lacunarity, whereas the variation in amplitude from a
step to the next is called gain or persistence.

Let n denote a smooth noise function that maps from R2 to
[−1,1] interval; without loss of generality we consider that this fun-
damental function has a primary frequency of 1; which means that
it interpolates values or gradients defined at every integer position.
The turbulence function t is defined by summing the contributions
of noises with varying frequencies and amplitudes:

t(p) =
i=o−1

∑
i=0

ai n(ϕip)

where ai refer to the different amplitudes, ϕi to the different fre-
quencies. The number of terms o is often referred as the number of
octaves, even if the frequencies are not multiples of 2. In general,
the amplitudes and frequencies are defined as a geometric series:
ai = a0 pi and ϕi = ϕ0 li where a0 and ϕ0 are the base amplitude
and frequency, l ∈ [0,1] is the lacunarity, and p ∈ [0,1] the per-
sistence. The persistence defines how the amplitude decreases in
the successive octaves. Values p≈ 1 produce very jagged terrains,
whereas values p≈ 0 drastically limit the impact of the successive
frequencies.

Exponential noise was proposed in [Par15] to better reproduce
the slope distribution observed in real terrains. The exponential
slope distribution spectrum is obtained by analyzing real terrain
data, and used to constrain the generation process using gradi-
ent noise whose gradient samples match the multi-fractal spec-
trum [vLJ95, Par14, Par15].

The smoothness of the noise function n prevents the creation of
crests and ridge lines that can be found in mountainous terrains
(Figure 7 left). Ridge noise was therefore introduced with a view
to generating sharp features such as crests or ridges, and simply
defined as r(p) = 1− |n(p)|. Although the absolute value was al-
ready present in the definition of the turbulence function in [Per85],

the idea of turning it upside-down to produce crests on the top of
mountain ranges was introduced in [EMP∗98].

Ridge noiseSimplex noise

Figure 7: A sum of simplex noise n (left) and ridge noise r (right)
with 8 octaves: ridge noise generates crest lines suitable for young
mountains, whereas simplex noise is more suitable to modeling
hills.

The fractal property of these noise functions is uniform, i.e. they
generate mono-fractals, which does not conform to real landscapes.
Multi-fractal terrains can be obtained by modifying the sum of oc-
taves so that the amplitude of higher frequencies ak+1 should be
weighted by a function α according to value of the previously com-
puted octaves [EMP∗98]. This can be obtained by using the fol-
lowing recurrence relation:

tk+1(p) = α(tk(p))ak+1 n(ϕip)+ tk(p) t0(p) = a0 n(ϕ0p)

Lower elevations tk(p), computed at step k, scale down higher fre-
quencies in order to smooth valleys, whereas higher values will
boost high frequencies to enhance the mountains peaks with small
details. Multi-fractal generate terrains that are not uniform featur-
ing smooth areas in plains and ridged landforms in mountains (Fig-
ure 8 left).

Summing the same scaled noise function n can lead to grid ar-
tifacts that can be avoided by applying warping functions made
of rotations and translations. This concept is easily formalized
by the means of an affine transformation applied to p, i.e. using
n(Ri p+ vi) where Ri is a 2× 2 random rotation matrix and vi is
the translation vector.

WarpedMulti fractal

Figure 8: A multi-fractal sum of 8 octaves of ridged noises (left)
and its warped version (right).

Warping Generally, warping can be used to deform the domain
and break the monotonicity and regularity of noise. Formally, a
continuous warping function may defined as: ω : R2 → R2; and
warped terrains are computed by evaluating n ◦ ω(p) instead of
n(p). The warping function ω may be defined as a sum of scaled
displacement functions created from noise. Low frequency vector
offsets are commonly used for this purpose (Figure 8 right). Lim-
ited erosion effects can be approximated [dCB09] by using warp-
ing functions based on scaled noise, oriented in the direction of the
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gradient of the underlying terrain. Domain warping still only pro-
vides a coarse approximation of erosion, and simulation techniques
are needed to obtain more realistic effects (Section 4).

3.1.4. Analysis

Subdivision-based and noise-based approaches are commonly used
to generate large scale synthetic terrains that have strong fractal
properties. Unfortunately, these techniques do not capture the high-
level structure of real-world terrains, such as the branching patterns
evident in mountain ranges.

Noise-based terrain modeling is a powerful tool, but it can be
difficult to control, requiring both a technical understanding of the
many parameters and strong artistic skills. Subdivision is usually
easier to control because it approximates a coarse terrain, which
naturally lends itself initial specification by the user. In contrast,
noise-based functions provide more flexibility and allow a vari-
ety of effects when combined with warping and other functions
such as clamping or linear interpolation and blending. It is worth
noting that noise-based terrain modeling is widely used in indus-
trial software, while subdivision algorithms are almost absent. The
popularity of noise functions comes from the independent evalua-
tion of n(p), which allows for an efficient parallel implementation
on graphics hardware, allowing designers to brush the terrain with
procedural functions.

However, this independence of the elevation f (p) for a given
input point p from its neightbours is simultaneously a significant
disadvantage, because such function-based methods do not capture
complex erosion phenomena, most importantly material transport.
The very nature of terrains is not strictly fractal: many phenom-
ena do not yield fractal landforms, therefore the realism of purely
based fractal methods is limited to a restricted subset of scales, for
example small-scale features, or to specific landforms such as some
fractal coastlines.

The lack of local control exhibited by these procedural tech-
niques has driven researchers to focus on generating rather specific
landforms for applications where the speed of procedural function-
based methods is paramount.

3.2. Landform generation

Local procedural techniques aim at shaping specific landforms such
as rivers, cliffs or canyons without relying on simulations or synthe-
sis from exemplars. They operate by the means of geometric con-
trol parameters such as features curves or anchor points. Contrary
to large scale generation approaches that are often dimensionless,
local methods introduce the notion of spatial dimension, which is
crucial for reproducing specific structures and patterns.

3.2.1. Controlled subdivisions

Because fractal subdivisions only provide a limited control to the
user, several authors have tried to prescribe features such as rivers,
crests, or any landforms in the generation process.

River networks with consistent watersheds were created by con-
straining the mid-point displacement algorithm [KMN88] to gen-
erate rivers. Subdivision rules were applied directly to river trajec-

tories [PH93] and later extended to entire planets to generate large
scale watersheds [DGGK11].

Another way to control the generation process is to constrain the
fractal reconstruction [Bel07, BA05a, BA05b] with a subdivision
algorithm to respect important features of the terrains like crests or
river trajectories (Figure 9). Recently, these methods were adapted
and implemented on graphics hardware [TB18].

Figure 9: Examples of controlled subdivisions obtained by
[BA05a] (left) and [Bel07] (right), and their corresponding input
constraints (insets).

Hnaidi [HGA10a] proposed to break the systematic nature of
fractal subdivision rules of a Projected Iterated Function System
by inserting details at each step. Artists can thus combine the ease
of use of subdivision schemes and the controllability of free forms.
Ariyan et al. [AM15] used a formalism based on subdivision of
planar networks using a path planning algorithm. These planar
curves are then assigned heights using altitude profiles and the final
heights are computed using interpolations.

3.2.2. Feature-based construction

Feature-based construction methods come in two categories: curve-
based terrain generation techniques which rely on generating fea-
ture curves to diffuse terrain characteristics and synthesize a variety
of landforms, such as ridge lines, coastlines or rivers, and prim-
itive based construction trees that take their inspiration from im-
plicit surface models and combine specific landforms primitives by
blending or warping operators.

Final renderingTerrain Sketching

Close up Close up

Figure 10: Terrain sketching can produce a variety of landscape
features. Peaks, cliffs, a volcanic cone, hills in different orienta-
tions, and a river canyon are sketched in a single terrain, with
close-ups and a final rendering (from [GMS09]).

c© 2019 The Author(s)



Eric Galin et al. / A Review of Digital Terrain Modeling

Curve-based models The work of Gain et al. [GMS09] represents
one of the earliest sketch-based interfaces for interactive modeling
of terrains from control curves (Figure 10). The user specifies land-
forms, such as mountains and valleys, through a variety of sketched
curves, including: baselines (representing the projection of a crest
onto the ground plane), elevations (capturing the vertical shape of a
crest), and boundaries (limiting how far the landform extends to ei-
ther side of the baseline). The elevations can be sketched as silhou-
ettes from a particular viewpoint, with additional controls to indi-
cate how they fit relative to existing landforms. Each set of baseline,
elevation and boundary curves is submitted to a multi-resolution
deformation process which ensures that the terrain is constrained to
fit the curves. One unusual aspect is that the noise attributes of the
sketched elevation curve are analyzed and used to add correspond-
ing wavelet noise to the local terrain being deformed. This means
that a jagged mountainous silhouette will induce similar character-
istics in the surrounding terrain. The technique can also be used to
build terrains from scratch or modify existing landscapes.

Rusnell et al. [RME09] used a technique to blend feature curves
defined by the combination of an elevation curve (defining crests)
and a monotonically decreasing cross-sectional profile (defining
slope on either side of the crest). The influence of features can be
varied between a simple normalized sum and a weighting that fa-
vors feature curves locally. The key aspect that differentiates this
from similar Euclidean distance-based schemes is that distance is
calculated efficiently on the grid using a shortest-path algorithm.
Every grid-node is connected edge-wise to its eight neighbors and
the shortest path is used to determine distance to a feature curve,
whose grid-vertexes serve as generator nodes for the algorithm.

Figure 11: Different canyon landscapes generated by procedural
noise (from [DCPSB14]).

A specific approach for modeling and generating canyon land-
scapes was introduced in [DCPSB14]. Given an input heightfield
generated by using a sum of procedural noises, the authors layer the
terrain into terraces by applying clamping functions (Figure 11).
Mesas are isolated by creating paths as curves between valleys to
create non connected mountain ranges. The trajectory of the river
is then generated by using a shortest path algorithm between con-
trol points minimizing the elevation range between control points.
Finally, the foothills are smoothed.

Hnaidi et al. [HGA∗10b] created terrains from prescribed fea-
ture curves representing the skeleton of crests, rivers and major
stream landforms (Figure 12). Feature curves are 2D splines with
additional information attached along the curve, describing the el-
evation and the slopes on each side of the curve. This resulting
vector-based model is compact in terms of memory (≈ 10kB). The
surface is reconstructed using a modified diffusion equation taking

into account noise parameters and the slope. Noise parameters and
gradient constraints are propagated across the cells by a standard
diffusion equation. The obtained constraints maps are then used in
a second pass in order to guide the diffusion in particular areas with
slopes. Details are generated using a noise map synthesized using
the diffused noise parameters, and terrain is obtained by adding de-
tails to the smooth diffused terrain. The multi-grid implementation
of the diffusion process on graphics hardware allows for interac-
tive generation rates. While the maximum resolution of the synthe-
sized terrain was constrained by the available memory at that time,
i.e. 2048×2048, it could probably be higher with recent hardware.

IslandRiver

Figure 12: Feature curves allow to author different types of ter-
rains by prescribing the trajectories of rivers of the shape of crest
lines (from [HGA∗10b]).

Construction trees The general approach consists in locally mod-
ifying the elevation of the terrain by using different kinds of mod-
els. This can be achieved by using compactly supported prim-
itive function fi representing specific landforms over their do-
main Ωi, and combining them together to construct complex ter-
rains [GGP∗15], using either procedural generation approaches
[GGG∗13] or example-based sparse synthesis [GDGP16] (Sec-
tion 5).

Génevaux et al. [GGP∗15] proposed a hierarchical construction
tree combining primitives representing a variety of landforms (Fig-
ure 13 right). The primitives at the leaves of the tree represent
landforms at different scales such as hills, mountains or mountain
ranges, valleys, riverbeds, and are implemented as elevation func-
tions hi(p) associated to a compactly supported weighting function
αi(p) over their domain Ωi. The primitives can be hierarchically
combined using different operators such as carving, blending or
warping to apply deformation effects. The major contribution is a
hierarchical model that allows to model and control the placement
of landforms features.

Figure 13: Terrains produced by blending disc and curve primi-
tives, from [GGP∗15] (left) and [GGG∗13] (right).

Génevaux et al. [GGG∗13] proposed to fully generate a ter-
rain from its river-network (Figure 13 left). The river network
grows over the input terrain by using a grammar that satisfies
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Horton-Strahler properties. The Horton-Strahler number quantifies
the branching complexity of the geometric graph representing the
drainage network [Hor45]. The Holto-Strahler number is com-
puted on every edge of the graph by using the maximum uphill
edges values and by incrementing in cases of equality. Leaves of
the graph (river sources) are initialized to one. Each river of the
network is labeled with respect to the empirical Rosgen classifica-
tion of watercourses [Ros94] so that is embeds useful geometrical
information. The elevation of the terrain is derived from the prop-
agation of the elevation along the trajectories of the rivers and are
computed using a hierarchical terrain construction tree.

3.2.3. Volumetric procedural terrains

Volumetric procedural methods are not very present in the litera-
ture. Gamito et al. [GM01] introduced implicitly-modeled terrains
by defining a field function f : R3→R and by warping space along
the vertical axis to generate overhangs. Recall that f is derived from
h as f (p) = h(pxy)− pz. Instead of defining the elevation h as a
function of points in the domain Ω⊂R2, the warped surface of the
terrain is therefore implicitly defined as:

S = {p ∈ R3 | f ◦ω
−1(p) = 0}

The warping function ω
−1 : R3→ R3 deforms space horizontally

and transforms steep parts of the elevated terrain into a concave
surface resembling cliffs with overhangs. In practice, the warp-
ing function can be defined as a procedural displacement function
based on a sum of 3D noise functions, smoothly clamped to a given
region of influence in space. Let α : R2 → [0,1] denote the com-
pactly supported function defining the region of influence, we have:

ω
−1(p) = p+α(p)

i=n−1

∑
i=0

n(ϕip)

Peytavie et al. [PGMG09a] allow the modeling of 3D features
like overhangs by using void as a material layer (Figure 2). The
corresponding implicit representation can be obtained from a layer
stack model to smooth the surface (Figure 14).

ArchesOverhangs Arches

Figure 14: Arches and overhangs with different materials (bedrock
and sand) generated by the hybrid layer-stack implicit surface rep-
resentation (from [PGMG09a]).

The complexity of implicitly-defined 3D terrains makes it harder
to visualize than standard heightfields, requiring a computationally
demanding polygonization step. Specific methods [SBD13] were
proposed to speed up the generation of the mesh by using an adap-
tive level of detail algorithm based on a tetrahedral cell refinement
process.

Close to the formalism introduced in [HGA∗10b], Becher et

al. [BKRE17, BKRE18] used 3D feature curves to generate volu-
metric terrains (Figure 15). Feature curves are augmented with con-
trol parameters that define the two tangent surfaces on both sides of
the curve, together with noise constraints. The model is embedded
in a voxel grid and the constraints are set into that grid, leading to a
sparse constraints representation that prescribes normals and noise
parameters. These constraints are then diffused over the voxel grid
to obtain a dense representation.

Figure 15: Example of volumetric terrains featuring arches and
overhangs produced by 3D curves (from [BKRE17, BKRE18]).

The material function µ(p) defined over the voxel grid is recon-
structed by propagating material from the initial positions of the
curves by the means of the diffused normal map combined with a
distance field. The surface of the terrain is obtained by polygoniz-
ing the corresponding implicit surface. The diffused noise parame-
ters are used to displace the final mesh and improve the appearance
of the surface of the terrain. The method can be implemented on
graphics hardware to speed-up the computationally demanding dif-
fusion and surface generation steps, therefore allowing for interac-
tive authoring, with the current limitation that the resolution of the
voxel grid should be limited to 1283.

3.2.4. Analysis

To avoid the systematic fractal aspect of recursive subdivisions,
constraint generation methods rely on user-provided constraints to
adapt the subdivision process locally to create the desired land-
forms. User-controlled perturbations in the subdivision process
were also proposed as a means to obtain terrains with different frac-
tal characteristics.

In contrast, local methods and more specifically feature-based
modeling provide a more intuitive way of authoring terrains: a com-
plete discussion will be presented in Section 6.4. The main chal-
lenge of terrain modeling from features stems from the difficulty
to propagate a sparse information, i.e. , specific landforms such as
peaks or rivers, over an entire terrain, e.g. , generating hills between
mountain ranges and plains. Several processes such as thermal dif-
fusion, or shortest path computation have been proposed to address
this problem. In those approaches, the global structure of the ter-
rain often results from the authoring process during the creation.
Because the placement of many features can be a tedious task for
the user, research has also focused on the automatic creation of
structuring features such as rivers.

4. Simulation

While procedural approaches are phenomenological, i.e., focus on
the generation of a particular phenomenon, simulation techniques
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model the causes and the effects that result from a simulation pro-
cess. Simulations can be thought of as complex systems where the
landform patterns and structures emerge from the interaction of the
simulated elements.

Most of the simulations for terrain modeling are based on ero-
sion. Erosion is the action of surface processes that remove material
from one location and then transport it to another location, possibly
outside the domain. Note that erosion is different from weathering,
which involves no movement, but is rather a modification of phys-
ical properties and surface aspect.

Erosion can be described as a three-step process (Figure 16): the
material is eroded and detached from the underlying terrain, then
transported by the agent, and eventually deposited at a different
location. Erosion processes include, but are not limited to, rainfall
and surface runoff, river and stream erosion, coastal and sea ero-
sion, glacial erosion, wind erosion, and mass movement.

Detachment DepositionTransport

Figure 16: Erosion processes detach some material that is then
transported by the erosion agent and eventually deposited at a dif-
ferent location.

Simulation methods compute the evolution of the boundary be-
tween the terrain and the erosion agent over time. They define the
variation ∂h/∂t(p) as a function of the characteristics of the terrain
such as the slope s(p), the elevation (if the heightfield is being con-
sidered) h(p) or the laplacian ∆h(p) , and the environment which
includes the resistance of the bedrock ρ(p), the tectonic uplift u(p),
or the amount of precipitation or wetness.

Different types of erosion can then be modeled by equations
that describe various phenomena (for example in geomorphol-
ogy [TH10]) such as the Stream Power equation [WT99], h ill
slope erosion [BS97], debris flow equation [SD03], and other phe-
nomenologically inspired equations. We classify the different sim-
ulation techniques according to the erosion agent that influences
both the detachment and transportation phenomena.

4.1. Thermal erosion

Thermal erosion combines thermal weathering and mass move-
ment, representing the downward movement of rocks and sedi-
ments on slopes, mainly due to the force of gravity. It is caused
by water present inside cracks and small intrusions of the material
boundary. As the temperature changes, the different thermal expan-
sion of water and the material causes the material to break and fall.

4.1.1. Heightfield thermal erosion

Thermal erosion was introduced in [MKM89] as a proxy for a
group of various erosional processes other than hydraulic erosion.
Note that thermal weathering is one of the many causes of rock

breakage, large-scale landslides and the accretion of granular mate-
rial, all of which results in a perceived regularity in the slope angle
of many mountain and hill slopes (Figure 17).

ErosionBedrock

Figure 17: Thermal erosion: (left) bare bedrock, and (right) talus
deposits and scree at the base of crags and cliffs produced by ther-
mal erosion.

The transportation is caused by gravity and relies on the concept
that the deposited granular material has an inner friction that stops
the movement when a so-called talus angle has been reached. Let
θ denote the repose angle, also referred to as the talus angle, of the
deposited (granular) material. The equation is:

∂h
∂t

(p) =
{
−k(s(p)− tanθ) if s(p)> tanθ

0 otherwise.

The talus angle can be used as a parameter to control the slope of
the screes and cones that form at the bottom of the eroded land-
forms. The talus angle varies within 30− 45◦ degrees interval for
earth forms.

Thermal erosion can be simulated as a relaxation process: at each
time step the slope of the terrain s(pi j) is computed: if it is lower
than tanθ no erosion occurs, otherwise a certain amount of mate-
rial proportional to tanθ− s(p) is eroded and removed from the
bedrock layer and distributed to the neighboring cells (Figure 18).
When operating with a layered model, the amount of removed
bedrock is converted to silt. The algorithm stops when there is no
more material to move.

Rock

Stabilization processUnstable stacks computation

Unstable stacks

Stable
s(p)>tan θ

Iterative
material fall

Figure 18: Overview of erosion: erosion occurs on piles whose
slope is greater than the talus angle.

Roudier et al. [RPP93] introduced bedrock resistance for both
hydraulic and thermal erosion. The concept consists in approximat-
ing the underlying geology of the terrain by defining a volumetric
function ρ : R3→R representing the resistance of the different ma-
terials. The erosion equation is then modified as:

∂h
∂t

(p) =−ρ(p)(s(p)− tanθ)

In general, the resistance is constant along a vertical line which
allows it to be defined by a simpler function ρ : R2→ R.
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4.1.2. Specific landforms

Thermal erosion was used to simulate table mountains (mesas)
in [BA05c]. The thermal erosion breaks rimrock (bedrock) into
falling rocks that behave like granular material forming the typi-
cal accretion cones on the hillside of table mountains.

A variant of thermal erosion was proposed for small-scale volu-
metric simulation of cliff retreat in [IFMC03]. This algorithm pro-
cedurally generates faults around voxel groups that represent rock
blocks and perform a discrete simulation of the detachment and
falling of blocks. A set of blocks at the surface is chosen depending
on sliding conditions, and removed from the system. Although not
considering a time step, or a stochastic time-dependent probabil-
ity of block breakage, this approach relies on a repose angle that
generates talus, and therefore is a variant of thermal erosion.

4.1.3. Cliffs and overhangs

The previously described thermal erosion algorithms operate on
heightfield data-structures and do not allow for rock detaching and
falling from cliffs, which would lead the formation of concave
shapes, such overhangs or even caves. Peytavie et al. [PGMG09a]
presented an approximation of 3D thermal erosion by using a hy-
brid implicit-surface and layerstack representation.

RocksCanyonDetachment Stabilization

Figure 19: Cliffs and overhangs created by 3D thermal erosion
(from [PGMG09b]).

Blocks detaching from vertical cliffs or steep slopes are com-
puted using a Voronoi decomposition of space to define their
boundary (Figure 19). The bedrock material is then converted into
sand and rock material layers, which are stabilized into accretion
piles. Piles of rocks and stones can also be generated from the gran-
ular material layers, as described in [PGMG09b].

While this approach allows for generating complex caves and
cliffs with sharply sculpted overhangs, the volumetric model is lim-
ited to ≈ 1×1×1km3 scenes.

4.1.4. Analysis

Thermal erosion has been widely adopted in Computer Graphics
both because of the simplicity of the governing equation, which al-
lows for a straightforward implementation, even on graphics hard-
ware, and because of its intuitive parametrization using the talus
angle. It correctly creates accretion cones of fallen rocks, sand, and
granular materials in both screes and accretion areas. Furthermore,
it is an important complementary step to hydraulic erosion meth-
ods, which carve deep channels between high crests. In this context,
thermal erosion gives a measure of the spacing between erosive fea-
tures.

Thermal erosion has several limitations however. First, it us usu-
ally implemented as an iterating scheme that approximates forward
Euler time stepping and this is physically accurate only for small
time steps. Although this is of lesser importance when thermal ero-
sion is applied as a post-processing step, this issue prevents its use
when simulating large scale erosional features [CBC∗16].

Second, fallen rocks do not only provide a fundamental visual
improvement when represented at their rest state at the bottom of
cliffs, they also have a non negligible erosive effect during their fall.
Existing algorithms regard the fallen material as granular. How-
ever, larger blocks of material can fall, and subsequently break
into rocks, which would end up making the simulation significantly
more complicated and even harder to control. This effect can be ap-
proximated with more general approaches to debris flow erosion,
as used in geology [SD03]. In addition to the breakage of rock,
these model the erosive effect of falling rocks along their trajec-
tory. Third, is the issue of perceived regularity: even when the talus
angle is set with random perturbations, slopes look unnaturally sim-
ilar. Geologists prefer hillslope erosion that averages a variety of
lower scale processes into a diffusion equation:

∂h
∂t

(p) =−k ∆h(p)

While this equation does not take into account the material layers
introduced by thermal erosion, it constructs more visually irregular
transitions between slopes, especially when combined with fluvial
erosion [BS97].

4.2. Tectonic

A lot of attention in Geology and Geomorphology has been fo-
cussed on the simulation of crust deformation driven by the com-
pression of tectonic plates [McC92]. This process results in the con-
tinuous vertical raising of mountain ranges – a phenomenon called
uplift, which is countered by various forms of erosion that shape
mountains [TH10]. In contrast, the simulation of tectonics for ter-
rain modeling has received less attention in the Computer Graphics
community. This can be explained by the complexity of geological
phenomena described by differential equations that are computa-
tionally demanding. Moreover, it is difficult to set the parameters
of the simulation so as to control the terrain generation process and
follow the intent of the user.

4.2.1. Tectonics and stream power erosion

Michel et al. [MEC15] procedurally generate the topography of
a mountain range based from a user-defined sketch of peaks and
rivers. This input is used to build a procedural approximation of
tectonic plates whose speeds wrap a noise based fold map. Terrain
elevation is obtained by combining the fold map with a watershed
obtained by diffusing a slope value away from the user-sketched
rivers. The relief is then eroded to generate the mountains by using
a hydraulic erosion method.

Large scale terrain generation from tectonic uplift and fluvial
erosion was addressed in [CBC∗16]. This paper introduces the
Stream Power erosion law derived from geomorphology [WT99]
to computer graphics, which relates the erosion rate at a given point
p to the drainage area A(p) (which approximates the water flux by
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Figure 20: Example of a large scale (100×100km) terrain gener-
ated by the method described in [CBC∗16] combining a procedu-
rally generated tectonic uplift map and fluvial erosion.

integrating the precipitation rate over the upstream catchment do-
main), the local slope s(p) and the tectonic uplift u(p):

∂h
∂t

(p) =−kA(p)ms(p)n +u(p)

The mountain elevation results from the combination of a progres-
sive uplift and the subsequent erosion (Figure 20). The uplift is used
as an input in the form of a map of the rate of change of elevation,
and the simulation is solved implicitly in linear time.

This work was extended in [CCB∗18] with a geologically-
coherent uplift derived from the relative movement of the tectonic
plates prescribed by the user. The global mountain range uplift is
computed by considering the crust as an incompressible viscous
material. Folds are added procedurally and their wavelength is ap-
proximated by considering the crust as a stack of layered sheets
of rocks with discontinuous physical properties. The terrain is fi-
nally eroded using an improved version of the algorithm presented
in [CBC∗16] that takes into account the characteristics of the dif-
ferent bedrock strata. The method generates a layered 2 1

2 D model
with folds and faults.

4.2.2. Analysis

Tectonic-based simulations attempt to reproduce large scale ero-
sion effects, taking into account the uplift of the bedrock bal-
anced by different types of erosion described in geology. Similar
to other mesh or grid-based techniques, those approaches are lim-
ited in scale range. Existing techniques produced realistic mountain
ranges with dendritic river networks covering over ≈ 100km-wide
domains, at a precision of≈ 100m. Although the simulation can be
controlled by interactively moving the tectonic plates, controlling
the generation of the small-scale features remains difficult.

4.3. Hydraulic Erosion

Hydraulic erosion occurs when the motion of water against the
bedrock surface produces mechanical detachment. Hydraulic ero-
sion encompasses a number of mechanical erosional processes such
as abrasion, corrasion (not to be confused with corrosion) and salta-
tion. Chemical erosion (more often called chemical weathering) is
distinct from mechanical erosion but is also part and parcel of hy-
draulic erosion. It changes the composition of rocks, transforming
them when water interacts with minerals to create various chemical
reactions.

The existing hydraulic erosion algorithms in Computer Graphics

vary in the way they describe the fluid simulation (which in general
also relates to the underlying models and data structures) and time
and space scales.
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Figure 21: Comparison of Eulerian and Lagrangian approaches to
hydraulic erosion.

Water movement acting to detach, transport and deposit mate-
rial can be described by the Navier-Stokes equations [CF88] that
have been studied in Computer Graphics for a long time [Bri08].
Fluid movement can be computed either by Eulerian approaches
or Lagrangian methods (Figure 21). Eulerian approaches discretize
space into a grid and simulate the amount of fluid in each cell,
whereas Lagrangian approaches simulate the movement of the fluid
particles themselves.

4.3.1. Eulerian approaches

These methods rely on a discrete grid-based model that represents
the input scene as well as the fluid. The simulation calculates the
pressure, the velocity, and the amount of fluid in each discrete cell.
Musgrave et al. [MKM89] presented a complete hydraulic simu-
lation model by simulating material detachment, transport and de-
position between heightfield cells. The erosive power of a given
amount of water in a cell is a function of its volume and the amount
of sediment already carried in the water. When the sediment ca-
pacity of fluid is reached, the material is deposited on the ground
(Figure 22).

ErosionBedrock

Figure 22: Example of hydraulic erosion applied to a fractal pro-
cedural terrain.

A geological representation for modeling the strata of the
bedrock was introduced in [RPP93] that considers the character-
istics of the different materials during the erosion process: the hy-
draulic erosion is the more intense as the rock is the softer.

c© 2019 The Author(s)



Eric Galin et al. / A Review of Digital Terrain Modeling

These approaches were extended in [BF02] by introducing an al-
gorithm for hydraulic erosion in which water dissolves soil, trans-
fers it, and deposits at different locations by gravitational settling.
This approach generates layers of smooth material deposited in
floor bed and in pools of water after drying.

Nagashima et al. [Nag98] proposed a modified and improved
physically-inspired erosion model and focused on the generation
of valleys. The method combines a layer-based geological repre-
sentation of the different strata of the bedrock with thermal erosion
and a specific stream erosion process.

Neidhold et al. [NWD05] combined fluid simulation with ero-
sion and analyzes the acceleration or deceleration of the fluid to
erode the bedrock or deposit sediments. They also use the sediment
capacity [MKM89] to deposit material in still water. The authors re-
port fast simulation allowing this approach to be used at interactive
speeds. A parallel implementation was later proposed in [ASA07].

Benes et al. [BTHB06] combined a 3D fluid simulation with
sediment transportation and deposition to simulate hydraulic ero-
sion. The underlying data structure for representing the terrain was
a voxel grid, with data representing the variable amount of mate-
rial effectively stored in every cell. The movement of the fluid is
computed on a grid, and the force of the fluid applied to the ma-
terial boundary defines the importance of erosion. When the force
is larger than the material resistance, some material is eroded and
transported by the moving fluid. When the fluid slows down, it de-
posits the material in the corresponding voxel cell.

Hydraulic erosion has been also used for generating rivers, and
an approach inspired by self-organizing systems was proposed
in [PM13]. Here, the simulation relies on self-organization and
emergent phenomena to synthesize coastlines and terrains with the
fractal features characteristic of hydraulic erosion.

Benes et al. [Ben07] combined shallow water simulation with
hydraulic erosion. This approach allows the user to place water
sources, control the flow of water, and edit the underlying ter-
rain. The shallow water simulation, however, operates on a layered
heightfield representation and does not allow for the simulation of
volumetric erosion phenomena such as cliff overhangs produced by
river erosion.

Performance challenges Fluid simulation itself is computation-
ally expensive and becomes even more demanding when combined
with erosion. Several approaches propose technical implementa-
tion improvements that speed up computations, in general by ex-
ploiting graphics hardware as most fluid simulation computations
can be performed in parallel. Mei et al. [MDH07] demonstrated
the effectiveness of parallel methods and achieved interactive feed-
back. Št’ava et al. [ŠBBK08] further improved the method by using
a multi-layered representation and increasing the discretization of
the domain beyond 10242 while preserving interactive feedback.
Subsequently, Vanek et al. [VBHŠ11] addressed memory limita-
tions by tiling the terrain and offloading the erosion into rectangular
blocks that are swapped to the main memory of the computer.

A more general stochastic simulation of different events that im-
pacts terrain at shorter geological timescales (≈ 1000 years) was
introduced in [CGG∗17]. The method combines the joint effects of

Canyon Coast Valley

Figure 23: Example of terrain erosion combined with ecosystem
simulation (from [CGG∗17]).

erosion and vegetation by considering atomic events such as wa-
ter drop (hydraulic erosion), rock fall, lightning strikes, and veg-
etation related events such as plant seeding, growth and death, as
well as forest fires (Figure 23). An event is randomly chosen, and
follows a simple cell by cell path (no loop, no interruptions, no
branches) progressively transforming the multiple layers of materi-
als that compose the terrain: bedrock, granular material (sand, hu-
mus, rock), vegetation densities and resources such as moisture or
illumination.

4.3.2. Lagrangian approaches

Particle-based approaches for computational fluid dynamics model
the flow as a collection of particles that move under the influence
of hydrodynamic and gravitational forces. Eulerian methods obtain
the solution relative to a fixed grid, whereas the Lagrangian frame-
work define the flow in terms of the concentration of advected par-
ticles.

General terrain erosion methods distribute particles across the
domain to approximate rainfall, and then simulate their movement
and effect on the terrain by eroding bedrock into sediments and then
lifting, transporting, and eventually depositing these sediments.

Eroded partsRiver carving

Figure 24: Lagrangian erosion simulation [KBKŠ09]: the water
particles form a river that erode the terrain and transport sediments
that are deposited downstream.

Water particles were introduced in [CMF98] to compute the
erosive forces exerted by the flowing water down the terrain to
simulate erosion. They introduced the concept of velocity fields
that are calculated from motion of water and used it to erode the
underlying terrains. Smoothed Particle Hydrodynamics were used
in [KBKŠ09]. The fluid particles move and when they hit the ter-
rain they erode it (Figure 24). Each moving fluid particle then trans-
ports material that changes its mass; when the speed of the particles
is slow, it deposits the material.

Specific landforms The automatic generation of meandering
rivers was addressed in [Kur12, Kur13]. It is an approximation in-
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spired by erosion that uses particles that carry sediment and gen-
erate meandering riverbeds. The method aims at generating mean-
ders and carves the riverbed in the ground. The resolution depends
on the type of the river, and as for most simulations the system is
limited to small parts of rivers.

4.3.3. Analysis

Although erosion simulations are often considered the most realis-
tic way of eroding terrains because the underlying physics capture
emerging phenomena such as channels or accretion cones, several
fundamental problems remain.

Scale range Many hydraulic erosion algorithms, some Eulerian
methods simulating the dynamics of fluids and almost all La-
grangian methods, perform the simulations at a small time and
space scale, and then implicitly scale up the results to approximate
large scale terrains. This is intrinsically flawed. While generating
visually convincing effects, these approaches are not realistic as the
equations of the corresponding phenomena are not linear. The scale
of the simulated features heavily depends on the underlying terrain
representation. Such simulations can efficiently model scales of a
certain size, but using the same approach to simulate much larger
or much smaller phenomena is either impossible or computation-
ally intractable.

Thus, depending on the simulated phenomena, simulation can
become very time consuming, which makes it ill-suited to the de-
tailed and precise modeling and generation of terrains with large
extent.

Control A second problem is the control of these methods. While
erosion simulations are more physically or geologically accurate
than procedural approaches, they are notoriously difficult to con-
trol. The user is usually left with defining the initial conditions of
the simulation and waiting for the generated results. If the result
is not satisfactory, the initial conditions need to be changed. More-
over, they do not scale well and designing a large-scale simulation
is a very difficult task.

It is common to use hydraulic and thermal erosion as a beauti-
fication processes to enhance procedurally generated terrain with
sedimentary valleys and erosion landmarks, such as gorges and
ravines. However, this neglects a crucial element: mountain ranges
result from continuous uplift countered by various forms of ero-
sion. The form of the initial input terrain thus plays a crucial role in
the realism of the output. Ideally, the input prior to erosion should
be geomeorphologically sound and encode the effects of uplift.

4.4. Other erosion phenomena

Compared to the large amount of work that dealt with hydraulic
and thermal erosion, other phenomena have not received much at-
tention by authors despite their potentially big impact on landforms
generation. Phenomena that have seldom or never been addressed
in computer graphics include aeolian, coastal, lightning, glacial,
and karst erosion. Glacial erosion is a phenomenon that applies at
smaller time scales than fluvial erosion and that induces the cre-
ation of U-shape valleys and hanging valleys. Coastal erosion and

karst are phenomena that have a volumetric impact on the terrain
and that are highly related to the subsurface geology.

Aeolian erosion is caused by winds that erode, transport, and de-
posit materials; it is more intense where vegetation is sparse since
sediments are unconsolidated. Aeolian processes encompass the ef-
fects of wind that erode terrains by deflation (the removal of loose,
fine-grained particles by the turbulent action of the wind) and by
abrasion (the erosion of surfaces by the grinding and sandblasting
action of sand particles).

While simulating the formation of sand dunes has received a lot
of attention in physics [MMW01, NZRC09, Pel09], it has not been
a focus in Computer Graphics. Onoue [ON00] borrowed the salta-
tion equation and adapted simulations from physics into a proce-
dural method to generate sand ripples. This approach was further
extended in [BR04] by taking into account the collision of sand
with obstacles. Those methods rely on discrete layered heightfields
and therefore have a limited extent.

Figure 25: Aeolian erosion structures obtained by spheroidal ero-
sion forming Goblins (from [BFO∗07, JFBB10, TJ10]).

Spheroidal erosion on voxel grids was proposed in [BFO∗07,
JFBB10] for approximating the effects of wind erosion on rocks.
The local curvature and accessibility of the surface indicates its
exposure to the environment and causes this to be eroded faster.
Positive curvature erodes edges and creases, whereas negative cur-
vatures causes protrusions and holes. This approach simulates ef-
ficiently so called Goblin structures (Figure 25) commonly carved
in sandstones such as in Goblin Valley State Park, Utah. An ex-
tended version of spheroidal erosion was adapted for eroding trian-
gular meshes and generating Goblins but also concavities and over-
hangs [TJ10]. This method, however, does not allow the creation
of arches or caves.

Lightning may have an erosive effect on exposed terrains parts
[KG14], where a single strike can destroy a large amount of
bedrock and project rocks within several meters. Cordonnier et
al. [CGG∗17] included the effects of lightning as an erosive agent:
strikes are scattered randomly on the terrain, with a higher proba-
bility at higher locations with negative terrain curvatures. Bedrock
is destroyed, and material is added in a rock layer in the grid cells
near the impact, similarly to transport of the outcome of thermal
erosion.

5. Example-based

Instead of starting from a blank or unformed state and gradu-
ally constructing a terrain through procedural or simulation meth-
ods, example-based approaches borrow from and combine exist-
ing terrains. The exemplar terrains can be sourced from anywhere

c© 2019 The Author(s)



Eric Galin et al. / A Review of Digital Terrain Modeling

(even procedural and simulation outputs), but most often rely on
scanned heightfield terrains in the form of Digital Elevation Mod-
els (DEMs), such as those provided by the U.S. Geological Sur-
vey [GOG∗02], because these provide real-world fidelity.

A typical example-based terrain generation pipeline has the fol-
lowing form. First, a database of one or more terrain exemplars
E is constructed. Then a synthesis step is used to select, warp
and arrange terrain fragments Pk ⊂ E , with a corresponding eleva-
tion function hk(p) from the database. Finally, the disparate frag-
ments are blended together into a seamless output terrain T . Under
this general framework there is, of course, considerable variation
between individual methods. For instance, synthesis can involve
square patches [ZSTR07,TGM12], individual pixels [GMM15], or
circular kernels [AAC∗17], while blending can range from rela-
tively straightforward linear blending [AAC∗17] to graph cuts with
Shepard interpolation of the gradient field [TGM12].

There are some significant advantages to an example-based strat-
egy. In a sense the entirety of its geological history is encoded in
an input DEM leading to highly realistic outcomes. Furthermore, it
is possible to leverage recent advances in texture synthesis and ma-
chine learning to provide interactive performance and effective user
control. While such approaches can be fast, realistic and control-
lable, there are some specific limitations. The problem with data-
driven approaches such as these is that they stand or fall on the
quality of the input data. Any artefacts or errors resulting from cap-
turing real-world elevations will likely appear (or possibly be mag-
nified) in the output. Sampling resolution is also limited to that
of the source scans. Publicly available sources are currently mostly
in the range of a few meters per pixel. The SRTM program cov-
ers nearly the whole earth at 30m resolution, while the National
Elevation Dataset of USGS covers almost all the United States of
America at 10m. In rare cases, data can be found as fine as 0.5−1m
per pixel, especially in easily floodable or densely urbanised area
(e.g., AHN program in the Netherlands), but is, unfortunately, not
available for steeper regions. However, this situation is likely to
improve over time.

TerrainDrainageElevation

Figure 26: A failure case for example-based synthesis. While lo-
cally plausible, the global drainage pattern of a real canyon are not
respected as shown by the numerous disconnected white branching
structures.

Furthermore, features that do not exist in the source data cannot
be reliably reproduced in the outputs. There are certain large-scale
properties, such as globally consistent drainage patterns, that are
often not respected in the output, even if it is locally plausible (Fig-
ure 26). Finally, these techniques are invariably limited to height-
fields because of the structure of the input data.

5.1. Texture Synthesis

Texture synthesis takes a set of input images and derives an out-
put with similar characteristics, usually by reassembling contigu-
ous regions from the input in some fashion (Figure 27 for a terrain-
specific example). This problem has been studied extensively in the
context of colour images at both pixel and patch level [WLKT09].
If a heightfield terrain is treated as a grid of height values it shares
some of the same characteristics as a greyscale image and thus tex-
ture synthesis can be applied with suitable modifications. The key
differences to consider include: transferring absolute (rather than
relative) height values from source to destination can restrict the
variety of outputs, the nature of user control is fundamentally dif-
ferent since terrains are more geometric in structure, and maintain-
ing the coherence of ridge, valley and erosion lines is crucial.

Figure 27: Texture-based terrain synthesis can be viewed
metaphorically as cutting and restitching contiguous regions from
an input exemplar (left) into an output (right), even if the technique
is pixel-based, as in this case (from [GMM15]).

In general, developments in texture-based terrain synthesis build
on and extend earlier work in image-based synthesis. For instance,
Dachsbacher et al. [DMS05] provide an early proof-of-concept ap-
plication of texture synthesis to the task of filling holes in DEM
models and joining disparate terrains together by synthesizing pix-
els in empty regions. An early pixel-based non-parametric sam-
pling technique [EL99] is employed. This attempts to match neigh-
bourhoods around a single pixel in the destination to similar neigh-
bourhoods in the source. The matching algorithm is modified from
the usual colour-space metric to instead take terrain characteristics
into account, in this case the absolute elevation h(p) and the slope
s(p) = ‖∇h‖. The synthesized terrain is then blurred to remove
high-frequency artefacts – an approach that is not advisable in gen-
eral because it also removes salient detail. This technique is rather
slow and does not produce particularly convincing results, but it
represented a promising foray into the area.

Zhou et al. [ZSTR07] addressed user-control, by incorporating
a 2D sketch map as an additional constraint to guide placement
of ridges and valleys. They use a patch-based approach, in which
exemplar DEMs are split into patches and reassembled in the out-
put by overlapping patches and cutting them along seams. Stan-
dard patch-based texture synthesis is modified in several ways: a
feature map of the curvilinear elements of the terrain is extracted
(mountain ridges and valley lines) and this allows a user to guide
the synthesis process using their top-down sketch (Figure 28); also,
patch placement is reordered to follow and grow outwards from fea-
tures. Patches are selected for placement based on how well they fit
the user’s sketch map and the already placed patches. The patches
themselves can be warped horizontally for a better fit. Overlapping

c© 2019 The Author(s)



Eric Galin et al. / A Review of Digital Terrain Modeling

Figure 28: Texture-based terrain synthesis [ZSTR07] allows the creation of different terrains using the same input sketch map (a lambda
letter) and different exemplar terrains (insets).

patches are then cut along a seam using a graph cut algorithm and
the areas on either side are adjusted using a Poisson equation to
hide the seam. Some tuning is needed in selection of patch sizes
since only a limited range of sizes work well in practice and this
depends on the sampling resolution of the terrain. Although the re-
sults are convincing, the approach is not interactive (it takes several
minutes to generate a terrain) and the sketched features are planar,
with users unable to control the elevation along sketched curves.

Some of these issues are addressed by Tasse et al. [TGM12].
First, while patch placement and merging are order dependent in
the work of Zhou et al., it is possible to process patch selection in
parallel using graphics hardware. This leads to a sixfold speedup in
patch matching, although the overall algorithm still remains non-
interactive. Second, seam merging by Poisson smoothing can be
replaced by a Shepard gradient interpolation process. This consid-
ers both position and gradients along seams and hence produces
less noticeable artefacts, as confirmed by a user experiment. Fi-
nally, better control is offered by constraining elevation to match
sketched curves using post-synthesis deformation. However, if the
deformations are significant this can impact realism because the
geomorphology is not respected.

Figure 29: Texture-based terrain synthesis: user controls employed
in the creation of a canyon terrain include point constraints, curve
constraints and painted terrain types (from [GMM15]).

Gain et al. [GMM15] further address issues of efficiency and
control by switching from patch-based to parallel pixel-based ter-
rain synthesis. They adapt the stacked multiresolution pixel syn-
thesis scheme of Lefebvre and Hoppe [LH05], which is well suited
to implementation on graphics hardware. This enables a real-time
synthesis process, with 5− 30 syntheses per second depending
on terrain size. This technique is likely the fastest example-based
method, which is important because it allows rapid cycles of fine-
tuning in the design process. Indeed, a major focus of this work
is on incorporating various user controls (some of which appear in
Figure 29), including: localised point and curve constraints, with
additional controls over slope and area of influence; paintbrush

tools for specifying terrain character, and region-based cut and
paste operations.

Analysis It is possible to achieve a trifecta of realism, control and
real-time performance with these methods. However, as with all
example-based methods, the output quality is heavily reliant on the
input data. In particular, if a specific terrain feature, such as a Mesa,
is desired and it is not found anywhere in the input data it cannot be
reliably reproduced. It is possible to reposition, reorient and alter a
landform in various ways but only if it appears as a source some-
where in the input data. The other issue is that large-scale geomor-
phological constraints are not always respected. Drainage basins
are a case in point: it is quite possible to have several local minima
appear on the terrain without outflows. Fixing such flaws is left in
the hands of the user, whereas it would be better to have such geo-
morphological issues corrected automatically. Fortunately, there is
nothing inherent to these techniques that prevents such additional
constraints from being incorporated in future.

5.2. Altering Existing Terrains

Sometimes a particular source terrain is a reasonable match to the
users desired end goal, barring some particular adjustments. There
is thus a place for techniques that deform or otherwise alter a terrain
provided as input by the user.

Dos Passos and Igarashi [dPI13] restructure a terrain based on a
first-person silhouette sketching interface, where mountain ridges
are sketched from the perspective of a person standing at a partic-
ular location, much as an artist would sketch the outlines of a real
scene. Given a source heightfield and user sketch, their system pro-
ceeds as follows: sample viewpoints are placed radially around the
source and strong silhouettes are extracted automatically. Recur-
sively, ever shorter segments of this collection of silhouette con-
tours are matched against the user sketch until a matching quality
threshold is met. Once a match is obtained a wedge shaped section
is cut from the source terrain and placed into the destination. These
wedges are then blended using a simple sum, weighted according
to distance from the center line of each wedge. When there is some
choice among possible matching contours, the user is allowed to
select among them using a suggestive interface. There are some
definite weaknesses to this approach: it only considers strong sil-
houettes, which limits the types of landforms that can be sketched;
artifacts appear due to the blending process, which means that it is
only visually plausible near the sketched viewpoint; and the choice
of source terrain is quite constrained.

Tasse et al. [TEC∗14] start from a similar initial premise in that
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Figure 30: Altering existing terrains: a terrain edited from a first
person viewpoint using silhouette sketching (from [TEC∗14]).

they match first-person silhouettes using existing sample data (Fig-
ure 30), but in their system silhouettes can be in a much more
complex arrangement, with internal silhouettes and t-junctions rep-
resenting occlusions. The method is fully automated and deforms
the source terrain rather than applying cuts and joins, which leads
to more plausible results. First, crest lines in the source are au-
tomatically extracted as possible candidates for matching. Then a
branch-and-bound algorithm pairs silhouette fragments with crest
lines based on deformation cost while respecting relative depth.
Crest lines are then deformed vertically to match the silhouettes us-
ing iterative diffusion. The original terrain may have features that
block a user’s silhouette and these are lowered by deformation. Al-
though more natural than Dos Passos and Igarashi’s method, the
geomorphological characteristics of the terrain can still be broken,
particularly if the required deformation of crest line onto silhouette
is significant. In short, this works best for smaller modifications of
the existing terrain silhouette.

Ketabchi et al. [KRS15] and later Samavati et al. [SR16] sup-
port sketch-based modification of a low-resolution DEM and co-
located orthophoto to adjust terrain elevation, locate bodies of wa-
ter, and demarcate regions for placing 3D vegetation models. This
compensates for artefacts in the source DEM, such as uneven lake
shores and road surfaces. The interface uses cross-sectioned curves:
a base curve sketched onto the surface, followed by elevation off-
sets to this curve, and finally orthogonal curves placed at intervals
to define the slope. The initial DEM is then deformed to fit the po-
sitional constraint of the curve, with an energy optimization term
that minimizes the curvature of the surrounding deformation. The
cross-section curves also provide constraints but are accorded less
weight. Finally, since the DEM may have insufficient resolution,
it is locally subdivided as required. This technique considers not
only bare-earth terrain, but landscapes more generally, by allow-
ing users to sketch closed loops to identify water and plant regions.
The orthophoto is used as a final texture for the terrain but also acts
as a guide during the sketching process. The primary focus here is
on correcting errors in DEMs and it should not be considered as a
general terrain modeling technique.

Emilien et al. [EPCV15] provide an interactive editor focused
on laying out rivers and waterfalls with attendant sculpting of the
underlying base terrain (Figure 31). The user employs a set of vec-
tor sketching tools to specify segments of a river network graph,
both those in contact with the terrain and falling free. Given this
network, consistent water flow information is computed, and the
terrain is automatically deformed to adjust slope and create river
beds, banks and basins that are consistent with a user’s intent. Ad-
ditional mechanisms are provided to enhance the realism of results,

such as optionally improving river trajectories with more meanders
in flat regions, or modeling overhangs under waterfalls.

Figure 31: Altering an existing terrain to carve out rivers and wa-
terfalls (from [EPCV15]).

Analysis The need to alter an existing terrain to remove arte-
facts or better fit an envisaged layout is not uncommon, but care
must be taken. Unlike the texture synthesis, machine learning or
sparse modeling approaches of other example-based techniques,
large scale deformations do not respect underlying geomorphology
and can break terrain realism. This is why attempts to minimize
distortion, such as used in Tasse et al. [TEC∗14], are so necessary.

5.3. Machine Learning

One promising and under-explored avenue is the application of ma-
chine learning to terrain synthesis. Guérin et al. [GDG∗17] take
this tack by training a conditional generative adversarial network
(CGAN) on a set of annotated DEM exemplars. In this context, a
CGAN trains two competing neural networks: a generator, which
creates new example terrains, and a discriminator, which differ-
entiates between real and synthetic terrains. Through competition
both the generator and discriminator improve simultaneously. DEM
samples are marked up in a variety of ways: for instance, by detect-
ing crest and valley lines and points of interest such as mountain
peaks. A CGAN then learns the relationship between the annota-
tions and the source DEMs, so that later a user can provide the
annotations as sketches and have a corresponding terrain gener-
ated. The method does rely on the users providing a detailed sketch
(sparse regions can sometimes lead to repetition artefacts) but it is
realistic and interactive. Figure 32 shows an example of the gener-
ated terrain from a sketch consisting of a few crest strokes.

Analysis The true virtue of a machine learning approach lies in its
versatility. It can be used to fill in gaps from missing data, or to in-
crease resolution using a kind of erosion filter (learnt from erosion
simulations applied to DEM samples). Furthermore, it is possible to
quickly and easily create different control mechanisms by supply-
ing different forms of annotation during training. This is in contrast
to texture synthesis methods, where new interaction mechanisms
require a deep understanding of the underlying method. Given such
versatility, this area is ripe for further research.

5.4. Sparse Modeling

Sparse modeling borrows from compressed sensing theory to en-
code signals compactly in a lower dimensional space. This has a
variety of implications for terrain synthesis as explored by Guérin
et al. [GDGP16], who represent terrains using a sparse construction
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Figure 32: Machine learning: An island generated from a simple
sketch and the application of a CGAN network (from [GDG∗17]).

tree. The leaves of such a tree consist of atoms, which are circular
terrain patches extracted from real-world source exemplars, and the
internal nodes are combiners that fuse overlapping atoms. Atoms
are arranged on a regular grid so that their domains overlap without
leaving any of the terrain uncovered and they are combined using
a weighted sum that depends on the distance from an atom center.
The sparsity aspect is expressed by building a dictionary of atoms
from a set of source exemplars in such a way that the reconstruction
error is bounded while using the least number of atoms.

Compression is one possible application. The sparse construc-
tion tree is relatively compact when compared to a heightfield
terrain, since it consists of a collection of atoms encoded as in-
dexes into the atom dictionary with implicit locations on a grid and
a few additional parameters. Of course, reconstruction cannot be
achieved without storing the dictionary of atoms, but this too can
be kept compact by replacing real-world patches with procedural
equivalents, although quality tends to suffer. The most important
application, however, is terrain amplification. This involves beau-
tifying a previously defined coarse terrain by augmenting its res-
olution and adding consistent details. This is achieved by pairing
low-resolution atoms with higher-resolution versions that replace
them, increasing resolution by a factor of 4 to 8 with each replace-
ment step (Figure 33).

This augmentation of database atoms is extended by Argudo et
al. [AAC∗17] to fuse multiple layers, such as base terrain, mois-
ture, soil type and vegetation density. Not only does this allow en-
riched landscapes, featuring ecosystems and bodies of water, but it
also improves the matching to preserve global coherence, such as
drainage patterns.

Analysis While the focus of sparse modeling is on compression
and various forms of amplification, it also supports the design of
novel terrains. However, this has been somewhat de-emphasized
in the literature and the interaction mechanisms lag behind other
example-based methods.

6. Discussion

There are several criteria on which the effectiveness of a given ter-
rain synthesis method can be judged. We base our in-depth dis-
cussion around the following: variety (how wide is the range of
achievable landforms?), scale (what is the size of the area that can
be modeled and in what detail?), realism (how plausible is a syn-
thetic terrain when compared against the real world?), authoring
(what mechanisms are provided for user control of terrain shape?),

and efficiency (what are the computation and memory costs?). Ta-
bles 2 and 3 provide a comparison of terrain methods according to
these different criteria.

6.1. Variety of landforms

There exists a wide range of different landforms on Earth, includ-
ing hills, mountains, plateaus, canyons, and valleys. They may ei-
ther be created by a dominant natural event or phenomenon, or re-
sult from the intricate interaction of many different factors over
large periods of time. Landforms can be categorized according to
their characteristics such as elevation, slope, orientation, stratifica-
tion, bedrock exposure, and soil type. A complete description of
the geomorphological landforms and the underlying physical pro-
cesses can be found in specialized books [AA10, Har12]. In this
section, we present a list of landforms that are predominant in nat-
ural landscapes and need to be addressed by Computer Graphics
approaches.

• Fluvial and hydraulic erosion cause dendritic valleys, fractal dis-
tribution of rivers, footslope deposition and hydrological fea-
tures: such as waterfalls, meanders, and oxbows.

• Thermal erosion decreases the slope angles down to a critical
one. This terminology is not well admitted in geomorphology
where landslides and debris flow erosion are preferred.

• Hill slope erosion averages many erosional effects in a diffusion
equation which smooth mountain edges and round valley flanks.

• Glacial erosion gives rise to U-shaped valleys, hanging valleys,
arêtes, pyramidal peaks (or horns), corries (or cirques, armchair
shaped depression where glacier starts), lakes, moraines, drum-
lins (hills oriented in the direction of the glacier).

• Karsts result from underground erosion and form networks of
underground streams and caves, canyons and chasms. If the sedi-
mentary sedimentary strata is exhumed by erosion, they becomes
visible.

• Coastal erosion or shoreline retreat is (a sudden) displacement
of large blocks of soil caused by waves, tide, or ice. It may be
slower on rocky coasts.

• Wind erosion produces dunes and volumetric shapes such as
arches or Goblins.

Generating realistic landforms is a difficult task. The challenge is
twofold: first creating an algorithm that could reproduce the funda-
mental geomorphological characteristics and, at the same time, pro-
viding a set of parameters that would allow for (interactive) control
for authoring. Moreover, terrains features have different sizes and
may vary from very large extent (hundreds of kilometer for rivers
or mountain ranges) to small extent (tens of meters for some spe-
cific erosion features such as Goblins, or waterfalls). Maintaining
coherent detail over such a wide range of scales is difficult.

Physically-based erosion simulations are in general ill-suited for
simultaneously generating a variety of coherent landforms, mostly
because of the complexity and the intricate interactions of many
different natural processes. In contrast, procedural approaches or
exemplar-based methods can generate atlases of landforms defined
over a limited support, that can be combined together to synthesize
larger terrains as described in [GGP∗15]. Still, combining primi-
tives to produce large-scale terrains remains an open research area.
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Figure 33: A sparse construction tree model compactly represents large scale terrains at fine resolution. Sparse modeling is employed to
amplify a coarse terrain from a resolution of ε = 1km to ε = 4m per pixel, for a total amplification factor of 256. Note that procedural
texturing and vegetation are applied to outline ground details such as ridges and erosion patterns generated by the amplification process.

Several recent algorithms attempt to amplify large scale terrains
with fine-scale features [GDGP16, AAC∗17]. This is a promising
avenue, but it does rely on a reasonable intial coarse terrain to be
effective.

6.2. Realism

The question of whether a particular synthesized terrain is realis-
tic can be surprisingly hard to answer. One way to assess realism
is according to viewer perception, while another way is to use ge-
omorphological assessment. These perceptual and quantitative ap-
proaches do not always agree: certain real-world landforms, such as
Goblins, can appear unrealistic to a viewer who has never encoun-
tered their like. Moreover, it is also commonly agreed that if an al-
gorithm simulates correctly physics or geology, the results should
be in agreement with reality. This can, however, be problematic,
because only a certain class of phenomena is usually addressed.

Given these difficulties, authors have chosen to measure realism
in several ways, all of which are problematic to some extent.

• Static renderings: it is common to simply provide rendered im-
ages of terrains. In some cases, a photographic image of a phys-
ical scene may also be provided for side-by-side comparison.
However, such an approach is influenced by the choice of view-
point, rendering style, texturing, presence of landmark features (
e.g. trees, roads and buildings), and this makes a comparison of
realism across methods difficult.

• User studies: a less frequent form of evaluation is to conduct a
user study, where participants might typically select between real
and synthetics terrains that are rendered side-by-side. Given a
sufficient number of participants the favoured terrain method can
be determined statistically. There are two issues here: first, such
users are not necessarily used to assessing bare-earth landscapes
from a raised vantage point. Second, they may also have had
their expectations biased, for example to video games.

• Expert assessment: consulting experts in geomorphology has
distinct advantages. They are often able to go beyond identifying
a generalized lack of realism and diagnose specific flaws relating
to subsurface geology and erosive phenomena.

• Validation of physical consistency: finally, it is also possible, al-
beit challenging, to build automated tests of specific geomorpho-
logical attributes. In practice, this is usually limited to a test for
consistent drainage by simulating water flow and examining the
resulting river network.

For the purposes of our evaluation we show, in Figure 34, im-
ages of terrains produced by a wide variety of synthesis methods
and rendered from a consistent viewpoint and in a consistent style
that highlights detail. From this it can be seen that erosion- and
example-based methods appear significantly more realistic than
procedural approaches.

Thermal erosionSubdivision

Sparse

Example-based

Deep Learning

Controlled example

Ridged noise

Hydraulic erosionTectonic

Multi fractal

Figure 34: An outlook of the state-of-the-art methods for generat-
ing digital terrains.

In general, there are two major realism weaknesses in current
methods: a poor depiction of landscapes with a combination of dis-
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tinctive large scale and fine scale features (such as large riverbeds
with surrounding fine-scale erosion), and difficulties in combin-
ing a variety of landscape features influenced by different forma-
tion processes within the same terrain ( e.g. rolling hills, plains,
canyons, eroded mountains). This is because procedural and ero-
sion techniques tend to be specialized to a particular effect. A
canyon landscape with surrounding plains serves as a kind of stress
test in this regard, which is why it often does not appear in papers.

6.3. Range of Scales

When it comes to evaluating terrain generation, the issue of scale
is frequently glossed over. Nevertheless, questions of extent and
precision – how large a terrain to generate and in what detail – are
critical, because different applications have different requirements.
A first-person computer game will require a much smaller land area
but with greater detail than a flight simulator.

As a precursor to discussion, it is helpful to re-introduce some
terminology, first defined in Section 2.1. While this is mostly pre-
sented in terms of discrete heightfields it can be generalized to other
representations and dimensions. We define extent a as the length of
one side of the terrain in m or km, resolution n as the number of
grid samples in that dimension, and precision a/n as the distance
between samples.

There are two major factors that affect the interplay of extent and
precision. First, given that computation cost grows as O(n2), effi-
ciency concerns often places a limit on resolution. All other things
being equal, it is possible to trade off precision for extent, but a
slow method is unlikely to be able to support both large extent and
fine precision. Second, certain terrain synthesis techniques are scale
bound. In theory, procedural methods, such as noise, subdivision,
and faulting, can support infinite precision, but, in practice, they are
only realistic across a specific range of medium scales. Likewise,
simulation usually requires a precision that properly matches the
frequency of the erosive features being captured.

Example-based methods, on the other hand, can accommodate
a range of extents with a fixed resolution, simply by adapting the
sampling precision of the exemplars. This does mean, of course,
that exemplars of such precision must be available. In practice, lim-
its on current scanning technology mean that accessible datasets
offer a best precision of 1− 2m. However, this does differentiate
these methods from procedural and erosion methods, which often
work best at specific scales.

The simultaneous need for large extent and high precision has
yet to be adequately addressed. Many mountainous features, such
as those caused by glacial erosion, are 50− 100 km in extent. At
the same time localized hydraulic erosion can require a precision in
the range of 1−2m. Very few current techniques can accommodate
this range of high and low frequencies and the required resolution
(50,000−100,000 samples per dimension).

6.4. Authoring

Another axis along which terrains generation methods should be
analyzed is the degree and nature of control they afford the user.
While the first procedural and simulation methods only offered

indirect control through parameter tuning – requiring much trial
and error before achieving the desired result, a lot of effort has
recently been dedicated to user control, leading to a new gener-
ation of authoring tools for terrains. The key overarching prob-
lem, and an open research question in terrain modeling is: how
can the user’s intent be achieved quickly, intuitively, and without
an overwhelming emphasis on domain-specific parameters? While
geologically- or physically-inspired methods allow for simulation
of existing phenomena, they fall short in terms of usability and of-
ten require domain-specific knowledge. In contrast, example-based
techniques allow for rapid and intuitive transfer of terrain features,
but may not always produce results that are geologically correct
and can be limited by the source examplars.

To summarize these advances, we classify terrain authoring
methods according to their underlying editing metaphor, namely:
painting with brushes, sketching vector features, or real-time
sculpting through local or global deformations. A few methods con-
sider terrains as time-evolving phenomena, and these enable tem-
poral control through a scenario expressed on a time-line. These in-
teraction modes and their sub-categories are described in Table 1,
enabling us to summarize the tools associated with each paper in
the authoring column of Tables 2, 3, and 4. This enables us to cite
only the most relevant papers below.

Painting with brushes Most authoring techniques aim at provid-
ing the designer with high level tools for modeling terrains, and
removing the time consuming processes of editing every single
detail by hand. Using a painting metaphor (eg., using brushes to
highlight a region on a map, or painting simulation parameters di-
rectly onto the terrain) is a natural way to provide such coarse-scale
interaction. Then the detailed terrain is generated either by pro-
cedural [dCB09], simulation [CGG∗17] or example-based meth-
ods [ZSTR07, GDGP16].

Sketching vector features Providing a vector sketching interface
is a second way to enable large-scale control followed by automatic
synthesis of details. This differs from painting in that sketching al-
lows for precise specification of vector features, from ridges to river
beds. A detailed terrain matching these features can then be gener-
ated. Sketching vector features can be done either on a topdown
2D map or over a 3D terrain.

A first group of methods used feature curves for terrain ridges
and valleys, sometimes resulting into overly smooth terrains were
the surface was derived from these curves alone [HGA∗10b]. Sub-
sequent extensions allowed the specification of terrain silhouettes
from a first person viewpoint, which is often more familiar and nat-
ural for a user with an artistic background. Surrounding details are
then derived either through example-based methods [RME09] or
deformation of an existing terrain model [dPI13,TEC∗14]. The last
category of methods based on sketching vector features are those
that enable users to sketch detailed riverbeds, lakebeds or networks
of rivers [GGG∗13] and waterfalls [EPCV15], and generate con-
sistent terrains matching these features. Using deep learning, both
rivers and ridges can be encompassed [GDG∗17].

Interactive sculpting Clay sculpting can also serve as inspiration
for interactive terrain editing. These enable users to apply local
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Type Description

Parameter tuning Indirect control through parameter specification, usually in numeric form.
Painting Use of brushes to outline regions and/or edit local parameters on maps or 3D terrains.

Vector sketching: Vector drawing to specify feature points or curves on maps or 3D terrains:
Landforms Vector landforms ( e.g. ridges, rivers, summits) on a 2D map.
Elevation Sketching features with height values and additional controls ( e.g. influence region, bi-lateral gradients).
Silhouette Feature curves drawn from a specific viewpoint to represent the outline of mountains.

Sculpting Interactive, local or global deformation tools, enabling editing of the terrain as if it was clay.

Time-line control Space-time control thanks to a scenario of events expressed on a user-controlled time-line.

Table 1: Different types of user control: a given authoring technique may support one or several of these controls.

Paper
Landforms

Method
Model

Control Extent Precision Performance
MRA G F V

[DMS05] • ◦ ◦
Texture

• ◦ ◦ Parameters

4−4000km 1−1000m

Minutes
[ZSTR07] • • ◦ • ◦ ◦ Landforms Minutes
[TGM12] • • ◦ • ◦ ◦ Elevation Minutes
[GMM15] • • ◦ • ◦ ◦ Painting, Elevation Real-time

[dPI13] • ◦ ◦
Altering

• ◦ ◦ Silhouette

1−100km 1−100m

Minutes
[TEC∗14] • ◦ ◦ • ◦ ◦ Silhouette Interactive
[EPCV15] ◦ • ◦ • ◦ ◦ Elevation Interactive
[KRS15] • • ◦ • ◦ ◦ Silhouette Interactive

[GDG∗17] • • ◦ Learning • ◦ ◦ Painting, Elevation 1−1000km 1−1000m interactive

[GDGP16] • • ◦ Sparse ◦ • ◦ Landforms
4−4000km 1−1000m Seconds

[AAC∗17] • • ◦ ◦ • ◦ Landforms

Table 2: Overview of example-based terrain synthesis methods. Under landforms:M = mountains, R = river networks, A = volumetric.
Under model: G = grid , F = functions, V = Mesh. Control corresponds to the classification in Table 1.

or global deformations to the terrain. For instance, sculpting can
be done locally by interactively applying erosion tools [MDH07,
ŠBBK08] or example-based manipulators [GMM15]. It also en-
ables editing at the scale of entire mountain ranges, by pushing tec-
tonic plates against each other [CCB∗18] the earth crust is sculpted
as if it was clay, with the guarantee that consistent mountain ranges
(based on uplift and erosion) will be created. In both cases, this
requires an underlying real-time simulation.

Space-time editing along a time-line Unlike most modeled
shapes, terrains are not static but instead correspond to time-
evolving phenomena. Therefore, in addition to standard shape-
modeling metaphors, terrain can also be edited using space-time
interaction tools, such as by specifying a particular event on a sce-
nario time-line. This can be done for combining terrains with spe-
cific medium scale erosion events ( e.g. interaction with temper-
ature, storms or vegetation) [CGG∗17], and would be mandatory
to capture phenomena such as glacial erosion, where terrains are
shaped by the succession of glaciation and inter-glaciation periods.

In conclusion, interactive authoring techniques aim at providing
the designer with high-level control of a modeled terrain, while al-
lowing the system to add detail and, whenever possible, enforce

consistency of the results. Most authoring techniques are inspired
by expressive modeling metaphors such as painting, sketching or
sculpting. Since a terrain is an evolving phenomena, a new trend
is to define scenarios along a time line, enabling not only a fi-
nal terrain but also its evolution over time. Whatever the author-
ing choices, providing the user with real time or interactive visual
feedback is a challenge. Most of the authoring techniques are lim-
ited in some way by the speed of the associated terrain generation
method. Some of them overcome this by providing a first quick
rough approximation while refinement occurs subsequently in a
separate thread. A few methods achieve real-time thanks to imple-
mentation on graphics hardware, or through machine learning (at
the cost of longer preprocessing times).

6.5. Efficiency

It is worthwhile examining performance in terms of time and space
efficiency, because they both impact the usefulness of terrain gen-
eration systems in practice.

Time efficiency: The computation cost of terrain synthesis di-
rectly effects how well a user designs terrains. Unfortunately, it is
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Paper Target Method Model Control Extent Precision Performance

MRA G F V

[MEC15] • • ◦
Eulerian

• ◦ ◦ Landforms
10−100km 10−100m

Minutes

[CBC∗16] • • ◦ • ◦ ◦ Painting Seconds

[CCB∗18] • • ◦ • ◦ ◦ Sculpting Interactive

[MKM89, RPP93, BF02, PM13] • • ◦

Eulerian

• ◦ ◦ Parameters

1−10km 1−10m

Seconds

[Nag98] • • ◦ • ◦ ◦ Parameters Seconds

[NWD05, MDH07] • • ◦ • ◦ ◦ Sculpting Interactive

[VBHŠ11] • • ◦ • ◦ ◦ Sculpting Interactive

[CGG∗17] • • ◦ • ◦ ◦ Painting, Time-line Minutes

[BTHB06] • • ◦ ◦ ◦ • Parameters Hours

[CMF98] • • ◦
Lagrangian

• ◦ ◦ None
1−10km 1−10m

Seconds

[ŠBBK08, KBKŠ09] • • ◦ • ◦ ◦ Parameters, Sculpting Interactive

[Kur12, Kur13] ◦ • ◦ • ◦ ◦ Parameters Seconds

[BFO∗07, JFBB10] ◦ ◦ • Eulerian ◦ ◦ • Sculpting
100m 1m

Minutes

[TJ10] ◦ • • • ◦ ◦ Silhouette Seconds

Table 3: Overview of terrain simulation methods. Under landforms:M = mountains,R = river networks, A = volumetric. Under model:
G = grid , F = functions, V = Mesh. Control corresponds to the classification in Table 1.

difficult to accurately compare run-time performance short of pro-
filing a fully-optimized implementation of every technique on the
same hardware platform. Complexity analysis is not particularly
helpful because most techniques are O(n), where n is the number of
heightfield grid elements or points pi j. Reported run-times are also
problematic, given changes in hardware performance over time and
different effort applied to optimization.

Many erosion simulation techniques do not scale well with in-
creased terrain precision, because they rely on successive itera-
tions of erosion (in general hundreds), whose complexity is, at best,
O(n), where n denotes the number of grid cells. A high resolution
terrain, such as 16×16km2 sampled at a 215×215 resolution (with
precision of≈ 50cm), has more than 1 billion grid cells. Combined
thermal and hydraulic erosion typically takes several hours to com-
plete on such large maps.

Fortunately, it is usually possible to place techniques into one
of four general performance classes (see Tables 2, 3, and 4): real
time (≤ 1/3s per update or 3Hz), interactive (≤ 3s per update),
seconds (> 3s but less than a minute per update) and minutes
(anything else). The distinction between real time and interactive
performance is important because it impacts the type of interface
that can be developed and the consequent user experience. For in-
stance, a sculpting metaphor relies more strongly on direct manipu-
lation and generally requires real-time response, whereas in vector
sketching changes can be submitted periodically and it can there-
fore accommodate interactive updates (or sometimes seconds).

In broad terms the method categories can be ranked from high-
est to lowest performance as: procedural, example-based, then sim-
ulation. There is, of course, substantial variation within each cat-
egory. The most efficient general technique in each category is as
follows: procedural noise (real-time at > 20Hz), Stava et al.’s hy-
draulic erosion simulation [ŠBBK08] (interactive at 1− 2Hz), and

Gain et al.’s texture synthesis [GMM15] (real-time at 5− 20 Hz).
Unsurprisingly, most of these are amenable to implementation on
graphics hardware.

It is evident from Tables 2 – 3 that there are not many tech-
niques, outside of procedural methods and some example-based ap-
proaches, that are real time and this is an area that deserves more
attention, since cycles of immediate feedback are very important
for rapid and effective design.

Space efficiency: It is worth examining memory efficiency at two
junctures: during the terrain generation process and in subsequent
use of pre-generated terrain. During generation, the additional
memory overheads incurred are generally low for procedural and
simulation methods since these are algorithm driven. However, this
is not the case for example-based methods, which are data driven
and usually rely on a database of terrain exemplars. This is some-
thing to be aware of in resource constrained circumstances, such as
with graphics hardware.

In subsequent use and at lower terrain resolutions (5122 −
10242), memory requirements are in the range of 1− 4Mb and
rarely a cause for concern. Furthermore, a regular heightfield grid
usually exhibits strong local coherence and is therefore amenable
to standard compression using schemes such as run-length encod-
ing. It is only at larger resolutions that memory demands become
an issue. In such cases, the concept of Kolmogorov compression
can be exploited, in which a generating algorithm with real-time
performance is paired with a set of input parameters to re-generate
a terrain on the fly. Indeed this is arguably the largest single benefit
of procedural methods, which exhibit a high degree of Kolmogorov
compression.
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Paper
Landforms

Method
Model

Control Extent Precision Performance
MRA G F V

[MKM89, EMP∗98] • ◦ ◦ Noise ◦ • ◦
Parameters ∞ ∞ Real-time[FFC82b, DKW94, vLJ95] • ◦ ◦ Subdivision • ◦ ◦

[Mil86, Lew87, Man88] • ◦ ◦ Subdivision • ◦ ◦
[Vos91, KSU07] • ◦ ◦ Faulting ◦ • ◦
[PH93] • • ◦

Subdivision

• ◦ ◦ Parameters
10−100km 10−100m

Seconds
[KMN88] • • ◦ • ◦ ◦ Parameters Minutes
[Bel07, BA05a, TB18] • • ◦ • ◦ ◦ Elevations Real-time
[DGGK11] ◦ • ◦ • ◦ ◦ Parameters > 10000km < 1m Real-time

[RME09] • ◦ ◦ Shortest-path • ◦ ◦ Elevations 10−100km 10−100m Seconds
[GMS09] • • ◦ Deformation • ◦ ◦ Silhouettes 1−10km 1−10m Interactive

[HGA∗10b] • • ◦ Diffusion • ◦ ◦ Elevations 1−10km 1−10m
Interactive

[BKRE17, BKRE18] ◦ ◦ • ◦ ◦ • Elevations 100m 1m

[BCA∗14, Par15] • ◦ ◦ Noise ◦ • ◦ Painting ∞ ∞ Real-time
[dCB09] • ◦ ◦ Noise ◦ • ◦ Painting 1−10km ∞ Seconds
[DCPSB14] ◦ • ◦ Noise • ◦ ◦ Painting 1−10km ∞ Minutes
[GGG∗13, GGP∗15] • • ◦ Functions ◦ • ◦ Primitives 100−1000km 1−10m Seconds

[GM01] • ◦ • Functions ◦ • ◦ Parameters ∞ ∞ Interactive
[IFMC03] • ◦ • Joints ◦ ◦ • Parameters 100−1000m 1−10m Minutes
[PGMG09a] ◦ ◦ • Functions ◦ • • Sculpting 100−1000m < 1m Interactive

Table 4: Overview of procedural terrain generation techniques. Under landforms:M = mountains, R = river networks, A = volumetric.
Under model: G = grid , F = functions, V = Mesh. Control corresponds to the classification in Table 1.

7. Conclusion

Terrain modeling has been an active field of research for more than
four decades, and dozens of procedural, simulation, and example-
based solutions have been proposed. Despite this, the sheer variety
of terrain types, complexity of landforms, and diversity of patterns
observed at different scales has inevitably left many unsolved chal-
lenges.

This forces designers to revert in part to manual terrain editing
in order to realize their intentions and also prevents the generation
of realistic terrain on a planetary scale.

Here, we briefly present the most important and difficult prob-
lems that remain.

Landforms: The variety of representable landforms remains lim-
ited. Existing systems simply do not provide artists with the level
of landscape realism and variety required by the entertainment
industry, which is why terrains are often still modeled by hand.
Many techniques focus on a specific terrain feature, such as rivers
[GGG∗13,GGP∗15] or canyons [DCPSB14], and this leads to rela-
tively homogenous landscapes. Example-based methods do exhibit
acceptable variety provided it is encapsulated in the source data,
but they can have issues with global consistency. Recent work on
the combined simulation of different forms of erosion [CGG∗17]
is a first step towards generating landscapes with more variety, but
further improvement is required. In particular, we believe that gen-
erating large-scale terrains with a variety of landforms and geomor-

phological patterns, while maintaining overall consistency, remains
an open challenge. Finally, some important processes are still miss-
ing, such as wind and glacial erosion. Specifically, geomorphology
shows that many terrains have been shaped by glacial erosion, and
exhibit characteristic features such as hanging valleys located at the
top of U-shaped valleys.

Volumetric models: Effectively modeling 3D landforms (such as
caves, arches, cliffs with overhangs, and Goblins) is another dif-
ficulty. A reliance on discrete data-structures, such as layer stacks
[PGMG09a] or voxels [BFO∗07,BKRE17,BKRE18] severely lim-
its the achievable extent, in general, to less than a few hundreds me-
ters due to the memory burden. To progress it will likely be neces-
sary to dispense with discrete grids altogether. Fortunately, implicit
surface representations offer promise because they exhibit a high
degree of Kolmogorov compression.

Large-scale terrains: Another challenge is to break the current
limits on terrain extent. Although some attempts have been made
to generate planets with infinite detail [Vos91,EMP∗98,DGGK11],
these are overly reliant on procedural noise, which, despite theoret-
ically infinite extent and precision, suffers from severe shortcom-
ings in user control and realism. Therefore, generating entire plan-
ets while providing control over the position, extent and shape of
landforms at different scales remains to be solved.

Multi-resolution methods operating at varying time and space
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scales, combined with a careful analysis of the cause-effect re-
lationships in geomorphology phenomena, including their mutual
inter-influence, and temporal and spatial relationships, offer a pos-
sible route to generating large-scale terrains.

Computational efficiency: Rapid terrain generation is crucial to
providing artists with the interactive or real-time feedback so nec-
essary for intuitive authoring. Relatively few non-procedural meth-
ods presently achieve such update rates. Moreover, simulation ap-
proaches specifically, including thermal and hydraulic erosion, sim-
ply do not scale well to larger terrains. Simulation methods that
require under a second on a standard 1km2 terrain sampled at
1m precision, typically take more than three hours to complete on
100×100km2 terrains at the same precision. Although implemen-
tations on graphics hardware do offer speedups, they do not change
the overall complexity of the problem, and are only a temporary fix.
One possibility is to begin by enhancing the realism of the more ef-
ficient methods, such as procedural generation. As an example, a
new class of basis-functions for noise could be designed that di-
rectly generate the dendritic patterns observed in real terrain, and
also approximate branching structures produced by erosion.
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