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A B S T R A C T

While materials design for many device applications usually relies on adding impurities, recent advances in
scaling-down heterostructures with improved interfacial properties offer a different way to transform a large
class of materials. A given material can be drastically changed by inheriting properties leaking from its neigh-
boring regions, such as magnetism, superconductivity, or spin-orbit coupling. While these proximity effects often
have a short range and are considered negligible, the situation is qualitatively different in atomically thin and
two-dimensional materials where the extent of proximity effects can exceed their thickness. Consequently,
proximitized materials have a potential to display novel properties and device opportunities, absent in any of the
constituent region of the considered heterostructures. Such proximitized materials could provide platforms for a
wide range of emerging applications: from seamless integration of memory and logic, to fault-tolerant topolo-
gically protected quantum computing.

1. Introduction

The appeal of common semiconductors, such as Si or GaAs, often
comes from the ability to strongly alter their properties through doping,
when impurities are intentionally introduced. Just like many other
materials, in their pristine form semiconductors are usually of a limited
use. Instead, their doping is critical for a large class of devices: solar
cells, light emitting diodes, transistors, and lasers [1,2]. More than just
in semiconductors, chemical doping is widely recognized as an effective
method to drastically change many other materials: from insulators and
metals, to topological insulators and high-temperature super-
conductors.

Continued scaling-down of nanoelectronics and recent advances in
fabricating high-quality epitaxial heterostructures offer a completely
different path to transform a large class of materials through proximity
effects. The concept of such “proximitized materials” [3], is realized by
recognizing that a given material can be transformed by inheriting
properties from its neighboring regions, as depicted in Fig. 1. For ex-
ample, layer B can acquire proximity-induced superconductivity and
magnetism, “leaking” from the neighboring regions. The outcome in
such proximitized materials can be unexpected as they can demonstrate
novel properties and device opportunities, absent in any of the

constituent region of the considered heterostructures.
Historically, the intuition about proximity effects comes from the

superconducting case already discovered by Holm and Meissner in
1932 [4]. While limited to low temperatures, in contrast to other
proximity effects that typically persist only within a nm scale, the su-
perconducting proximity effect can extend many μm in the interior of a
non-superconducting region. This “leaking” superconductivity, de-
picted in Fig. 2(a), resembles also a magnetic proximity effect where the
magnetism penetrates into an initially nonmagnetic region. High in-
terfacial quality and transparency are common prerequisites for various
proximity effects, a large barrier between the regions could diminish
such leaking. A microscopic picture of superconducting proximity ef-
fects comes from the peculiar process of Andreev reflection, inherent to
superconducting interfaces [5]. For a normal metal/superconductor (N/
S) junction, there is a specular (ordinary) reflection, similar to a ball
bouncing of a wall. In this case an electron approaching the N/S in-
terface is reflected with the same charge and the same spin. In contrast,
during Andreev reflection illustrated in Fig. 2(b), an electron ap-
proaching the interface is reflected backwards and converted into a
hole (the absence of an electron is depicted as an empty circle) with
opposite charge and spin. From the charge conservation we infer that
two electron charges are transferred across the interface into the S
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region. These two electrons with opposite spins form a Cooper pair.
Since the reflected particle carries the information about both the phase
of the incident particle and the macroscopic phase of the super-
conductor to which a Cooper pair is being transferred, Andreev re-
flection is thus responsible for the proximity effect in which the phase
correlations are introduced to a nonsuperconducting material [6].

An important manifestation of the superconducting proximity is the
Josephson effect [7]. It relies on proximity-induced superconductivity
across a normal region sandwiched between two superconductors. Once
the voltage is applied across this device, a dissipationless supercurrent
flows. Such a Josephson junction is the key element of a super-
conducting quantum interference device (SQUID) [8] that provides
extremely sensitive detection of magnetic fields (as small 10−17 T)
finding its use from the studies of biological systems and magnetic re-
sonance imaging, to the detection of gravitational waves [9].

2. Adding spin to electronics

While spin and its associated magnetic moment is an intrinsic
property of electrons, conventional electronics is oblivious to it.
Without an applied magnetic field or magnetic materials, there is a
balance of carriers with spin up and down directions, therefore their
spin can be ignored. On the other hand, in spin electronics or spin-
tronics [6,10–14], magnetic materials and spin-dependent properties
provide important device opportunities. Ferromagnetic metals such as
iron or cobalt have a finite magnetization, their electrons’ spins are
oriented either with or against the magnetization axis, depending on
the material. This magnetization direction persists without an outlet
power and is therefore nonvolatile. Commercial spintronic applications

are based on ferromagnetic metals which utilize magnetoresistive ef-
fects for magnetically storing and sensing information, such as com-
puter hard drives, magnetic sensors, and magnetic random access
memory (MRAM) [6,10,13,14]. However, this may only be the tip of
the iceberg. A versatile control of spin and magnetism in a wide class of
materials and their nanostructures could also have a much broader
impact leading to novel devices for communication or logic and even
fault-tolerant quantum computing [6,15–20].

Given the respective success of conventional semiconductors to
implement charge-based logic and ferromagnetic metals for spin-based
nonvolatile memory, there is hope that by combining the control of
charge and spin in a single material, as shown in Fig. 3, would provide
more than just the sum of its separate parts (charge and spin) and en-
able new or improved functionalities. This was the key motivation
behind several decades of research in dilute magnetic semiconductors
(DMS), where by magnetic doping, typically using Mn, of nonmagnetic
semiconductor host it is possible to realize carrier-mediated magnetism
[6,21,22]. DMS offer a control of the exchange interaction by tuning the
ferromagnetic Curie temperature, TC, through changes in the carrier
density, by an applied electric field and photoexcitation [6,22–26].

However, this effort to add spin into electronics comes with sig-
nificant obstacles. In (Ga,Mn)As, the most common III-V DMS, Mn2+

leads to both spin and carrier doping enabling a TC of up to ∼200 K
[27], but limited by a low Mn2+ solubility which complicates its
growth and can create nanoscale clustering of Mn ions. Instead of the
desired single phase (Ga,Mn)As, the outcome of the growth could yield
nonmagnetic semiconductor GaAs accompanied by nanonoclusters of
ferromagnetic metal MnAs having a magnetic signal mistaken with
(Ga,Mn)As [6]. This dual role of Mn as both spin and carrier doping
creates a strong perturbation and disorder in the nonmagnetic host,
reducing its mobility by 2–3 orders of magnitude [6] and significantly
degrading excellent optical properties of GaAs such that (Ga,Mn)As has
a negligible luminescence. While the efforts to improve DMS continue
by considering a novel II-II-V DMS class, such as (Ba,K)(Zn,Mn)2As2
[28–30], which provide an independent spin and charge doping, as well
as exploring (III,Fe)V systems which can push TC up to ∼330 K [31],
the challenges of reduced mobility and degraded optical properties
remain.

An alternative path to add spin and magnetism in nonmagnetic
materials is through magnetic proximity effects [3,32], they could
overcome degrading the properties of a nonmagnetic host (such as
strong disorder, low mobility, and weak luminescence) accompanied by
doping. Furthermore, magnetic proximity can also strongly increase TC

in DMS, shown to exceed 400 K when (Ga,Mn)As was placed next to
Co2FeAl [33]. To better understand challenges and opportunities for
using proximity effects, it is useful to note that while they usually imply
equilibrium properties (zero bias), they can also alter nonequilibrium
properties of materials. For magnetic proximity effects, magnetism will
already leak into a nonmagnetic material at zero bias, resulting in
different spin up and spin down properties (with respect to the direction
of a magnetization or an applied magnetic field), while at finite bias,

Fig. 1. Proximity modified layer B in the presence of layers A, C. The resulting
properties of the layer B can be very different from those in layers A and C.

Fig. 2. (a) Penetration of superconductivity across an interface into a normal
(nonsuperconducting) region. (b) Andreev reflection at the N/S interface. The
incident electron is reflected as a hole which retraces the initial trajectory and
the two electrons are transferred to the super-conducting region. From the
energy conservation, an incident electron, slightly above the Fermi level is
accompanied by another electron of opposite spin slightly below the Fermi
level. The transfer of the second electron below the Fermi level into a super-
conductor is equivalent to a reflected hole moving away from the N/S interface.

Fig. 3. A motivation for investigating magnetic semiconductors that could
potentially integrate, in a single materials system, memory and logic.
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even nonequilibrium properties will be proximity-modified, including
the charge current.

It is useful to contrast magnetic proximity effect from electrical spin
injection [6], a transport method for generating nonequilibrium spin,
shown in Fig. 4(a)–(c). A ferromagnet (F) has a net magnetization M
and differenet spin-up and spin-down density of states (DOS). When a
charge current flows across the F/nonmagnetic region (N) junction,
spin-polarized carriers in a ferromagnet contribute to the net current of
magnetization entering N, resulting in the nonequilibrium magnetiza-
tion δM, also known as the spin accumulation [6]. A characteristic
length scale for δM is the spin diffusion length, LS > 100 nm in many
materials, while in graphene it can even exceed 30 μm at 300 K [34].
Given that a typical lengthscale for magnetic proximity effects is ∼nm,
orders of magnitude shorter than LS, they seems completely negligible
in transport properties of F/N junctions.

However, the situation is qualitatively different for an atomically
thin N region, illustrated on the example of graphene in Fig. 4(d). The
thickness of graphene as well as other monolayer van der Waals ma-
terials is smaller than the characteristic magnetic proximity length and
thus in such a geometry interface and proximity effects become crucial
[3]. A part of the N region next to the F (metallic or insulating) is
transformed by the magnetic proximity effects acquiring across its
thickness equilibrium spin-dependent properties, which also directly
modify the nonequilibrium properties including the flow of current or
optical excitation in that region. The process of spin injection is no
longer from the F to N region, but from F to the proximity-modified
region F* [35]. For graphene, as shown in Fig. 4(d), such F* could lead
to the proximity-induced exchange splitting of a Dirac cone. The
nonequilibrium (transport) properties, including the flow of charge and
spin current, as well as spin accumulation, will depend on the proxi-
mity-induced exchange splitting in F* below F1. It is helpful to distin-
guish two mechanisms for magnetic proximity effects [36]: (i) The
wave functions from graphene penetrate into the insulating F as eva-
nescent states since there are no states there at the Fermi level, where
they acquire exchange splitting from its native ferromagnetism. (ii) The
wave functions from the metallic F penetrate into graphene, directly
polarizing its electronic structure at the Fermi level.

A spin accumulation and spin-polarized currents are readily de-
tected by placing another F, i.e. in the F1/N/F2 geometry, as shown in

Fig. 5. Using a nonlocal geometry pioneered by the work of Johnson
and Slisbee [37,38], spin injection is spatially separated from spin de-
tection to eliminate spurious effects attributed to spin transport
[39,40]. Subsequently, this approach has been extended to many dif-
ferent materials, including graphene [41,42]. Driven by the spin ac-
cumulation and thus δM, in the equipotential region x > 0, there is a
flow of pure spin current, j↑–j↓, with the spin-resolved current density,
j↑, j↓, proportional to the slope of µ↑,↓. Both the flow of spin and charge
current, as well as spin accumulation depend on the relative orientation
of M in F1 and F2.

In a lateral device similar to that from Fig. 5, with 3 F contacts were
made of Co, separated by a tunnel barrier MgO from graphene sheet as
the N region, spin logic was demonstrated at 300 K [43]. An important
potential of similar devices is to enable a paradigm change from the von
Neumann architecture to one in which memory and processing are
seamlessly integrated together. While in the current implementation
graphene-based spin logic relies on the applied magnetic field to change
the magnetic configuration in F electrodes, this is not a fundamental
constraint. It was predicted that with gate voltage DOS spin polariza-
tion induced in graphene through magnetic proximity effects can
change its magnitude as wells reverse its sign [36]. Therefore, rather
than reversing the magnetization configuration with applied magnetic
field, it may be possible to employ all-electrical control of magnetic
proximity effects. The feasibility of such approach has been supported
by the room temperature magnetic proximity effects in graphene, using
both ferromagnetic metals and insulators [44,45], as well in a geometry
of 1D edge Co contacts showing a reversal of proximity-induced spin
polarization [46].

3. Multiple proximity effects: Majorana bound states

Important implications for optoelectronic devices arise from the
well-known quantum mechanical properties of electrons and photons. A
different symmetry of the wavefunction under exchange of two iden-
tical particles leads to the simple phase change: π for electrons and zero
for photons, as expected for fermions and bosons, respectively. A qua-
litatively different situation is possible for Majorana zero modes, also
known as the Majorana bound states (MBS), exotic composite particles
(quasiparticles) which are neither fermions, nor bosons [20,47]. They
have been inspired by the prediction of Majorana fermions, γ, in high-
energy physics [48] that are their own antiparticles γ= γ+ (described
by real, rather than complex, wavefunction) and thus are zero energy,

Fig. 4. (a) Spin injection from a ferromagnet (F) into a nonmagnetic region (N).
Electrons flow from F to N (opposite to the current j). (b) Spatial dependence of
the magnetization M, nonequilibrium magnetization δM (spin accumulation)
decays in N over the spin diffusion length, LS. (c) Contribution of different spin-
resolved DOS to both charge and spin transport across the F/N interface leads to
δM. (d) Magnetic proximity effects in F1/graphene junction. The electronic
structure of proximity-modified graphene, F* becomes spin-dependent. A fer-
romagnet, F2, can be used for detecting magnetic proximity effects through
transport. Adapted from Ref. [3]. motivation for investigating magnetic semi-
conductors that could potentially integrate, in a single materials system,
memory and logic.

Fig. 5. Spin injection and nonlocal detection in a lateral spin-valve device. (a)
Top and (b) side view. The bias current, I, flows from F1 to the left end of N, the
spin signal is detected by measuring a nonlocal voltage, VNL between F2 and N.
VNL and the nonlocal resistance, RNL=VNL/I, depend on the relative orienta-
tion of M in F1 and F2. (c) A spatial dependence of electrochemical potential µ
(broken line) and its spin-resolved components in N. For x > 0, there is no net
charge current density, j↑+j↓, but as a result of spin diffusion and δM, only
pure spin current, j↑− j↓, flows. Adapted from Ref. [3].
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chargeless, and spinless [49].
MBS properties in solid-state systems are even more exotic. One

MBS can be viewed as a half of an electron, but such a fermion is made
two spatially separated and localized MBS (f= γ1+ i γ2) and thus
protected from local perturbations, typical for the operation of elec-
tronic devices, that would affect only one of its MBS constituents. This
situation is depicted in Fig. 6. A pair of MBS constitutes a two-state
system, just like a spin ½ electron. Remarkably, MBS are characterized
by a non-Abelian (non-commutative) statistics: under MBS exchange
the resulting wavefunction does not simply acquire a phase change as
for fermions or bosons, instead it is transformed into another wave-
function similar to a matrix multiplication. This points to an intriguing
possibility to use the exchange (braiding) of MBS as an implementation
of a topologically-protected quantum gate [50,51], resulting in efforts
in topological quantum computing actively pursed by some major in-
formation technology companies. In this context the term “topological
protection,” similar to a knot which is preserved under small con-
tinuous movements of the rope, brings about global properties and
physical behavior that is robust under external perturbations and dis-
order.

While it is recognized that superconductors are a natural platform to
realize chargeless states, similar to the mixing of electrons and holes
through Andreev reflection [recall Fig. 2(b)], a further requirement for
a spinless character of MBS is elusive in nature. Unlike typical spin-
singlet Cooper pairs, spin-triplet pairing superconductivity would be
needed. Instead, the desired spin structure of MBS can be implemented
in proximity-induced superconductivity in semiconductors with strong
spin-orbit coupling (SOC) and applied magnetic field, which can create
an effective spin-orbit coupling (SOC) and applied magnetic field,
which can create an effective spin-triplet [52–54]. The most developed
MBS platforms rely on common superconductors that induce super-
conductivity in narrow bandgap semiconductor nanowires [55–57].
However, such detection is indirect, typically relying on a zero-bias
conductance peak [55–60], predicted to be quantized [61], rather than
probing directly their non-Abelian statistics. The existing 1D geometries
also pose additional obstacles to realize braiding and fusing of MBS, the
key elements for topological quantum computing.

To address these challenges, we propose that a versatile control of
magnetic systems, widely used to store information, for example, in
MRAM, can also enable manipulating MBS [62,63]. Our platform, de-
picted in Fig. 7, relies on the proximity-induced superconductivity in a
2D electron gas (2DEG) that is further modified by the magnetic
proximity effects from an array of magnetic tunnel junctions (MTJs)
[62]. A change in the magnetization configuration in the MTJ array
creates tunable magnetic textures and the resulting fringing fields,
thereby removing several typical requirements for MBS: applied mag-
netic field, strong SOC, and confinement by 1D structures which com-
plicates demonstrating non-Abelian statistics. To see that we consider
changes in the 2DEG due to the nearby magnetic array. The corre-
sponding Zeeman term in the Hamiltonian, ∼B(r)•σ, where a magnetic
textures is represented by a spatially inhomogeneous effective magnetic
field, B(r), and σ is the vector of Pauli matrices, can be diagonalized by
performing local spin rotations aligning the spin quantization axis to
the local magnetic field direction. In the rotated frame, a simple

diagonal term |B(r)|σz of a collinear Zeeman interaction acts similar to
an externally applied magnetic field. This simplification is also ac-
companied by additional terms in the transformed Hamiltonian invol-
ving a non-Abelian vector potential which can be interpreted as the
synthetic SOC [62–65]. Furthermore, as can also be inferred from a
piecewise constant B(r), magnetic textures can provide a confinement
without the need for physical wires. With tunable magnetic textures it
may then be possible to confine and reposition MBS [62].

In a 1D semiconductor nanowire geometry, a well-known topolo-
gical condition required for MBS formation is
B∼ EZeeman≥ (µ2+ Δ2)1/2 [53,54], where Δ is the proximity-induced
superconducting gap, typically a fraction of meV. While large B and
thus Zeeman energy, EZeeman, would then appear desirable, B should
also be chosen carefully such that it is not too large to destroy super-
conductivity. In our case this topological condition should be also
generalized [62,63]: µ2→ [µ− η(r)]2, where η(r) represents an effec-
tive shift in chemical potential due to local changes of the magnetic
texture. In the limit of a homogeneous magnetic field, η→ 0 [62].
Consequently, changing the magnetic configuration of an MTJ array (as
in Fig. 7) will modify the generalized topological condition. When such
a condition attains equality, it can define a reconfigurable effective
topological wire which hosts MBS localized at its ends.

Fig. 8 illustrates the formation of such topological wires (white
contours) in a 2DEG transformed by superconducting (from a conven-
tional superconductor) and magnetic proximity effects (from 3×3 MTJ
array), as shown in Fig. 7. As the wires are reconfigured, MBS can be
repositioned and braided [62,63]. The potential advantages of the
proposed MTJ-based platform can be summarized as follows: (i) no
restrictive geometries such as physical wires (epitaxially defined) are
required, (ii) the magnetic textures can be locally controlled by elec-
trical switching of individual MTJs (i.e., no external magnetic fields are
needed) and (iii) no contacts are required for manipulating MBS,
minimizing the risk of quasiparticle poisoning [20], a source of MBS
decoherence. Recent advances in fabricating 2D epitaxial super-
conductor/semiconductor (Al/InAs) heterostructures and designing
tunable magnetic textures support the feasibility of this platform for
MBS [66,67]. Various other realizations of the interplay between
proximity-induced superconductivity and magnetism continue to be
pursued in the quest to realize and control MBS [68–73]. Efforts to
fabricate transparent superconducting junctions with topological in-
sulators [74] with large proximity-induced gaps as well as other im-
plementations of Josephson junctions [75–78] could provide additional
opportunities to use magnetic textures to realize non-Abelian MBS
properties and theoretically study how to optimize such systems using
the combination of intrinsic and synthetic SOC [79,80].

Fig. 6. (a) A spatially-separated pair of Majorana bound states (MBS) at the
ends of a wire represents a single electron, protected from local perturbations.
(b) MBS have zero energy and are protected by a superconducting gap from the
other states. (c) Under exchange the MBS wavefunction behaves entirely dif-
ferent from bosons or fermions and displays a non-Abelian statistics.

Fig. 7. Schematic of the setup. A two-dimensional electron gas (2DEG) is
formed in a semiconductor quantum well grown on the surface of an s-wave
superconductor (S). An array of magnetic tunnel junctions (MTJs) produces a
magnetic texture, tunable by switching individual MTJs to the parallel (ON) or
antiparallel (OFF) configuration. For the depicted array configuration, two MBS
form at the ends of the middle row (green curve). Adapted from Ref. [62].
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4. Conclusions

Using proximity effects to transform materials allows us to revisit
various paths to realize emerging nanoelectronic devices and even
implement elusive topologically-protected properties. This push is fur-
ther stimulated by a growing number of 2D van der Waals materials
with atomically sharp interfaces and gate-tunable properties which
form heterostructures that are not limited by the usual lattice matching
constraints expected for conventional semiconductors [81,82]. Many
opportunities are still largely unexplored as has been recently seen that
with a simple change in the relative stacking (a twist angle) a bilayer
graphene becomes superconducting or displays strong correlations
[83,84]. Beyond a widely-used graphene, insulator h-BN, and transition
metal dichalcogenides as direct bandgap semiconductors, a variety of
proximity effects is expanded by the monolayer superconductors and
ferromagnets [81,82,85–88]. Even short-range magnetic proximity ef-
fects are sufficient for atomically thin structures to undergo crucial
changes at room temperatures. Employing tunable magnetic proximity
effects, which strongly modify transport and optical properties in van
der Waals materials [89–91], one can envision high-performance spin
interconnects [3] and ultrafast spin lasers [92], important for addres-
sing power consumption in contemporary computers that is increas-
ingly dominated by information transfer, rather than logic [93].
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