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Wrinkling instabilities appear in soft materials when a flat elastic layer on an elastic substrate is
sufficiently stressed that it buckles with a wavy pattern to minimize the energy of the system. This
instability is known to play an important role in engineering, but it also appears in many biological systems.
In these systems, the stresses responsible for the wrinkling instability are often created through differential
growth of the two layers. Beyond the instability, the upper and lower sides of the elastic layer are subject to
different forces. This difference in forces leads to an interesting symmetry breaking whereby the thickness
becomes larger at ridges than at valleys. Here we carry out an extensive analysis of this phenomenon by
combining analytical, computational, and simple polymer experiments to show that symmetry breaking is a
generic property of such systems. We apply our idea to the cortical folding of the brain for which it has been
known for over a century that there is a thickness difference between gyri and sulci. An extensive analysis
of hundreds of human brains reveals a systematic region-dependent thickness variation. Our results suggest
that the evolving thickness patterns during brain development, similar to our polymer experiments, follow
simple physics-based laws: Gyri are universally thicker than sulci.
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Introduction.—The wrinkling of a stiff elastic layer on
an soft elastic substrate is a universal pattern-forming
instability that has been extensively studied in physical,
engineering, and biological systems [1–3]. Wrinkling is
particularly relevant in biology, where a central question is
to understand the interplay of genetic, biochemical, geo-
metric, and physical factors during morphogenesis. Bilayer
instabilities in these systems can be created by differential
growth between layers and, depending on material and
geometric parameters, display a wide variety of instabilities
[4,5] that have important applications in plants [6], sea-
shells [7], and embryogenesis [8], where small variations in
thickness can have large effects on the evolution of shape.
In the particular case of brain morphogenesis, it was

proposed by the Swiss anatomist Wilhelm His in his 1874
essay “Unsere Körperform” that Entwicklungsmechanik,
developmental mechanics, is the key driver for the char-
acteristic folding pattern of our brain [9]. Motivated by this
idea [10], there is now a common understanding [11–15]
that the folding pattern of our brain is the result of
differential growth and morphoelastic instabilities [16–18].

More recently, this notion has been supported by wrinkling
in brain organoids [19] and by a large-scale transcriptomic
analysis that found discrete domains of gene expression in
the developing gyrencephalic cortex of ferrets but not in the
lissencephalic cortex of mice [20].
The phenomenon of cortical folding is therefore an

excellent test bed to study the role of physics in morpho-
genesis. For instance, both geometry and mechanics are
important to explain that dolichocephalic elongated brains
tend to be more longitudinally folded than brachycephalic
round brains [21]. We also know that small perturbations
during cortical development can produce significant alter-
ations in cortical thickness, which are closely associated
with neurodevelopment disorders like lissencephaly and
polymicrogyria but also with autism spectrum disorders
[22] and schizophrenia [23].
In the living brain, the cortical thickness is the distance

between the white matter and pial interface [24]. It changes
only marginally with brain size and varies between 1.5 and
4.5 mm in the human brain [25]. An interesting observation
is that gyri, the elevated visible part of the wavy pattern,
are usually thicker than sulci, the lower hidden part of the
pattern. This difference was first noted more than a century
ago by Brodman [26] and confirmed more recently by
various authors [14,24,27].
Motivated by these observations, our first problem is to

explore whether a physical bilayer system also exhibits
the same symmetry-breaking mechanism: Do wrinkling
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patterns have a natural and generic asymmetry between
maxima and minima? A second problem is to determine
whether the difference in thickness reported a century
ago is indeed present in human brains and whether it
can be explained, at least in part, by physical arguments.
To answer these questions, we study the problem from four
different perspectives: First, we theoretically analyze the
bifurcation of a bilayer system with differential growth.
Second, we simulate a similar system and explore the same
solution in a computational setting. Third, we perform
polymer experiments that generate a similar wrinkling
instability. Fourth, we return to the cortex and perform a
systematic analysis of the gyri and sulci of human brains.
Theoretical model.—We consider an idealized but

generic analytical version of the problem. We model the
symmetry breaking during folding as a morphoelastic
instability caused by the homogeneous growth of an elastic
layer on an elastic substrate modeled as an elastic half space
in the plane. We use the theory of morphoelasticity [28–30]
and decompose the deformation gradient F ¼ GradðχÞ of
the deformation x ¼ χðXÞ into an elastic contribution A
and a growth contribution G so that F ¼ A ·G.
Constitutively, only the elastic contribution A generates
stresses. We assume a neo-Hookean incompressible
material behavior, T ¼ μAT ·A − pI, where μ is the shear
modulus, I is the second-order unit tensor, and p is the
Lagrange multiplier associated with the incompressibility
constraint. The stresses enter the mechanical equilibrium
equation as divT ¼ 0.
The key parameter of the model is the stiffness ratio

β ¼ μf=μs between the layer and substrate. We assume that
the layer grows isotropically and morphogenetically as
G ¼ ϑI, where ϑ is the growth multiplier. We postulate that
the layer grows at a constant rate _ϑ and that the substrate is
purely elastic and does not grow, ϑ ¼ 1. To compute the
critical growth value ϑc at which the wrinkling instability
sets in, we adopt a variational method that probes the
stability of the homogeneous solution by studying emerg-
ing folding modes with the lowest elastic energy [31].
This method given in Supplemental Material [32] also
provides a description of the shape of the folds and the
deformations of each layer for values of the growth factor ϑ
larger than, but close to, ϑc. The analytical solution
provides the thicknesses of the gyri and sulci as a function
of the amplitude up to quadratic order: Initially, before
growth, the layer is in the domain ðY; XÞ ∈ ½0; 1� ×R and
the substrate in the domain ðY; XÞ ∈ ð−∞; 0� ×R. To first
order, the shape of the wrinkling mode is written in mixed
coordinates ðx; YÞ as yðx; YÞ ¼ ϑ2Y þ AkF1ðYÞcosðkxÞ,
where A is the amplitude of the wrinkle, F1ðYÞ describes
variations in the vertical direction, Y is the height of a
material point in the initial configuration, and ϑ ¼ ϑc in the
layer and ϑ ¼ 1 in the substrate. The thicknesses of the gyri
and sulci, normalized by the thickness at the onset of
wrinkling, are defined, respectively, by

tg ¼
yðπ=kc; 1Þ − yðπ=kc; 0Þ

ϑ2c
; ts ¼

yð0; 1Þ − yð0; 0Þ
ϑ2c

:

ð1Þ
In the linear approximation, the thicknesses are given by

tg ¼ 1þ aA; ts ¼ 1 − aA: ð2Þ
The coefficient a > 0 depends on the stiffness ratio β and
is positive for all stiffness ratios for which a wrinkling
instability takes place, in this setting for β ≳ 0.544 (the Biot
limit [33] explained in Supplemental Material [32]).
Furthermore, for β ≳ 0.943, the wrinkling instability is a
supercritical pitchfork bifurcation [5,34], and the coeffi-
cient a decreases as β increases. Hence, we expect the
wrinkling pattern to be stable at onset, and we conclude
that, close to the bifurcation, gyri will increase in thickness
while sulci decrease. We introduce the relative thickness
difference

κ ¼ tg − ts
tg þ ts

¼ aA; ð3Þ

such that the gyral and sulcal thicknesses tg ¼ 1þ κ and
ts ¼ 1 − κ depend only on geometric quantities. Figure 1
illustrates our analytical thickness estimates as dashed
red and blue lines. We will now compare them against
our computational simulations, polymer experiments, and
human brain measurements.
Computational model.—To characterize gyral and sulcal

thicknesses beyond the bifurcation point, we simulate the
growth of a stiff thin layer on top of a soft thick substrate,
similar to the previous section, but now assuming slight
compressibility for computational stability. We assume

FIG. 1. Symmetry breaking in wrinkling patterns. Gyri are
thicker than sulci in our analytical solution, computational
simulation, polymer experiments, and human brain analysis.
All gyral and sulcal thicknesses are normalized by the thickness
at the onset of the instability and are shown as functions of the
relative thickness difference.
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a neo-Hookean compressible material behavior: T ¼
μAT ·Aþ ½Λ lnðJeÞ − μ�I, where Λ and μ are the elastic
Lamé constants and Je ¼ detðAÞ is the Jacobian of the
elastic tensor A. We create a finite element model of a
bilayer system with varying layer thicknesses of 1.25, 1.43,
1.67, 2.00, 2.50, and 3.33 mm, discretize it with 5760
elements and 12 050 degrees of freedom, and solve it using
a custom-designed nonlinear finite element program [35].
We assume a plane strain state and fix all boundary nodes
orthogonal to the boundary but allow them to slide freely
along the edge. Motivated by the stiffness ratios in human
brain tissue [36], we assume that the layer with μ ¼
0.30 kPa and Λ ¼ 2.79 kPa is 3 times stiffer than the
substrate with μ ¼ 0.10 kPa and Λ ¼ 0.93 kPa.
Figure 2 shows the results of our computational simu-

lations at the first point of self-contact. Our simulations
confirm the general notion that the wavelength scales
linearly with the layer thickness. For increasing initial
layer thicknesses [37], from 1.25, 1.43, 1.67, 2.00, and 2.50
to 3.33 mm, the wavelength increases from 12.0, 13.7,
16.0, 19.2, and 24.0 to 32.0 mm at a constant thickness-to-
wavelength ratio of 0.104. For all six simulations with
varying initial layer thicknesses, the gyral thickness tg was
always larger than the sulcal thickness ts. For the smallest
layer thickness of 1.25 mm, we record the gyral and sulcal
thicknesses tg and ts, normalize them by the layer thickness
at the onset of wrinkling, and plot them versus the relative
thickness difference κ as solid curves in Fig. 1. The solid
curves of our computational simulation show excellent

agreement with the dashed lines of our analytical solution
and reflect the nonlinear nature of the problem further away
from the initial bifurcation point, here at relative thickness
differences of κ > 0.05.
Polymer experiments.—To experimentally characterize

the effect of symmetry breaking, we create a bilayer system
of room-temperature-vulcanization silicone rubber with a
stiff thin layer on top of a prestretched soft thick substrate
[38]. To cast the soft substrate, we mix a platinum-
catalyzed silicone, Smooth-On Ecoflex 00-30, dye the
mixture in white, pour it into a rectangular casting mold,
and cure it for 5 h at room temperature. After curing, we
prestretch the substrate uniaxially from its initial length L
to a prestretched length l using a custom-built stretching
device. To prepare the stiff layer, we mix a platinum
silicone, Smooth-On Mold Star 20 T, dye the mixture in
blue, pour it onto the stretched substrate, and cure it for 2 h
at room temperature. To induce folding, we gradually
release the prestretch. We take images of the folded bilayer
and characterize the gyral and sulcal thicknesses using
digital imaging techniques. We apply a constant prestretch
of λ ¼ l=L ¼ 2.0. At this prestretch level, the layer and
substrate have stiffnesses of 324 and 69 kPa, respectively,
which generates a stiffness contrast of 4.7, about twice the
value as in the adult human brain [36].
Figure 3 and Table I summarize the results of our polymer

experiments after releasing the prestretch. Our experiments
confirm that the wavelength scales linearly with the layer
thickness [37]. For all five experiments, the gyral thickness tg
was always larger than the sulcal thickness ts. For the five
initial layer thicknesses, from0.3, 0.6, 0.8, and 1.0 to 2.0mm,

FIG. 2. Computational simulations. Folding patterns for vary-
ing initial layer thicknesses of 1.25, 1.43, 1.67, 2.00, 2.50, and
3.33 mm (from top to bottom) confirm that the wavelength scales
linearly with the layer thickness and reveal that the gyral
thickness tg is always larger than the sulcal thickness ts.

FIG. 3. Polymer experiments. Folding patterns for varying
initial layer thicknesses of 0.3, 0.6, 0.8, 1.0, and 2.0 mm (from
top to bottom) confirm that the wavelength scales linearly with
the layer thickness and reveal that the gyral thickness tg is always
larger than the sulcal thickness ts.
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we record the gyral and sulcal thicknesses tg and ts in Table I,
normalize them by the layer thickness at the onset of
wrinkling that we infer from kinematic estimates, and plot
them versus the relative thickness difference κ as solid circles
in Fig. 1. We conclude that our polymer experiments display
a good agreement with the dashed and solid lines of our
analytical solution and our computational model.
Human brains.—We now return to the initial problem of

the human brain. To study the thickness asymmetry in the
human cortex, we analyze magnetic resonance images of
564 healthy adult human brains from a public database
[39]. We perform volumetric image segmentation and

cortical reconstruction using FREESURFER [40]. We adopt
the Destrieux atlas [41] to parcellate the cortical surface
into four lobes (frontal, temporal, parietal, and occipital)
and 58 gyral and 62 sulcal regions. We determine the
cortical thickness in each of these 67 680 regions [24] and
report the gyral and sulcal thicknesses both individually for
each lobe and collectively in a histogram.
Figure 4 and Table II summarize the results of our human

brain analysis. The histogram in Fig. 4 (bottom) shows that
the mean thickness of all 32 712 gyral regions of 2.87 mm
was significantly larger, with a p value of p ≪ 10−10, than
the mean thickness of all 34 968 sulcal regions of 2.47 mm,
with an overall gyral-to-sulcal thickness ratio of 1.162. The
thickest region was region 18 of the Destrieux atlas [41],
the short insular gyrus, with 3.75� 0.71 mm, and the
thinnest region was region 57, the middle occipital sulcus
and lunatus sulcus, with 1.89� 0.42 mm. The color-coded
brains in Fig. 4 (top) highlight the mean gyral (left) and
sulcal (right) thicknesses in the frontal, temporal, parietal,
and occipital lobes. As Table II confirms, in each lobe, the
mean gyral thickness was significantly larger (p ≪ 10−10)
than the mean sulcal thickness. The thickness ratio between
gyri and sulci displayed an anterior-to-posterior gradient
with 1.240 in the frontal lobe, 1.166 and 1.167 in the
temporal and parietal lobes, and 1.082 in the occipital lobe.
For all four lobes, we normalized gyral and sulcal thick-
nesses tg and ts from Table II and plotted them versus the
relative thickness difference κ as solid triangles in Fig. 1.
We conclude that our human brain analysis displays an
excellent agreement with the dashed and solid lines of our
analytical solution and our computational model.
Discussion.—We studied the symmetry breaking during

folding, analytically, computationally, experimentally, and
anatomically. We observed, in Figs. 2–4, that the homo-
geneous system undergoes a unique symmetry breaking
into a spatially heterogeneous system with discrete gyri
and sulci. Strikingly, in all systems, the gyral thicknesses
increases while the sulcal thicknesses decrease. This
symmetry breaking emerges naturally, as we show in
Fig. 1, even in the complete absence of local perturbations
or nonuniform growth.
Our theoretical analysis indicates that our observed

thickness variations decrease with an increasing stiffness
ratio (see Supplemental Material [32]). This suggests that

TABLE I. Polymer experiments. Gyral and sulcal thicknesses
and thickness ratios for varying initial layer thicknesses at a
constant prestretch of λ ¼ 2.0p; see Fig. 3.

Layer
(mm)

Gyral thickness
(mm)

Sulcal thickness
(mm) Ratio

0.300 0.391� 0.066 0.307� 0.058 1.274
0.600 0.781� 0.062 0.524� 0.074 1.490
0.800 1.109� 0.131 0.719� 0.124 1.543
1.000 1.506� 0.063 0.948� 0.094 1.589
2.000 2.412� 0.300 1.487� 0.147 1.622

FIG. 4. Human brains. Mean gyral (top left) and sulcal (top
right) thicknesses of the frontal, temporal, parietal, and occipital
lobes. Histogram of gyral and sulcal thicknesses of 58 gyral
regions and 62 sulcal regions for 564 healthy adult human
brains (bottom). Vertical lines indicate the mean gyral and sulcal
thicknesses of 2.87 and 2.47 mm, respectively.

TABLE II. Human brains. Gyral and sulcal thicknesses and
thickness ratios in the frontal, parietal, occipital, and temporal
lobes, averaged over 564 human brains; see Fig. 4.

Lobe
Gyral thickness

(mm)
Sulcal thickness

(mm) Ratio

Frontal 2.988� 0.235 2.410� 0.217 1.240
Temporal 3.118� 0.300 2.674� 0.267 1.166
Parietal 2.761� 0.222 2.365� 0.229 1.167
Occipital 2.557� 0.218 2.342� 0.215 1.092
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gyral-to-sulcal thickness variations are a low-stiffness-ratio
phenomenon that is less pronounced, or even absent, in
large-stiffness-ratio systems. We conclude that symmetry
breaking is most visible in low-stiffness-ratio systems like
the human brain.
We showed that the thickness ratio between gyri and

sulci evolves dynamically and increases continuously with
increasing growth. Figure 1 highlights this effect for both
the dashed lines of the analytical solution and the solid lines
of the computational simulation. This could explain why, in
Table II, the gyral-to-sulcal thickness ratio is higher in the
frontal lobe with a lower average cortical thickness than in
the temporal lobe.
Conclusion.—A key question in brain morphogenesis

is whether regional thickness variations between gyri and
sulci are exclusively a result of genetic organization
patterns. While we do not deny the importance of genetic
effects during cortical folding, our study demonstrates that
geometric and physical factors alone could induce cortical
patterning and modulate cortical thickness. Our results
suggest that genetic, geometric, and physical factors during
brain development are closely interrelated. Our observa-
tions agree well with themechanical feedback hypothesis in
other model systems and could provide answers to the
fundamental question in development of how an organ
system knows where and when to grow. Beyond these
implications in developmental biology, our study suggests
that symmetry breaking in a wrinkling bilayer system is a
universal phenomenon in which gyri generally tend to
thicken while sulci tend to thin.
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